WO2012104945A1 - 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 - Google Patents

圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 Download PDF

Info

Publication number
WO2012104945A1
WO2012104945A1 PCT/JP2011/006402 JP2011006402W WO2012104945A1 WO 2012104945 A1 WO2012104945 A1 WO 2012104945A1 JP 2011006402 W JP2011006402 W JP 2011006402W WO 2012104945 A1 WO2012104945 A1 WO 2012104945A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film
piezoelectric
tio
thin film
Prior art date
Application number
PCT/JP2011/006402
Other languages
English (en)
French (fr)
Inventor
貴聖 張替
田中 良明
足立 秀明
藤井 映志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180037811.3A priority Critical patent/CN103329297B/zh
Priority to JP2012546274A priority patent/JP5196087B2/ja
Publication of WO2012104945A1 publication Critical patent/WO2012104945A1/ja
Priority to US13/731,221 priority patent/US9184371B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used

Definitions

  • the present invention relates to a piezoelectric thin film including a piezoelectric layer and a manufacturing method thereof. Furthermore, the present invention provides an inkjet head including the piezoelectric thin film, a method of forming an image using the head, an angular velocity sensor including the piezoelectric thin film, a method of measuring an angular velocity using the sensor, and the piezoelectric thin film And a power generation method using the element.
  • PZT Lead zirconate titanate
  • PZT Pb (Zr x Ti 1-x ) O 3 , 0 ⁇ x ⁇ 1
  • PZT is used in capacitors and thin film memories.
  • PZT has pyroelectricity and piezoelectricity based on ferroelectricity.
  • PZT has high piezoelectric performance. By adjusting the composition or adding elements, the mechanical quality factor Qm of PZT can be easily controlled. These enable the application of PZT to sensors, actuators, ultrasonic motors, filter circuits and oscillators.
  • PZT contains a large amount of lead.
  • serious damage to ecosystems and the environment due to elution of lead from waste has been a concern.
  • restrictions on the use of lead are being promoted internationally. Therefore, unlike PZT, a ferroelectric material that does not contain lead (non-lead ferroelectric material) is required.
  • a lead-free ferroelectric material that is currently under development is a perovskite-type composite oxide composed of bismuth (Bi), sodium (Na), barium (Ba), and titanium (Ti) [(Bi it is a 0.5 Na 0.5) 1-y Ba y] TiO 3.
  • the barium amount y [Ba / (Bi + Na + Ba)]
  • the ferroelectric material has a piezoelectric constant d 33 of approximately 125 pC / N. And it discloses that it has high piezoelectric performance. However, the piezoelectric performance of the ferroelectric material is lower than that of PZT.
  • An object of the present invention is to provide a lead-free piezoelectric thin film containing a lead-free ferroelectric material, having a low dielectric loss and the same high piezoelectric performance as PZT, and a method for manufacturing the same.
  • An object of the present invention is to provide a lead-free piezoelectric thin film containing a lead-free ferroelectric material, having a low dielectric loss and the same high piezoelectric performance as PZT, and a method for manufacturing the same.
  • the piezoelectric thin film of the present invention has a laminated structure, and the laminated structure is an electrode film and a (1-x) (Na, Bi) TiO 3 -xBaTiO 3 film having an orthorhombic structure (x is 0.03 or more). Represents a value of 0.15 or less).
  • FIG. 1A is a cross-sectional view schematically showing an example of the piezoelectric thin film of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another example of the piezoelectric thin film of the present invention.
  • FIG. 1C is a cross-sectional view schematically showing another example of the piezoelectric thin film of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the ink jet head of the present invention, partially showing a cross section of the ink jet head.
  • FIG. 3 is a diagram schematically showing a main part including a pressure chamber member and an actuator part in the ink jet head shown in FIG. 2, and is an exploded perspective view partially showing a cross section of the main part.
  • FIG. 4A is a cross-sectional view schematically showing an example of a main part including a pressure chamber member and an actuator part in the ink jet head shown in FIG.
  • FIG. 4B is a cross-sectional view schematically showing another example of the main part including the pressure chamber member and the actuator part in the ink jet head shown in FIG. 2.
  • FIG. 5A is a cross-sectional view schematically showing a step of forming a laminate including a piezoelectric layer in an example of a method for manufacturing the ink jet head shown in FIG.
  • FIG. 5B is a cross-sectional view schematically showing a process for forming a member to be a pressure chamber member later in the example of the method for manufacturing the ink jet head shown in FIG. 2.
  • 5C is a cross-sectional view schematically showing a step of forming an adhesive layer in an example of the method for manufacturing the ink jet head shown in FIG. 2.
  • 6A is a cross-sectional view schematically showing a step of joining the laminate formed in the step shown in FIG. 5A and the member formed in the step shown in FIG. 5B in an example of the method of manufacturing the ink jet head shown in FIG. It is. 6B is a cross-sectional view schematically showing a step (intermediate layer etching step) subsequent to the step shown in FIG. 6A in the example of the method for manufacturing the ink jet head shown in FIG.
  • FIG. 7A is a cross-sectional view schematically showing a step (step of removing the base substrate) subsequent to the step shown in FIG.
  • FIG. 7B is a cross-sectional view schematically showing a step (an individual electrode layer forming step) subsequent to the step shown in FIG. 7A in the example of the method for manufacturing the ink jet head shown in FIG.
  • FIG. 8A is a cross-sectional view schematically showing a step (piezoelectric layer microfabrication step) subsequent to the step shown in FIG. 7B in the example of the inkjet head manufacturing method shown in FIG. 8B is a cross-sectional view schematically showing a step (substrate cutting step) subsequent to the step shown in FIG. 8A in the example of the method for manufacturing the ink jet head shown in FIG.
  • FIG. 8A is a cross-sectional view schematically showing a step (piezoelectric layer microfabrication step) subsequent to the step shown in FIG. 7B in the example of the inkjet head manufacturing method shown in FIG. 8B is a cross-sectional view schematically showing a step (substrate cutting step) subsequent to the step shown in FIG. 8A in
  • FIG. 9A is a cross-sectional view schematically showing an ink flow path member and nozzle plate preparation step in an example of the method of manufacturing the ink jet head shown in FIG.
  • FIG. 9B is a cross-sectional view schematically showing a bonding process between the ink flow path member and the nozzle plate in the example of the method for manufacturing the ink jet head shown in FIG. 2.
  • FIG. 9C is a cross-sectional view schematically showing a joining process of the joined body of the actuator portion and the pressure chamber member and the joined body of the ink flow path member and the nozzle plate in the example of the inkjet head manufacturing method shown in FIG.
  • FIG. 9D is a cross-sectional view schematically showing the ink jet head obtained by the steps shown in FIGS. 5A to 9C.
  • FIG. 10 is a plan view schematically illustrating an example in which a laminated body serving as an actuator unit is disposed on a substrate serving as a pressure chamber member.
  • FIG. 11 is a cross-sectional view schematically showing another example of the ink jet head of the present invention.
  • 12A is a schematic cross-sectional view for explaining an example of the method for manufacturing the ink jet shown in FIG. 12B is a schematic cross-sectional view for explaining an example of the manufacturing method of the ink jet shown in FIG.
  • FIG. 13A is a perspective view schematically showing an example of the angular velocity sensor of the present invention.
  • FIG. 13B is a perspective view schematically showing another example of the angular velocity sensor of the present invention.
  • FIG. 14A is a cross-sectional view showing a cross section E1 in the angular velocity sensor shown in FIG. 13A.
  • 14B is a cross-sectional view showing a cross section E2 in the angular velocity sensor shown in FIG. 13B.
  • FIG. 15A is a perspective view schematically showing an example of the piezoelectric power generation element of the present invention.
  • FIG. 15B is a perspective view schematically showing another example of the piezoelectric power generation element of the present invention.
  • 16A is a cross-sectional view showing a cross section F1 of the piezoelectric power generation element shown in FIG. 15A.
  • 16B is a cross-sectional view showing a cross section F2 of the piezoelectric power generation element shown in FIG. 15B.
  • FIG. 17 is a diagram showing X-ray diffraction profiles of piezoelectric thin films manufactured as Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 18 is a diagram schematically showing the crystal structure of the piez
  • FIG. 1A shows one embodiment of a piezoelectric thin film according to the present invention.
  • the piezoelectric thin film 1a shown in FIG. 1A has a laminated structure 16a.
  • the laminated structure 16a includes the electrode film 13 and the (Na, Bi) TiO 3 —BaTiO 3 film 15 in this order.
  • the laminated films 13 and 15 are in contact with each other.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 is a piezoelectric layer.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 has a composition of (1-x) (Na, Bi) TiO 3 —xBaTiO 3 (0.03 ⁇ x ⁇ 0.15) and is oblique It has a crystal structure. For this reason, although the piezoelectric thin film 1a does not contain lead, it has a low dielectric loss and the same high piezoelectric performance as PZT.
  • Examples of the electrode film 13 are the following (1) and (2).
  • Oxide conductor thin films such as iridium oxide (IrO 2 ) thin film, strontium ruthenate (SrRuO 3 ) thin film, and lanthanum nickelate (LaNiO 3 ) thin film.
  • Two or more layers of these thin films can also be used.
  • the LaNiO 3 film 13 is preferable.
  • the LaNiO 3 film 13 has a perovskite crystal structure represented by the chemical formula ABO 3 .
  • the lattice constant of the crystal structure is 0.384 nm (pseudocubic). Therefore, the LaNiO 3 film 13 has good lattice matching with the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the electrode film 13 may contain a trace amount of impurities.
  • the impurity is typically a rare earth element that replaces La.
  • LaNiO 3 is an oxide conductor.
  • the electrode film 13 can function as an electrode layer used for applying a voltage to the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • a SrRuO 3 film having a perovskite structure is preferable because it has good electrical conductivity.
  • the electrode film 13 can typically be formed by sputtering.
  • the electrode film 13 can also be formed by a thin film forming method such as a pulse laser deposition method (PLD method), a chemical vapor deposition method (CVD method), a sol-gel method, and an aerosol deposition method (AD method).
  • PLD method pulse laser deposition method
  • CVD method chemical vapor deposition method
  • AD method aerosol deposition method
  • the electrode film 13 made of Pt, LaNiO 3 or SrRuO 3 is formed by sputtering.
  • a (Na, Bi) TiO 3 —BaTiO 3 film 15 is formed on the electrode film 13 by sputtering.
  • the value “3” representing the oxygen amount of sodium titanate / bismuth may include an error. Even if the amount of Na, the amount of Bi, and the amount of Ti are 0.5, 0.5, and 1, respectively, the amount of O does not always match the value “3”. In the piezoelectric thin film, the amount of O tends to be smaller than 3. Similarly, the value “3” representing the oxygen amount of BaTiO 3 may include an error.
  • the thickness of the (Na, Bi) TiO 3 —BaTiO 3 film 15 is not limited. The thickness is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less. Even if the (Na, Bi) TiO 3 —BaTiO 3 film 15 is thin, the film has low dielectric loss and high piezoelectric performance.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 has a perovskite crystal structure represented by the chemical formula ABO 3 .
  • Site A and site B have bivalent and tetravalent average valences, respectively, depending on the arrangement of single or plural elements.
  • Site A is Bi, Na, and Ba.
  • Site B is Ti.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 may contain a small amount of impurities.
  • the impurities can typically be Li and K substituting Na at site A and Sr and Ca substituting Ba.
  • the impurity can typically be Zr replacing Ti at site B.
  • Other such impurities can be, for example, Mn, Fe, Nb and Ta.
  • Another film may be further sandwiched between the electrode film 13 and the (Na, Bi) TiO 3 —BaTiO 3 film 15 as necessary.
  • the film can be, for example, a Pt film, a LaNiO 3 film, or a SrRuO 3 film.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 can typically be formed by a sputtering method. As long as the (Na, Bi) TiO 3 —BaTiO 3 film 15 has the (001) orientation, it can also be formed by other thin film forming methods such as the PLD method, the CVD method, the sol-gel method, and the AD method.
  • FIG. 1B shows another embodiment of the piezoelectric thin film according to the present invention.
  • the piezoelectric thin film 1c shown in FIG. 1B has a laminated structure 16c.
  • the laminated structure 16c is a structure further including a conductive film 17 in the multilayer structure 16a shown in FIG. 1A.
  • the conductive film 17 is formed on the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the stacked structure 16c includes the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the conductive film 17 in this order. These stacked films are in contact with each other.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 is sandwiched between the electrode film 13 and the conductive film 17.
  • the electrode film 13 and the conductive film 17 can function as an electrode layer for applying a voltage to the (Na, Bi) TiO 3 —BaTiO 3 film 15 that is a piezoelectric layer.
  • the conductive film 17 is made of a conductive material.
  • a conductive material is a metal having a low electrical resistance.
  • the material, NiO, may be RuO 2, IrO 3, SrRuO 3 , and the oxide conductor such as LaNiO 3.
  • the conductive film 17 can be composed of two or more of these materials.
  • An adhesion layer that improves the adhesion between the conductive film 17 and the (Na, Bi) TiO 3 —BaTiO 3 film 15 may be disposed.
  • An example of the material of the adhesion layer is titanium (Ti).
  • the material can be tantalum (Ta), iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), or a compound thereof.
  • the adhesion layer can be composed of two or more of these materials.
  • the adhesion layer may be omitted depending on the adhesion between the conductive film 17 and the (Na, Bi) TiO 3 —BaTiO
  • the piezoelectric thin film 1c shown in FIG. 1B can be manufactured by sequentially forming a (Na, Bi) TiO 3 —BaTiO 3 film 15 and a conductive film 17 on the electrode film 13.
  • the conductive film 17 can be formed by a thin film formation method such as sputtering, PLD, CVD, sol-gel, or AD.
  • the method of the present invention for manufacturing a piezoelectric thin film may further include the step of forming a conductive film 17 on the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the piezoelectric thin film 1c shown in FIG. 1B can be manufactured.
  • the piezoelectric thin film of the present invention may further include a substrate 11 as shown in FIG. 1C.
  • the electrode film 13 is formed on the substrate.
  • the laminated structure 16c shown in FIG. 1B is formed on the substrate 11.
  • the substrate 11 may be a silicon (Si) substrate or an MgO substrate.
  • Si silicon
  • MgO substrate MgO substrate.
  • a Si single crystal substrate is preferred.
  • An adhesion layer that improves the adhesion between the substrate 11 and the laminated structure 16c may be disposed.
  • the adhesion layer needs conductivity.
  • An example of the material of the adhesion layer is Ti.
  • the material can be Ta, Fe, Co, Ni, Cr or a compound thereof.
  • the adhesion layer can be composed of two or more of these materials.
  • the adhesion layer may be omitted depending on the adhesion between the substrate 11 and the laminated structure 16c.
  • the piezoelectric thin film 1e shown in FIG. 1C can be manufactured by forming the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the conductive film 17 on the substrate 11 in this order.
  • the method of the present invention for producing a piezoelectric thin film can include a step of forming the electrode film 13 on the substrate 11.
  • the piezoelectric thin films 1a to 1e shown in FIGS. 1A to 1C can be manufactured using a base substrate. Specifically, the piezoelectric thin films 1a to 1e can be manufactured by forming the laminated structures 16a to 16c on the base substrate and then removing the base substrate. The base substrate can be removed by a known method such as etching.
  • the piezoelectric thin film 1e shown in FIG. 1C can also be manufactured using a base substrate.
  • the base substrate also serves as the substrate 11
  • the base substrate is removed, and further, the base substrate is formed on the separately prepared substrate 11.
  • the piezoelectric thin film 1e can be manufactured by arranging the laminated structure 16c.
  • the base substrate has an oxide substrate having a NaCl type structure such as MgO; an oxide substrate having a perovskite type structure such as SrTiO 3 , LaAlO 3 , and NdGaO 3 ; and a corundum type structure such as Al 2 O 3.
  • An oxide substrate having a cubic crystal structure such as stabilized zirconia (YSZ).
  • the base substrate can be formed by laminating an oxide thin film having a NaCl type crystal structure on the surface of a glass substrate; a ceramic substrate such as alumina; and a metal substrate such as stainless steel.
  • the electrode film 13 can be formed on the surface of the oxide thin film.
  • oxide thin films are MgO thin films, NiO thin films, and cobalt oxide (CoO) thin films.
  • the method of the present invention for producing a piezoelectric thin film can include the step of forming the electrode film 13 on the base substrate directly or via another film. After the base substrate that can also serve as the substrate 11 is removed, another substrate can be placed. At this time, the other substrate may be disposed in contact with the electrode film 13. The other substrate may be disposed so as to be in contact with the (Na, Bi) TiO 3 —BaTiO 3 film 15. According to the latter, a piezoelectric thin film is obtained in which the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the electrode film 13 are laminated in this order on the other substrate.
  • FIG. 2 shows an embodiment of the ink jet head of the present invention.
  • FIG. 3 is an exploded view showing a main part including a pressure chamber member and an actuator part in the inkjet head 100 shown in FIG.
  • the pressure chamber member A includes a through hole 101 penetrating in the thickness direction (vertical direction in the figure).
  • a through hole 101 shown in FIG. 3 is a part of the through hole 101 cut in the thickness direction of the pressure chamber member A.
  • Reference B indicates an actuator unit including a piezoelectric thin film and a vibration layer.
  • Reference numeral C indicates an ink flow path member C including the common liquid chamber 105 and the ink flow path 107.
  • the pressure chamber member A, the actuator part B, and the ink flow path member C are joined to each other so that the pressure chamber member A is sandwiched between the actuator part B and the ink flow path member C.
  • the through hole 101 forms a pressure chamber 102 that accommodates the ink supplied from the common liquid chamber 105.
  • the inkjet head 100 includes two or more individual electrode layers 103 arranged in a zigzag shape in a plan view, that is, a piezoelectric thin film.
  • the ink flow path member C includes two or more common liquid chambers 105 arranged in a stripe shape in plan view. One common liquid chamber 105 overlaps with two or more pressure chambers 102 in plan view.
  • the common liquid chamber 105 extends in the ink supply direction of the inkjet head 100 (the arrow direction in FIG. 2).
  • the ink flow path member C includes a supply port 106 that supplies ink in the common liquid chamber 105 to the pressure chamber 102, and an ink flow path 107 that discharges ink in the pressure chamber 102 from the nozzle hole 108.
  • one supply hole 106 and one nozzle hole 108 are associated with one pressure chamber 102.
  • the nozzle hole 108 is formed in the nozzle plate D.
  • the nozzle plate D is joined to the ink flow path member C so as to sandwich the ink flow path member C together with the pressure chamber member A.
  • the symbol E in FIG. 2 indicates an IC chip.
  • the IC chip E is electrically connected to the individual electrode layer 103 exposed on the surface of the actuator part B via a bonding wire BW.
  • a bonding wire BW For clarity of FIG. 2, only some of the bonding wires BW are shown in FIG.
  • FIG. 4A and FIG. 4B show the configuration of the main part including the pressure chamber member A and the actuator part B. 4A and 4B show cross sections orthogonal to the ink supply direction (the arrow direction in FIG. 2) in the pressure chamber member A and the actuator portion B.
  • FIG. The actuator part B includes a piezoelectric thin film 104 (104a to 104d) having a piezoelectric layer 15 sandwiched between a first electrode (individual electrode layer 103) and a second electrode (common electrode layer 112).
  • One individual electrode layer 103 is associated with one piezoelectric thin film 104a to 104d.
  • the common electrode layer 112 is an electrode common to the piezoelectric thin films 104a to 104d.
  • the piezoelectric thin film 104 shown in FIG. 4A has a laminated structure 16c shown in FIG. 1B.
  • the structure includes an electrode film 13 as an individual electrode layer 103, a (Na, Bi) TiO 3 —BaTiO 3 film 15 as a piezoelectric layer, and a conductive film 17 as a common electrode layer 112 from the electrode film 13 side.
  • a (Na, Bi) TiO 3 —BaTiO 3 film 15 as a piezoelectric layer
  • a conductive film 17 as a common electrode layer 112 from the electrode film 13 side.
  • the piezoelectric thin film 104 shown in FIG. 4B has a laminated structure 16c shown in FIG. 1B.
  • the structure is such that the individual electrode layer 103 is a metal electrode film (preferably a Pt film) 12 and an electrode film 13, the piezoelectric layer is a (Na, Bi) TiO 3 —BaTiO 3 film 15 and a common electrode layer 112.
  • a film 17 is provided.
  • the metal electrode film 12, the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the conductive film 17 basically have preferred forms.
  • the piezoelectric thin film of the present invention is as described above.
  • the conductive film 17 that is the common electrode layer 112 may be a Pt film having an adhesion layer made of a conductive material on its surface.
  • the conductive material is preferably Ti. This is because Ti has high adhesion to the (Na, Bi) TiO 3 —BaTiO 3 film 15 and can function well as an adhesion layer between the piezoelectric layer and the common electrode layer.
  • both the first electrode and the second electrode can be individual electrode layers. That is, the piezoelectric thin film in the inkjet of the present invention can include the common electrode layer 112, the (Na, Bi) TiO 3 —BaTiO 3 film 15 as the piezoelectric layer, and the individual electrode layer 103 in this order.
  • the common electrode layer 112 that is the first electrode is made of the electrode film 13.
  • the individual electrode layer 103 is made of a conductive film 17.
  • the individual electrode layer 103 preferably has a thickness of 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 preferably has a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the common electrode layer 112 preferably has a thickness of 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • Actuator B further includes a vibration layer 111.
  • the vibration layer 111 is bonded to the common electrode layer 112 of the piezoelectric thin film 104.
  • the vibration layer 111 is displaced in the film thickness direction of the vibration layer 111 in accordance with the deformation of the piezoelectric thin film 104 due to the piezoelectric effect.
  • Application of a voltage to the piezoelectric layer 15 via the individual electrode layer 103 and the common electrode layer 112 causes deformation of the piezoelectric thin film 104 due to the piezoelectric effect.
  • the pressure chamber member A is bonded to the vibration layer 111 through the intermediate layer 113 and the adhesive layer 114.
  • the pressure chamber member A and the piezoelectric thin film 104 sandwich the vibration layer 111 therebetween.
  • the vibration layer 111 is displaced according to the deformation of the piezoelectric thin film 104 due to the piezoelectric effect, (2) The volume of the pressure chamber 102 changes according to the displacement of the vibration layer 111, and (3) As long as the ink in the pressure chamber 102 can be ejected according to the change in the volume of the pressure chamber 102, the configuration of the vibration layer 111, the state of bonding between the piezoelectric thin film 104 and the vibration layer 111, and the vibration layer The state of joining between 111 and the pressure chamber member A is not limited.
  • the vibration layer 111 constitutes the wall surface of the pressure chamber 102.
  • the material constituting the vibration layer 111 is, for example, Cr.
  • the material can be Ni, aluminum (Al), Ta, tungsten (W), silicon, or an oxide or nitride of these elements (eg, silicon dioxide, aluminum oxide, zirconium oxide, silicon nitride).
  • the thickness of the vibration layer 111 is preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the material constituting the adhesive layer 114 is, for example, an adhesive or an adhesive.
  • an adhesive for example, an adhesive or an adhesive.
  • One skilled in the art can appropriately select the type of adhesive and pressure-sensitive adhesive.
  • the intermediate layer (vertical wall) 113 prevents the adhesive layer 114 from adhering to a part of the vibration layer 111 exposed to the pressure chamber 102 when the pressure chamber member A is joined to the vibration layer 111 via the adhesive layer 114. .
  • the adhesive adhered to the part prevents the vibration layer 111 from being displaced.
  • the material constituting the intermediate layer 113 is not limited as long as the function of the inkjet head 100 is maintained.
  • the material of the intermediate layer 113 is, for example, Ti.
  • the intermediate layer 113 can be omitted.
  • the pressure chamber member A has a partition wall 102 a between adjacent pressure chambers 102.
  • an electrode film 13, a (Bi, Na, Ba) TiO 3 film (piezoelectric layer) 15, a conductive film 17, a vibration layer 111, and an intermediate layer 113 are formed on a base substrate 120.
  • the thin film formation method for forming each layer (film) is not particularly limited. Examples of the method are a PLD method, a CVD method, a sol-gel method, an AD method, and a sputtering method.
  • the method is preferably a sputtering method.
  • a member to be the pressure chamber member A later is formed.
  • This member can be formed, for example, by finely processing a Si substrate (preferably a Si single crystal substrate).
  • the size of the Si substrate is preferably larger than the size of the base substrate 120 (see FIG. 10.
  • Reference numeral 130 in FIG. 10 is an Si substrate.
  • Reference numeral 130 may be a substrate other than the Si substrate).
  • a plurality of through holes 101 are formed in the substrate 130.
  • the through hole 101 functions as the pressure chamber 102 after this member is joined to the separately formed actuator portion and the ink flow path member.
  • one through hole group is composed of four through holes 101.
  • the substrate 130 includes a plurality of the through-hole groups.
  • the first partition wall 102a partitions two adjacent through holes 101 belonging to one through hole group.
  • the second partition wall 102b separates two adjacent through-hole groups.
  • the second partition wall 102b preferably has a width that is at least twice the width of the first partition wall 102a.
  • the through hole 101 can be provided in the substrate 130 by a known fine processing technique.
  • the technique can be a combination of patterning and etching, for example.
  • the etching can be chemical etching or dry etching.
  • the shape of the through-hole 101 can be associated with the desired shape of the pressure chamber 102.
  • the first partition wall 102a and the second partition wall 102b are collectively referred to as a partition wall 102.
  • an adhesive layer 114 is formed on the partition wall 102.
  • the method for forming the adhesive layer 114 is not limited.
  • the method can be, for example, an electrodeposition method.
  • the substrate 130 is bonded to the stacked body 132.
  • the intermediate layer 113 is sandwiched between the substrate 130 and the stacked body 132.
  • a plurality of stacked bodies 132 (14 stacked bodies in the example shown in FIG. 10.
  • the stacked body 132 is provided.
  • the substrate 130 is bonded to the substrate 130.
  • two stacked bodies 132 are bonded to the substrate 130.
  • the center of the two laminated bodies 132 is located on the extended line of the 2nd division wall 102b.
  • the conductive film 17 becomes the common electrode layer 112 by bonding the substrate 130 to the stacked body 132.
  • the adhesive layer 114 is composed of a thermosetting adhesive, it is preferable that the adhesive layer 114 is completely cured by applying heat after the substrate 130 is bonded to the laminate 132.
  • the adhesive layer 114 that protrudes into the through hole 101 at the time of bonding can be removed by plasma treatment.
  • the intermediate layer 113 is etched using the partition wall 102 as a mask.
  • the etching is performed so as to match the cross-sectional shape of the through hole 101.
  • the vibration layer 111 is exposed in the through hole 101.
  • the intermediate layer 113 changes to the same shape as the partition wall 102 in plan view.
  • the intermediate layer 113 constitutes a vertical wall together with the partition wall 102 and the adhesive layer 114. In this way, the pressure chamber member A including the substrate 130, the intermediate layer 113, and the adhesive layer 114 is formed.
  • the substrate 130 in which the through hole 101 is formed is bonded to the multilayer body 132 including the piezoelectric layer 15.
  • the pressure chamber member A is also formed by bonding the substrate 130 not having the through hole 101 to the laminate 132 and forming the through hole 101 in the substrate 130 to expose the vibration layer 111. Can be done.
  • the base substrate 120 is removed by etching, for example.
  • the electrode film 13 is changed into two or more individual electrode layers 103 by fine processing combining photolithography and etching.
  • Each individual electrode layer 103 is associated with each through-hole 101 in plan view.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 is finely processed.
  • the micro-processed (Na, Bi) TiO 3 —BaTiO 3 film 15 has the same shape as that of the individual electrode layer 103 in plan view. In the microfabrication, it is preferable that the center of each layer (film) in plan view coincides with the center of the through hole 101 with high accuracy. In this way, the piezoelectric thin film 104 composed of the individual electrode layer 103 (electrode film 13), the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the common electrode layer 112 (conductive film 17), and the vibration layer 111 is formed.
  • One member 133 includes an actuator part B and a pressure chamber member A having two or more through holes 101.
  • the actuator part B is joined to the pressure chamber member A.
  • an ink flow path member C including a common liquid chamber 105, a supply port 106, and an ink flow path 107, and a nozzle plate D including a nozzle hole 108 are provided. Be prepared.
  • the ink flow path member C is attached to the nozzle plate D so that the ink flow path 107 overlaps the nozzle hole 108 when viewed from the direction perpendicular to the main surface of the ink flow path member C. Join to obtain a joined body. It is preferable that the entire nozzle hole 108 is exposed to the ink flow path 107.
  • the joining method of both members is not limited, For example, an adhesive agent can be used.
  • the member 133 is joined to the joined body prepared in the step shown in FIG. 9B. More specifically, the surface of the pressure chamber member A opposite to the actuator part B side is joined to the surface of the ink flow path member C opposite to the nozzle plate D side. Alignment adjustment is performed at the time of joining, and the through hole 101 functions as the pressure chamber 102 by the joining.
  • the joining method is not limited, and for example, an adhesive can be used. In this way, the inkjet head 100 shown in FIG. 9D (FIG. 2) is obtained.
  • FIG. 11 shows another inkjet head of the present invention.
  • the inkjet head 141 shown in FIG. 11 has a simple structure as compared with the inkjet head 100 shown in FIGS. Specifically, the ink flow path member C is removed from the inkjet head 100.
  • the inkjet head 141 shown in FIG. 11 is the same as the inkjet head 100 shown in FIGS. 2 to 4 except for the following (1) to (6): (1) There is no ink flow path member C, and A nozzle plate D having a nozzle hole 108 is directly bonded to the pressure chamber member A; (2) the intermediate layer 113 is not present, and the vibration layer 111 is directly bonded to the pressure chamber member A; (3) An adhesion layer 142 is disposed between the vibration layer 111 and the common electrode layer 112, and the adhesion layer 142 improves adhesion between them; (4) the common electrode layer 112 is (5) The individual electrode layer 103 is the conductive film 17; (6) From the common electrode layer 112 side, the common electrode layer 112 (electrode film 13), (Na, Bi) TiO 3 —BaTiO 3. Membrane 15 and individual electrode layer 103 Conductive film 17) are stacked in this order.
  • the common electrode layer 112 functions as a first electrode.
  • the individual electrode layer 103 functions as a second electrode.
  • the material constituting the adhesion layer 142 is, for example, Ti.
  • the inkjet head 141 shown in FIG. 11 can be manufactured by the method shown in FIGS. 12A and 12B, for example.
  • the vibration layer 111, the adhesion layer 142, the common electrode layer 112 (electrode film 13), the (Na, Bi) TiO 3 —BaTiO 3 film 15 are formed on one main surface of the substrate 130.
  • the conductive film 17 are formed in this order.
  • the method for forming each layer (film) is as described above. The method is preferably a sputtering method.
  • the vibrating layer 111 made of silicon dioxide can be formed by oxidizing the surface of the substrate.
  • the thickness of the vibration layer 111 may be 0.5 to 10 ⁇ m.
  • the through hole 101 is formed at a position where the pressure chamber 102 is formed in the substrate 130.
  • these layers are formed so that the center of the through hole 101 coincides with the center of the conductive film 17 and the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the conductive film 17 is changed to the individual electrode layer 103.
  • a known micromachining technique combining patterning and etching can be used.
  • resist spin coating may be used.
  • Etching is preferably dry etching.
  • anisotropic dry etching is preferable.
  • dry etching a mixed gas of an organic gas containing fluorine atoms and argon can be used.
  • the mixed gas may further contain sulfur hexafluoride gas.
  • the substrate 130 is bonded to a nozzle plate having a nozzle hole 108 that has been separately formed to obtain the ink jet head 141 shown in FIG.
  • alignment adjustment is performed, and the through hole 101 functions as the pressure chamber 102 by these joining.
  • the method of joining is not limited, and for example, an adhesive can be used.
  • the nozzle hole 108 can be formed in the nozzle plate by a fine processing method such as a lithography method, a laser processing method, or an electric discharge processing method.
  • a voltage is applied to the piezoelectric layer via the first and second electrodes (that is, the individual electrode layer and the common electrode layer). It includes a step of changing the volume of the pressure chamber by displacing the vibration layer in the film thickness direction of the layer by an effect, and a step of discharging ink from the pressure chamber by the displacement.
  • an image is formed on the surface of the object.
  • image includes characters. In other words, characters, pictures, graphics, and the like are printed on a print object such as paper by the method of forming an image of the present invention. In this method, printing with high expressive power can be achieved.
  • FIG. 14A shows a cross section E1 of the angular velocity sensor 21a shown in FIG. 13A.
  • FIG. 14B shows a cross section E2 of the angular velocity sensor 21b shown in FIG. 13B.
  • the angular velocity sensors 21a and 21b shown in FIGS. 13A to 14B are so-called tuning fork type angular velocity sensors. This can be used for a vehicle navigation apparatus and a camera shake correction sensor for a digital still camera.
  • the angular velocity sensors 21a and 21b shown in FIGS. 13A to 14B include a substrate 200 having a vibrating part 200b and a piezoelectric thin film 208 bonded to the vibrating part 200b.
  • the substrate 200 includes a fixed part 200a and a pair of arms (vibrating part 200b) extending from the fixed part 200a in a predetermined direction.
  • the direction in which the vibration part 200b extends is the same as the direction in which the rotation center axis L of the angular velocity measured by the angular velocity sensor 21 extends. Specifically, the direction is the Y direction in FIGS. 13A and 13B.
  • the substrate 200 When viewed from the thickness direction of the substrate 200 (Z direction in FIGS. 13A and 13B), the substrate 200 has a tuning fork shape having two arms (vibrating portions 200b).
  • the material constituting the substrate 200 is not limited.
  • the material is, for example, Si, glass, ceramics, or metal.
  • the substrate 200 may be a Si single crystal substrate.
  • the thickness of the substrate 200 is not limited as long as the functions as the angular velocity sensors 21a and 21b can be exhibited. More specifically, the thickness of the substrate 200 is not less than 0.1 mm and not more than 0.8 mm.
  • the thickness of the fixed part 200a may be different from the thickness of the vibrating part 200b.
  • the piezoelectric thin film 208 is joined to the vibration part 200b.
  • the piezoelectric thin film 208 includes a (Na, Bi) TiO 3 —BaTiO 3 film 15 that is a piezoelectric layer, a first electrode 202, and a second electrode 205.
  • the piezoelectric layer 15 is sandwiched between the first electrode 202 and the second electrode 205.
  • the piezoelectric thin film 208 has a stacked structure in which the first electrode 202, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 205 are stacked in this order.
  • the first electrode 202 is a laminate of the metal electrode film (preferably a Pt film) 12 and the electrode film 13.
  • the electrode film 13 is in contact with the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the piezoelectric thin film 208 has a laminated structure in which the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 205 are laminated in this order.
  • the first electrode 202 is the electrode film 13.
  • the piezoelectric thin film 208 has a laminated structure in which the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 205 are laminated in this order. That is, the piezoelectric thin film 208 shown in FIGS. 13B and 14B is the same as the piezoelectric thin film 1c shown in FIG. 1B when the second electrode 205 is considered as the conductive film 17.
  • the electrode film 13 and the (Na, Bi) TiO 3 —BaTiO 3 film 15 are basically related to the piezoelectric thin film of the present invention, including preferred forms thereof. As described above.
  • the material which comprises the 2nd electrode 205 is not limited, For example, it is Cu.
  • the Cu electrode is preferable because it has high adhesion to the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the second electrode 205 may be a Pt electrode film or an Au electrode film having an adhesion layer made of a conductive material on the surface.
  • the material constituting the adhesion layer is, for example, Ti. Ti has high adhesion to the (Bi, Na, Ba) TiO 3 film.
  • the second electrode 205 includes an electrode group including a drive electrode 206 and a sense electrode 207.
  • the drive electrode 206 applies a drive voltage for oscillating the vibration part 200b to the piezoelectric layer 15.
  • the sense electrode 207 measures the deformation generated in the vibration part 200b due to the angular velocity applied to the vibration part 200b.
  • the oscillation direction of the vibration part 200b is normally the width direction (X direction in FIGS. 13A and 13B). More specifically, in the angular velocity sensor shown in FIGS. 13A to 14B, a pair of drive electrodes 206 are provided at both ends with respect to the width direction of the vibrating portion 200b in the length direction of the vibrating portion 200b (Y in FIGS. 13A and 13B). Direction).
  • One drive electrode 206 may be provided at one end with respect to the width direction of the vibration part 200b.
  • the sense electrode 207 is provided along the length direction of the vibration part 200b and is sandwiched between the pair of drive electrodes 206.
  • a plurality of sense electrodes 207 may be provided on the vibration part 200b.
  • the deformation of the vibration part 200b measured by the sense electrode 207 is usually a deflection in the thickness direction (Z direction in FIGS. 13A and 13B).
  • one electrode selected from the first electrode and the second electrode may be constituted by an electrode group including a drive electrode and a sense electrode.
  • the second electrode 205 is constituted by the electrode group.
  • the first electrode 202 can be constituted by the electrode group.
  • the second electrode 205, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the first electrode 202 (the first electrode is (Na, Bi) TiO 3 —BaTiO 3 ).
  • the electrode film 13 in contact with the three films 15) can be stacked in this order.
  • Connection terminals 202a, 206a, and 207a are formed at the end of the first electrode 202, the end of the drive electrode 206, and the end of the sense electrode 207, respectively.
  • the shape and position of each connection terminal are not limited. 13A and 13B, the connection terminal is provided on the fixed portion 200a.
  • the thickness of the first electrode 202 is preferably 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the (Na, Bi) TiO 3 —BaTiO 3 film 15 is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the second electrode 205 is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the piezoelectric thin film 208 is bonded to both the vibration part 200b and the fixed part 200a.
  • the bonding state of the piezoelectric thin film 208 is not limited as long as the piezoelectric thin film 208 can oscillate the vibration part 200b and the deformation generated in the vibration part 200b can be measured by the piezoelectric thin film 208.
  • the piezoelectric thin film 208 can be bonded only to the vibration part 200b.
  • the angular velocity sensor of the present invention may have two or more vibration part groups each including a pair of vibration parts 200b.
  • Such an angular velocity sensor can measure angular velocities with respect to a plurality of rotation center axes, and can function as a biaxial or triaxial angular velocity sensor.
  • the angular velocity sensor shown in FIG. 13A to FIG. 14B has one vibration part group including a pair of vibration parts 200b.
  • the angular velocity sensor of the present invention can be manufactured, for example, as follows by applying the above-described method for manufacturing a piezoelectric thin film of the present invention.
  • the method described below is a method in the case where the first electrode 202 includes the metal electrode film 12. Those skilled in the art can apply the following method even when the first electrode 202 does not include the metal electrode film 12.
  • the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the conductive film 17 are formed in this order on the surface of the substrate (eg, Si substrate).
  • the thin film formation method described above can be applied to the formation of each layer (film).
  • the method is preferably a sputtering method.
  • the conductive film 17 is finely processed by patterning to form a second electrode 205 including the drive electrode 206 and the sense electrode 207. Further, the (Na, Bi) TiO 3 —BaTiO 3 film 15, the electrode film 13 and the metal electrode film 12 are patterned by fine processing. Then, the substrate is patterned by micromachining to form the vibration part 200b. In this way, the angular velocity sensor of the present invention can be manufactured.
  • the fine processing method is, for example, dry etching.
  • the angular velocity sensor of the present invention can be manufactured by applying transfer using a base substrate. Specifically, for example, the following method can be applied. First, the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the conductive film 17 are formed in this order on the surface of the base substrate. Next, the formed stacked body is bonded to another new substrate so that the substrate and the conductive film 17 are in contact with each other. Next, the base substrate is removed by a known method. Next, each layer (film) can be patterned by fine processing to manufacture the angular velocity sensor of the present invention. The laminated body and the new substrate can be bonded through, for example, an adhesive layer.
  • the material of the adhesive layer is not limited as long as the laminate is stably adhered to the new substrate. More specifically, an acrylic resin adhesive, an epoxy resin adhesive, a silicone adhesive, and a polyimide adhesive can be used. At this time, the adhesive layer preferably has a thickness of 0.2 ⁇ m or more and 1 ⁇ m or less.
  • the method for measuring the angular velocity according to the present invention includes the step of applying a driving voltage to the piezoelectric layer by using the angular velocity sensor according to the present invention to oscillate the vibrating portion of the substrate, and the angular velocity applied to the vibrating portion during oscillation. Obtaining a value of the angular velocity by measuring the deformation generated in the vibration part.
  • a drive voltage is applied between the drive electrode and the electrode (the other electrode) that does not function as the drive electrode and the sense electrode among the first electrode and the second electrode, and the drive voltage is applied to the piezoelectric layer. .
  • the other electrode and the sense electrode measure the deformation generated in the vibrating part by the angular velocity.
  • a drive voltage having a frequency resonating with the natural vibration of the vibration part 200b is applied to the (Na, Bi) TiO 3 —BaTiO 3 film 15 that is the piezoelectric layer via the first electrode 202 and the drive electrode 206, and the vibration part 200b is oscillated.
  • the piezoelectric layer 15 is deformed according to the waveform of the applied drive voltage, and the vibration part 200b bonded to the layer oscillates.
  • the drive voltage can be applied by, for example, grounding the first electrode 202 and changing the potential of the drive electrode 206 (in other words, the drive voltage is applied between the first electrode 202 and the drive electrode 206). Potential difference).
  • the angular velocity sensors 21a and 21b have a pair of vibrating parts 200b arranged in the shape of a tuning fork. Usually, voltages having opposite signs are applied to the drive electrodes 206 of each of the pair of vibrating parts 200b. Thereby, each vibration part 200b can be oscillated in the mode which vibrates in the mutually opposite direction (mode which vibrates symmetrically with respect to the rotation center axis L shown in FIGS. 13A and 13B). In the angular velocity sensors 21a and 21b shown in FIGS.
  • the vibration unit 200b oscillates in the width direction (X direction).
  • the angular velocity can also be measured by oscillating only one of the pair of vibrating parts 200b.
  • each vibrating portion 200b bends in the thickness direction (Z direction) by Coriolis force.
  • the pair of vibrating parts 200b oscillate in a mode in which they vibrate in opposite directions
  • the vibrating parts 200b bend in the opposite directions by the same amount of change.
  • the piezoelectric layer 15 bonded to the vibration part 200b also bends, and the Coriolis force generated according to the bending of the piezoelectric layer 15 between the first electrode 202 and the sense electrode 207, ie, the generated Coriolis force.
  • a corresponding potential difference occurs. By measuring the magnitude of this potential difference, the angular velocity ⁇ applied to the angular velocity sensors 21a and 21b can be measured.
  • FIG. 16A shows a cross section F1 of the piezoelectric power generating element 22a shown in FIG. 15A.
  • FIG. 16B shows a cross section F2 of the piezoelectric power generating element 22b shown in FIG. 15B.
  • the piezoelectric power generation elements 22a and 22b are elements that convert mechanical vibrations applied from the outside into electrical energy.
  • the piezoelectric power generation elements 22a and 22b are preferably applied to a self-supporting power supply device that generates power from various vibrations included in power vibration and running vibration of vehicles and machines, and vibration generated during walking.
  • the piezoelectric power generation elements 22a and 22b shown in FIGS. 15A to 16B include a substrate 300 having a vibration part 300b and a piezoelectric thin film 308 bonded to the vibration part 300b.
  • the substrate 300 includes a fixed portion 300a and a vibrating portion 300b composed of a beam extending from the fixed portion 300a in a predetermined direction.
  • the material constituting the fixed part 300a may be the same as the material constituting the vibrating part 300b. However, these materials can be different from each other.
  • the fixing part 300a made of different materials can be joined to the vibration part 300b.
  • the material constituting the substrate 300 is not limited.
  • the material is, for example, Si, glass, ceramics, or metal.
  • the substrate 300 may be a Si single crystal substrate.
  • the substrate 300 has a thickness of 0.1 mm or more and 0.8 mm or less, for example.
  • the fixing part 300a may have a thickness different from the thickness of the vibration part 300b.
  • the thickness of the vibration part 300b may be adjusted so that efficient power generation can be performed by changing the resonance frequency of the vibration part 300b.
  • the weight load 306 is joined to the vibration part 300b.
  • the weight load 306 adjusts the resonance frequency of the vibration part 300b.
  • the weight load 306 is, for example, a vapor deposited thin film of Ni.
  • the material, shape, and mass of the weight load 306 and the position where the weight load 306 is joined can be adjusted according to the required resonance frequency of the vibration unit 300b.
  • the weight load can be omitted. When the resonance frequency of the vibration unit 300b is not adjusted, no weight load is required.
  • the piezoelectric thin film 308 is joined to the vibration part 300b.
  • the piezoelectric thin film 308 includes a (Na, Bi) TiO 3 —BaTiO 3 film 15 that is a piezoelectric layer, a first electrode 302, and a second electrode 305.
  • the (Na, Bi) TiO 3 —BaTiO 3 film 15 is sandwiched between the first electrode 302 and the second electrode 305.
  • the piezoelectric thin film 308 has a laminated structure in which the first electrode 302, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the second electrode 305 are laminated in this order.
  • the first electrode 302 is the electrode film 13.
  • the electrode film 13 is in contact with the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the piezoelectric thin film 308 has a stacked structure in which the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 305 are stacked in this order. That is, the piezoelectric thin film 308 shown in FIGS. 15A and 16A is the same as the stacked structure 16c shown in FIG. 1B, assuming that the second electrode 305 is the conductive film 17.
  • the first electrode 302 is the electrode film 13.
  • the piezoelectric thin film 308 has a stacked structure in which the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 305 are stacked in this order. That is, the piezoelectric thin film 308 shown in FIGS. 15B and 16B is the same as the stacked structure 16c shown in FIG. 1B, assuming that the second electrode 305 is the conductive film 17.
  • the electrode film 13 and the (Na, Bi) TiO 3 —BaTiO 3 film 15 are basically related to the piezoelectric thin film of the present invention, including preferred forms thereof. As described above.
  • the second electrode 305 can be, for example, a Cu electrode film.
  • the Cu electrode is preferable because it has high adhesion to the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the second electrode 305 may be a Pt electrode film or an Au electrode film having an adhesion layer made of a conductive material on the surface.
  • the material constituting the adhesion layer is, for example, Ti.
  • Ti has high adhesion to the (Bi, Na, Ba) TiO 3 film.
  • the piezoelectric power generation element shown in FIGS. 15A to 16B a part of the first electrode 302 is exposed.
  • the portion can function as the connection terminal 302a.
  • the thickness of the first electrode 302 is preferably 0.05 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the (Na, Bi) TiO 3 —BaTiO 3 film 15 is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the second electrode 305 is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the first electrode 302, the (Na, Bi) TiO 3 —BaTiO 3 film 15, and the second electrode 305 are viewed from the side of the substrate 300 having the vibration part 300b. Are stacked in this order. The stacking order of these layers can be reversed. That is, as viewed from the side of the substrate having the vibration part, the second electrode, the (Bi, Na, Ba) TiO 3 film, and the first electrode (the first electrode is the (Na, Bi) TiO 3 —BaTiO 3 . ( Including a LaNiO 3 film in contact with the three films 15) can be stacked in this order.
  • the piezoelectric thin film 308 can be bonded to both the vibration part 300b and the fixed part 300a.
  • the piezoelectric thin film 308 can be bonded only to the vibration part 300b.
  • the amount of generated electric power can be increased by having the plurality of vibrating portions 300b.
  • the resonance frequency which each vibration part 300b has it becomes possible to cope with mechanical vibration composed of a wide frequency component.
  • the piezoelectric power generation element of the present invention can be manufactured, for example, as follows by applying the above-described method for manufacturing a piezoelectric thin film of the present invention.
  • the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the conductive film 17 are formed in this order on the surface of the substrate (eg, Si substrate).
  • the thin film formation method described above can be applied to the formation of each layer (film).
  • the method is preferably a sputtering method.
  • the conductive film 17 is finely processed by patterning to form the second electrode 305. Further, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the electrode film 13 are patterned by fine processing. By patterning the electrode film 13 and the metal electrode film 12, the connection terminal 302a is formed together. Then, the fixed portion 300a and the vibrating portion 300b are formed by patterning the substrate by fine processing. In this way, the piezoelectric power generation element of the present invention can be manufactured. When adjustment of the resonance frequency of the vibration part 300b is required, the weight load 306 is joined to the vibration part 300b by a known method.
  • the fine processing method is, for example, dry etching.
  • the piezoelectric power generation element of the present invention can be manufactured by applying transfer using a base substrate. Specifically, for example, the following method can be applied. First, the electrode film 13, the (Na, Bi) TiO 3 —BaTiO 3 film 15 and the conductive film 17 are formed in this order on the surface of the base substrate. Next, the formed stacked body is bonded to another new substrate so that the substrate and the conductive film 17 are in contact with each other. Next, the base substrate is removed by a known method. Next, the piezoelectric power generating element of the present invention can be manufactured by patterning each layer (film) by fine processing. The laminated body and the new substrate can be bonded through, for example, an adhesive layer.
  • the material of the adhesive layer is not limited as long as the laminate is stably adhered to the new substrate. More specifically, an acrylic resin adhesive, an epoxy resin adhesive, a silicone adhesive, and a polyimide adhesive can be used. At this time, the adhesive layer preferably has a thickness of 0.2 ⁇ m or more and 1 ⁇ m or less.
  • the vibration part 300b When mechanical vibration is applied to the piezoelectric power generating elements 22a and 22b from the outside, the vibration part 300b starts to vibrate up and down with respect to the fixed part 300a.
  • the vibration generates an electromotive force due to the piezoelectric effect in the (Na, Bi) TiO 3 —BaTiO 3 film 15 as the piezoelectric layer.
  • a potential difference is generated between the first electrode 302 and the second electrode 305 that sandwich the piezoelectric layer 15.
  • the resonance frequency of the vibration unit 300b is close to the frequency of mechanical vibration applied to the element from the outside, power generation characteristics are improved by increasing the amplitude of the vibration unit 300b. Therefore, it is preferable that the resonance frequency of the vibration unit 300b is adjusted by the weight load 306 so as to be close to the frequency of mechanical vibration applied to the element from the outside.
  • Example 1 the piezoelectric thin film shown in FIG. 1C was produced.
  • the piezoelectric thin film was produced as follows.
  • a Pt layer (thickness 250 nm) having a (110) orientation was formed on the surface of an MgO single crystal substrate having a (110) plane orientation by RF magnetron sputtering.
  • the Pt layer corresponds to the electrode film 13.
  • the metal Pt was used as a target, and the Pt layer was formed under the film-forming conditions of an RF output of 20 W and a substrate temperature of 500 ° C. in an argon (Ar) gas atmosphere.
  • the film corresponds to the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • the film is formed under the conditions of a mixed gas of Ar and oxygen (flow ratio Ar / O 2 is 50/50) under the film-forming conditions of an RF output of 170 W and a substrate temperature of 650 ° C. 15 was formed.
  • FIG. 17 shows a result of X-ray diffraction, that is, an X-ray diffraction profile scanned by 2 ⁇ - ⁇ (2 ⁇ - ⁇ ). The same X-ray diffraction was applied in the subsequent comparative examples.
  • FIG. 17 shows not only the results of X-ray diffraction of Example 1, but also the results of X-ray analysis of Examples 2-4 and Comparative Examples 1-2.
  • FIG. 17 shows the results of the X-ray diffraction profile. Except for the reflection peak derived from the MgO substrate and the Pt layer, only the reflection peak derived from the (Na, Bi) TiO 3 —BaTiO 3 film 15 having (110) orientation was observed. The intensity of the reflection peak was 725,303 cps, which was very strong.
  • the profile shown in FIG. 17 means that the (Na, Bi) TiO 3 —BaTiO 3 film 15 produced in the example has an extremely high (110) orientation.
  • the reciprocal lattice map of the (Na, Bi) TiO 3 —BaTiO 3 film 15 was measured.
  • a two-dimensional X-ray diffraction profile is measured by scanning movement of an X-ray incident angle ⁇ on the sample and a diffraction angle 2 ⁇ of the detector.
  • the lattice constant of the sample is calculated from the peak position of this measurement profile.
  • Lattice constants (a o , c o , ⁇ ) were calculated from reciprocal lattice maps in the vicinity of (310) and (130) of the (Na, Bi) TiO 3 —BaTiO 3 film 15.
  • FIG. 18 is a diagram schematically showing an orthorhombic lattice (a o , b o , c o , ⁇ ). Table 1 shows the lattice constant.
  • the thin film of Example 1 was confirmed to have an orthorhombic structure.
  • an Au layer (thickness: 100 nm) was formed on the surface of the (Na, Bi) TiO 3 —BaTiO 3 film 15 by vapor deposition.
  • the Au layer corresponds to the conductive film 17.
  • the piezoelectric thin film of Example was produced.
  • the piezoelectric performance of the piezoelectric thin film was evaluated as follows.
  • the piezoelectric thin film was cut into a width of 2 mm and processed into a cantilever shape.
  • a displacement amount obtained by applying a potential difference between the Pt layer and the Au layer to displace the cantilever was measured with a laser displacement meter.
  • the d 31 of the piezoelectric thin film produced in Example 1 was ⁇ 101 pC / N. This value was equivalent to the piezoelectric constant d 31 of the PZT film.
  • the piezoelectric thin film according to Example 2 had d 31 of ⁇ 136 pC / N, which was equivalent to the piezoelectric constant d 31 of the PZT film.
  • the piezoelectric thin film according to Example 3 had d 31 of ⁇ 175 pC / N, which was equivalent to the piezoelectric constant d 31 of the PZT film.
  • Example 4 The experiment was performed in the same manner as in Example 3 except that 0.2 mol% of Mn was added.
  • the piezoelectric thin film according to Example 4 had d 31 of ⁇ 217 pC / N, which was equivalent to the piezoelectric constant d 31 of the PZT film.
  • the thin film of Comparative Example 1 had a (110) reflection peak intensity stronger than that of Examples 1 to 4. However, it was confirmed that the piezoelectric thin film of Comparative Example 1 did not have an orthorhombic structure but a pseudo cubic structure.
  • the d 31 of the piezoelectric thin film was ⁇ 77 pC / N, which was not equivalent to the piezoelectric constant d 31 of the PZT film.
  • d 31 of the piezoelectric thin film was ⁇ 58 pC / N, which was not equivalent to the piezoelectric constant d 31 of the PZT film.
  • the (1-x) (Na, Bi) TiO 3 -xBaTiO 3 (x is 0.03 or more and 0.15 or less) piezoelectric film having an orthorhombic structure is a PZT film.
  • Example 2 and Comparative Example 2 mean that x must not exceed 0.15.
  • Example 1 and Comparative Example 1 mean that x must not be less than 0.03.
  • the (1-x) (Na, Bi) TiO 3 —xBaTiO 3 piezoelectric thin film (0.03 ⁇ x ⁇ 0.15) having an orthorhombic structure has a high piezoelectric performance equivalent to that of PZT.
  • the piezoelectric thin film of the present invention has a high piezoelectric constant d 31, it is useful as a piezoelectric thin film in place of conventional lead-based oxide ferroelectric.
  • the piezoelectric thin film of the present invention can be suitably used in fields where piezoelectric thin films such as pyroelectric sensors and piezoelectric devices are used. Examples thereof include the inkjet head, the angular velocity sensor, and the piezoelectric power generation element of the present invention.
  • the ink jet head of the present invention is excellent in ink ejection characteristics even though it does not contain a lead-containing ferroelectric material such as PZT.
  • the method of forming an image using the inkjet head has excellent image accuracy and expressiveness.
  • the angular velocity sensor of the present invention has high sensor sensitivity even though it does not include a lead-containing ferroelectric material such as PZT.
  • the method for measuring the angular velocity using the angular velocity sensor has excellent measurement sensitivity.
  • the piezoelectric power generation element of the present invention has excellent power generation characteristics even though it does not include a lead-containing ferroelectric material such as PZT.
  • the power generation method of the present invention using the piezoelectric power generation element has excellent power generation efficiency.
  • the inkjet head, the angular velocity sensor, the piezoelectric power generation element, the image forming method, the angular velocity measurement method, and the power generation method according to the present invention can be widely applied to various fields and applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Composite Materials (AREA)
  • Gyroscopes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明の目的は、非鉛強誘電材料を含み、低い誘電損失およびPZTと同一の高い圧電性能を有する非鉛圧電体薄膜およびその製造方法を提供することである。 本発明の圧電体薄膜は積層構造を具備し、積層構造は、電極膜と、斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)とを、有している。

Description

圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
 本発明は、圧電体層を備える圧電体薄膜とその製造方法に関する。さらに、本発明は、当該圧電体薄膜を備えるインクジェットヘッドと当該ヘッドを用いて画像を形成する方法、当該圧電体薄膜を備える角速度センサと当該センサを用いて角速度を測定する方法ならびに当該圧電体薄膜を備える圧電発電素子と当該素子を用いた発電方法に関する。
 チタン酸ジルコン酸鉛(PZT:Pb(ZrTi1-x)O、0<x<1)は、大きな電荷を蓄えることができる代表的な強誘電材料である。PZTは、コンデンサおよび薄膜メモリに使用されている。PZTは、強誘電性に基づく焦電性および圧電性を有する。PZTは高い圧電性能を有する。組成の調整または元素の添加によって、PZTの機械的品質係数Qmは容易に制御され得る。これらが、センサ、アクチュエータ、超音波モータ、フィルタ回路および発振子へのPZTの応用を可能にしている。
 しかし、PZTは多量の鉛を含む。近年、廃棄物からの鉛の溶出による、生態系および環境への深刻な被害が懸念されている。このため、国際的にも鉛の使用の制限が進められている。従って、PZTとは異なり、鉛を含有しない強誘電材料(非鉛強誘電材料)が求められている。
 現在開発が進められている非鉛(lead-free)強誘電材料の一例が、ビスマス(Bi)、ナトリウム(Na)、バリウム(Ba)およびチタン(Ti)からなるペロブスカイト型複合酸化物[(Bi0.5Na0.51-yBa]TiOである。特許文献1および非特許文献1は、バリウム量y(=[Ba/(Bi+Na+Ba)])が5~10%である場合に、当該強誘電材料が、およそ125pC/Nの圧電定数d33を有し、高い圧電性能を有することを開示している。ただし、当該強誘電体材料の圧電性能は、PZTの圧電性能より低い。
特公平4-60073号公報
T. Takenaka et al., Japanese Journal of Applied Physics, Vol. 30, No. 9B, (1991), pp. 2236-2239
 本発明の目的は、非鉛強誘電材料を含み、低い誘電損失およびPZTと同一の高い圧電性能を有する非鉛圧電体薄膜およびその製造方法を提供することである。
 本発明の他の目的は、当該非鉛圧電体薄膜を備えるインクジェットヘッド、角速度センサおよび圧電発電素子を提供することである。本発明のさらに他の目的は、当該インクジェットヘッドを用いて画像を形成する方法、当該角速度センサを用いて角速度を測定する方法および当該圧電発電素子を用いた発電方法を提供することである。
 本発明の目的は、非鉛強誘電材料を含み、低い誘電損失およびPZTと同一の高い圧電性能を有する非鉛圧電体薄膜およびその製造方法を提供することである。
 本発明の圧電体薄膜は積層構造を具備し、積層構造は、電極膜と、斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)とを、有している。
図1Aは、本発明の圧電体薄膜の一例を模式的に示す断面図である。 図1Bは、本発明の圧電体薄膜の別の一例を模式的に示す断面図である。 図1Cは、本発明の圧電体薄膜のまた別の一例を模式的に示す断面図である。 図2は、本発明のインクジェットヘッドの一例を模式的に示す、部分的に当該インクジェットヘッドの断面が示された斜視図である。 図3は、図2に示すインクジェットヘッドにおける、圧力室部材およびアクチュエータ部を含む要部を模式的に示す図で、部分的に当該要部の断面が示された分解斜視図である。 図4Aは、図2に示すインクジェットヘッドにおける、圧力室部材およびアクチュエータ部を含む要部の一例を模式的に示す断面図である。 図4Bは、図2に示すインクジェットヘッドにおける、圧力室部材およびアクチュエータ部を含む要部の別の一例を模式的に示す断面図である。 図5Aは、図2に示すインクジェットヘッドを製造する方法の一例における、圧電体層を含む積層体の形成工程を模式的に示す断面図である。 図5Bは、図2に示すインクジェットヘッドを製造する方法の一例における、後に圧力室部材となる部材の形成工程を模式的に示す断面図である。 図5Cは、図2に示すインクジェットヘッドを製造する方法の一例における、接着層を形成する工程を模式的に示す断面図である。 図6Aは、図2に示すインクジェットヘッドを製造する方法の一例における、図5Aに示す工程で形成した積層体と図5Bに示す工程で形成した部材とを接合する工程を模式的に示す断面図である。 図6Bは、図2に示すインクジェットヘッドの製造方法の一例における、図6Aに示す工程に続く工程(中間層のエッチング工程)を模式的に示す断面図である。 図7Aは、図2に示すインクジェットヘッドの製造方法の一例における、図6Bに示す工程に続く工程(下地基板の除去工程)を模式的に示す断面図である。 図7Bは、図2に示すインクジェットヘッドの製造方法の一例における、図7Aに示す工程に続く工程(個別電極層の形成工程)を模式的に示す断面図である。 図8Aは、図2に示すインクジェットヘッドの製造方法の一例における、図7Bに示す工程に続く工程(圧電体層の微細加工工程)を模式的に示す断面図である。 図8Bは、図2に示すインクジェットヘッドの製造方法の一例における、図8Aに示す工程に続く工程(基板の切断工程)を模式的に示す断面図である。 図9Aは、図2に示すインクジェットヘッドの製造方法の一例における、インク流路部材およびノズル板の準備工程を模式的に示す断面図である。 図9Bは、図2に示すインクジェットヘッドの製造方法の一例における、インク流路部材とノズル板との接合工程を模式的に示す断面図である。 図9Cは、図2に示すインクジェットヘッドの製造方法の一例における、アクチュエータ部と圧力室部材との接合体と、インク流路部材とノズル板との接合体との接合工程を模式的に示す断面図である。 図9Dは、図5A~図9Cに示す工程によって得たインクジェットヘッドを模式的に示す断面図である。 図10は、圧力室部材とする基板上に、アクチュエータ部とする積層体を配置した一例を模式的に示す平面図である。 図11は、本発明のインクジェットヘッドの別の一例を模式的に示す断面図である。 図12Aは、図11に示すインクジェットの製造方法の一例を説明するための模式的な断面図である。 図12Bは、図11に示すインクジェットの製造方法の一例を説明するための模式的な断面図である。 図13Aは、本発明の角速度センサの一例を模式的に示す斜視図である。 図13Bは、本発明の角速度センサの別の一例を模式的に示す斜視図である。 図14Aは、図13Aに示す角速度センサにおける断面E1を示す断面図である。 図14Bは、図13Bに示す角速度センサにおける断面E2を示す断面図である。 図15Aは、本発明の圧電発電素子の一例を模式的に示す斜視図である。 図15Bは、本発明の圧電発電素子の別の一例を模式的に示す斜視図である。 図16Aは、図15Aに示す圧電発電素子における断面F1を示す断面図である。 図16Bは、図15Bに示す圧電発電素子における断面F2を示す断面図である。 図17は、実施例1~4および比較例1~2として作製した圧電体薄膜のX線回折プロファイルを示す図である。 図18は、圧電体材料の結晶構造を模式的に示す図である。
 以下、本発明の実施の形態を説明する。以下の説明では、同一の部材に同一の符号を与える。これにより、重複する説明が省略され得る。
 [圧電体薄膜、圧電体薄膜の製造方法]
 図1Aは、本発明による圧電体薄膜の一形態を示す。図1Aに示される圧電体薄膜1aは、積層構造16aを有する。積層構造16aは、電極膜13および(Na,Bi)TiO-BaTiO膜15を、この順に具備する。積層されたこれらの膜13および15は互いに接する。当該(Na,Bi)TiO-BaTiO膜15は、圧電体層である。当該(Na,Bi)TiO-BaTiO膜15は、(1-x)(Na,Bi)TiO-xBaTiO(0.03≦x≦0.15)の組成を有し、かつ斜方晶構造を有する。このため、圧電体薄膜1aは、鉛を含有しないにも拘わらず、低い誘電損失およびPZTと同一の高い圧電性能を有する。
 電極膜13の例は、以下の(1)および(2)である。
(1)白金(Pt)薄膜、パラジウム(Pd)薄膜、イリジウム(Ir)薄膜、金(Au)薄膜のような金属薄膜、および
(2)酸化ニッケル(NiO)薄膜、酸化ルテニウム(RuO)薄膜、酸化イリジウム(IrO)薄膜、ルテニウム酸ストロンチウム(SrRuO)薄膜、およびニッケル酸ランタン(LaNiO)薄膜のような酸化物導電体薄膜。
 2層以上のこれらの薄膜もまた、用いられ得る。
 この中でも、LaNiO膜13が好ましい。LaNiO膜13は、化学式ABOにより表されるペロブスカイト型の結晶構造を有する。当該結晶構造の格子定数は0.384nm(擬立方晶)である。このため、LaNiO膜13は、(Na,Bi)TiO-BaTiO膜15に対する良好な格子整合性を有する。
 電極膜13は、微量の不純物を含み得る。当該不純物は、典型的には、Laを置換する希土類元素である。
 LaNiOは酸化物導電体である。電極膜13は、(Na,Bi)TiO-BaTiO膜15に電圧を印加するために用いられる電極層として機能し得る。LaNiOに代えて、ペロブスカイト構造を有するSrRuO膜は、良好な電気伝導性を持つことから好ましい。
 電極膜13は、典型的にはスパッタリングにより形成され得る。電極膜13は、パルスレーザー堆積法(PLD法)、化学気相成長法(CVD法)、ゾルゲル法、およびエアロゾル堆積法(AD法)のような薄膜形成手法によっても形成され得る。
 圧電体薄膜を製造する本発明の方法によれば、スパッタリング法により、Pt、LaNiO3、またはSrRuOから形成された電極膜13が形成される。
 電極膜13の上に、スパッタリングにより、(Na,Bi)TiO-BaTiO膜15が形成される。
 (Na,Bi)TiOのストイキオメトリ(化学量論的組成)では、Na、Bi、Ti、およびOの量は、それぞれ、0.5、0.5、1、および3である。しかし、本発明はこれらの値に限定されない。
 すなわち、Na量が「0.5」より小さくても(Na欠損)、Bi量が「0.5」より大きくても(Bi過剰)、またはNa欠損かつBi過剰の両者が満たされても、圧電体薄膜の結晶性は向上し得、かつ良好な圧電性能が得られ得る。
 チタン酸ナトリウム・ビスマスの酸素量を表す値「3」は、誤差を含み得る。Naの量、Biの量、およびTiの量がそれぞれ0.5、0.5、および1であっても、Oの量が値「3」に一致するとは限らない。圧電体薄膜では、O量が3よりも小さくなり易い。同様に、BaTiOの酸素量を表す値「3」も誤差を含み得る。
 (Na,Bi)TiO-BaTiO膜15の厚みは限定されない。当該厚みは、例えば、0.5μm以上10μm以下である。(Na,Bi)TiO-BaTiO膜15が薄くても、当該膜が低い誘電損失および高い圧電性能を有する。
 (Na,Bi)TiO-BaTiO膜15は、化学式ABOにより表されるペロブスカイト型の結晶構造を有する。サイトAおよびサイトBは、単独または複数の元素の配置に応じて、それぞれ2価および4価の平均価数を有する。サイトAはBi、NaおよびBaである。サイトBはTiである。(Na,Bi)TiO-BaTiO膜15は、微量の不純物を含み得る。当該不純物は、典型的には、サイトAにおけるNaを置換するLiおよびKならびにBaを置換するSrおよびCaであり得る。当該不純物は、典型的には、サイトBにおけるTiを置換するZrであり得る。その他の当該不純物は、例えば、Mn、Fe、NbおよびTaであり得る。いくかの不純物は、(Na,Bi)TiO-BaTiO膜15の結晶性および圧電性能を向上し得る。
 電極膜13と(Na,Bi)TiO-BaTiO膜15との間には、必要に応じて、他の膜がさらに挟まれ得る。当該膜は、例えば、Pt膜、LaNiO膜、またはSrRuO膜であり得る。
 (Na,Bi)TiO-BaTiO膜15は、典型的にはスパッタリング法により形成され得る。(Na,Bi)TiO-BaTiO膜15は、(001)配向を有する限り、例えば、PLD法、CVD法、ゾルゲル法、AD法のような他の薄膜形成手法によっても形成され得る。
 図1Bは、本発明による圧電体薄膜の別の一形態を示す。図1Bに示される圧電体薄膜1cは、積層構造16cを有する。積層構造16cは、図1Aに示される多層構造16aに、導電膜17をさらに含む構造である。当該導電膜17は、(Na,Bi)TiO-BaTiO膜15上に形成されている。具体的には、積層構造16cは、電極膜13と、(Na,Bi)TiO-BaTiO膜15と、導電膜17とをこの順に有する。積層されたこれらの膜は互いに接する。
 圧電体薄膜1cでは、電極膜13および導電膜17の間に、(Na,Bi)TiO-BaTiO膜15が挟まれている。電極膜13および導電膜17は、圧電体層である(Na,Bi)TiO-BaTiO膜15に電圧を印加する電極層として機能し得る。
 導電膜17は、導電性を有する材料により構成される。当該材料の例は、低い電気抵抗を有する金属である。当該材料は、NiO、RuO、IrO、SrRuO、およびLaNiOのような酸化物導電体であり得る。導電膜17は、2種以上のこれらの材料により構成され得る。導電膜17と(Na,Bi)TiO-BaTiO膜15との間に、両者の密着性を向上させる密着層が配置され得る。密着層の材料の例は、チタン(Ti)である。当該材料は、タンタル(Ta)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、クロム(Cr)、またはこれらの化合物であり得る。密着層は、2種以上のこれらの材料により構成され得る。密着層は、導電膜17と(Na,Bi)TiO-BaTiO膜15との密着性に応じて、省略され得る。
 図1Bに示される圧電体薄膜1cは、電極膜13上に、(Na,Bi)TiO-BaTiO膜15、および導電膜17を順に形成することにより、製造され得る。導電膜17は、例えば、スパッタリング法、PLD法、CVD法、ゾルゲル法、またはAD法のような薄膜形成手法により形成され得る。
 圧電体薄膜を製造する本発明の方法は、(Na,Bi)TiO-BaTiO膜15上に導電膜17を形成する工程をさらに包含し得る。こうして、図1Bに示される圧電体薄膜1cが製造され得る。
 本発明の圧電体薄膜は、図1Cに示すように、基板11をさらに備え得る。電極膜13は当該基板上に形成される。
 図1Cに示される圧電体薄膜1eでは、図1Bに示される積層構造16cが基板11上に形成されている。
 基板11は、シリコン(Si)基板またはMgO基板であり得る。Si単結晶基板が好ましい。
 基板11と積層構造16cとの間(より具体的には、基板11と電極膜13との間)に、両者の密着性を向上させる密着層が配置され得る。ただし、密着層は導電性を必要とする。密着層の材料の例は、Tiである。当該材料は、Ta、Fe、Co、Ni、Crまたはこれらの化合物であり得る。密着層は、2種以上のこれらの材料により構成され得る。密着層は、基板11と積層構造16cとの密着性に応じて、省略され得る。
 図1Cに示す圧電体薄膜1eは、基板11上に、電極膜13、(Na,Bi)TiO-BaTiO膜15、および導電膜17を順に形成して、製造され得る。
 圧電体薄膜を製造する本発明の方法は、電極膜13を基板11上に形成する工程を包含し得る。
 図1A~図1Cに示される圧電体薄膜1a~1eは、下地基板を用いて製造され得る。具体的には、当該圧電体薄膜1a~1eは、下地基板上に積層構造16a~16cを形成した後、当該下地基板を除去することによって製造され得る。当該下地基板は、エッチングのような公知の手法により除去され得る。
 図1Cに示される圧電体薄膜1eも、下地基板を用いて製造され得る。具体的な一形態では、下地基板が基板11を兼ねる具体的な別の形態では、下地基板上に積層構造16cを形成した後、当該下地基板を除去し、さらに、別途準備した基板11上に積層構造16cを配置することによって、当該圧電体薄膜1eは製造され得る。
 下地基板は、MgOのようなNaCl型構造を有する酸化物基板;SrTiO、LaAlO、およびNdGaOのようなペロブスカイト型構造を有する酸化物基板;Alのようなコランダム型構造を有する酸化物基板;MgAlのようなスピネル型構造を有する酸化物基板;TiOのようなルチル型構造を有する酸化物基板;および、(La,Sr)(Al,Ta)O、イットリア安定化ジルコニア(YSZ)のような立方晶系の結晶構造を有する酸化物基板;であり得る。下地基板は、ガラス基板;アルミナのようなセラミクス基板;および、ステンレスのような金属基板;の表面に、NaCl型の結晶構造を有する酸化物薄膜を積層することによって形成され得る。この場合、当該酸化物薄膜の表面に、電極膜13が形成され得る。酸化物薄膜の例は、MgO薄膜、NiO薄膜、および酸化コバルト(CoO)薄膜である。
 圧電体薄膜を製造する本発明の方法は、上述したように、下地基板上に、直接あるいは他の膜を介して、電極膜13を形成する工程を包含し得る。下地基板は基板11を兼ね得る下地基板は除去された後、他の基板は配置され得る。このとき、当該他の基板は、電極膜13に接するように配置され得る。当該他の基板は、(Na,Bi)TiO-BaTiO膜15に接するように配置され得る。後者によれば、当該他の基板上に、(Na,Bi)TiO-BaTiO膜15および電極膜13がこの順に積層された、圧電体薄膜が得られる。
 [インクジェットヘッド]
 以下、本発明のインクジェットヘッドを、図2~図12Bを参照しながら説明する。
 図2は、本発明のインクジェットヘッドの一形態を示す。図3は、図2に示されるインクジェットヘッド100における、圧力室部材およびアクチュエータ部を含む要部を示す分解図である。
 図2および図3における符号Aは、圧力室部材を指し示す。圧力室部材Aは、その厚み方向(図の上下方向)に貫通する貫通孔101を具備する。図3に示される貫通孔101は、圧力室部材Aの厚み方向に切断された当該貫通孔101の一部である。符号Bは、圧電体薄膜および振動層を具備するアクチュエータ部を指し示す。符号Cは、共通液室105およびインク流路107を具備するインク流路部材Cを指し示す。圧力室部材A、アクチュエータ部Bおよびインク流路部材Cは、圧力室部材Aがアクチュエータ部Bおよびインク流路部材Cに挟まれるように、互いに接合している。圧力室部材A、アクチュエータ部Bおよびインク流路部材Cが互いに接合した状態で、貫通孔101は、共通液室105から供給されたインクを収容する圧力室102を形成する。
 アクチュエータ部Bが具備する圧電体薄膜および振動層は、平面視において圧力室102と重複する。図2および図3における符号103は、圧電体薄膜の一部である個別電極層を指し示す。図2に示されるように、インクジェットヘッド100は、平面視においてジグザグ状に配置された2以上の個別電極層103を、即ち、圧電体薄膜を、具備する。
 インク流路部材Cは、平面視においてストライプ状に配置された2以上の共通液室105を具備する。1つの共通液室105は、平面視において2以上の圧力室102と重複する。共通液室105は、インクジェットヘッド100におけるインク供給方向(図2における矢印方向)に伸びている。インク流路部材Cは、共通液室105内のインクを圧力室102に供給する供給口106と、圧力室102内のインクをノズル孔108から吐出するインク流路107とを具備する。通常、1つの供給孔106および1つのノズル孔108が、1つの圧力室102に対応付けられている。ノズル孔108は、ノズル板Dに形成されている。ノズル板Dは、圧力室部材Aとともにインク流路部材Cを挟むように、インク流路部材Cに接合している。
 図2における符号EはICチップを指し示す。ICチップEは、アクチュエータ部Bの表面に露出する個別電極層103に、ボンディングワイヤBWを介して電気的に接続されている。図2を明瞭にするために、一部のボンディングワイヤBWのみが図2に示される。
 図4Aおよび図4Bは、圧力室部材Aおよびアクチュエータ部Bを含む要部の構成を示す。図4Aおよび図4Bは、圧力室部材Aおよびアクチュエータ部Bにおける、インク供給方向(図2における矢印方向)に直交する断面を示す。アクチュエータ部Bは、第1の電極(個別電極層103)および第2の電極(共通電極層112)に挟まれた圧電体層15を有する圧電体薄膜104(104a~104d)を具備する。1つの個別電極層103は、1つの圧電体薄膜104a~104dに対応付けられている。共通電極層112は、圧電体薄膜104a~104dに共通する電極である。
 図4Aに示される圧電体薄膜104は、図1Bに示される積層構造16cを有する。当該構造は、個別電極層103である電極膜13、圧電体層である(Na,Bi)TiO-BaTiO膜15および共通電極層112である導電膜17を、電極膜13側から、この順に具備する。
 図4Bに示される圧電体薄膜104は、図1Bに示される積層構造16cを有する。当該構造は、個別電極層103である金属電極膜(Pt膜が好ましい)12および電極膜13、圧電体層である(Na,Bi)TiO-BaTiO膜15および共通電極層112である導電膜17を、有する。
 図4Aおよび図4Bに示される圧電体薄膜104において、金属電極膜12、電極膜13、(Na,Bi)TiO-BaTiO膜15、および導電膜17は、基本的に、その好ましい形態を含め、本発明の圧電体薄膜に関する上述の説明のとおりである。
 共通電極層112である導電膜17は、導電性材料からなる密着層を表面に有するPt膜であり得る。当該導電性材料は、Tiが好ましい。なぜなら、Tiは、(Na,Bi)TiO-BaTiO膜15に対して高い密着性を有し、圧電体層と共通電極層との密着層として良好に機能し得るからである。
 第1の電極および第2の電極の間に印加される電圧が圧電体層15の変形を誘起し得る限り、第1の電極および第2の電極のいずれもが個別電極層であり得る。すなわち、本発明のインクジェットにおける圧電体薄膜は、共通電極層112、圧電体層である(Na,Bi)TiO-BaTiO膜15および個別電極層103を、この順に具備し得る。この場合、第1の電極である共通電極層112は電極膜13からなる。個別電極層103は、導電膜17からなる。
 個別電極層103は0.05μm以上1μm以下の厚みを有することが好ましい。(Na,Bi)TiO-BaTiO膜15は0.5μm以上5μm以下の厚みを有することが好ましい。共通電極層112は0.05μm以上0.5μm以下の厚みを有することが好ましい。
 アクチュエータ部Bは、振動層111をさらに具備する。振動層111は、圧電体薄膜104の共通電極層112に接合している。振動層111は、圧電効果による圧電体薄膜104の変形に応じて、振動層111の膜厚方向に変位する。個別電極層103および共通電極層112を介する圧電体層15への電圧の印加が、圧電効果による圧電体薄膜104の変形をもたらす。
 圧力室部材Aは、中間層113および接着層114を介して振動層111に接合している。圧力室部材Aおよび圧電体薄膜104が、振動層111を間に挟んでいる。
 (1)圧電効果による圧電体薄膜104の変形に応じて振動層111が変位し、
 (2)振動層111の変位に応じて圧力室102の容積が変化し、かつ、
 (3)圧力室102の容積の変化に応じて圧力室102内のインクが吐出し得る限り、振動層111の構成、圧電体薄膜104と振動層111との間の接合の状態、ならびに振動層111と圧力室部材Aとの間の接合の状態は、限定されない。図4Aおよび図4Bでは、振動層111は圧力室102の壁面を構成している。
 振動層111を構成する材料は、例えば、Crである。当該材料は、Ni、アルミニウム(Al)、Ta、タングステン(W)、シリコン、あるいはこれらの元素の酸化物、窒化物(例えば、二酸化シリコン、酸化アルミニウム、酸化ジルコニウム、窒化シリコン)であり得る。振動層111の厚みは、2μm以上5μm以下が好ましい。
 接着層114を構成する材料は、例えば、接着剤または粘着剤である。当業者は、接着剤および粘着剤の種類を適切に選択し得る。
 中間層(縦壁)113は、圧力室部材Aが接着層114を介して振動層111に接合する際に、圧力室102に露出する振動層111の一部分に接着層114が付着することを防ぐ。当該一部分に付着した接着剤は、振動層111の変位を妨げる。中間層113を構成する材料は、インクジェットヘッド100の機能が維持される限り、限定されない。中間層113の材料は、例えば、Tiである。中間層113は、省略され得る。
 圧力室部材Aは、隣り合う圧力室102間に区画壁102aを有する。
 図2に示されるインクジェットヘッド100を製造する方法の一例を、図5A~図10を参照しながら説明する。
 最初に、図5Aに示されるように、下地基板120の上に、電極膜13、(Bi,Na,Ba)TiO膜(圧電体層)15、導電膜17、振動層111および中間層113をこの順に形成して、積層体132を得る。各層(膜)を形成する薄膜形成手法は特に限定されない。当該手法の例は、PLD法、CVD法、ゾルゲル法、AD法、スパッタリング法である。当該手法は、スパッタリング法が好ましい。
 積層体132の形成とは別に、後に圧力室部材Aとなる部材を形成する。この部材は、例えば、Si基板(好ましくはSi単結晶基板)を微細加工して形成し得る。Si基板のサイズは、下地基板120のサイズよりも大きいことが好ましい(図10参照。図10における符号130が、Si基板。符号130は、Si基板以外の他の基板であり得る)。より具体的には、図5Bに示されるように、複数の貫通孔101が基板130に形成される。貫通孔101は、この部材が、別途形成したアクチュエータ部およびインク流路部材に接合した後、圧力室102として機能する。図5Bでは、1つの貫通孔群が4つの貫通孔101から構成される。基板130は、複数の当該貫通孔群を具備する。第1区画壁102aは、1つの貫通孔群に属する隣接する2つの貫通孔101を区分する。隣接する2つの貫通孔群を、第2区画壁102bが区分する。第2区画壁102bは、第1区画壁102aが有する幅の2倍以上の幅を有することが好ましい。貫通孔101は公知の微細加工手法により、基板130に設けられ得る。当該手法は、例えば、パターニングとエッチングとの組み合わせであり得る。エッチングは、ケミカルエッチングまたはドライエッチングであり得る。貫通孔101の形状は、望まれる圧力室102の形状に対応付けられ得る。以下、第1区画壁102aおよび第2区画壁102bを、まとめて区画壁102と呼ぶ。
 次に、図5Cに示されるように、区画壁102の上に接着層114を形成する。接着層114の形成方法は限定されない。当該方法は、例えば、電着法であり得る。
 その後、図6Aに示されるように、基板130は積層体132に接合する。当該接合によって、中間層113が基板130および積層体132の間に挟まれる。基板130のサイズが下地基板120のサイズよりも大きい場合、図10に示されるように、複数の積層体132(図10に示される例では14の積層体。図10では、積層体132が具備する下地基板120が見えている)が基板130に接合し得る。図6Aでは、基板130に2つの積層体132が接合する。図6Aでは、2つの積層体132の中心は、第2区画壁102bの延長線上に位置する。基板130の積層体132への接合により、導電膜17は共通電極層112となる。
 接着層114が熱硬化性の接着剤により構成される場合、基板130が積層体132に接合した後、熱を加えて接着層114を完全に硬化させることが好ましい。接合時に貫通孔101にはみ出した接着層114は、プラズマ処理によって除去され得る。
 次に、図6Bに示されるように、区画壁102をマスクとして用いて中間層113をエッチングする。当該エッチングは、貫通孔101の断面の形状に合致させるように行う。これにより、振動層111が貫通孔101に露出する。当該エッチングによって、中間層113は、平面視において区画壁102と同一の形状に変化する。中間層113は、区画壁102および接着層114とともに、縦壁を構成する。このようにして、基板130、中間層113および接着層114を具備する圧力室部材Aが形成される。
 図5B~図6Bに示される例では、貫通孔101が形成された基板130が、圧電体層15を含む積層体132に接合する。この手順に代えて、貫通孔101を具備しない基板130が積層体132に接合し、そして当該基板130に貫通孔101を形成して振動層111を露出させることによっても、圧力室部材Aは形成され得る。
 その後、図7Aに示されるように、下地基板120が、例えば、エッチングにより除去される。
 次に、図7Bに示されるように、フォトリソグラフィとエッチングとを組み合わせた微細加工によって、電極膜13は、2以上の個別電極層103に変化する。各個別電極層103は、平面視において、個々の貫通孔101に対応付けられる。
 その後、図8Aに示されるように、(Na,Bi)TiO-BaTiO膜15が微細加工される。微細加工した(Na,Bi)TiO-BaTiO膜15は、平面視において個別電極層103の形状と同一の形状を有する。当該微細加工では、平面視における各層(膜)の中心が貫通孔101の中心に高い精度で一致することが好ましい。このようにして、個別電極層103(電極膜13)、(Na,Bi)TiO-BaTiO膜15、および共通電極層112(導電膜17)から構成される圧電体薄膜104と、振動層111とを備えるアクチュエータ部Bが形成される。
 次に、図8Bに示されるように、共通電極層112、振動層111および基板130を、第2区画壁102bごとに切断して、2以上の部材133を得る。1つの部材133は、アクチュエータ部Bと、2以上の貫通孔101を有する圧力室部材Aとを具備している。アクチュエータ部Bは圧力室部材Aに接合している。
 上述した各手順とは別に、図9Aに示されるように、共通液室105、供給口106およびインク流路107を具備するインク流路部材Cと、ノズル孔108を具備するノズル板Dとが準備される。
 次に、図9Bに示されるように、インク流路部材Cの主面に垂直な方向から見てインク流路107がノズル孔108に重複するように、インク流路部材Cをノズル板Dに接合して接合体を得る。インク流路107に、ノズル孔108の全体が露出することが好ましい。両部材の接合方法は限定されず、例えば、接着剤が用いられ得る。
 その後、図9Cに示されるように、部材133は、図9Bに示される工程で準備した接合体に接合する。より具体的には、圧力室部材Aにおけるアクチュエータ部B側とは反対側の面が、インク流路部材Cにおけるノズル板D側とは反対側の面に接合する。接合時にはアライメント調整が行われ、当該接合によって貫通孔101を圧力室102として機能させる。接合方法は限定されず、例えば、接着剤が用いられ得る。このようにして、図9D(図2)に示されるインクジェットヘッド100が得られる。
 図11は、本発明の他のインクジェットヘッドを示す。図11に示されるインクジェットヘッド141は、図2~図4に示されるインクジェットヘッド100と比較して、簡易な構造を有する。具体的には、インクジェットヘッド100からインク流路部材Cが除去されている。
 図11に示されるインクジェットヘッド141は、以下の(1)~(6)を除き、図2~図4に示されるインクジェットヘッド100と同一である:(1)インク流路部材Cがなく、そしてノズル孔108を具備するノズル板Dが、直接、圧力室部材Aに接合している;(2)中間層113がなく、そして振動層111が、直接、圧力室部材Aに接合している;(3)振動層111と共通電極層112との間に密着層142が配置されており、当該密着層142がこれらの間の密着性を向上させている;(4)共通電極層112が、電極膜13である;(5)個別電極層103が導電膜17である;(6)共通電極層112側から、共通電極層112(電極膜13)、(Na,Bi)TiO-BaTiO膜15および個別電極層103(導電膜17)が順に積層されている。
 共通電極層112は、第1の電極として機能する。個別電極層103は、第2の電極として機能する。密着層142を構成する材料は、例えば、Tiである。
 図11に示されるインクジェットヘッド141は、例えば、図12Aおよび図12Bに示される方法によって製造され得る。最初に、図12Aに示されるように、基板130の一方の主面に、振動層111、密着層142、共通電極層112(電極膜13)、(Na,Bi)TiO-BaTiO膜15、および導電膜17を、この順に形成する。各層(膜)の形成手法は、上述したとおりである。当該手法は、スパッタリング法が好ましい。
 この実施形態では、基板130がSiである場合、当該基板の表面を酸化することによって、二酸化シリコンにより構成される振動層111を形成し得る。このとき、振動層111の厚みは、0.5~10μmであり得る。
 次に、図12Bに示されるように、基板130において圧力室102が形成される位置に貫通孔101が形成される。次に、基板130の主面に垂直な方向から見て、貫通孔101の中心が、導電膜17、(Na,Bi)TiO-BaTiO膜15の中心に一致するように、これらの層に微細加工が施される。当該微細加工によって、導電膜17が個別電極層103に変化する。貫通孔101の形成および各層の微細加工には、パターニングとエッチングとを組み合わせた公知の微細加工手法が用いられ得る。パターニングには、レジストのスピンコートが用いられ得る。エッチングはドライエッチングが好ましい。貫通孔101の形成には異方性ドライエッチングが好ましい。ドライエッチングでは、フッ素原子を含む有機ガスとアルゴンとの混合ガスが使用され得る。異方性ドライエッチングでは、当該混合ガスが、さらに六フッ化硫黄ガスを含み得る。
 最後に、基板130は、別途形成しておいたノズル孔108を有するノズル板と接合し、図11に示されるインクジェットヘッド141を得る。接合時には、アライメント調整が行われ、これらの接合によって貫通孔101を圧力室102として機能させる。接合する方法は限定されず、例えば、接着剤が用いられ得る。ノズル孔108は、リソグラフィー法、レーザー加工法、放電加工法のような微細加工手法により、ノズル板に形成し得る。
 [インクジェットヘッドを用いた画像形成方法]
 本発明の画像を形成する方法は、上述した本発明のインクジェットヘッドにおいて、第1および第2の電極(すなわち、個別電極層および共通電極層)を介して圧電体層に電圧を印加し、圧電効果により振動層を当該層の膜厚方向に変位させて圧力室の容積を変化させる工程、ならびに当該変位により圧力室からインクを吐出させる工程を含有する。
 紙のような画像形成対象物とインクジェットヘッドとの間の相対位置を変化させながら、圧電体層に印加する電圧を変化させてインクジェットヘッドからのインクの吐出タイミングおよび吐出量を制御することによって、対象物の表面に画像が形成される。本明細書において用いられる用語「画像」は、文字を含む。換言すれば、本発明の画像を形成する方法により、紙のような印刷対象物に、文字、絵、図形などが印刷される。当該方法では、高い表現力を有する印刷をなし得る。
 [角速度センサ]
 図13A、図13B、図14Aおよび図14Bは、本発明の角速度センサの一例を示す。図14Aは、図13Aに示される角速度センサ21aの断面E1を示す。図14Bは、図13Bに示される角速度センサ21bの断面E2を示す。図13A~図14Bに示される角速度センサ21a、21bは、いわゆる音叉型角速度センサである。これは車両用ナビゲーション装置およびデジタルスチルカメラの手ぶれ補正センサに使用され得る。
 図13A~図14Bに示される角速度センサ21a、21bは、振動部200bを有する基板200と、振動部200bに接合された圧電体薄膜208とを備える。
 基板200は、固定部200aと、固定部200aから所定の方向に伸びた一対のアーム(振動部200b)とを具備する。振動部200bが延びる方向は、角速度センサ21が測定する角速度の回転中心軸Lが延びる方向と同一である。具体的には、当該方向は、図13A、13BではY方向である。基板200の厚み方向(図13A、13BにおけるZ方向)から見て、基板200は2本のアーム(振動部200b)を有する音叉の形状を有している。
 基板200を構成する材料は限定されない。当該材料は、例えば、Si、ガラス、セラミクス、金属である。基板200は、Si単結晶基板であり得る。基板200の厚みは、角速度センサ21a、21bとしての機能が発現できる限り、限定されない。より具体的には、基板200の厚みは0.1mm以上0.8mm以下である。固定部200aの厚みは、振動部200bの厚みと異なり得る。
 圧電体薄膜208は、振動部200bに接合している。圧電体薄膜208は、圧電体層である(Na,Bi)TiO-BaTiO膜15と、第1の電極202、および第2の電極205、を備える。圧電体層15は、第1の電極202および第2の電極205の間に挟まれている。圧電体薄膜208は、第1の電極202、(Na,Bi)TiO-BaTiO膜15、および第2の電極205が、この順に積層された積層構造を有する。
 図13Aおよび図14Aに示される圧電体薄膜208では、第1の電極202は、金属電極膜(Pt膜が好ましい)12および電極膜13の積層体である。電極膜13が(Na,Bi)TiO-BaTiO膜15に接する。当該圧電体薄膜208は、電極膜13、(Na,Bi)TiO-BaTiO膜15および第2の電極205が、この順に積層された積層構造を有する。
 図13Bおよび図14Bに示される圧電体薄膜208では、第1の電極202は、電極膜13である。当該圧電体薄膜208は、電極膜13、(Na,Bi)TiO-BaTiO膜15および第2の電極205が、この順に積層された積層構造を有する。すなわち、図13Bおよび図14Bに示される圧電体薄膜208は、第2の電極205を導電膜17と考えて、図1Bに示される圧電体薄膜1cと同一である。
 図13A~図14Bに示される圧電体薄膜208において、電極膜13、および(Na,Bi)TiO-BaTiO膜15は、その好ましい形態を含め、基本的に、本発明の圧電体薄膜に関する上述の説明のとおりである。
 第2の電極205を構成する材料は限定されず、例えば、Cuである。Cu電極は、(Na,Bi)TiO-BaTiO膜15に対する高い密着性を有することから、好ましい。第2の電極205は、導電性材料からなる密着層を表面に有するPt電極膜またはAu電極膜であり得る。密着層を構成する材料は、例えば、Tiである。Tiは、(Bi,Na,Ba)TiO膜に対する高い密着性を有する。
 第2の電極205は、駆動電極206およびセンス電極207を含む電極群を具備する。駆動電極206は、振動部200bを発振させる駆動電圧を圧電体層15に印加する。センス電極207は、振動部200bに加わった角速度によって振動部200bに生じた変形を測定する。振動部200bの発振方向は、通常、その幅方向(図13A、13BにおけるX方向)である。より具体的には、図13A~図14Bに示される角速度センサでは、一対の駆動電極206が、振動部200bの幅方向に対する両端部に、振動部200bの長さ方向(図13A、13BのY方向)に沿って設けられている。1本の駆動電極206が、振動部200bの幅方向に対する一方の端部に設けられ得る。図13A~図14Bに示される角速度センサでは、センス電極207は、振動部200bの長さ方向に沿って設けられており、かつ一対の駆動電極206の間に挟まれている。複数のセンス電極207が、振動部200b上に設けられ得る。センス電極207によって測定される振動部200bの変形は、通常、その厚み方向(図13A、13BにおけるZ方向)の撓みである。
 本発明の角速度センサでは、第1の電極および第2の電極から選ばれる一方の電極が、駆動電極とセンス電極とを含む電極群により構成され得る。図13A~図14Bに示される角速度センサ21a、21bでは、第2の電極205が当該電極群により構成される。当該角速度センサとは異なり、第1の電極202が当該電極群により構成され得る。一例として、基板200から見て、第2の電極205、(Na,Bi)TiO-BaTiO膜15、および第1の電極202(第1の電極は、(Na,Bi)TiO-BaTiO膜15に接する電極膜13を具備する)が、この順に積層され得る。
 接続端子202a、206aおよび207aが、第1の電極202の端部、駆動電極206の端部およびセンス電極207の端部に、それぞれ形成されている。各接続端子の形状および位置は限定されない。図13A、13Bでは、接続端子は固定部200a上に設けられている。
 第1の電極202の厚みは、0.05μm以上1μm以下が好ましい。(Na,Bi)TiO-BaTiO膜15の厚みは、0.5μm以上5μm以下が好ましい。第2の電極205の厚みは、0.05μm以上0.5μm以下が好ましい。
 図13A~図14Bに示される角速度センサでは、圧電体薄膜208は、振動部200bおよび固定部200aの双方に接合している。しかし、圧電体薄膜208が振動部200bを発振させることができ、かつ振動部200bに生じた変形が圧電体薄膜208によって測定され得る限り、圧電体薄膜208の接合の状態は限定されない。例えば、圧電体薄膜208は、振動部200bのみに接合され得る。
 本発明の角速度センサは、一対の振動部200bからなる振動部群を2以上有し得る。そのような角速度センサは、複数の回転中心軸に対する角速度を測定し得、2軸あるいは3軸の角速度センサとして機能し得る。図13A~図14Bに示される角速度センサは、一対の振動部200bからなる1つの振動部群を有する。
 本発明の角速度センサは、上述した本発明の圧電体薄膜の製造方法を応用して、例えば、以下のように製造され得る。ただし、以下に示される方法は、第1の電極202が金属電極膜12を具備する場合の方法である。当業者は、第1の電極202が金属電極膜12を具備しない場合についても、以下の方法を応用し得る。
 最初に、電極膜13、(Na,Bi)TiO-BaTiO膜15および導電膜17を、基板(例えばSi基板)の表面に、この順に形成する。各層(膜)の形成には、上述した薄膜形成手法を適用し得る。当該手法は、スパッタリング法が好ましい。
 次に、導電膜17をパターニングにより微細加工して、駆動電極206およびセンス電極207により構成される第2の電極205を形成する。さらに、微細加工により、(Na,Bi)TiO-BaTiO膜15、電極膜13および金属電極膜12をパターニングする。そして、微細加工により基板をパターニングして、振動部200bを形成する。このようにして、本発明の角速度センサが製造され得る。
 微細加工の方法は、例えばドライエッチングである。
 本発明の角速度センサは、下地基板を用いた転写を応用して製造され得る。具体的には、例えば、以下の方法を適用し得る。最初に、電極膜13、(Na,Bi)TiO-BaTiO膜15および導電膜17を、下地基板の表面に、この順に形成する。次に、形成された積層体を他の新たな基板に、当該基板と当該導電膜17とが接するように、接合する。次に、下地基板を公知の方法により除去する。次に、各層(膜)を微細加工によりパターニングして、本発明の角速度センサが製造され得る。当該積層体および当該新たな基板は、例えば接着層を介して接合し得る。当該接着層の材料は、当該積層体が当該新たな基板に安定して接着する限り限定されない。より具体的には、アクリル樹脂系接着剤、エポキシ樹脂系接着剤、シリコーン系接着剤、およびポリイミド系接着剤が用いられ得る。このとき、接着層は0.2μm以上1μm以下の厚みを有することが好ましい。
 [角速度センサによる角速度の測定方法]
 本発明の角速度を測定する方法は、本発明の角速度センサを用いて、駆動電圧を圧電体層に印加して、基板の振動部を発振させる工程、および発振中の振動部に加わった角速度によって振動部に生じた変形を測定することによって当該角速度の値を得る工程、を有する。第1の電極および第2の電極のうち、駆動電極およびセンス電極として機能しない電極(他方の電極)と、駆動電極との間に駆動電圧が印加され、圧電体層に駆動電圧が印加される。他方の電極およびセンス電極が、角速度によって、発振中の振動部に生じた変形を測定する。
 以下、図13A、13Bに示される角速度センサ21a、21bを用いた角速度の測定方法を説明する。振動部200bの固有振動と共振する周波数の駆動電圧が、第1の電極202および駆動電極206を介して圧電体層である(Na,Bi)TiO-BaTiO膜15に印加され、振動部200bを発振させる。印加された駆動電圧の波形に応じて圧電体層15が変形し、当該層と接合されている振動部200bが発振する。駆動電圧は、例えば、第1の電極202を接地し、かつ駆動電極206の電位を変化させることで印加され得る(換言すれば、駆動電圧は、第1の電極202と駆動電極206との間の電位差である)。角速度センサ21a、21bは、音叉の形状に配列された一対の振動部200bを有する。通常、一対の振動部200bのそれぞれが有する各駆動電極206に、正負が互いに逆である電圧をそれぞれ印加する。これにより、各振動部200bを、互いに逆方向に振動するモード(図13A、13Bに示される回転中心軸Lに対して対称的に振動するモード)で発振させることができる。図13A、13Bに示される角速度センサ21a、21bでは、振動部200bはその幅方向(X方向)に発振する。一対の振動部200bの一方のみを発振させることによっても角速度の測定は可能である。しかし、高精度の測定のためには、両方の振動部200bを互いに逆方向に振動するモードで発振させることが好ましい。
 振動部200bが発振している角速度センサ21a、21bに対して、その回転中心軸Lに対する角速度ωが加わるとき、各振動部200bは、コリオリ力によって厚み方向(Z方向)に撓む。一対の振動部200bが互いに逆方向に振動するモードで発振している場合、各振動部200bは、互いに逆向きに、同じ変化量だけ撓むことになる。この撓みに応じて、振動部200bに接合した圧電体層15も撓み、第1の電極202とセンス電極207との間に、圧電体層15の撓みに応じた、即ち、生じたコリオリ力に対応した電位差が生じる。この電位差の大きさを測定することで、角速度センサ21a、21bに加わった角速度ωを測定することができる。
 コリオリ力Fcと角速度ωとの間には以下の関係が成立する:
 Fc=2mvω
 ここで、vは、発振中の振動部200bにおける発振方向の速度である。mは、振動部200bの質量である。この式に示されているように、コリオリ力Fcから角速度ωを算出し得る。
 [圧電発電素子]
 図15A、図15B、図16Aおよび図16Bは、本発明の圧電発電素子の一例を示す。図16Aは、図15Aに示される圧電発電素子22aの断面F1を示す。図16Bは、図15Bに示される圧電発電素子22bの断面F2を示す。圧電発電素子22a、22bは、外部から与えられた機械的振動を電気エネルギーに変換する素子である。圧電発電素子22a、22bは、車両および機械の動力振動および走行振動、ならびに歩行時に生じる振動、に包含される種々の振動から発電する自立的な電源装置に好適に適用される。
 図15A~図16Bに示される圧電発電素子22a、22bは、振動部300bを有する基板300と、振動部300bに接合された圧電体薄膜308とを具備する。
 基板300は、固定部300aと、固定部300aから所定の方向に伸びた梁により構成される振動部300bと、を有する。固定部300aを構成する材料は、振動部300bを構成する材料と同一であり得る。しかし、これらの材料は互いに異なり得る。互いに異なる材料により構成された固定部300aが、振動部300bに接合され得る。
 基板300を構成する材料は限定されない。当該材料は、例えば、Si、ガラス、セラミクス、金属である。基板300は、Si単結晶基板であり得る。基板300は、例えば、0.1mm以上0.8mm以下の厚みを有する。固定部300aは振動部300bの厚みと異なる厚みを有し得る。振動部300bの厚みは、振動部300bの共振周波数を変化させて効率的な発電が行えるように調整され得る。
 錘荷重306が振動部300bに接合している。錘荷重306は、振動部300bの共振周波数を調整する。錘荷重306は、例えば、Niの蒸着薄膜である。錘荷重306の材料、形状および質量ならびに錘荷重306が接合される位置は、求められる振動部300bの共振周波数に応じて調整され得る。錘荷重は省略され得る。振動部300bの共振周波数が調整されない場合には、錘荷重は不要である。
 圧電体薄膜308は、振動部300bに接合している。圧電体薄膜308は、圧電体層である(Na,Bi)TiO-BaTiO膜15と、第1の電極302および、第2の電極305を備える。(Na,Bi)TiO-BaTiO膜15は、第1の電極302および第2の電極305の間に挟まれている。圧電体薄膜308は、第1の電極302、(Na,Bi)TiO-BaTiO膜15および第2の電極305が、この順に積層された積層構造を有する。
 図15Aおよび図16Aに示される圧電体薄膜308では、第1の電極302は、電極膜13である。電極膜13が(Na,Bi)TiO-BaTiO膜15に接する。当該圧電体薄膜308は、電極膜13、(Na,Bi)TiO-BaTiO膜15、および第2の電極305が、この順に積層された積層構造を有する。すなわち、図15Aおよび図16Aに示される圧電体薄膜308は、第2の電極305を導電膜17と考えて、図1Bに示される積層構造16cと同一である。
 図15Bおよび図16Bに示される圧電体薄膜308では、第1の電極302は、電極膜13である。当該圧電体薄膜308は、電極膜13、(Na,Bi)TiO-BaTiO膜15および第2の電極305が、この順に積層された積層構造を有する。すなわち、図15Bおよび図16Bに示される圧電体薄膜308は、第2の電極305を導電膜17と考えて、図1Bに示される積層構造16cと同一である。
 図15A~図16Bに示される圧電体薄膜308において、電極膜13、および(Na,Bi)TiO-BaTiO膜15は、その好ましい形態を含め、基本的に、本発明の圧電体薄膜に関する上述の説明のとおりである。
 第2の電極305は、例えば、Cu電極膜であり得る。Cu電極は、(Na,Bi)TiO-BaTiO膜15に対する高い密着性を有することから、好ましい。第2の電極305は、導電性材料からなる密着層を表面に有するPt電極膜またはAu電極膜であり得る。密着層を構成する材料は、例えば、Tiである。Tiは、(Bi,Na,Ba)TiO膜に対する高い密着性を有する。
 図15A~図16Bに示される圧電発電素子では、第1の電極302の一部分が露出している。当該一部分は接続端子302aとして機能し得る。
 第1の電極302の厚みは、0.05μm以上1μm以下が好ましい。(Na,Bi)TiO-BaTiO膜15の厚みは、0.5μm以上5μm以下が好ましい。第2の電極305の厚みは、0.05μm以上0.5μm以下が好ましい。
 図15A~図16Bに示される圧電発電素子では、振動部300bを有する基板300側から見て、第1の電極302、(Na,Bi)TiO-BaTiO膜15、および第2の電極305が、この順に積層されている。これらの層の積層順序は逆であり得る。即ち、振動部を有する基板側から見て、第2の電極、(Bi,Na,Ba)TiO膜、および第1の電極(第1の電極は、当該(Na,Bi)TiO-BaTiO膜15に接するLaNiO膜を具備する)が、この順に積層され得る。
 図15A~図16Bに示される圧電発電素子では、圧電体薄膜308は、振動部300bおよび固定部300aの双方に接合し得る。圧電体薄膜308は、振動部300bのみに接合し得る。
 本発明の圧電発電素子では、複数の振動部300bを有することで、発生する電力量を増大し得る。各振動部300bが有する共振周波数を変化させることにより、広い周波数成分からなる機械的振動への対応が可能となる。
 本発明の圧電発電素子は、上述した本発明の圧電体薄膜の製造方法を応用して、例えば、以下のように製造され得る。
 最初に、電極膜13、(Na,Bi)TiO-BaTiO膜15および導電膜17を、基板(例えばSi基板)の表面に、この順に形成する。各層(膜)の形成には、上述した薄膜形成手法を適用し得る。当該手法は、スパッタリング法が好ましい。
 次に、導電膜17をパターニングにより微細加工して、第2の電極305を形成する。さらに微細加工により、(Na,Bi)TiO-BaTiO膜15、電極膜13をパターニングする。電極膜13および金属電極膜12のパターニングにより、接続端子302aが併せて形成される。そして、微細加工により基板をパターニングして、固定部300aおよび振動部300bが形成される。このようにして、本発明の圧電発電素子が製造され得る。振動部300bの共振周波数の調整が必要とされる場合は、公知の方法により、錘荷重306が振動部300bに接合する。
 微細加工の方法は、例えばドライエッチングである。
 本発明の圧電発電素子は、下地基板を用いた転写を応用して製造され得る。具体的には、例えば、以下の方法を適用し得る。最初に、電極膜13、(Na,Bi)TiO-BaTiO膜15および導電膜17を、下地基板の表面に、この順に形成する。次に、形成された積層体を他の新たな基板に、当該基板と当該導電膜17とが接するように、接合する。次に、下地基板を公知の方法により除去する。次に、各層(膜)を微細加工によりパターニングして、本発明の圧電発電素子が製造され得る。当該積層体および当該新たな基板は、例えば接着層を介して接合し得る。当該接着層の材料は、当該積層体が当該新たな基板に安定して接着する限り限定されない。より具体的には、アクリル樹脂系接着剤、エポキシ樹脂系接着剤、シリコーン系接着剤、およびポリイミド系接着剤が用いられ得る。このとき、接着層は0.2μm以上1μm以下の厚みを有することが好ましい。
 [圧電発電素子を用いた発電方法]
 上述した本発明の圧電発電素子に振動を与えることにより、第1の電極および第2の電極を介して電力が得られる。
 外部から圧電発電素子22a、22bに機械的振動が与えられると、振動部300bが、固定部300aに対して上下に撓む振動を始める。当該振動が、圧電効果による起電力を圧電体層である(Na,Bi)TiO-BaTiO膜15に生じる。このようにして、圧電体層15を挟持する第1の電極302と第2の電極305との間に電位差が発生する。圧電体層15が有する圧電性能が高いほど、第1および第2の電極間に発生する電位差は大きくなる。特に、振動部300bの共振周波数が、外部から素子に与えられる機械的振動の周波数に近い場合、振動部300bの振幅が大きくなることで発電特性が向上する。そのため、錘荷重306によって、振動部300bの共振周波数が外部から素子に与えられる機械的振動の周波数に近くなるように調整されることが好ましい。
 (実施例)
 以下、実施例を用いて、本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
 (実施例1)
 実施例1では、図1Cに示される圧電体薄膜を作製した。当該圧電体薄膜は、MgO基板11、Pt電極膜13、(1-x)(NaBi)TiO-xBaTiO(x=0.03)膜15、および導電膜17を順に具備する。当該圧電体薄膜を、以下のように作製した。
 (110)の面方位を有するMgO単結晶基板の表面に、RFマグネトロンスパッタリングにより、(110)配向を有するPt層(厚み250nm)を形成した。当該Pt層は、電極膜13に対応する。ターゲットとして金属Ptを用い、アルゴン(Ar)ガスの雰囲気下にて、RF出力20Wおよび基板温度500℃の成膜条件で当該Pt層を形成した。
 次に、Pt電極膜13の表面に、RFマグネトロンスパッタリングにより、(1-x)(NaBi)TiO-xBaTiO(x=0.03、厚み3.0μm)を形成した。当該膜は、(Na,Bi)TiO-BaTiO膜15に対応する。上記の組成を有するターゲットを用い、Arと酸素との混合ガス(流量比Ar/Oが50/50)の雰囲気下にて、RF出力170Wおよび基板温度650℃の成膜条件下で当該膜15を形成した。
 作製した(1-x)(NaBi)TiO-xBaTiO(x=0.03)膜15の組成は、エネルギー分散型X線分光法(SEM-EDX)によって分析された。SEM-EDXを用いた測定では、Oのような軽元素の分析精度が劣るため、当該軽元素の正確な定量は困難であった。しかし、(1-x)(NaBi)TiO-xBaTiO(x=0.03)膜15に含まれるNa,Bi,Ba,およびTiの組成は、ターゲットの組成と同一であることが確認された。
 形成した(NaBi)TiO-xBaTiO(x=0.03)膜15の結晶構造を、X線回折によって解析した。X線回折は、(NaBi)TiO-xBaTiO膜15の上からX線を入射して行なわれた。
 図17は、X線回折の結果、すなわち、2θ-ω(2θ-θ)スキャンしたX線回折のプロファイルを示す。以降の比較例においても、同一のX線回折が適用された。図17は、実施例1のX線回折の結果だけでなく、実施例2~4および比較例1~2のX線解析の結果も示す。
 図17は、X線回折プロファイルの結果を示す。MgO基板およびPt層に由来する反射ピークを除き、(110)配向を有する(Na,Bi)TiO-BaTiO膜15に由来する反射ピークのみが観察された。当該反射ピークの強度は、725,303cpsであり、非常に強かった。図17に示されるプロファイルは、実施例で作製された(Na,Bi)TiO-BaTiO膜15が極めて高い(110)配向性を有することを意味する。
 続いて、(Na,Bi)TiO-BaTiO膜15の逆格子マップの測定を行った。逆格子マップ測定では、試料へのX線の入射角ωおよび検出器の回折角2θの走査移動によって2次元的なX線回折プロファイルを測定する。この測定プロファイルのピーク位置から、試料の格子定数を算出する。(Na,Bi)TiO-BaTiO膜15の(310)および(130)近傍での逆格子マップから格子定数(a、c、γ)を算出した。同様に、(Na,Bi)TiO-BaTiO膜15の(221)および(22-1)近傍での逆格子マップから格子定数(b)を算出した。図18は斜方晶格子(a、b、c、γ)を模式的に示す図である。表1は格子定数を表す。実施例1の薄膜は斜方晶構造を有することが確認された。
 次に、(Na,Bi)TiO-BaTiO膜15の表面に、蒸着により、Au層(厚み100nm)を形成した。当該Au層は、導電膜17に対応する。このようにして、実施例の圧電体薄膜が作製された。
 圧電体薄膜が具備するPt層およびAu層を用いて、圧電体薄膜の圧電性能を以下のように評価した。圧電体薄膜を幅2mmに切り出して、カンチレバー状に加工した。次に、Pt層とAu層との間に電位差を印加してカンチレバーを変位させて得られた変位量をレーザー変位計により測定した。次に、測定された変位量を圧電定数d31に変換し、当該圧電定数d31により圧電性能を評価した。実施例1で作製した圧電体薄膜のd31は-101pC/Nであった。この値は、PZT膜の圧電定数d31と同等であった。
 (実施例2)
 x=0.15である他は、実施例1と同様に実験を行った。
 図17および表1に示す通り、実施例2の圧電体薄膜は強い(110)反射ピーク強度を有するため、斜方晶構造を有することが確認された。
 実施例2による圧電体薄膜のd31は-136pC/Nであり、PZT膜の圧電定数d31と同等であった。
 (実施例3)
 x=0.09である他は、実施例1と同様に実験を行った。
 図17および表1に示す通り、実施例3の圧電体薄膜は強い(110)反射ピーク強度を有するため、斜方晶構造を有することが確認された。
 実施例3による圧電体薄膜のd31は-175pC/Nであり、PZT膜の圧電定数d31と同等であった。
 (実施例4)
 0.2mol%のMnを加えたこと以外は、実施例3と同様に実験を行った。
 表1に示す通り、実施例4の圧電体薄膜は強い(110)反射ピーク強度を有するため、斜方晶構造を有することが確認された。
 実施例4による圧電体薄膜のd31は-217pC/Nであり、PZT膜の圧電定数d31と同等であった。
 (比較例1)
 x=0.00である他は、実施例1と同様に実験を行った。
 図17および表1に示す通り、比較例1の薄膜は、実施例1~4よりも強い(110)反射ピーク強度を有していた。しかし、比較例1の圧電体薄膜は斜方晶構造を有さず、擬似立方晶構造を有していることが確認された。
 圧電体薄膜のd31は-77pC/Nであり、PZT膜の圧電定数d31と同等ではなかった。
 (比較例2)
 x=0.21である他は、実施例1と同様に実験を行った。
 図17および表1に示す通り、比較例2の薄膜は(110)反射ピーク強度が強く、斜方晶構造を有することが確認された。
 しかし、圧電体薄膜のd31は-58pC/Nであり、PZT膜の圧電定数d31と同等ではなかった。
 以下の表1は、実施例および比較例1の評価結果を要約している。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO(xは0.03以上0.15以下である)圧電体薄膜は、PZT膜と同等の高い圧電性能を有する。
 実施例2および比較例2は、xが0.15を超えてはならないことを意味する。
 実施例1および比較例1は、xが0.03未満であってはならないことを意味する。
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。
 斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO圧電体薄膜(0.03≦x≦0.15)は、PZTと同等の高い圧電性能が得られる。
 本発明の圧電体薄膜は高い圧電定数d31を有するので、従来の鉛系酸化物強誘電体に代わる圧電体薄膜として有用である。本発明の圧電体薄膜は、焦電センサ、圧電デバイスのような圧電体薄膜が使用されている分野に好適に使用され得る。その一例として、本発明のインクジェットヘッド、角速度センサおよび圧電発電素子が挙げられる。
 本発明のインクジェットヘッドは、PZTのような鉛を含有する強誘電材料を含まないにも拘わらず、インクの吐出特性に優れる。当該インクジェットヘッドを用いた画像を形成する方法は、優れた画像の精度および表現性を有する。本発明の角速度センサは、PZTのような鉛を含有する強誘電材料を含まないにも拘わらず、高いセンサ感度を有する。当該角速度センサを用いた角速度を測定する方法は、優れた測定感度を有する。本発明の圧電発電素子は、PZTのような鉛を含有する強誘電材料を含まないにも拘わらず、優れた発電特性を有する。当該圧電発電素子を用いた本発明の発電方法は、優れた発電効率を有する。本発明に係るインクジェットヘッド、角速度センサおよび圧電発電素子ならびに画像形成方法、角速度の測定方法および発電方法は、様々な分野および用途に幅広く適用できる。
 11  基板
 12  金属電極膜
 13  電極膜
 15  (1-x)(Na,Bi)TiO-xBaTiO
 16a,16c  積層構造
 17  導電膜
 101  貫通孔
 102  圧力室
 102a  区画壁
 102b  区画壁
 103  個別電極層
 104  圧電体薄膜
 105  共通液室
 106  供給口
 107  インク流路
 108  ノズル孔
 111  振動層
 112  共通電極層
 113  中間層
 114  接着剤
 120  下地基板
 130  基板
 200  基板
 200a  固定部
 200b  振動部
 202  第1の電極
 205  第2の電極
 206  駆動電極
 206a  接続端子
 207  検出電極
 207a  接続端子
 208  圧電体薄膜
 300  基板
 300a  固定部
 300b  振動部
 302  第1の電極
 305  第2の電極
 306  錘荷重
 308  圧電体薄膜

Claims (32)

  1.  積層構造を具備する圧電体薄膜であって、
     前記積層構造は、電極膜と、斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)とを、具備する、圧電体薄膜。
  2.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項1に記載の圧電体薄膜。
  3.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項1に記載の圧電体薄膜。
  4.  前記電極膜が(110)面方位を有する、請求項1に記載の圧電体薄膜。
  5.  圧電体薄膜を製造する方法であって、
     電極膜上に、斜方晶構造を有する(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)をスパッタリングにより形成する工程(a)を、具備する方法。
  6.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項5に記載の方法。
  7.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項5に記載の方法。
  8.  前記電極膜が(110)面方位を有する、請求項5に記載の方法。
  9.  インクジェットヘッドであって、
     第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、
     前記圧電体薄膜に接合された振動層と、
     インクを収容する圧力室を有するとともに、前記振動層における前記圧電体薄膜が接合した面とは反対側の面に接合された圧力室部材と、を備え、
     前記振動層は、圧電効果に基づく前記圧電体薄膜の変形に応じて当該振動層の膜厚方向に変位するように、前記圧電体薄膜に接合され、
     前記振動層と前記圧力室部材とは、前記振動層の変位に応じて前記圧力室の容積が変化するとともに、前記圧力室の容積の変化に応じて前記圧力室内のインクが吐出されるように、互いに接合されており、
     前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)である、
    インクジェットヘッド。
  10.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項9に記載のインクジェットヘッド。
  11.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項9に記載のインクジェットヘッド。
  12.  前記第1の電極が(110)面方位を有する、請求項9に記載のインクジェットヘッド。
  13.  インクジェットヘッドを用いて画像を形成する方法であって、
     前記インクジェットヘッドを準備する工程と、
           前記インクジェットヘッドは、
           第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、
           前記圧電体薄膜に接合された振動層と、
           インクを収容する圧力室を有するとともに、前記振動層における前記圧電体薄膜が接合した面とは反対側の面に接合された圧力室部材と、を備え、
           前記振動層は、圧電効果に基づく前記圧電体薄膜の変形に応じて当該振動層の膜厚方向に変位するように、前記圧電体薄膜に接合され、
           前記振動層と前記圧力室部材とは、前記振動層の変位に応じて前記圧力室の容積が変化するとともに、前記圧力室の容積の変化に応じて前記圧力室内のインクが吐出されるように、互いに接合されており、
           前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)であり、
     前記第1の電極および第2の電極を介して前記圧電体層に電圧を印加することにより、圧電効果に基づき、前記圧力室の容積が変化するように前記振動層を当該層の膜厚方向に変位させ、当該変位により前記圧力室からインクを吐出させる工程と、
    を包含する、方法。
  14.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項13に記載の方法。
  15.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項13に記載の方法。
  16.  前記第1の電極が(110)面方位を有する、請求項13に記載の方法。
  17.  角速度センサであって、
     振動部を有する基板と、
     前記振動部に接合されるとともに、第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、を備え、
     前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)であり、
     前記第1の電極および第2の電極から選ばれる一方の電極が、前記振動部を発振させる駆動電圧を前記圧電体層に印加する駆動電極と、発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を測定するためのセンス電極とを含む電極群により構成されている、
    角速度センサ。
  18.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項17に記載の角速度センサ。
  19.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項17に記載の角速度センサ。
  20.  前記第1の電極が(110)面方位を有する、請求項17に記載の角速度センサ。
  21.  角速度センサを用いて角速度を測定する方法であって、
     前記角速度センサを準備する工程、
           前記角速度センサは、
    振動部を有する基板と、
           前記振動部に接合されるとともに、第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、を備え、
    前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)であり、
           前記第1および第2の電極から選ばれる一方の電極が、駆動電極とセンス電極とを含む電極群により構成されており、
     駆動電圧を、前記第1および第2の電極から選ばれる他方の電極と前記駆動電極とを介して前記圧電体層に印加することにより、前記振動部を発振させる工程と、
     発振中の前記振動部に加わった角速度によって前記振動部に生じた変形を、前記他方の電極と前記センス電極とを介して測定することで前記加わった角速度の値を得る工程と、
    を包含する、方法。
  22.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項21に記載の方法。
  23.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項21に記載の方法。
  24.  前記第1の電極が(110)面方位を有する、請求項21に記載の方法。
  25.  圧電発電素子であって、
     振動部を有する基板と、
     前記振動部に接合されるとともに、第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、を備え、
     前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO膜(xは0.03以上0.15以下の値を表す)である、
    圧電発電素子。
  26.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項25に記載の圧電発電素子。
  27.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項25に記載の圧電発電素子。
  28.  前記第1の電極が(110)面方位を有する、請求項25に記載の圧電発電素子。
  29.  圧電発電素子を用いた発電方法であって、
     前記圧電発電素子を準備する工程と、
           前記圧電発電素子は、
           振動部を有する基板と、
           前記振動部に接合されるとともに、第1の電極および第2の電極に挟まれた圧電体層を有する圧電体薄膜と、を備え、
           前記圧電体層は、(1-x)(Na,Bi)TiO-xBaTiO圧電体薄膜(15)(xは0.03以上0.15以下の値を表す)であり、
     前記振動部に振動を与えることにより、前記第1および第2の電極を介して電力を得る工程と、
    を包含する、方法。
  30.  前記(1-x)(Na,Bi)TiO-xBaTiO膜が(110)面方位を有する、請求項29に記載の方法。
  31.  前記(1-x)(Na,Bi)TiO-xBaTiO膜がマンガンを含有する、請求項29に記載の方法。
  32.  前記第1の電極が(110)面方位を有する、請求項29に記載の方法。
PCT/JP2011/006402 2011-02-03 2011-11-17 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法 WO2012104945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180037811.3A CN103329297B (zh) 2011-02-03 2011-11-17 压电体薄膜及其制造方法、喷墨头、利用喷墨头形成图像的方法、角速度传感器、利用角速度传感器测定角速度的方法、压电发电元件以及利用压电发电元件的发电方法
JP2012546274A JP5196087B2 (ja) 2011-02-03 2011-11-17 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
US13/731,221 US9184371B2 (en) 2011-02-03 2012-12-31 Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-021331 2011-02-03
JP2011021331 2011-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/731,221 Continuation US9184371B2 (en) 2011-02-03 2012-12-31 Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element

Publications (1)

Publication Number Publication Date
WO2012104945A1 true WO2012104945A1 (ja) 2012-08-09

Family

ID=46602193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006402 WO2012104945A1 (ja) 2011-02-03 2011-11-17 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Country Status (4)

Country Link
US (1) US9184371B2 (ja)
JP (1) JP5196087B2 (ja)
CN (1) CN103329297B (ja)
WO (1) WO2012104945A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043719A (zh) * 2012-11-15 2013-04-17 华中科技大学 一种用于制备钛酸铋钠取向薄膜的方法及其产品
US9738070B1 (en) 2015-09-11 2017-08-22 Xerox Corporation Integrated piezo printhead
JP2019204896A (ja) * 2018-05-24 2019-11-28 三菱マテリアル株式会社 Bnt−bt系膜及びその形成方法
JP2020145286A (ja) * 2019-03-05 2020-09-10 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761540B2 (ja) * 2013-06-28 2015-08-12 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
JP5754660B2 (ja) * 2013-06-28 2015-07-29 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
JP2015038953A (ja) * 2013-06-28 2015-02-26 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
US10427981B2 (en) 2014-12-26 2019-10-01 Seiko Epson Corporation Piezoelectric material, method of manufacturing the same, piezoelectric element, and piezoelectric element application device
CN107924991A (zh) * 2015-08-26 2018-04-17 陶瓷技术有限责任公司 层及其制造方法
CN112853267B (zh) * 2021-01-08 2023-01-31 南京邮电大学 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048642A (ja) * 1999-08-10 2001-02-20 Ngk Spark Plug Co Ltd 圧電セラミックス
JP2001151566A (ja) * 1999-11-19 2001-06-05 Ngk Spark Plug Co Ltd 圧電体セラミックス
JP2001261435A (ja) * 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc 圧電セラミックス及びその製造方法
JP2007266346A (ja) * 2006-03-29 2007-10-11 Seiko Epson Corp 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法
JP4060073B2 (ja) * 2001-12-20 2008-03-12 株式会社日立製作所 内燃機関の制御装置
JP2010067756A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 圧電体膜、圧電素子、及び液体吐出装置
WO2010047049A1 (ja) * 2008-10-24 2010-04-29 パナソニック株式会社 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100513B (zh) * 1985-04-01 1987-08-19 中国科学院上海硅酸盐研究所 钛酸铋钠钡系超声用压电陶瓷材料
JP3482394B2 (ja) 2000-11-20 2003-12-22 松下電器産業株式会社 圧電磁器組成物
CN100345320C (zh) * 2001-12-18 2007-10-24 松下电器产业株式会社 压电元件、喷墨头、角速度传感器及其制法、喷墨式记录装置
US7083270B2 (en) * 2002-06-20 2006-08-01 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
US20080024563A1 (en) * 2006-07-25 2008-01-31 Matsushita Electric Industrial Co., Ltd. Piezoelectric thin film element, ink jet head, and ink jet type recording apparatus
CN100455538C (zh) * 2006-12-11 2009-01-28 中国科学院上海硅酸盐研究所 一种钛酸铋钠-钛酸钡无铅压电陶瓷及其制备方法
US7837305B2 (en) * 2007-01-30 2010-11-23 Panasonic Corporation Piezoelectric element, ink jet head, and ink jet recording device
EP1953840A3 (en) * 2007-01-31 2012-04-11 Panasonic Corporation Piezoelectric thin film device and piezoelectric thin film device manufacturing method and inkjet head and inkjet recording apparatus
US20110151566A1 (en) * 2009-12-23 2011-06-23 James Hedrick Biodegradable polymers, complexes thereof for gene therapeutics and drug delivery, and methods related thereto
CN103222080B (zh) * 2010-08-27 2015-01-21 松下电器产业株式会社 喷墨头、使用喷墨头形成图像的方法、角速度传感器、使用角速度传感器测定角速度的方法、压电发电元件以及使用压电发电元件的发电方法
JP5344110B1 (ja) * 2012-03-06 2013-11-20 パナソニック株式会社 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048642A (ja) * 1999-08-10 2001-02-20 Ngk Spark Plug Co Ltd 圧電セラミックス
JP2001151566A (ja) * 1999-11-19 2001-06-05 Ngk Spark Plug Co Ltd 圧電体セラミックス
JP2001261435A (ja) * 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc 圧電セラミックス及びその製造方法
JP4060073B2 (ja) * 2001-12-20 2008-03-12 株式会社日立製作所 内燃機関の制御装置
JP2007266346A (ja) * 2006-03-29 2007-10-11 Seiko Epson Corp 圧電薄膜、圧電素子、液滴噴射ヘッド、液滴噴射装置および液滴噴射ヘッドの製造方法
JP2010067756A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 圧電体膜、圧電素子、及び液体吐出装置
WO2010047049A1 (ja) * 2008-10-24 2010-04-29 パナソニック株式会社 圧電体薄膜とその製造方法、角速度センサ、角速度センサによる角速度の測定方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIPING GUO: "Structure and electrical properties of trilayered BaTi03/(Na0.5Bi0.5)Ti03-BaTi03/BaTi03 thin films deposited on Si substrate", SOLID STATE COMMUNICATIONS, vol. 149, no. 1-2, January 2009 (2009-01-01), pages 14 - 17 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043719A (zh) * 2012-11-15 2013-04-17 华中科技大学 一种用于制备钛酸铋钠取向薄膜的方法及其产品
US9738070B1 (en) 2015-09-11 2017-08-22 Xerox Corporation Integrated piezo printhead
JP2019204896A (ja) * 2018-05-24 2019-11-28 三菱マテリアル株式会社 Bnt−bt系膜及びその形成方法
JP7124445B2 (ja) 2018-05-24 2022-08-24 三菱マテリアル株式会社 Bnt-bt系膜及びその形成方法
JP2020145286A (ja) * 2019-03-05 2020-09-10 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子
JP7239350B2 (ja) 2019-03-05 2023-03-14 太陽誘電株式会社 圧電セラミックス及びその製造方法、並びに圧電素子

Also Published As

Publication number Publication date
JPWO2012104945A1 (ja) 2014-07-03
JP5196087B2 (ja) 2013-05-15
US20130136951A1 (en) 2013-05-30
US9184371B2 (en) 2015-11-10
CN103329297B (zh) 2015-09-02
CN103329297A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4588807B1 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4835813B1 (ja) 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4524000B1 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5196087B2 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4691614B1 (ja) 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP4894983B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5146625B2 (ja) インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077504B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077506B2 (ja) インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
WO2014020799A1 (ja) 圧電体膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5077505B2 (ja) 圧電体膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP2011249489A (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546274

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857704

Country of ref document: EP

Kind code of ref document: A1