CN112853267B - 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法 - Google Patents

基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法 Download PDF

Info

Publication number
CN112853267B
CN112853267B CN202110022043.XA CN202110022043A CN112853267B CN 112853267 B CN112853267 B CN 112853267B CN 202110022043 A CN202110022043 A CN 202110022043A CN 112853267 B CN112853267 B CN 112853267B
Authority
CN
China
Prior art keywords
bazr
layer
substrate
thin film
mask plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110022043.XA
Other languages
English (en)
Other versions
CN112853267A (zh
Inventor
方小英
成宏卜
陈彧芳
张伟
张雪花
胡芳仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202110022043.XA priority Critical patent/CN112853267B/zh
Publication of CN112853267A publication Critical patent/CN112853267A/zh
Application granted granted Critical
Publication of CN112853267B publication Critical patent/CN112853267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明公开了一种基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法,多层薄膜包括若干层交替错位沉积在基片上电极薄膜层和BaZr0.2Ti0.8O3薄膜层,通过磁控溅射和平移掩膜板的方法在基片上交替错位沉积电极薄膜层和BaZr0.2Ti0.8O3薄膜层。本发明简化了多层薄膜的制备工艺,不需要重复的刻蚀等步骤,避免产生二次污染和防止结构损伤;沉积速率高,提高了镀膜质量和镀膜效率;能较大面积成膜,可实现大尺寸样品的制备,适用于批量生产。

Description

基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法
技术领域
本发明涉及多层薄膜及制备方法,具体涉及一种基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法。
背景技术
近年来,随着现代社会对电能需求的增加,人们对高性能的电能存储和转换装置提出了更高的要求。在各种可用的电能存储装置中,多层薄膜电容器因具有充放电速度快、储能密度高等独特优点而得到了广泛关注。
多层薄膜电容器是一种内部电极交替分离的多层结构,众所周知,减小介电层的厚度可以提高多层薄膜电容器的电容和体积效率,同时可以降低多层薄膜电容器的驱动电压。此外,增加介电层的数量可以增加多层薄膜电容器的电容。因此,介电层的厚度和数量是决定多层薄膜电容器性能的主要因素。
当前制备薄膜的方法主要有流延法、脉冲激光沉积和化学气相沉积等方法。流延法虽然具有生产速度快,成本低,产量高等优点,但是很难制备出具有足够铁电和介电性能的亚微米厚的多层薄膜。脉冲激光沉积和化学气相沉积等方法,虽然很容易制备出亚微米厚度的薄膜,但是存在制备工艺复杂、样品尺寸小、样品利用率低、不适合大规模生产等问题。
发明内容
发明目的:本发明的目的是提供一种基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法,解决现有方法需要重复刻蚀,容易造成结构损伤,沉积效率低、样品尺寸小的问题。
技术方案:本发明所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,包括若干层交替错位沉积在基片上电极薄膜层和BaZr0.2Ti0.8O3薄膜层,电极层厚度50-300nm,BaZr0.2Ti0.8O3薄膜层厚度为100nm-2μm,所述电极层材料为铂、镍酸镧和钌酸锶中的任一种。
其中,所述基片材料为硅、氧化镁和钛酸锶中的任一种。
所述电极层之间交替分离。
所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜的制备方法,包括以下步骤:
(1)将基片置于磁控溅射仪的基片夹上,在基片上沉积电极薄膜层,然后向左平移基片夹上的掩膜板,错位沉积BaZr0.2Ti0.8O3层,继续向左平移掩膜板,错位沉积电极层,制备得到叠片结构的BaZr0.2Ti0.8O3单层薄膜;
(2)向右平移掩膜板,错位沉积BaZr0.2Ti0.8O3层;继续向右平移掩膜板,错位沉积电极层,此时制备得到叠片结构的BaZr0.2Ti0.8O3双层薄膜;
(3)重复步骤(2)-(3),沉积所需层数的多层薄膜,直至镀膜结束。
所述步骤(1)和步骤(2)中掩膜板的平移量相同,且单次平移量限制为0.5mm-2mm。
所述步骤(1)中磁控溅射沉积前,磁控溅射仪镀膜腔室内抽真空至2*10-4Pa。
有益效果:本发明简化了多层薄膜的制备工艺,不需要重复的刻蚀等步骤,避免产生二次污染和防止结构损伤;沉积速率高,提高了镀膜质量和镀膜效率;能较大面积成膜,可实现大尺寸样品的制备,适用于批量生产。
附图说明
图1为本发明多层薄膜截面制备过程示意图,其中(a)为沉积电极层截面示意图,(b) 为沉积BaZr0.2Ti0.8O3层截面示意图,(c)为基于叠片结构的BaZr0.2Ti0.8O3单层薄膜截面示意图,(d)为基于叠片结构的BaZr0.2Ti0.8O3双层薄膜截面示意图;
图2为本发明切割的样品表面示意图。
具体实施方式
下面结合附图对本发明进行进一步说明。
如图1所示,基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,包括若干层交替错位沉积在基片上电极薄膜层和BaZr0.2Ti0.8O3薄膜层,电极层厚度50-300nm,BaZr0.2Ti0.8O3薄膜层厚度为100nm-2μm,电极层材料为铂、镍酸镧和钌酸锶中的任一种,基片材料为硅、氧化镁和钛酸锶中的任一种,多层薄膜内部的电极层之间交替分离。
制备基于叠片结构的BaZr0.2Ti0.8O3多层薄膜时,包括以下步骤:
(1)将基片固定在特制的基片夹上,并置于磁控溅射腔室内,该基片夹设有制备叠片结构多层薄膜的掩膜板,磁控溅射仪设置有用于操作掩膜板平移的传送结构,同时掩膜板被连接到该传送结构,传送结构由磁力传递杆构成,在磁控溅射腔室外通过手动旋转磁力传递杆来精确控制掩膜板的平移,从而提高镀膜质量和镀膜效率,减小二次污染。
(2)对镀膜腔室进行抽真空至2*10-4Pa,待腔室温度上升至600℃,将腔室内气氛调整为Ar:O2=32:8、压强调至1.2Pa,在溅射功率80W下,如图1(a)所示,在基片1上沉积20min的电极层2,其中,通过沉积时间控制镀膜厚度;在磁控溅射腔室外,通过手动旋转磁力传递杆来带动传送结构控制掩膜板向左平移1mm,如图1(b)所示,继续沉积1h的BaZr0.2Ti0.8O3层3,使得电极层与BaZr0.2Ti0.8O3层之间有较大面积重叠;继续向左平移掩膜板1mm,如图1(c)所示,沉积20min的电极层2,制备得到叠片结构的BaZr0.2Ti0.8O3单层薄膜;
(3)向右平移掩膜板1mm,沉积1h的BaZr0.2Ti0.8O3层3;继续向右平移掩膜板1 mm,沉积20min的电极层2,如图1(d)所示,制备得到叠片结构的BaZr0.2Ti0.8O3双层薄膜。
(4)根据所需薄膜层数,重复进行上述步骤,直至镀膜结束。
(5)如图2所示,沿掩膜板平移方向,切割已完成镀膜的基片,获得所需尺寸的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜样品。

Claims (4)

1.一种基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,其特征在于,包括若干层交替错位沉积在基片上电极层和BaZr0.2Ti0.8O3薄膜层,电极层厚度50-300nm,BaZr0.2Ti0.8O3薄膜层厚度为100nm-2µm,所述电极层材料为铂、镍酸镧和钌酸锶中的任一种;
所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜的制备方法包括以下步骤:
(1)将基片置于磁控溅射仪的基片夹上,在基片上沉积电极层,然后向左平移基片夹上的掩膜板,错位沉积BaZr0.2Ti0.8O3薄膜层,继续向左平移掩膜板,错位沉积电极层,制备得到叠片结构的单层BaZr0.2Ti0.8O3薄膜层;
(2)向右平移掩膜板,错位沉积BaZr0.2Ti0.8O3薄膜层;继续向右平移掩膜板,错位沉积电极层,此时制备得到叠片结构的双层BaZr0.2Ti0.8O3薄膜层;
(3)重复步骤(2)-(3),沉积所需层数的多层薄膜,直至镀膜结束;
所述步骤(1)和步骤(2)中掩膜板的平移量相同,且单次平移量限制为0.5 mm-2 mm。
2.根据权利要求1所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,其特征在于,所述基片材料为硅、氧化镁和钛酸锶中的任一种。
3.根据权利要求1所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,其特征在于,所述电极层之间交替分离。
4.根据权利要求1所述的基于叠片结构的BaZr0.2Ti0.8O3多层薄膜,其特征在于,所述步骤(1)中磁控溅射沉积前,磁控溅射仪镀膜腔室内抽真空至2*10-4 Pa。
CN202110022043.XA 2021-01-08 2021-01-08 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法 Active CN112853267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110022043.XA CN112853267B (zh) 2021-01-08 2021-01-08 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110022043.XA CN112853267B (zh) 2021-01-08 2021-01-08 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法

Publications (2)

Publication Number Publication Date
CN112853267A CN112853267A (zh) 2021-05-28
CN112853267B true CN112853267B (zh) 2023-01-31

Family

ID=76005227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110022043.XA Active CN112853267B (zh) 2021-01-08 2021-01-08 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN112853267B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717515A (zh) * 2022-04-06 2022-07-08 北京理工大学 一种硬质涂层增韧结构及韧性评估方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768050B2 (en) * 2006-07-07 2010-08-03 The Trustees Of The University Of Pennsylvania Ferroelectric thin films
US8558324B2 (en) * 2008-05-06 2013-10-15 Korea Institute Of Science And Technology Composite dielectric thin film, capacitor and field effect transistor using the same, and each fabrication method thereof
WO2012104945A1 (ja) * 2011-02-03 2012-08-09 パナソニック株式会社 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
CN102136315B (zh) * 2011-03-21 2012-08-15 四川师范大学 多层陶瓷全面积LNO/Ag/LNO复合电极及制备方法
CN102543430A (zh) * 2012-01-12 2012-07-04 西安交通大学 焦绿石薄膜多层陶瓷电容器及其低温制备方法
CN108447789B (zh) * 2018-03-28 2020-06-02 天津大学 一种柔性薄膜变容管的制备方法
CN110257788B (zh) * 2019-06-25 2020-08-18 西安交通大学 一种BaZr0.35Ti0.65O3外延薄膜及其制备方法
CN111739736B (zh) * 2020-06-29 2021-11-30 陕西理工大学 一种具有高储能密度的柔性薄膜电容器及制备方法

Also Published As

Publication number Publication date
CN112853267A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
JP6660736B2 (ja) モノリシック全固体状態電池の製造プロセス
KR100359055B1 (ko) 박막형 슈퍼 캐패시터 및 그 제조방법
CN103219153B (zh) 一种耐高压高储能密度电容器及其制备方法
CN113690050B (zh) 可同时提高储能密度与储能效率的层状复合弛豫铁电材料及其制备方法
US9947469B2 (en) Thin-film dielectric and thin-film capacitor element
CN112853267B (zh) 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法
CN204809042U (zh) 抗氧化电容器薄膜
US20150004494A1 (en) Multilayer Si/Graphene Composite Anode Structure
CN102543430A (zh) 焦绿石薄膜多层陶瓷电容器及其低温制备方法
CN109637809B (zh) 一种陶瓷储能电容器及其制备方法
CN108281414A (zh) 一种电容及其制作方法、半导体设备
CN108470645B (zh) 一种柔性微型超级电容器及其制作方法
TW201711261A (zh) 用於製造具有台面結構的電池之方法與設備及包含台面結構的電池
JP6373200B2 (ja) 高静電容量のコンデンサ用巻回型積層体、及びそれを用いた積層巻回型コンデンサ
CN203411601U (zh) 分区多靶磁控溅射设备
JPH0864216A (ja) 酸素イオン導電体薄膜及びその製造方法
CN109148826B (zh) 一种负极及其制备方法、锂电池
CN114300733B (zh) 一种全固态薄膜锂电池及其制备方法
CN115942856A (zh) 一种pzt压电陶瓷、及其电极的制备方法
KR20150042011A (ko) 나노선들을 포함하는 박막전극의 제조방법, 나노선 박막전극 및 이를 포함하는 박막전지
CN107731526A (zh) 抗氧化电容器薄膜
JP2015005739A (ja) 固体イオンキャパシタ
CN207637846U (zh) 多层压电陶瓷执行器
CN1142615C (zh) 一种薄膜集成天线及其制作方法
CN106252076B (zh) 高端微型薄膜电容器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant