CN108447789B - 一种柔性薄膜变容管的制备方法 - Google Patents

一种柔性薄膜变容管的制备方法 Download PDF

Info

Publication number
CN108447789B
CN108447789B CN201810267135.2A CN201810267135A CN108447789B CN 108447789 B CN108447789 B CN 108447789B CN 201810267135 A CN201810267135 A CN 201810267135A CN 108447789 B CN108447789 B CN 108447789B
Authority
CN
China
Prior art keywords
thin film
zinc oxide
film layer
flexible
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810267135.2A
Other languages
English (en)
Other versions
CN108447789A (zh
Inventor
于仕辉
刘荣闯
赵乐
李玲霞
孙永涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810267135.2A priority Critical patent/CN108447789B/zh
Publication of CN108447789A publication Critical patent/CN108447789A/zh
Application granted granted Critical
Publication of CN108447789B publication Critical patent/CN108447789B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种柔性薄膜变容管的制备方法,以铜箔作柔性衬底,将掺杂Al、Ga或In的氧化锌为靶材,系统的本底真空度抽至3.0×10 3Pa以下,使用Ar气体作为溅射气体溅射掺杂Al、Ga或In的氧化锌薄膜层,沉积得到50~1000nm厚的掺杂Al、Ga或In的氧化锌薄膜层:再以BaZr0.2Ti0.8O3为靶材,系统的本底真空抽至1.0×10‑3Pa以下,使用Ar和O2作为溅射气体,氧气和氩气的分压比为1:4~15,沉积得到150~800nm的BaZr0.2Ti0.8O3薄膜层;再在BZT薄膜层和底电极掺杂Al、Ga或In的氧化锌层表面制备金属电极,制得柔性薄膜变容管。本发明的柔性薄膜变容管的介电调谐率≥50%@100kHz,介电损耗<0.03,在柔性曲率半径为5.0mm时,性能变化率≤10%。

Description

一种柔性薄膜变容管的制备方法
技术领域
本发明属于一种以成分为特征的陶瓷组合物,尤其涉及一种柔性薄膜变容管及其制备方法。
背景技术
变容管在通讯电子电路中有着重要的应用,其可实现通讯信号的接收和发射。目前,随着移动通讯设备向着柔性化方向的发展,传统的硬质薄膜变容管已经不能满足柔性电子电路的需求,继续开发柔性的薄膜变容管,以实现与柔性电路相匹配和兼容。
BaZr0.2Ti0.8O3(BZT)作为目前研究最为广泛的介电调谐薄膜材料,其具有介电调谐率高和介电常数大的优点,常被用来在硅基衬底上制备硬质变容管。由于柔性衬底和制备技术的限制,目前还未出现以其为基础制备的柔性变容管。本发明将解决BZT制备柔性薄膜变容管的技术难题,并制备出性能优良的柔性变容管。
发明内容
本发明的目的,在于克服现有技术中的不足,解决BZT即BaZr0.2Ti0.8O3制备柔性薄膜变容管的技术难题,利用磁控溅射沉积技术,提供一种成本低廉而性能优良的BaZr0.2Ti0.8O3基柔性变容管的制备方法。
本发明通过如下技术方案予以实现。
一种柔性薄膜变容管的制备方法,具有如下步骤:
(1)将铜箔表面清洗干净放入磁控溅射腔体内的样品台上,作为柔性衬底;
(2)将掺杂Al、Ga或In的氧化锌靶材装入磁控溅射的靶头上;
靶材与衬底的距离为40~90mm;
(3)待步骤(2)完成后,将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar气体作为溅射气体溅射掺杂Al、Ga或In的氧化锌薄膜层,溅射功率为30~180W,衬底温度为室温到600℃,进行沉积得到50~1000nm厚的掺杂Al、Ga或In的氧化锌薄膜层
(4)取出衬底,在掺杂Al、Ga或In的氧化锌层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上;
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;
(6)将磁控溅射系统的本底真空抽至1.0×10-3Pa以下,然后加热衬底至400~700℃;使用Ar和O2作为溅射气体,氧气和氩气的分压比为1:4~15,溅射功率为50~200W,进行沉积得到BZT薄膜层,该薄膜层厚度为150~800nm;
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂Al、Ga或In的氧化锌层表面上面利用掩膜版制备金属电极,进行介电调谐和柔性性能测试。制得柔性薄膜变容管。
所述步骤(1)的铜箔的厚度为1微米~1毫米,纯度≥98%,表面粗糙度≤300纳米。
所述步骤(2)是将掺杂Al的氧化锌靶材装入磁控溅射的靶头上;
所述步骤(2)的所述靶材为任意市售或者采用常规的固相烧结法自制而成。
所述步骤(3)或步骤(6)的Ar和O2的纯度均在99.99%以上。
所述步骤(3)或步骤(6)的薄膜层厚度通过调节工艺参数或者沉积时间来控制。
本发明的柔性薄膜变容管的介电调谐率≥50%@100kHz,介电损耗<0.03,在柔性曲率半径为5.0mm时,性能变化率≤10%。其调谐率高、柔性性能良好,且器件稳定性好,为柔性电子通讯设备的开发和应用提供了优良的电子元器件基础。
附图说明
图1是实施例1柔性BZT薄膜的变容调谐性能图。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
(1)将纯度为99%、面粗糙度为100nm、厚度为100um的铜箔表面清洗干净,放入磁控溅射腔体内的样品台上,作为柔性衬底;
(2)将Al掺杂的氧化锌靶材装入磁控溅射的靶头上,靶材和衬底距离60mm。
(3)待步骤(2)完成后,将磁控溅射系统的本底真空度抽至3.0×10-4Pa,使用Ar气体作为溅射气体溅射Al掺杂的氧化锌薄膜层,Ar的纯度为99.99%,射功率为80W,衬底温度为300℃,进行沉积得到200nm厚的Al掺杂氧化锌薄膜层。
(4)取出衬底,在Al掺杂的氧化锌薄膜层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上。
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;该BZT靶材采用固相烧结法制备而成,所用原料BaCO3、TiO2和ZrO2的纯度均在99%以上。
(6)将磁控溅射系统的本底真空抽至3.0×10-4Pa,然后加热衬底至700℃;使用Ar和O2(比例5:1)作为溅射气体,Ar和O2的纯度均为99.99%,为100W,进行沉积得到250纳米厚的BZT薄膜层。
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂氧化锌薄膜层表面上面利用掩膜版制备金属电极,制得柔性薄膜变容管,进行介电调谐和柔性性能测试。
图1揭示了实施例1的柔性BZT薄膜变容管的调谐性能,其调谐率为71%,介电损耗为0.022。在曲率半径为5.0mm时,其调谐率为68%,介电损耗为0.023。
实施例2
(1)将纯度为99%、面粗糙度为100nm、厚度为100um的铜箔表面清洗干净,并放入磁控溅射腔体内的样品台上,作为柔性衬底。
(2)将Al掺杂的氧化锌靶材装入磁控溅射的靶头上,靶材和衬底距离60mm。
(3)待步骤(2)完成后,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,使用Ar气体作为溅射气体溅射Al掺杂的氧化锌薄膜层,Ar的纯度99.99%,溅射功率为80W,衬底温度为500℃,进行沉积得到100nm厚的Al掺杂氧化锌薄膜层。
(4)取出衬底,在Al掺杂的氧化锌薄膜层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上。
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;该BZT靶材采用固相烧结法制备而成,所用原料BaCO3、TiO2和ZrO2的纯度均在99%以上。
(6)将磁控溅射系统的本底真空抽至3.0×10-4Pa,然后加热衬底至700℃;使用Ar和O2(比例4:1)作为溅射气体,Ar和O2的纯度均为99.99%,溅射功率为80W,进行沉积得到200纳米厚的BZT薄膜层。
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂氧化锌薄膜层表面上面利用掩膜版制备金属电极,制得柔性薄膜变容管,进行介电调谐和柔性性能测试。
实施例2的变容管其调谐率为65%,介电损耗为0.027。在曲率半径为5.0mm时,其调谐率为59%,介电损耗为0.029。
实施例3
(1)将纯度为99%、表面粗糙度为100nm、厚度为100um的铜箔表面清洗干净,并放入磁控溅射腔体内的样品台上,作为柔性衬底。
(2)将Al掺杂的氧化锌靶材装入磁控溅射的靶头上,靶材和衬底距离60mm。
(3)待步骤(2)完成后,将磁控溅射系统的本底真空度抽至9.0×10-4Pa,使用Ar气体作为溅射气体溅射Al掺杂的氧化锌薄膜层,Ar的纯度99.99%,溅射功率为80W,衬底温度为100℃进行沉积得到400nm厚的Al掺杂氧化锌薄膜层。
(4)取出衬底,在Al掺杂的氧化锌薄膜层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上。
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;该BZT靶材采用固相烧结法制备而成,所用原料BaCO3、TiO2和ZrO2的纯度均在99%以上。
(6)将磁控溅射系统的本底真空抽至6.0×10-4Pa,然后加热衬底至500℃;使用Ar和O2(比例4:1)作为溅射气体,Ar和O2的纯度均为99.99%,溅射功率为120W,进行沉积得到300纳米厚的BZT薄膜层。
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂氧化锌薄膜层表面上面利用掩膜版制备金属电极,制得柔性薄膜变容管,进行介电调谐和柔性性能测试。
实施例3的变容管其调谐率为55%,介电损耗为0.030。在曲率半径为5.0mm时,其调谐率为52%,介电损耗为0.035。
实施例4
(1)将纯度为99%、表面粗糙度为200nm、厚度为100um的铜箔表面清洗干净,并放入磁控溅射腔体内的样品台上作为柔性衬底。
(2)将Al掺杂的氧化锌靶材装入磁控溅射的靶头上,靶材和衬底距离60mm。
(3)待步骤2完成后,将磁控溅射系统的本底真空度抽至9.0×10-4Pa,使用Ar气体作为溅射气体溅射Al掺杂的氧化锌薄膜层,Ar的纯度99.99%,溅射功率为80W,衬底温度为400℃进行沉积得到300nm厚的Al掺杂氧化锌薄膜层。
(4)取出衬底,在Al掺杂的氧化锌薄膜层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上。
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;该BZT靶材采用固相烧结法制备而成,所用原料BaCO3、TiO2和ZrO2的纯度均在99%以上。
(6)将磁控溅射系统的本底真空抽至6.0×10-4Pa,然后加热衬底至600℃;使用Ar和O2(比例4:1)作为溅射气体,Ar和O2的纯度均为99.99%,溅射功率为60W,进行沉积得到100纳米厚的BZT薄膜层。
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂氧化锌薄膜层表面上面利用掩膜版制备金属电极,制得柔性薄膜变容管,进行介电调谐和柔性性能测试。
实施例4的变容管其调谐率为62%,介电损耗为0.026。在曲率半径为5.0mm时,其调谐率为60%,介电损耗为0.031。

Claims (6)

1.一种柔性薄膜变容管的制备方法,具有如下步骤:
(1)将铜箔表面清洗干净放入磁控溅射腔体内的样品台上,作为柔性衬底;
(2)将掺杂Al、Ga或In的氧化锌靶材装入磁控溅射的靶头上;
靶材与衬底的距离为40~90mm;
(3)待步骤(2)完成后,将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar气体作为溅射气体溅射掺杂Al、Ga或In的氧化锌薄膜层,溅射功率为30~180W,衬底温度为室温到600℃,进行沉积得到50~1000nm厚的掺杂Al、Ga或In的氧化锌薄膜层;
(4)取出衬底,在掺杂Al、Ga或In的氧化锌层表面用掩模版遮盖,留出底电极位置后,再将其放入磁控溅射腔体内的样品台上;
(5)将BZT即BaZr0.2Ti0.8O3靶材装入磁控溅射靶头;
(6)将磁控溅射系统的本底真空抽至1.0×10-3Pa以下,然后加热衬底至400~700℃;使用Ar和O2作为溅射气体,氧气和氩气的分压比为1:4~15,溅射功率为50~200W,进行沉积得到BZT薄膜层,该薄膜层厚度为150~800nm;
(7)步骤(6)结束后,在BZT薄膜层和底电极掺杂Al、Ga或In的氧化锌层表面利用掩膜版制备金属电极,制得柔性薄膜变容管。
2.根据权利要求1所述的一种柔性薄膜变容管的制备方法,其特征在于,所述步骤(1)的铜箔的厚度为1微米~1毫米,纯度≥98%,表面粗糙度≤300纳米。
3.根据权利要求1所述的一种柔性薄膜变容管的制备方法,其特征在于,所述步骤(2)是将掺杂Al的氧化锌靶材装入磁控溅射的靶头上。
4.根据权利要求1所述的一种柔性薄膜变容管的制备方法,其特征在于,所述步骤(2)的靶材为任意市售或者采用常规的固相烧结法自制而成。
5.根据权利要求1所述的一种柔性薄膜变容管的制备方法,其特征在于,所述步骤(3)或步骤(6)的Ar和O2的纯度均在99.99%以上。
6.根据权利要求1所述的一种柔性薄膜变容管的制备方法,其特征在于,所述步骤(3)或步骤(6)的薄膜层厚度通过调节工艺参数或者沉积时间来控制。
CN201810267135.2A 2018-03-28 2018-03-28 一种柔性薄膜变容管的制备方法 Expired - Fee Related CN108447789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810267135.2A CN108447789B (zh) 2018-03-28 2018-03-28 一种柔性薄膜变容管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810267135.2A CN108447789B (zh) 2018-03-28 2018-03-28 一种柔性薄膜变容管的制备方法

Publications (2)

Publication Number Publication Date
CN108447789A CN108447789A (zh) 2018-08-24
CN108447789B true CN108447789B (zh) 2020-06-02

Family

ID=63197316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810267135.2A Expired - Fee Related CN108447789B (zh) 2018-03-28 2018-03-28 一种柔性薄膜变容管的制备方法

Country Status (1)

Country Link
CN (1) CN108447789B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853267B (zh) * 2021-01-08 2023-01-31 南京邮电大学 基于叠片结构的BaZr0.2Ti0.8O3多层薄膜及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952674A (zh) * 2014-04-08 2014-07-30 天津大学 一种氧化锌压控变容管的制备方法
CN103993286A (zh) * 2014-05-30 2014-08-20 天津大学 一种bst/bmn复合薄膜压控变容管的制备方法
CN103993285A (zh) * 2014-05-30 2014-08-20 天津大学 一种柔性bmn薄膜压控变容管的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563450B1 (ko) * 2003-12-29 2006-03-23 전자부품연구원 유전체 세라믹 조성물 및 제조 방법
KR101130675B1 (ko) * 2009-04-24 2012-04-02 익스팬테크주식회사 유전체 재료 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952674A (zh) * 2014-04-08 2014-07-30 天津大学 一种氧化锌压控变容管的制备方法
CN103993286A (zh) * 2014-05-30 2014-08-20 天津大学 一种bst/bmn复合薄膜压控变容管的制备方法
CN103993285A (zh) * 2014-05-30 2014-08-20 天津大学 一种柔性bmn薄膜压控变容管的制备方法

Also Published As

Publication number Publication date
CN108447789A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN103219153B (zh) 一种耐高压高储能密度电容器及其制备方法
CN106747675A (zh) 一种微波介质陶瓷表面金属化的方法
CN103789730B (zh) 一种二次电子发射薄膜的制备方法
CN102543430A (zh) 焦绿石薄膜多层陶瓷电容器及其低温制备方法
CN103993285B (zh) 一种柔性bmn薄膜压控变容管的制备方法
US20120206789A1 (en) Coated article and method for making the same
CN104451580A (zh) RB-SiC基底反射镜表面改性层的制备方法
CN108447789B (zh) 一种柔性薄膜变容管的制备方法
CN102314978A (zh) 高性能薄膜电阻及其制备方法
CN113088911A (zh) 一种金属掺杂二硫化钼超滑薄膜及其制备方法
CN102584217B (zh) 磁控溅射制备BaTiO3-Ni0.5Zn0.5Fe2O4铁电铁磁复合陶瓷薄膜及制备方法
CN101716838B (zh) 一种二元交替掺杂bst薄膜的制备方法
CN106601903A (zh) c轴高度取向的钛酸钡薄膜及其在中低温下的原位制法
CN103993286B (zh) 一种bst/bmn复合薄膜压控变容管的制备方法
CN105296946B (zh) 一种具有a轴高度取向的铌酸铋钙薄膜材料体系及制备方法
CN108531867B (zh) 一种柔性bts/bzt/bts多层薄膜变容管的制备方法
US9595399B2 (en) Solid-state ion capacitor
CN103952674B (zh) 一种氧化锌压控变容管的制备方法
CN104099565B (zh) 一种氧化镍压控薄膜变容管的制备方法
CN102385985A (zh) 金属薄膜电容及其制备方法
CN108411256B (zh) 一种bts/bst/bzt多层结构介电调谐薄膜的制备方法
CN202332579U (zh) 金属薄膜电容
CN108417393A (zh) 一种基于铜箔的柔性bst薄膜变容管及制备方法
CN104532186A (zh) 一种射频磁控溅射制备bts薄膜的方法
CN114807882B (zh) 一种磁控溅射靶材、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200602

Termination date: 20210328

CF01 Termination of patent right due to non-payment of annual fee