WO2012140811A1 - 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 - Google Patents

圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 Download PDF

Info

Publication number
WO2012140811A1
WO2012140811A1 PCT/JP2012/000135 JP2012000135W WO2012140811A1 WO 2012140811 A1 WO2012140811 A1 WO 2012140811A1 JP 2012000135 W JP2012000135 W JP 2012000135W WO 2012140811 A1 WO2012140811 A1 WO 2012140811A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
piezoelectric
tio
orientation
Prior art date
Application number
PCT/JP2012/000135
Other languages
English (en)
French (fr)
Inventor
田中 良明
貴聖 張替
足立 秀明
藤井 映志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280002260.1A priority Critical patent/CN103053039B/zh
Priority to JP2012535518A priority patent/JP5126457B1/ja
Priority to US13/616,125 priority patent/US8591009B2/en
Publication of WO2012140811A1 publication Critical patent/WO2012140811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition

Definitions

  • the present invention relates to a piezoelectric film, an inkjet head, an angular velocity sensor, and a piezoelectric power generation element.
  • a lead-free piezoelectric material that is currently under development is a perovskite complex oxide (Bi, Na) TiO 3 —BaTiO as disclosed in, for example, Patent Document 1 and Patent Document 2. 3 .
  • This piezoelectric material is called BNT-BT.
  • An object of the present invention is to provide a BNT-BT piezoelectric film having higher crystal orientation, higher piezoelectric constant, and higher ferroelectric characteristics.
  • the piezoelectric film of the present invention is a first electrode having only (110) orientation, (Na x Bi 0.5 ) TiO 0.5x + 2.75 -BaTiO 3 layer having only (110) orientation, and (110) orientation only (Bi, Na) TiO 3 —BaTiO 3 layer and a second electrode).
  • the value of x is 0.29 or more and 0.40 or less, and the first electrode, (Na x Bi 0.5 ) TiO 0.5x + 2.75 -BaTiO 3 layer, (Bi, Na) TiO 3 -BaTiO 3 layer, And the 2nd electrode is laminated
  • the present invention provides a BNT-BT piezoelectric film having higher crystal orientation, higher piezoelectric constant, and higher ferroelectric properties.
  • FIG. 1A is a cross-sectional view schematically showing an embodiment of a piezoelectric film of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another embodiment of the piezoelectric film of the present invention.
  • FIG. 2 is a diagram showing X-ray diffraction profiles of piezoelectric films according to Examples 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 3 is a diagram showing the PE hysteresis curves of the piezoelectric films according to Example 1 and Comparative Example 1.
  • FIG. 4 is a perspective view schematically showing an example of the ink jet head of the present invention, partially showing a cross section of the ink jet head.
  • FIG. 1A is a cross-sectional view schematically showing an embodiment of a piezoelectric film of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another embodiment of the piezoelectric film of the present invention.
  • FIG. 2 is a diagram showing X-ray d
  • FIG. 5 is an exploded perspective view schematically showing a main part including a pressure chamber member and an actuator part in the ink jet head shown in FIG. 4 and partially showing a cross section of the main part.
  • 6 is a cross-sectional view schematically showing an example of a main part including a pressure chamber member and an actuator part in the ink jet head shown in FIG.
  • FIG. 7 is a perspective view schematically showing an example of the angular velocity sensor of the present invention.
  • 8 is a cross-sectional view showing a cross section E1 in the angular velocity sensor shown in FIG.
  • FIG. 9 is a perspective view schematically showing an example of the piezoelectric power generation element of the present invention.
  • FIG. 10 is a view showing a cross section F1 of the piezoelectric power generation element shown in FIG.
  • FIG. 1A shows one embodiment of a piezoelectric film according to the present invention.
  • the piezoelectric film 1a shown in FIG. 1A has a laminated structure 16a.
  • the stacked structure 16a includes a first electrode 13 having only a (110) orientation and a (Na x Bi 0.5 ) TiO 0.5x + 2.75 -BaTiO 3 layer having only a (110) orientation (0.29 ⁇ x ⁇ 0). 4) (14), (Bi, Na) TiO 3 —BaTiO 3 layer 15 having only (110) orientation, and second electrode 17 are provided.
  • the first electrode 13 and the second electrode 17 have a layer shape.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer 14 is an interface layer.
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 is a piezoelectric layer.
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 has small leakage current characteristics, high crystallinity, and high (110) orientation. For this reason, the piezoelectric film 1a has a low dielectric loss characteristic and the same high piezoelectric performance as PZT although it does not contain lead.
  • Examples of the first electrode 13 having only (110) orientation are the following (1) and (2).
  • a metal layer such as a platinum (Pt) layer, a palladium (Pd) layer, or a gold (Au) layer, or (2) nickel oxide (NiO), ruthenium oxide (RuO 2 ), iridium oxide (IrO 2 ) Oxide conductive layers such as strontium ruthenate (SrRuO 3 ) or lanthanum nickelate (LaNiO 3 ).
  • Platinum layer is preferred. Two or more of these layers can also be used.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 has (110) plane orientation on the surface.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer 14 is an interface layer.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 includes the first electrode 13 and the (Bi, Na) TiO 3 —BaTiO 3 layer 15. It is sandwiched between.
  • (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 is the crystal orientation of the (Bi, Na) TiO 3 —BaTiO 3 layer 15, piezoelectricity. Necessary for improving the constant and ferroelectric properties. For details, see Examples 1 to 3 and Comparative Examples 1 to 10 described later.
  • the composition of the interface layer suitable for improving the crystal orientation, piezoelectric constant, and ferroelectric properties of the (Bi, Na) TiO 3 —BaTiO 3 layer 15 is similar to the lattice constant of the piezoelectric layer and the interface layer. Or it is difficult to predict based on compositional similarity. That is, such a piezoelectric layer is not always obtained simply by providing an interface layer having a lattice constant or composition similar to the lattice constant or composition of the piezoelectric layer. This is because each element (excluding oxygen) constituting the multicomponent composite oxide such as (Bi, Na) TiO 3 —BaTiO 3 has a different vapor pressure, so that it has good crystallinity and good orientation.
  • the present inventors have, (Na x Bi 0.5) TiO 0.5x + 2.75 -BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 is, (Bi, Na) TiO 3 -BaTiO 3 -layer 15 Has been found to improve the crystal orientation, piezoelectric constant, and ferroelectric properties of.
  • the thickness of the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 is not limited. When the thickness is several lattice units (about 2 nm) or more, the crystal orientation and piezoelectric constant of the (Bi, Na) TiO 3 —BaTiO 3 layer 15 are improved.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 has a perovskite crystal structure represented by the chemical formula ABO 3 .
  • the main component of site A is Na, Bi and Ba, and the main component of site B is Ti.
  • the (Na x Bi 0.5 ) TiO 0.5x + 2.75 ⁇ BaTiO 3 layer (0.29 ⁇ x ⁇ 0.4) 14 may contain a trace amount of impurities.
  • the impurity can typically be K, Li, or silver replacing Na.
  • the (110) alignment layer is, for example, a LaNiO 3 layer and a SrRuO 3 layer.
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 is made of (Bi, Na) TiO 3 —BaTiO 3 .
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 has a (110) plane orientation on the surface.
  • the thickness of the (Bi, Na) TiO 3 —BaTiO 3 layer 15 is not limited. The thickness is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less. Even if the (Bi, Na) TiO 3 —BaTiO 3 layer 15 is thin, the film has low dielectric loss characteristics and high piezoelectric performance.
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 has a perovskite crystal structure represented by the chemical formula ABO 3 .
  • Site A and site B have bivalent and tetravalent average valences, respectively, depending on the arrangement of single or plural elements.
  • Site A is Bi, Na, and Ba.
  • Site B is Ti.
  • the (Bi, Na) TiO 3 —BaTiO 3 layer 15 may contain a trace amount of impurities.
  • the impurities can typically be Li and K substituting Na at site A and Sr and Ca substituting Ba.
  • the impurity can typically be Zr replacing Ti at site B.
  • Other such impurities can be, for example, Mn, Fe, Nb and Ta.
  • a (110) orientation layer (not shown) is optionally provided. Can be further sandwiched.
  • the second electrode 17 is made of a conductive material.
  • a conductive material is a metal having a low electrical resistance.
  • the material, NiO, may be RuO 2, IrO 3, SrRuO 3 , or an oxide conductive material such as LaNiO 3.
  • the conductive film 17 can be composed of two or more of these materials.
  • the first electrode 13 and the second electrode 17 are used to apply a voltage to the (Bi, Na) TiO 3 —BaTiO 3 layer 15.
  • an adhesion layer that improves the adhesion between them can be disposed.
  • the material of the adhesion layer are titanium (Ti), tantalum (Ta), iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), or a compound thereof.
  • the adhesion layer can be composed of two or more of these materials. The adhesion layer may be omitted depending on the adhesion between the second electrode 17 and the (Bi, Na) TiO 3 —BaTiO 3 layer 15.
  • FIG. 1B shows another embodiment of the piezoelectric film according to the present invention.
  • the piezoelectric film 1b includes a substrate 11 and a laminated structure 16a.
  • the first electrode 13 is sandwiched between the substrate 11 and the (Na x Bi 0.5 ) TiO 0.5x + 2.75 -BaTiO 3 layer 14.
  • the substrate 11 can be a silicon (Si) substrate or a magnesium oxide (MgO) substrate.
  • the substrate 11 is preferably a single crystal substrate having only (110) orientation.
  • an adhesion layer that improves the adhesion between them can be disposed between the substrate 11 and the first electrode 13, an adhesion layer that improves the adhesion between them.
  • the material of the adhesion layer may be Ti, Ta, Fe, Co, Ni, Cr, or a compound thereof.
  • the adhesion layer can be composed of two or more of these materials.
  • the adhesion layer may be omitted depending on the adhesion between the substrate 11 and the laminated structure 16a.
  • Patent Literature 4 and Patent Literature 5 are a US patent publication and a Chinese publication that correspond to Patent Literature 3, respectively.
  • FIG. 4 shows an embodiment of the ink jet head of the present invention.
  • FIG. 5 is an exploded view showing a main part including a pressure chamber member and an actuator part in the inkjet head 100 shown in FIG.
  • the pressure chamber member A includes a through hole 101 penetrating in the thickness direction (vertical direction in the figure).
  • the through hole 101 shown in FIG. 5 is a part of the through hole 101 cut in the thickness direction of the pressure chamber member A.
  • a symbol B indicates an actuator unit including a piezoelectric film and a vibration layer.
  • Reference numeral C indicates an ink flow path member C including the common liquid chamber 105 and the ink flow path 107.
  • the pressure chamber member A, the actuator part B, and the ink flow path member C are joined to each other so that the pressure chamber member A is sandwiched between the actuator part B and the ink flow path member C.
  • the through hole 101 forms a pressure chamber 102 that accommodates the ink supplied from the common liquid chamber 105.
  • the ink jet head 100 includes two or more individual electrode layers 103 arranged in a zigzag shape in a plan view, that is, a piezoelectric film.
  • the ink flow path member C includes two or more common liquid chambers 105 arranged in a stripe shape in plan view. 4 and 5, each common liquid chamber 105 overlaps with two or more pressure chambers 102 in a plan view.
  • the common liquid chamber 105 extends in the ink supply direction of the inkjet head 100 (the arrow direction in FIG. 4).
  • the ink flow path member C includes a supply port 106 that supplies ink in the common liquid chamber 105 to the pressure chamber 102, and an ink flow path 107 that discharges ink in the pressure chamber 102 from the nozzle hole 108.
  • one supply hole 106 and one nozzle hole 108 are associated with one pressure chamber 102.
  • the nozzle hole 108 is formed in the nozzle plate D.
  • the nozzle plate D is joined to the ink flow path member C so as to sandwich the ink flow path member C together with the pressure chamber member A.
  • the IC chip E is electrically connected to the individual electrode layer 103 exposed on the surface of the actuator part B via a bonding wire BW.
  • a bonding wire BW For clarity of FIG. 4, only some of the bonding wires BW are shown in FIG.
  • FIG. 5 shows a configuration of a main part including the pressure chamber member A and the actuator part B.
  • 6 shows a cross section perpendicular to the ink supply direction (the arrow direction in FIG. 4) in the pressure chamber member A and the actuator portion B.
  • the actuator part B includes a piezoelectric film 104 (104a-104d) having a piezoelectric layer 15 sandwiched between a first electrode (individual electrode layer 103) and a second electrode (common electrode layer 112).
  • One individual electrode layer 103 is associated with one piezoelectric film 104a to 104d.
  • the common electrode layer 112 is an electrode common to the piezoelectric films 104a to 104d.
  • the piezoelectric film 104 described above is disposed inside the inkjet head.
  • the piezoelectric film is the piezoelectric film described in the item entitled [Piezoelectric film].
  • a voltage is applied to the piezoelectric layer via the first and second electrodes (that is, the individual electrode layer and the common electrode layer), and the piezoelectric effect
  • the method includes a step of changing the volume of the pressure chamber by displacing the vibration layer in the film thickness direction of the layer, and a step of discharging ink from the pressure chamber by the displacement.
  • an image is formed on the surface of the object.
  • image includes characters. In other words, characters, pictures, graphics, and the like are printed on a print object such as paper by the method of forming an image of the present invention. In this method, printing with high expressive power can be achieved.
  • FIG. 7 shows an example of the angular velocity sensor of the present invention.
  • FIG. 8 shows a cross section E1 of the angular velocity sensor 21a shown in FIG.
  • An angular velocity sensor 21a shown in FIG. 7 is a so-called tuning fork type angular velocity sensor. This can be used for a vehicle navigation apparatus and a camera shake correction sensor for a digital still camera.
  • the angular velocity sensor 21a shown in FIG. 7 includes a substrate 200 having a vibration part 200b and a piezoelectric film 208 bonded to the vibration part 200b.
  • the substrate 200 includes a fixed part 200a and a pair of arms (vibrating part 200b) extending from the fixed part 200a in a predetermined direction.
  • the direction in which the vibration part 200b extends is the same as the direction in which the rotation center axis L of the angular velocity measured by the angular velocity sensor 21 extends. Specifically, the direction is the Y direction in FIG.
  • the substrate 200 When viewed from the thickness direction of the substrate 200 (Z direction in FIG. 7), the substrate 200 has a shape of a tuning fork having two arms (vibrating portions 200b).
  • the material constituting the substrate 200 is not limited.
  • the material is, for example, Si, glass, ceramics, or metal.
  • the substrate 200 may be a Si single crystal substrate.
  • the thickness of the substrate 200 is not limited as long as the function as the angular velocity sensor 21a can be expressed. More specifically, the thickness of the substrate 200 is not less than 0.1 mm and not more than 0.8 mm.
  • the thickness of the fixed part 200a may be different from the thickness of the vibrating part 200b.
  • the piezoelectric film 208 is bonded to the vibration part 200b.
  • the piezoelectric film 208 is the piezoelectric film described in the item entitled [Piezoelectric film]. As shown in FIGS. 7 and 8, the piezoelectric film 208 includes a first electrode 13 (202), an interface layer 14, a piezoelectric layer 15, and a second electrode 17 (205).
  • the second electrode 205 includes an electrode group including the drive electrode 206 and the sense electrode 207.
  • the drive electrode 206 applies a drive voltage for oscillating the vibration part 200b to the piezoelectric layer 15.
  • the sense electrode 207 measures the deformation generated in the vibration part 200b due to the angular velocity applied to the vibration part 200b.
  • the oscillation direction of the vibration part 200b is normally the width direction (X direction in FIG. 7). More specifically, in the angular velocity sensor shown in FIG. 7, the pair of drive electrodes 206 are provided at both ends with respect to the width direction of the vibration part 200 b along the length direction of the vibration part 200 b (Y direction in FIG. 7). Is provided.
  • One drive electrode 206 may be provided at one end with respect to the width direction of the vibration part 200b.
  • the sense electrode 207 is provided along the length direction of the vibration part 200 b and is sandwiched between the pair of drive electrodes 206.
  • a plurality of sense electrodes 207 may be provided on the vibration part 200b.
  • the deformation of the vibration part 200b measured by the sense electrode 207 is usually a deflection in the thickness direction (Z direction in FIG. 7).
  • one electrode selected from the first electrode and the second electrode can be constituted by an electrode group including a drive electrode and a sense electrode.
  • the second electrode 205 is constituted by the electrode group.
  • the first electrode 202 can be constituted by the electrode group.
  • Connection terminals 202a, 206a, and 207a are formed at the end of the first electrode 202, the end of the drive electrode 206, and the end of the sense electrode 207, respectively.
  • the shape and position of each connection terminal are not limited. In FIG. 7, the connection terminal is provided on the fixing part 200a.
  • the piezoelectric film 208 is bonded to both the vibrating part 200b and the fixed part 200a.
  • the bonding state of the piezoelectric film 208 is not limited as long as the piezoelectric film 208 can oscillate the vibration part 200b and the deformation generated in the vibration part 200b can be measured by the piezoelectric film 208.
  • the piezoelectric film 208 can be bonded only to the vibration part 200b.
  • the angular velocity sensor of the present invention may have two or more vibration part groups each including a pair of vibration parts 200b.
  • Such an angular velocity sensor can measure angular velocities with respect to a plurality of rotation center axes, and can function as a biaxial or triaxial angular velocity sensor.
  • the angular velocity sensor shown in FIG. 7 has one vibration part group including a pair of vibration parts 200b.
  • the method for measuring the angular velocity according to the present invention includes the step of applying a driving voltage to the piezoelectric layer by using the angular velocity sensor according to the present invention to oscillate the vibrating portion of the substrate, and the angular velocity applied to the vibrating portion during oscillation. Obtaining a value of the angular velocity by measuring the deformation generated in the vibration part.
  • a drive voltage is applied between an electrode that does not function as a drive electrode and a sense electrode (the other electrode) and the drive electrode, and a drive voltage is applied to the piezoelectric layer.
  • the other electrode and the sense electrode measure the deformation generated in the vibrating part by the angular velocity.
  • a drive voltage having a frequency that resonates with the natural vibration of the vibration part 200b is applied to the piezoelectric layer 15 via the first electrode 202 and the drive electrode 206, and the vibration part 200b is oscillated.
  • the drive voltage can be applied, for example, by grounding the first electrode 202 and changing the potential of the drive electrode 206 (in other words, the drive voltage is a potential difference between the first electrode 202 and the drive electrode 206). Is). It has an angular velocity sensor 21a and a pair of vibration parts 200b arranged in the shape of a tuning fork.
  • each vibration part 200b can be oscillated in the mode which vibrates in the mutually opposite direction (mode which vibrates symmetrically with respect to the rotation center axis L shown in FIG. 7).
  • the vibration part 200b oscillates in the width direction (X direction).
  • the angular velocity can also be measured by oscillating only one of the pair of vibrating parts 200b.
  • each vibrating portion 200b bends in the thickness direction (Z direction) by Coriolis force.
  • the pair of vibrating parts 200b oscillate in a mode in which they vibrate in opposite directions
  • the vibrating parts 200b bend in the opposite directions by the same amount of change.
  • the piezoelectric layer 15 bonded to the vibration part 200b is also bent, and corresponds to the Coriolis force generated according to the bending of the piezoelectric layer 15 between the first electrode 202 and the sense electrode 207. Resulting in a potential difference.
  • the angular velocity ⁇ applied to the angular velocity sensor 21a can be measured.
  • FIG. 9 shows an example of the piezoelectric power generation element of the present invention.
  • FIG. 10 shows a cross section F1 of the piezoelectric power generation element 22a shown in FIG.
  • the piezoelectric power generation element 22a is an element that converts mechanical vibration given from the outside into electric energy.
  • the piezoelectric power generation element 22a is preferably applied to a self-supporting power supply device that generates power from various vibrations included in power vibration and running vibration of vehicles and machines, and vibration generated during walking.
  • 9 includes a substrate 300 having a vibration part 300b and a piezoelectric film 308 bonded to the vibration part 300b.
  • the substrate 300 includes a fixed portion 300a and a vibrating portion 300b composed of a beam extending from the fixed portion 300a in a predetermined direction.
  • the material constituting the fixed part 300a may be the same as the material constituting the vibrating part 300b. However, these materials can be different from each other.
  • the fixing part 300a made of different materials can be joined to the vibration part 300b.
  • the material constituting the substrate 300 is not limited.
  • the material is, for example, Si, glass, ceramics, or metal.
  • the substrate 300 may be a Si single crystal substrate.
  • the substrate 300 has a thickness of 0.1 mm or more and 0.8 mm or less, for example.
  • the fixing part 300a may have a thickness different from the thickness of the vibration part 300b.
  • the thickness of the vibration part 300b may be adjusted so that efficient power generation can be performed by changing the resonance frequency of the vibration part 300b.
  • the weight load 306 is joined to the vibration part 300b.
  • the weight load 306 adjusts the resonance frequency of the vibration part 300b.
  • the weight load 306 is, for example, a vapor deposited thin film of Ni.
  • the material, shape, and mass of the weight load 306 and the position where the weight load 306 is joined can be adjusted according to the required resonance frequency of the vibration unit 300b.
  • the weight load 306 can be omitted. When the resonance frequency of the vibration part 300b is not adjusted, the weight load 306 is unnecessary.
  • the piezoelectric film 308 is joined to the vibration part 300b.
  • the piezoelectric film 308 is the piezoelectric film described in the item entitled [Piezoelectric film]. As shown in FIGS. 9 and 10, the piezoelectric film 308 includes the first electrode 13 (302), the interface layer 14, the piezoelectric layer 15, and the second electrode 17 (305).
  • the piezoelectric power generation element shown in FIG. 9 a part of the first electrode 302 is exposed.
  • the portion can function as the connection terminal 302a.
  • the piezoelectric film 308 can be bonded to both the vibrating part 300b and the fixed part 300a.
  • the piezoelectric film 308 can be bonded only to the vibration part 300b.
  • the amount of generated electric power can be increased by having the plurality of vibrating portions 300b.
  • the resonance frequency which each vibration part 300b has it becomes possible to cope with mechanical vibration composed of a wide frequency component.
  • the vibration part 300b When mechanical vibration is applied to the piezoelectric power generation element 22a from the outside, the vibration part 300b starts to bend up and down with respect to the fixed part 300a. The vibration generates an electromotive force due to the piezoelectric effect in the piezoelectric layer 15. In this way, a potential difference is generated between the first electrode 302 and the second electrode 305 that sandwich the piezoelectric layer 15. The higher the piezoelectric performance of the piezoelectric layer 15 is, the larger the potential difference generated between the first and second electrodes is.
  • the resonance frequency of the vibration unit 300b is close to the frequency of mechanical vibration applied to the element from the outside, power generation characteristics are improved by increasing the amplitude of the vibration unit 300b. Therefore, it is preferable that the resonance frequency of the vibration unit 300b is adjusted by the weight load 306 so as to be close to the frequency of mechanical vibration applied to the element from the outside.
  • Example 1 the piezoelectric film shown in FIG. 1B was produced as follows.
  • a Pt layer having only the (110) orientation was formed on the MgO (110) single crystal substrate 11 by a sputtering method.
  • the Pt layer had a thickness of 250 nanometers.
  • the Pt layer was the first electrode 13.
  • the conditions in the sputtering method were as follows.
  • Analysis was performed by line spectroscopy (SEM-EDX). In the measurement using SEM-EDX, the analysis accuracy of a light element such as oxygen is inferior, and it is difficult to accurately quantify the light element.
  • 0.93 (Na x Bi 0.5 ) TiO 0.5x + 2.75 -0.07 BaTiO 3 layer 0.9 (Bi) having only (110) orientation by sputtering on the layer 14 (x 0.350)
  • a 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 was formed.
  • the formed 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 had a thickness of 2.7 micrometers.
  • the 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 was a piezoelectric layer.
  • the conditions of the sputtering method were as follows.
  • the composition of the formed 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 is also determined by energy dispersive line spectroscopy (SEM-EDX). analyzed. It was confirmed that the composition of Na, Bi, Ba, and Ti contained in the formed 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 was the same as that of the target. .
  • an Au layer (second electrode 17) having a thickness of 100 nanometers was formed on the 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 by vapor deposition. .
  • the piezoelectric film according to Example 1 was obtained.
  • FIG. 2 shows the result of X-ray diffraction, that is, the profile of X-ray diffraction.
  • X-ray diffraction was similarly applied to Examples 2 to 3 and Comparative Examples 1 to 4.
  • FIG. 2 shows not only the results of X-ray diffraction of Example 1, but also the results of X-ray analysis of Examples 2 to 3 and Comparative Examples 1 to 4.
  • the reflection peak derived from the Pt layer is derived from the 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 having only the (110) orientation. Only the reflection peak was observed. The intensity of the (110) reflection peak was a very high value of 489,581 cps.
  • the profile shown in FIG. 2 means that the 0.93 (Bi 0.5 Na 0.5 ) TiO 3 -0.07BaTiO 3 layer 15 according to Example 1 has a very high (110) crystal orientation.
  • the piezoelectric performance of the piezoelectric film was evaluated as follows.
  • the piezoelectric film was cut into a width of 2 mm and processed into a cantilever shape.
  • a displacement amount obtained by applying a potential difference between the first electrode 13 and the second electrode 17 to displace the cantilever was measured with a laser displacement meter.
  • the piezoelectric constant d 31 of the piezoelectric film according to Example 1 was ⁇ 123 pC / N.
  • Dielectric loss (tan ⁇ ) at 1 kHz was measured using an impedance analyzer.
  • the dielectric loss (tan ⁇ ) of the piezoelectric film according to Example 1 was 5.2%. This means that the piezoelectric film according to Example 1 had a small leakage current characteristic.
  • FIG. 3 shows a PE hysteresis curve of the piezoelectric film according to Example 1. As is clear from FIG. 3, the piezoelectric film of Example 1 had ferroelectric properties superior to those of the piezoelectric film of Comparative Example 1 described later.
  • the ferroelectric properties of the piezoelectric film according to Comparative Example 1 are shown in FIG.
  • the dielectric loss (tan ⁇ ) of the piezoelectric film according to Comparative Example 1 was 9.8%. This means that the piezoelectric film according to Comparative Example 1 has a large leakage current characteristic.
  • Table 1 shows that (Na x Bi 0.5 ) TiO 0.5x + 2.75 -BaTiO 3 layer 14 (0.29 ⁇ x ⁇ 0.40) having only (110) orientation has only (110) orientation ( It shows that the (110) peak intensity and the piezoelectric constant of the Bi 0.5 Na 0.5 ) TiO 3 —BaTiO 3 layer 15 are improved.
  • Example 2 and Comparative Example 3 mean that the value of x is required to be 0.4 or less.
  • Example 3 and Comparative Example 4 mean that the value of x is required to be 0.29 or more.
  • the BNT-BT piezoelectric film according to the present invention is used for an ink jet head, an angular velocity sensor, and a piezoelectric power generation element.
  • first electrode 14 (Na x Bi 0.5) TiO 0.5x + 2.75 -BaTiO 3 layer (0.29 ⁇ x ⁇ 0.40) (interfacial layer) 15 (Bi , Na) TiO 3 —BaTiO 3 layer 17
  • Second electrode 14 (Na x Bi 0.5) TiO 0.5x + 2.75 -BaTiO 3 layer (0.29 ⁇ x ⁇ 0.40) (interfacial layer) 15 (Bi , Na) TiO 3 —BaTiO 3 layer 17

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Gyroscopes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 本発明の圧電体膜は、(110)配向のみを有する第1電極、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層、(110)配向のみを有する(Bi,Na)TiO-BaTiO層、および第2電極が、この順に積層され、xの値は0.29以上0.40以下である。本発明の目的は、より高い結晶配向性、より高い圧電定数、およびより高い強誘電特性を有するBNT-BT圧電体膜を提供することである。

Description

圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子
 本発明は、圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子に関する。
 現在開発が進められている非鉛(lead-free)圧電材料の一例は、例えば、特許文献1および特許文献2に開示されるように、ペロブスカイト型複合酸化物(Bi,Na)TiO-BaTiOである。この圧電材料は、BNT-BTと言われる。
特公平4-60073号公報 特許第4455678号公報 国際公開第2010/047049号 米国特許第7870787号明細書 中国特許出願公開第101981718号明細書
 本発明の目的は、より高い結晶配向性、より高い圧電定数、およびより高い強誘電特性を有するBNT-BT圧電体膜を提供することである。
 本発明の他の目的は、当該BNT-BT圧電体膜を備えるインクジェットヘッド、角速度センサ、および圧電発電素子を提供することである。本発明のさらに他の目的は、当該インクジェットヘッドを用いて画像を形成する方法、当該角速度センサを用いて角速度を測定する方法、および当該圧電発電素子を用いた発電方法を提供することである。
 本発明の圧電体膜は、(110)配向のみを有する第1電極、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層、(110)配向のみを有する(Bi,Na)TiO-BaTiO層、および第2電極)を具備している。xの値は0.29以上0.40以下であり、第1電極、(NaBi0.5)TiO0.5x+2.75-BaTiO層、(Bi,Na)TiO-BaTiO層、および第2電極は、この順に積層されている。
 本発明は、より高い結晶配向性、より高い圧電定数、およびより高い強誘電特性を有するBNT-BT圧電体膜を提供する。
図1Aは、本発明の圧電体膜の実施形態を模式的に示す断面図である。 図1Bは、本発明の圧電体膜の他の実施形態を模式的に示す断面図である。 図2は、実施例1~3および比較例1~4による圧電体膜のX線回折プロファイルを示す図である。 図3は、実施例1および比較例1による圧電体膜のP-Eヒステリシス曲線を示す図である。 図4は、本発明のインクジェットヘッドの一例を模式的に示す、部分的に当該インクジェットヘッドの断面が示された斜視図である。 図5は、図4に示すインクジェットヘッドにおける、圧力室部材およびアクチュエータ部を含む要部を模式的に示す、部分的に当該要部の断面が示された分解斜視図である。 図6は、図4に示すインクジェットヘッドにおける、圧力室部材およびアクチュエータ部を含む要部の一例を模式的に示す断面図である。 図7は、本発明の角速度センサの一例を模式的に示す斜視図である。 図8は、図7に示す角速度センサにおける断面E1を示す断面図である。 図9は、本発明の圧電発電素子の一例を模式的に示す斜視図である。 図10は、図9に示す圧電発電素子における断面F1を示す図である。
 以下、本発明の実施の形態を説明する。以下の説明では、同一の部材に同一の符号を与える。これにより、重複する説明が省略され得る。
 [圧電体膜]
 図1Aは、本発明による圧電体膜の一形態を示す。図1Aに示される圧電体膜1aは、積層構造16aを有する。積層構造16aは、(110)配向のみを有する第1電極13、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14、(110)配向のみを有する(Bi,Na)TiO-BaTiO層15、第2電極17を具備する。第1電極13および第2電極17は、層の形状を有する。(NaBi0.5)TiO0.5x+2.75-BaTiO層14は界面層である。(Bi,Na)TiO-BaTiO層15は、圧電体層である。
 (Bi,Na)TiO-BaTiO層15は、小さいリーク電流特性、高い結晶性、および高い(110)配向性を有する。このため、圧電体膜1aは、鉛を含有しないにも拘わらず、低い誘電損失特性およびPZTと同一の高い圧電性能を有する。
 (第1電極13について)
 (110)配向のみを有する第1電極13の例は、以下の(1)および(2)である。
 (1)白金(Pt)層、パラジウム(Pd)層、または金(Au)層のような金属層、または
 (2)酸化ニッケル(NiO)、酸化ルテニウム(RuO)、酸化イリジウム(IrO)、ルテニウム酸ストロンチウム(SrRuO)、またはニッケル酸ランタン(LaNiO)のような酸化物導電層。
 白金層が好ましい。2層以上のこれらの層もまた、用いられ得る。
 (NaBi0.5)TiO0.5x+2.75-BaTiO層14について)
 (NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14は、(110)の面方位を表面に有する。(NaBi0.5)TiO0.5x+2.75-BaTiO層14は、界面層である。(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14は、第1電極13と(Bi,Na)TiO-BaTiO層15との間に挟まれている。(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14は、(Bi,Na)TiO-BaTiO層15の結晶配向性、圧電定数、および強誘電特性を向上させるために必要である。詳細は、後述される実施例1~3および比較例1~10を参照せよ。
 チタン酸ナトリウム・ビスマスの酸素量を表す「0.5x+2.75」は、誤差を含み得る。例えば、x=0.4であれば0.5×0.4+2.75=2.95である。しかし、ナトリウムの量が0.4である場合、チタン酸ナトリウム・ビスマスの酸素量は完全に2.95に一致するとは限らない。
 (Bi,Na)TiO-BaTiO層15の結晶配向性、圧電定数、および強誘電特性を向上させるために好適な界面層の組成を、圧電体層および界面層が有する格子定数の類似性または組成の類似性に基づいて予測することは困難である。即ち、圧電体層の格子定数または組成に類似する格子定数または組成を有する界面層を単に設けることによって、そのような圧電体層が得られるとは限らない。この理由は、(Bi,Na)TiO-BaTiOのような多元系複合酸化物を構成する各元素(酸素を除く)が異なる蒸気圧を有するため、良好な結晶性および良好な配向性を有する、当該複合酸化物により構成される薄膜を形成することが一般に困難であるからである。本発明者らは、(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14が、(Bi,Na)TiO-BaTiO層15の結晶配向性、圧電定数、および強誘電特性を向上させることを見出した。
 (NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14の厚みは限定されない。当該厚みが数格子単位(約2nm)以上であれば、(Bi,Na)TiO-BaTiO層15の結晶配向性および圧電定数は向上される。
 (NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14は、化学式ABOにより表されるペロブスカイト型の結晶構造を有する。サイトAの主成分はNa、BiおよびBa、サイトBの主成分はTiである。(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14は、微量の不純物を含み得る。当該不純物は、典型的には、Naを置換するK、Li、または銀であり得る。
 第1電極13と(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)14との間には、必要に応じて、(110)配向層(図示せず)がさらに挟まれ得る。(110)配向層は、例えば、LaNiO層およびSrRuO層である。
 (Bi,Na)TiO-BaTiO層15について)
 (Bi,Na)TiO-BaTiO層15は、(Bi,Na)TiO-BaTiOにより構成される。(Bi,Na)TiO-BaTiO層15は、(110)の面方位を表面に有する。
 (Bi,Na)TiO-BaTiO層15の厚みは限定されない。当該厚みは、例えば、0.5μm以上10μm以下である。(Bi,Na)TiO-BaTiO層15が薄くても、当該膜が低い誘電損失特性および高い圧電性能を有する。
 (Bi,Na)TiO-BaTiO層15は、化学式ABOにより表されるペロブスカイト型の結晶構造を有する。サイトAおよびサイトBは、単独または複数の元素の配置に応じて、それぞれ2価および4価の平均価数を有する。サイトAはBi、NaおよびBaである。サイトBはTiである。(Bi,Na)TiO-BaTiO層15は、微量の不純物を含み得る。当該不純物は、典型的には、サイトAにおけるNaを置換するLiおよびKならびにBaを置換するSrおよびCaであり得る。当該不純物は、典型的には、サイトBにおけるTiを置換するZrであり得る。その他の当該不純物は、例えば、Mn、Fe、NbおよびTaであり得る。いくかの不純物は、(Bi,Na)TiO-BaTiO層15の結晶配向性および圧電性能を向上し得る。
 (NaBi0.5)TiO0.5x+2.75-BaTiO層14および(Bi,Na)TiO-BaTiO層15の間には、必要に応じて、(110)配向層(図示せず)がさらに挟まれ得る。
 (第2電極17について)
 第2電極17は、導電性を有する材料により構成される。当該材料の例は、低い電気抵抗を有する金属である。当該材料は、NiO、RuO、IrO、SrRuO、またはLaNiOのような酸化物導電体であり得る。導電膜17は、2種以上のこれらの材料により構成され得る。
 第1電極13および第2電極17は、(Bi,Na)TiO-BaTiO層15に電圧を印加するために用いられる。
 第2電極17と(Bi,Na)TiO-BaTiO層15との間に、両者の密着性を向上させる密着層が配置され得る。密着層の材料の例は、チタン(Ti)、タンタル(Ta)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、クロム(Cr)、またはこれらの化合物である。密着層は、2種以上のこれらの材料により構成され得る。密着層は、第2電極17と(Bi,Na)TiO-BaTiO層15との密着性に応じて、省略され得る。
 図1Bは、本発明による圧電体膜の他の一形態を示す。図1Bに示されるように、この圧電体膜1bは、基板11および積層構造16aを具備する。第1電極13は、当該基板11および(NaBi0.5)TiO0.5x+2.75-BaTiO層14に挟まれる。
 基板11は、シリコン(Si)基板または酸化マグネシウム(MgO)基板であり得る。基板11は、(110)配向のみを有する単結晶基板であることが好ましい。
 基板11および第1電極13の間に、両者の密着性を向上させる密着層が配置され得る。密着層の材料の例は、Ti、Ta、Fe、Co、Ni、Crまたはこれらの化合物であり得る。密着層は、2種以上のこれらの材料により構成され得る。密着層は、基板11と積層構造16aとの密着性に応じて、省略され得る。
 以下、上述の圧電体膜を具備する本発明のインクジェットヘッド、角速度センサ、および圧電発電素子を説明する。詳細は、特許文献3を参照されたい。特許文献4および特許文献5は、それぞれ、特許文献3に対応する米国特許公報および中国公開公報である。
 [インクジェットヘッド]
 以下、本発明のインクジェットヘッドを、図4~図6を参照しながら説明する。
 図4は、本発明のインクジェットヘッドの一形態を示す。図5は、図4に示されるインクジェットヘッド100における、圧力室部材およびアクチュエータ部を含む要部を示す分解図である。
 図4および図5における符号Aは、圧力室部材を指し示す。圧力室部材Aは、その厚み方向(図の上下方向)に貫通する貫通孔101を具備する。図5に示される貫通孔101は、圧力室部材Aの厚み方向に切断された当該貫通孔101の一部である。符号Bは、圧電体膜および振動層を具備するアクチュエータ部を指し示す。符号Cは、共通液室105およびインク流路107を具備するインク流路部材Cを指し示す。圧力室部材A、アクチュエータ部B、およびインク流路部材Cは、圧力室部材Aがアクチュエータ部Bおよびインク流路部材Cに挟まれるように、互いに接合している。圧力室部材A、アクチュエータ部Bおよびインク流路部材Cが互いに接合した状態で、貫通孔101は、共通液室105から供給されたインクを収容する圧力室102を形成する。
 アクチュエータ部Bが具備する圧電体膜および振動層は、平面視において圧力室102と重複する。図4および図5における符号103は、圧電体膜の一部である個別電極層を指し示す。図4に示されるように、インクジェットヘッド100は、平面視においてジグザグ状に配置された2以上の個別電極層103を、即ち、圧電体膜を、具備する。
 インク流路部材Cは、平面視においてストライプ状に配置された2以上の共通液室105を具備する。図4および図5において、各共通液室105は、平面視において2以上の圧力室102と重複する。共通液室105は、インクジェットヘッド100におけるインク供給方向(図4における矢印方向)に伸びている。インク流路部材Cは、共通液室105内のインクを圧力室102に供給する供給口106と、圧力室102内のインクをノズル孔108から吐出するインク流路107とを具備する。通常、1つの供給孔106および1つのノズル孔108が、1つの圧力室102に対応付けられている。ノズル孔108は、ノズル板Dに形成されている。ノズル板Dは、圧力室部材Aとともにインク流路部材Cを挟むように、インク流路部材Cに接合している。
 図4における符号EはICチップを指し示す。ICチップEは、アクチュエータ部Bの表面に露出する個別電極層103に、ボンディングワイヤBWを介して電気的に接続されている。図4を明瞭にするために、一部のボンディングワイヤBWのみが図4に示される。
 図5は、圧力室部材Aおよびアクチュエータ部Bを含む要部の構成を示す。図6は、圧力室部材Aおよびアクチュエータ部Bにおける、インク供給方向(図4における矢印方向)に直交する断面を示す。アクチュエータ部Bは、第1電極(個別電極層103)および第2電極(共通電極層112)に挟まれた圧電体層15を有する圧電体膜104(104a-104d)を具備する。1つの個別電極層103は、1つの圧電体膜104a~104dに対応付けられている。共通電極層112は、圧電体膜104a~104dに共通する電極である。
 図6における破線で囲まれているように、上述した圧電体膜104がインクジェットヘッド内部に配置される。当該圧電体膜は、[圧電体膜]と題された項目で説明された圧電体膜である。
 [インクジェットヘッドを用いた画像形成方法]
 本発明の画像を形成する方法は、上述した本発明のインクジェットヘッドにおいて、第1および第2電極(すなわち、個別電極層および共通電極層)を介して圧電体層に電圧を印加し、圧電効果により振動層を当該層の膜厚方向に変位させて圧力室の容積を変化させる工程、ならびに当該変位により圧力室からインクを吐出させる工程を含有する。
 紙のような画像形成対象物とインクジェットヘッドとの間の相対位置を変化させながら、圧電体層に印加する電圧を変化させてインクジェットヘッドからのインクの吐出タイミングおよび吐出量を制御することによって、対象物の表面に画像が形成される。本明細書において用いられる用語「画像」は、文字を含む。換言すれば、本発明の画像を形成する方法により、紙のような印刷対象物に、文字、絵、図形などが印刷される。当該方法では、高い表現力を有する印刷をなし得る。
 [角速度センサ]
 図7は、本発明の角速度センサの一例を示す。図8は、図7に示される角速度センサ21aの断面E1を示す。図7に示される角速度センサ21aは、いわゆる音叉型角速度センサである。これは車両用ナビゲーション装置およびデジタルスチルカメラの手ぶれ補正センサに使用され得る。
 図7に示される角速度センサ21aは、振動部200bを有する基板200と、振動部200bに接合された圧電体膜208とを備える。
 基板200は、固定部200aと、固定部200aから所定の方向に伸びた一対のアーム(振動部200b)とを具備する。振動部200bが延びる方向は、角速度センサ21が測定する角速度の回転中心軸Lが延びる方向と同一である。具体的には、当該方向は、図7ではY方向である。基板200の厚み方向(図7におけるZ方向)から見て、基板200は2本のアーム(振動部200b)を有する音叉の形状を有している。
 基板200を構成する材料は限定されない。当該材料は、例えば、Si、ガラス、セラミクス、金属である。基板200は、Si単結晶基板であり得る。基板200の厚みは、角速度センサ21aとしての機能が発現できる限り、限定されない。より具体的には、基板200の厚みは0.1mm以上0.8mm以下である。固定部200aの厚みは、振動部200bの厚みと異なり得る。
 圧電体膜208は、振動部200bに接合している。当該圧電体膜208は、[圧電体膜]と題された項目で説明された圧電体膜である。図7および図8に示されるように、当該圧電体膜208は、第1電極13(202)、界面層14、圧電体層15、および第2電極17(205)を具備する。
 第2電極205は、駆動電極206およびセンス電極207を含む電極群を具備する。駆動電極206は、振動部200bを発振させる駆動電圧を圧電体層15に印加する。センス電極207は、振動部200bに加わった角速度によって振動部200bに生じた変形を測定する。振動部200bの発振方向は、通常、その幅方向(図7におけるX方向)である。より具体的には、図7に示される角速度センサでは、一対の駆動電極206が、振動部200bの幅方向に対する両端部に、振動部200bの長さ方向(図7のY方向)に沿って設けられている。1本の駆動電極206が、振動部200bの幅方向に対する一方の端部に設けられ得る。図7に示される角速度センサでは、センス電極207は、振動部200bの長さ方向に沿って設けられており、かつ一対の駆動電極206の間に挟まれている。複数のセンス電極207が、振動部200b上に設けられ得る。センス電極207によって測定される振動部200bの変形は、通常、その厚み方向(図7におけるZ方向)の撓みである。
 本発明の角速度センサでは、第1電極および第2電極から選ばれる一方の電極が、駆動電極とセンス電極とを含む電極群により構成され得る。図7に示される角速度センサ21aでは、第2電極205が当該電極群により構成される。当該角速度センサとは異なり、第1電極202が当該電極群により構成され得る。
 接続端子202a、206aおよび207aが、第1電極202の端部、駆動電極206の端部およびセンス電極207の端部に、それぞれ形成されている。各接続端子の形状および位置は限定されない。図7では、接続端子は固定部200a上に設けられている。
 図7に示される角速度センサでは、圧電体膜208は、振動部200bおよび固定部200aの双方に接合している。しかし、圧電体膜208が振動部200bを発振させることができ、かつ振動部200bに生じた変形が圧電体膜208によって測定され得る限り、圧電体膜208の接合の状態は限定されない。例えば、圧電体膜208は、振動部200bのみに接合され得る。
 本発明の角速度センサは、一対の振動部200bからなる振動部群を2以上有し得る。そのような角速度センサは、複数の回転中心軸に対する角速度を測定し得、2軸あるいは3軸の角速度センサとして機能し得る。図7に示される角速度センサは、一対の振動部200bからなる1つの振動部群を有する。
 [角速度センサによる角速度の測定方法]
 本発明の角速度を測定する方法は、本発明の角速度センサを用いて、駆動電圧を圧電体層に印加して、基板の振動部を発振させる工程、および発振中の振動部に加わった角速度によって振動部に生じた変形を測定することによって当該角速度の値を得る工程、を有する。第1電極および第2電極のうち、駆動電極およびセンス電極として機能しない電極(他方の電極)と、駆動電極との間に駆動電圧が印加され、圧電体層に駆動電圧が印加される。他方の電極およびセンス電極が、角速度によって、発振中の振動部に生じた変形を測定する。
 以下、図7に示される角速度センサ21aを用いた角速度の測定方法を説明する。振動部200bの固有振動と共振する周波数の駆動電圧が、第1電極202および駆動電極206を介して圧電体層15に印加され、振動部200bを発振させる。駆動電圧は、例えば、第1電極202を接地し、かつ駆動電極206の電位を変化させることで印加され得る(換言すれば、駆動電圧は、第1電極202と駆動電極206との間の電位差である)。角速度センサ21a、音叉の形状に配列された一対の振動部200bを有する。通常、一対の振動部200bのそれぞれが有する各駆動電極206に、正負が互いに逆である電圧をそれぞれ印加する。これにより、各振動部200bを、互いに逆方向に振動するモード(図7に示される回転中心軸Lに対して対称的に振動するモード)で発振させることができる。図7に示される角速度センサ21aでは、振動部200bはその幅方向(X方向)に発振する。一対の振動部200bの一方のみを発振させることによっても角速度の測定は可能である。しかし、高精度の測定のためには、両方の振動部200bを互いに逆方向に振動するモードで発振させることが好ましい。
 振動部200bが発振している角速度センサ21aに対して、その回転中心軸Lに対する角速度ωが加わるとき、各振動部200bは、コリオリ力によって厚み方向(Z方向)に撓む。一対の振動部200bが互いに逆方向に振動するモードで発振している場合、各振動部200bは、互いに逆向きに、同じ変化量だけ撓むことになる。この撓みに応じて、振動部200bに接合した圧電体層15も撓み、第1電極202とセンス電極207との間に、圧電体層15の撓みに応じた、即ち、生じたコリオリ力に対応した電位差が生じる。この電位差の大きさを測定することで、角速度センサ21aに加わった角速度ωを測定することができる。
 コリオリ力Fcと角速度ωとの間には以下の関係が成立する:
 Fc=2mvω
 ここで、vは、発振中の振動部200bにおける発振方向の速度である。mは、振動部200bの質量である。この式に示されているように、コリオリ力Fcから角速度ωを算出し得る。
 [圧電発電素子]
 図9は、本発明の圧電発電素子の一例を示す。図10は、図9に示される圧電発電素子22aの断面F1を示す。圧電発電素子22aは、外部から与えられた機械的振動を電気エネルギーに変換する素子である。圧電発電素子22aは、車両および機械の動力振動および走行振動、ならびに歩行時に生じる振動、に包含される種々の振動から発電する自立的な電源装置に好適に適用される。
 図9に示される圧電発電素子22aは、振動部300bを有する基板300と、振動部300bに接合された圧電体膜308とを具備する。
 基板300は、固定部300aと、固定部300aから所定の方向に伸びた梁により構成される振動部300bと、を有する。固定部300aを構成する材料は、振動部300bを構成する材料と同一であり得る。しかし、これらの材料は互いに異なり得る。互いに異なる材料により構成された固定部300aが、振動部300bに接合され得る。
 基板300を構成する材料は限定されない。当該材料は、例えば、Si、ガラス、セラミクス、金属である。基板300は、Si単結晶基板であり得る。基板300は、例えば、0.1mm以上0.8mm以下の厚みを有する。固定部300aは振動部300bの厚みと異なる厚みを有し得る。振動部300bの厚みは、振動部300bの共振周波数を変化させて効率的な発電が行えるように調整され得る。
 錘荷重306が振動部300bに接合している。錘荷重306は、振動部300bの共振周波数を調整する。錘荷重306は、例えば、Niの蒸着薄膜である。錘荷重306の材料、形状および質量ならびに錘荷重306が接合される位置は、求められる振動部300bの共振周波数に応じて調整され得る。錘荷重306は省略され得る。振動部300bの共振周波数が調整されない場合には、錘荷重306は不要である。
 圧電体膜308は、振動部300bに接合している。当該圧電体膜308は、[圧電体膜]と題された項目で説明された圧電体膜である。図9および図10に示されるように、当該圧電体膜308は、第1電極13(302)、界面層14、圧電体層15、および第2電極17(305)を具備する。
 図9に示される圧電発電素子では、第1電極302の一部分が露出している。当該一部分は接続端子302aとして機能し得る。
 図9に示される圧電発電素子では、圧電体膜308は、振動部300bおよび固定部300aの双方に接合し得る。圧電体膜308は、振動部300bのみに接合し得る。
 本発明の圧電発電素子では、複数の振動部300bを有することで、発生する電力量を増大し得る。各振動部300bが有する共振周波数を変化させることにより、広い周波数成分からなる機械的振動への対応が可能となる。
 [圧電発電素子を用いた発電方法]
 上述した本発明の圧電発電素子に振動を与えることにより、第1電極および第2電極を介して電力が得られる。
 外部から圧電発電素子22aに機械的振動が与えられると、振動部300bが、固定部300aに対して上下に撓む振動を始める。当該振動が、圧電効果による起電力を圧電体層である15に生じる。このようにして、圧電体層15を挟持する第1電極302と第2電極305との間に電位差が発生する。圧電体層15が有する圧電性能が高いほど、第1および第2電極間に発生する電位差は大きくなる。特に、振動部300bの共振周波数が、外部から素子に与えられる機械的振動の周波数に近い場合、振動部300bの振幅が大きくなることで発電特性が向上する。そのため、錘荷重306によって、振動部300bの共振周波数が外部から素子に与えられる機械的振動の周波数に近くなるように調整されることが好ましい。
 (実施例)
 以下、実施例を用いて、本発明をより詳細に説明する。
 (実施例1)
 実施例1では、図1Bに示される圧電体膜を、以下のように作製した。
 まず、MgO(110)単結晶基板11上に、スパッタリング法により(110)配向のみを有するPt層を形成した。当該Pt層は、250ナノメートルの厚みを有した。当該Pt層は第1電極13であった。スパッタリング法での条件は以下の通りであった。
  ターゲット:金属Pt
  ガス雰囲気:アルゴン
  RFパワー:15W
  基板温度:摂氏300度
 次に、Pt層(第1電極13)上に、スパッタリング法により、(110)配向のみを有する0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)を形成した。当該0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)は、100ナノメートルの厚みを有していた。当該0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)は界面層であった。スパッタリング法の条件は以下の通りであった。
  ターゲット:上記と同じ組成
  ガス流量比:Ar/O=50/50
  RFパワー:170W
  基板温度:摂氏650度
 ここで、形成された0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)の組成を、エネルギー分散型線分光法(SEM-EDX)により分析した。SEM-EDXを用いた測定では、酸素のような軽元素の分析精度が劣るため、当該軽元素の正確な定量は困難であった。しかし、形成された0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)に含まれるNa,Bi,Ba,およびTiの組成は、ターゲットと同一であることが確認された。
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14(x=0.350)上に、スパッタリング法により、(110)配向のみを有する0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15を形成した。形成された0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15は、2.7マイクロメートルの厚みを有した。0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15は、圧電体層であった。スパッタリング法の条件は以下の通りであった。
  ターゲット:上記と同じ組成
  ガス流量比:Ar/O=50/50
  RFパワー:170W
  基板温度:摂氏650度
 ここで、形成された0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15の組成も、エネルギー分散型線分光法(SEM-EDX)により分析した。形成された0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15に含まれるNa,Bi,Ba,およびTiの組成は、ターゲットと同一であることが確認された。
 最後に、100ナノメートルの厚みを有するAu層(第2電極17)を、蒸着法によって、0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15上に形成した。このようにして、実施例1による圧電体膜を得た。
 (X線回折分析)
 形成した0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15はX線回折分析に供され、その結晶構造を解析した。X線回折分析は、0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15にX線を照射するようにして行なわれた。
 図2は、X線回折の結果、すなわち、X線回折のプロファイルを示す。実施例2~3および比較例1~4においても、同じようにX線回折が適用された。図2は、実施例1のX線回折の結果だけでなく、実施例2~3および比較例1~4のX線解析の結果も示す。
 図2に示されるように、Pt層に由来する反射ピークを除き、(110)配向のみを有する0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15に由来する反射ピークのみが観察された。当該(110)反射ピークの強度は、489,581cpsという非常に高い値であった。図2に示されるプロファイルは、実施例1による0.93(Bi0.5Na0.5)TiO-0.07BaTiO層15が極めて高い(110)結晶配向性を有することを意味する。
 (圧電定数d31の測定)
 圧電体膜の圧電性能は、以下のように評価した。圧電体膜を幅2mmに切り出して、カンチレバー状に加工した。次に、第1電極13および第2電極17の間に電位差を印加してカンチレバーを変位させて得られた変位量をレーザー変位計により測定した。次に、測定された変位量を圧電定数d31に変換した。実施例1による圧電体膜の圧電定数d31は-123pC/Nであった。
 (リーク電流の測定)
 インピーダンスアナライザを用いて1kHzにおける誘電損失(tanδ)を測定した。実施例1による圧電体膜の誘電損失(tanδ)は5.2%であった。これは、実施例1による圧電体膜が小さいリーク電流特性を有したことを意味する。
 (強誘電特性の評価)
 第1電極13および第2電極17の間に電位差を印加し、実施例1による圧電体膜の強誘電特性を評価した。図3は、実施例1による圧電体膜のP-Eヒステリシス曲線を示す。図3から明らかなように、実施例1の圧電体膜は、後述する比較例1の圧電体膜よりも優れた強誘電特性を有した。
 (実施例2)
 x=0.40である他は、実施例1と同様に実験を行った。
 (実施例3)
 x=0.29である他は、実施例1と同様に実験を行った。
 (比較例1)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14を形成しなかったこと以外は、実施例1と同様に実験を行った。
 比較例1による圧電体膜の強誘電特性は図3に示される。比較例1による圧電体膜の誘電損失(tanδ)は9.8%であった。これは、比較例1による圧電体膜が大きいリーク電流特性を有したことを意味する。
 (比較例2)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、(Na0.5Bi0.5)TiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例3)
 x=0.425である他は、実施例1と同様に実験を行った。
 (比較例4)
 x=0.280である他は、実施例1と同様に実験を行った。
 (比較例5)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、TiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例6)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、BiTiO12からなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例7)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、NaTiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例8)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、BaTiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例9)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、BiTi12-BaTiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 (比較例10)
 0.93(NaBi0.5)TiO0.5x+2.75-0.07BaTiO層14に代えて、NaTiO-BaTiOからなる界面層を用いたこと以外は、実施例1と同様に実験を行った。
 実施例1~3および比較例1~10の実験結果が、表1に要約されている。
Figure JPOXMLDOC01-appb-T000001
 表1は、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層14(0.29≦x≦0.40)が(110)配向のみを有する(Bi0.5Na0.5)TiO-BaTiO層15の(110)ピーク強度および圧電定数を改善することを示す。
 実施例2および比較例3は、xの値は0.4以下であることを必要とされることを意味する。
 実施例3および比較例4は、xの値は0.29以上であることを必要とされることを意味する。
 本発明によるBNT-BT圧電体膜は、インクジェットヘッド、角速度センサ、および圧電発電素子に用いられる。
 1a  圧電体膜
 1b  圧電体膜
 16a  積層構造
 13  第1電極
 14  (NaBi0.5)TiO0.5x+2.75-BaTiO層 (0.29≦x≦0.40) (界面層)
 15  (BiNa)TiO-BaTiO
 17  第2電極

Claims (7)

  1.  圧電体膜であって、
     (110)配向のみを有する第1電極と、
     (110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層と、
     (110)配向のみを有する(Bi,Na)TiO-BaTiO層と、
     第2電極と、を具備し、
     xの値は0.29以上0.40以下であり、
     前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、(Bi,Na)TiO-BaTiO層、および第2電極は、この順に積層されている圧電体膜。
  2.  インクジェットヘッドであって、
     第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、
     前記圧電体膜に接合された振動層と、
     インクを収容する圧力室を有するとともに、前記振動層における前記圧電体膜が接合した面とは反対側の面に接合された圧力室部材と、を備え、
     前記振動層は、圧電効果に基づく前記圧電体膜の変形に応じて当該振動層の膜厚方向に変位するように、前記圧電体膜に接合され、
     前記振動層と前記圧力室部材とは、前記振動層の変位に応じて前記圧力室の容積が変化するとともに、前記圧力室の容積の変化に応じて前記圧力室内のインクが吐出されるように、互いに接合されており、
     前記第1電極は、(110)配向のみを有し、
     前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
     前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
     前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極が、この順に積層されている、インクジェットヘッド。
  3.  インクジェットヘッドを用いて画像を形成する方法であって、
     前記インクジェットヘッドを準備する工程と、
           前記インクジェットヘッドは、
           第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、
           前記圧電体膜に接合された振動層と、
           インクを収容する圧力室を有するとともに、前記振動層における前記圧電体膜が接合した面とは反対側の面に接合された圧力室部材と、を備え、
           前記振動層は、圧電効果に基づく前記圧電体膜の変形に応じて当該振動層の膜厚方向に変位するように、前記圧電体膜に接合され、
           前記振動層と前記圧力室部材とは、前記振動層の変位に応じて前記圧力室の容積が変化するとともに、前記圧力室の容積の変化に応じて前記圧力室内のインクが吐出されるように、互いに接合されており、
     前記第1電極は、(110)配向のみを有し、
     前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
     前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
     前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極がこの順に積層されており、
     前記第1電極および第2電極を介して前記圧電体層に電圧を印加することにより、圧電効果に基づき、前記圧力室の容積が変化するように前記振動層を当該層の膜厚方向に変位させ、当該変位により前記圧力室からインクを吐出させる工程と、
    を包含する、方法。
  4.  角速度センサであって、
     振動部を有する基板と、
     前記振動部に接合されるとともに、第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、を備え、
     前記第1電極は、(110)配向のみを有し、
     前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
     前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
     前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極がこの順に積層されており、
     前記第1電極および第2電極から選ばれる一方の電極が、前記振動部を発振させる駆動電圧を前記圧電体層に印加する駆動電極と、発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を測定するためのセンス電極とを含む電極群により構成されている、角速度センサ。
  5.  角速度センサを用いて角速度を測定する方法であって、
     前記角速度センサを準備する工程と、
           前記角速度センサは、
           振動部を有する基板と、
           前記振動部に接合されるとともに、第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、を備え、
           前記第1電極は、(110)配向のみを有し、
           前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
           前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
           前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極がこの順に積層されており、
           前記第1および第2電極から選ばれる一方の電極が、駆動電極とセンス電極とを含む電極群により構成されており、
     駆動電圧を、前記第1および第2電極から選ばれる他方の電極と前記駆動電極とを介して前記圧電体層に印加することにより、前記振動部を発振させる工程と、
     発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を、前記他方の電極と前記センス電極とを介して測定することで前記加わった角速度の値を得る工程と、
    を包含する、方法。
  6.  圧電発電素子であって、
     振動部を有する基板と、
     前記振動部に接合されるとともに、第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、を備え、
     前記第1電極は、(110)配向のみを有し、
     前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
     前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
     前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極がこの順に積層されている、
    圧電発電素子。
  7.  圧電発電素子を用いた発電方法であって、
     前記圧電発電素子を準備する工程と、
           前記圧電発電素子は、
           振動部を有する基板と、
           前記振動部に接合されるとともに、第1電極および第2電極に挟まれた圧電体層を有する圧電体膜と、を備え、
           前記第1電極は、(110)配向のみを有し、
           前記圧電体層は、(110)配向のみを有する(Bi,Na,Ba)TiO層から構成されており、
           前記第1電極および前記圧電体層の間に、(110)配向のみを有する(NaBi0.5)TiO0.5x+2.75-BaTiO層(0.29≦x≦0.4)が挟まれており、
           前記第1電極、前記(NaBi0.5)TiO0.5x+2.75-BaTiO層、前記(Bi,Na,Ba)TiO層、および前記第2電極がこの順に積層されており、
     前記振動部に振動を与えることにより、前記第1および第2電極を介して電力を得る工程と、
    を包含する、方法。
PCT/JP2012/000135 2011-04-14 2012-01-12 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子 WO2012140811A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280002260.1A CN103053039B (zh) 2011-04-14 2012-01-12 压电体膜、喷墨头、角速度传感器、压电发电元件
JP2012535518A JP5126457B1 (ja) 2011-04-14 2012-01-12 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子
US13/616,125 US8591009B2 (en) 2011-04-14 2012-09-14 Piezoelectric film, ink jet head, angular velocity sensor and piezoelectric generating element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-089868 2011-04-14
JP2011089868 2011-04-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/616,125 Continuation US8591009B2 (en) 2011-04-14 2012-09-14 Piezoelectric film, ink jet head, angular velocity sensor and piezoelectric generating element

Publications (1)

Publication Number Publication Date
WO2012140811A1 true WO2012140811A1 (ja) 2012-10-18

Family

ID=47009009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000135 WO2012140811A1 (ja) 2011-04-14 2012-01-12 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子

Country Status (4)

Country Link
US (1) US8591009B2 (ja)
JP (1) JP5126457B1 (ja)
CN (1) CN103053039B (ja)
WO (1) WO2012140811A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204896A (ja) * 2018-05-24 2019-11-28 三菱マテリアル株式会社 Bnt−bt系膜及びその形成方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460073B2 (ja) * 1985-04-01 1992-09-25 Shanhai Inst Obu Seramikusu Akademia Shinika
JP2001151566A (ja) * 1999-11-19 2001-06-05 Ngk Spark Plug Co Ltd 圧電体セラミックス
JP2001261435A (ja) * 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc 圧電セラミックス及びその製造方法
JP2007266346A (ja) * 2006-03-29 2007-10-11 Seiko Epson Corp 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法
WO2010047049A1 (ja) * 2008-10-24 2010-04-29 パナソニック株式会社 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
WO2010084711A1 (ja) * 2009-01-20 2010-07-29 パナソニック株式会社 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP2011249489A (ja) * 2010-05-26 2011-12-08 Panasonic Corp 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4835813B1 (ja) * 2010-04-15 2011-12-14 パナソニック株式会社 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
WO2011158491A1 (ja) * 2010-06-16 2011-12-22 パナソニック株式会社 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182291A (ja) 1996-12-20 1998-07-07 Sharp Corp 強誘電体薄膜の製造方法、強誘電体薄膜被覆基板及びキャパシタ
CN100411214C (zh) * 2003-12-16 2008-08-13 松下电器产业株式会社 压电体薄膜装置和压电体薄膜装置的驱动方法
US7235917B2 (en) * 2004-08-10 2007-06-26 Canon Kabushiki Kaisha Piezoelectric member element and liquid discharge head comprising element thereof
KR101197009B1 (ko) * 2005-08-11 2012-11-05 히타치 긴조쿠 가부시키가이샤 반도체 자기 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460073B2 (ja) * 1985-04-01 1992-09-25 Shanhai Inst Obu Seramikusu Akademia Shinika
JP2001151566A (ja) * 1999-11-19 2001-06-05 Ngk Spark Plug Co Ltd 圧電体セラミックス
JP2001261435A (ja) * 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc 圧電セラミックス及びその製造方法
JP2007266346A (ja) * 2006-03-29 2007-10-11 Seiko Epson Corp 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法
WO2010047049A1 (ja) * 2008-10-24 2010-04-29 パナソニック株式会社 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
WO2010084711A1 (ja) * 2009-01-20 2010-07-29 パナソニック株式会社 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4835813B1 (ja) * 2010-04-15 2011-12-14 パナソニック株式会社 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP2011249489A (ja) * 2010-05-26 2011-12-08 Panasonic Corp 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
WO2011158491A1 (ja) * 2010-06-16 2011-12-22 パナソニック株式会社 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIPING GUO: "Structure and electrical properties of trilayered BaTi03/(Na0.5Bi0.5)Ti03-BaTi03/ BaTi03 thin films deposited on Si substrate", SOLID STATE COMMUNICATIONS, vol. 149, no. 1-2, January 2009 (2009-01-01), pages 14 - 17, XP025686932, DOI: doi:10.1016/j.ssc.2008.10.032 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204896A (ja) * 2018-05-24 2019-11-28 三菱マテリアル株式会社 Bnt−bt系膜及びその形成方法
JP7124445B2 (ja) 2018-05-24 2022-08-24 三菱マテリアル株式会社 Bnt-bt系膜及びその形成方法

Also Published As

Publication number Publication date
JP5126457B1 (ja) 2013-01-23
JPWO2012140811A1 (ja) 2014-07-28
CN103053039B (zh) 2015-07-01
US20130016163A1 (en) 2013-01-17
CN103053039A (zh) 2013-04-17
US8591009B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
JP4835813B1 (ja) 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4588807B1 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4524000B1 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5146625B2 (ja) インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4691614B1 (ja) 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5196087B2 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5370623B1 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4894983B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5459449B1 (ja) 圧電体膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077504B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077506B2 (ja) インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077505B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5887503B2 (ja) 圧電体膜ならびにその用途
JP2011249489A (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5887502B2 (ja) Nbt−bt結晶圧電体膜およびそれを具備する圧電積層構造体
JP5126457B1 (ja) 圧電体膜、インクジェットヘッド、角速度センサ、圧電発電素子
JP5344110B1 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002260.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012535518

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770630

Country of ref document: EP

Kind code of ref document: A1