WO2013132123A1 - Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas - Google Patents

Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas Download PDF

Info

Publication number
WO2013132123A1
WO2013132123A1 PCT/ES2013/070132 ES2013070132W WO2013132123A1 WO 2013132123 A1 WO2013132123 A1 WO 2013132123A1 ES 2013070132 W ES2013070132 W ES 2013070132W WO 2013132123 A1 WO2013132123 A1 WO 2013132123A1
Authority
WO
WIPO (PCT)
Prior art keywords
photochromic
capsules
coating
micro
nanocapsules
Prior art date
Application number
PCT/ES2013/070132
Other languages
English (en)
French (fr)
Inventor
Jordi HERNANDO CAMPOS
Claudio ROSCINI
Nuria Alexandra VÁZQUEZ MERA
Daniel Ruiz Molina
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to CN201380024399.0A priority Critical patent/CN104394980B/zh
Priority to US14/382,826 priority patent/US9885808B2/en
Priority to KR1020147027447A priority patent/KR20140145140A/ko
Priority to EP13758269.8A priority patent/EP2823883B1/en
Priority to ES13758269.8T priority patent/ES2692949T3/es
Priority to JP2014560415A priority patent/JP6151725B2/ja
Publication of WO2013132123A1 publication Critical patent/WO2013132123A1/es
Priority to IL234381A priority patent/IL234381B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/002Photosensitive materials containing microcapsules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds

Definitions

  • the present invention refers in a first aspect to a coating with photochromic properties, applicable to optical articles and transparent, translucent or reflective glazed surfaces; however, this is not a limitation of the material and the coating described can also be applied on metal surfaces, for example.
  • the coating is constituted by a polymer matrix within which hollow micro- or nanocapsules containing solutions of one or more photochromes are dispersed.
  • the capsule bark isolates and protects the dissolution of the photochromes, so that by incorporating the encapsulated material in any other medium (for example, a rigid matrix), the characteristic photoactivity of the photochromes in solution is maintained.
  • the cortex acts as a compatibilizing agent that favors the dispersion of the photochromic material encapsulated in any polymer matrix.
  • the invention is applicable to any type or combination of photochromic compounds inside any solid matrix without affecting the optical and interconversion properties of the photochromes used.
  • the invention describes a method for obtaining said coating. And in a third aspect, the invention proposes the use, under certain conditions, of said coating on a rigid polymeric, metallic, glass surface, etc.
  • Photochromic compounds are systems that by stimulation with electromagnetic radiation interconvert between two states (A and B) that have different color. Once the irradiation with light is interrupted, the photoinduced state B can be thermally relaxed and return to the initial state A (BA).
  • interconversion BA can be induced by photochemistry by irradiating at a wavelength different from that used for interconversion A B.
  • Interconversion speeds AB (direct process) and BA (reverse process) vary according to the wavelengths used, temperature, intrinsic properties of photochromic compounds (ie structure, interconversion mechanism) and, obviously, from the medium where the molecules of the photochromic material are dissolved / dispersed.
  • photoinduced processes direct or inverse
  • the reverse process is thermally carried out, its speed depends largely on the temperature and the medium.
  • each photochromic compound absorbs in certain areas of the electromagnetic spectrum.
  • the variety of photochromic compounds available in the market makes it possible to cover different regions of that spectrum in the UV-Vis area.
  • the most common photochromes the following types of molecules and the corresponding interconversion mechanisms can be highlighted:
  • Spiroxazines which pass from a closed state to an open state through the rupture / formation of a C-O bond
  • the photochromic system has characteristic optical properties, once it is deposited on a surface in crystalline form or dispersed in a polymer, its properties can change significantly.
  • the absence of solvent directly influences the energy of the absorption bands, altering, in fact, the absorption spectra of the states of the photochromic system (and, therefore, its color).
  • the absence of solvents and the presence of steric hindrance due to polymer chains located around the photochromic molecule or other photochromic molecules in the crystalline phase alter the interconversion kinetics significantly decreasing the speed until, in some cases, losing the reversibility of the process.
  • One of the most exploited methods in recent years is to disperse the photochromic material of interest into nanostructured porous materials such as zeolites, mesoporous silica sheets or mesoporous silica particles (eg DE102006033906, EP1849844).
  • nanometric scale cavities in these materials allows the photochromic molecules to spread evenly inside the pores of the matrix. This gives a certain degree of physical protection to the photochromes when the porous-photochromic matrix system is used as a coating.
  • the pores guarantee photochromic molecules a sufficient free volume around them so that they can maintain the interconversion kinetics observed in solution.
  • Photochromic molecules are physically included in the system by co-precipitation, so that they are distributed homogeneously in the matrix of interest without modifying its properties. 3. Instead of creating a micro / nanoenvironment for the photochromic material that guarantees the maintenance of the photoactivity observed in solution, other studies have focused attention on developing new photochromes with special interconversion mechanisms.
  • an approximation of this type it consists of covalently joining the photochromic molecules of interest to low Tg oligomers, which are spontaneously wound around the photochrome and subsequently dispersed in a rigid polymer matrix.
  • the nanometric environment of the photochromic molecules is flexible enough to allow rapid interconversion between the two states, while the high outer Tg polymer confers the desired mechanical and structural properties to the material (e.g. WO2006024099, US2009093601, US574654, WO2009121148 and WO2009146509).
  • an oligomer / photochromic ratio of about 1/1 is used and in a fairly low proportion with respect to the total mass of the rigid polymer matrix to minimize changes in the mechanical properties of said matrix.
  • the photochromic compound is incorporated into particles with a "core-shell” structure (core-crust), which can be dispersed in a rigid matrix of interest (for example, in a polymer with Tg greater than 50 ° C) .
  • the core of said capsules consists of low Tg polymers (less than 40 ° C, preferably less than 10 ° C), where the photochromic molecules are incorporated as a dopant by means of "swelling" (swelling or expansion). In this nucleus, photochromic molecules have sufficient mobility to preserve the rapid interconversion between their two states.
  • the crust composed of crosslinked polymers of high Tg, maintains the integrity of the nucleus and, consequently, of the incorporated photochrome and protects it from reactive species that can alter its properties.
  • the good mechanical properties of said cortex allow the incorporation of the encapsulated photochromic system into coatings.
  • a problem with this approach is that the behavior of the system is very temperature dependent, and is limited by the Tg of the nucleus of the particles. For example, if said Tg is ⁇ 10 ° C, the system could have different interconversion speeds between its two states depending on the thermal contrast between day and night.
  • a similar approach based on "core-shell" capsules has been developed by "American Optical Corporation” (US4367170).
  • the core is constituted by a resinous organic material in which the photochromic compound is dispersed;
  • the crust it is constituted by a suitable inorganic material.
  • the cortex protects the nucleus from external factors and allows the incorporation of the capsule-photochromic system into rigid polymeric matrices for eventual application as a coating.
  • a problem that can be found in this type of approach is the difficulty of dissolving some types of photochromes in organic resin or in polymers with low Tg.
  • the photochromes can be introduced in solid matrices preserving the interconversion behavior and kinetics they show in solution.
  • the approach used is the formation of "core-shell" capsules, whose core is constituted by a solution of the photochrome of interest in a liquid solvent and is protected from the outside by a solid and impermeable crust that has mechanical and structural resistance .
  • This allows said capsules to be incorporated in rigid polymeric matrices without the optical and interconversion properties of the photochromic content being affected.
  • the capsule bark acts as a protective layer against reactive species that jeopardize the conservation of photochromic activity, contributing to the increase of stability, and therefore, of the durability of the system.
  • the present invention provides a coating with photochromic properties applicable to optical articles and glazed surfaces, formed by the combination of the following three elements:
  • the invention comprises capsules that encapsulate one or more different photochromic systems, such that said photochromic systems absorb at different wavelengths.
  • said capsules can have a micrometer size between 1 and 10,000 microns or be nanometric with a size between 20 and 1000 nanometers.
  • the capsule bark is chosen from an organic, inorganic or hybrid material and in particular it can be made of polyamide or melamine and formaldehyde.
  • the invention proposes a method of obtaining a coating with photochromic properties applicable to optical articles and glazed surfaces, which comprises:
  • the invention provides the use of one or more photochromic compounds in solution and encapsulated as explained above for the formation of coatings suitable for surfaces of optical articles and glazed surfaces, transient staining, etc.
  • micro / nanoencapsulation technology developed allows to prepare photochromic coatings by dispersing the capsules in a polymeric matrix or simply by depositing the capsules on the surface of interest.
  • the technology developed allows to simultaneously improve a) the solubility of the photochrome and b) its compatibility with the polymer matrix with which it is desired to prepare the photochromic coating.
  • the technology developed allows the creation of capsules with a core that can be made up of any solvent (organic and inorganic) or a mixture of solvents.
  • the possibility of choosing the solvent allows to expand the number of photochromic systems that can be encapsulated.
  • photochromic molecules of different types can be dissolved in the appropriate solvent so that their solubility can be increased, adjust the absorption spectrum of the two species (A and
  • capsules of any size can be synthesized in the micro- and nanometric range. This is a very important factor when preparing transparent coatings, since reducing the size of the capsules minimizes the dispersion of visible light and, therefore, the capsules can become imperceptible in the medium where they are dispersed .
  • the capsule bark can be of any nature, including organic, inorganic or hybrid materials. This allows adjusting the size and mechanical and optical properties of the capsules at the required values, as well as having systems that show good compatibility with the polymer matrix in which they will eventually disperse.
  • This methodology allows to synthesize capsules containing photochromic solutions at any scale: from laboratory scale to industrial scale.
  • TEM transmission electron microscopy
  • Fig. 3 shows optical microscopy images of polyamide microcapsules (
  • TEM transmission electron microscopy
  • micro / nanocapsules synthesized with different methodologies and containing various solvents and photochromes.
  • micro- and nanoencapsulation of photochromic compounds dissolved in solvents and their application to the formation of rigid coatings are described in detail below. These examples are only some of those carried out in the development of the present invention and with them it is intended to show that: a) the described technology allows encapsulating the photochromic compounds inside micro- and nanocapsules with rigid crust and containing liquid solvent; b) encapsulated photochromic compounds maintain the optical and interconversion properties they show when they are in solution; c) the optical and interconversion properties of the encapsulated photochromes are maintained when the capsules are dispersed within a rigid polymer matrix or directly deposited on the surface; and d) the process can be considered universal and can be applied to the encapsulation of different types of photochromes and using different solvents, as well as to different types of cortices of the capsules and outer rigid matrices.
  • This first example consists of the encapsulation of solutions of photochromic compounds inside polyamide capsules.
  • the formation of polyamide capsules occurs in situ through an interfacial polycondensation through a methodology that has been derived from the one proposed by H. Misawa et al for the synthesis of waterproof microcapsules. (Laser Manipulation and Ablation of a Single Microcapsule in Water, H. Misawa, N. Kitamura, H. Masuhara, J. Am. Chem. Soc. 1991, 113, 7859-7863).
  • the monomers used in this type of polymerization process are acyl di- or trichlorides (usually dissolved in organic solvents) and polyamines (di- or triamines dissolved in the aqueous phase).
  • the first stage in the capsule synthesis process consists in the formation of an emulsion obtained by vigorously mixing and stirring an organic solution of the acyl chloride of interest with an aqueous phase containing a stabilizer (PVA, PVP, etc.). This leads to the formation of small micro- and nanogotas of the organic phase dispersed in the majority aqueous phase, the size of which depends on the speed of agitation, the nature and concentration of the stabilizer, the type of organic solvent and the initial relationship between the organic and the aqueous phase.
  • PVA stabilizer
  • the amine of interest is added, which quickly induces the initiation of the interfacial polycondensation process, where chemically interwoven polyamide chains are formed around the emulsion drops and trapping the organic phase used inside.
  • the photochrome dissolves in the initial organic solution, it is encapsulated together with the solvent inside the polyamide capsules once the polycondensation reaction is finished (3-24 hours).
  • ferc-phthaloyl chloride and diethylenetriamine and diethylenetriamine, and PVP (polyvinyl pyrrolidone), PVA (hydrolyzed polyvinyl alcohol) or Tween 20 ® have been used as stabilizers.
  • Table 1 Photochromic systems and solvents encapsulated in polyamide capsules and maximum absorption wavelengths of the photoinduced states (B) of the photochromes.
  • the size of the prepared polyamide capsules has been adjusted through the controlled variation of the following experimental conditions: agitation speed during the emulsification process (600 - 1500 rpm), nature of the stabilizer (PVA, PVP, Tween20) and concentration of the stabilizer (PVA: 0.2 - 0.4%, PVP: 0.4 - 25%, Tween 20 ® : 1 - 10%).
  • the structure of the prepared polyamide capsules has also been analyzed by microscopy measurements. As can be seen in Figures 1-3, these measures allow establishing that the capsules obtained consist of an outer shell and an inner cavity, within which it is expected to encapsulate the photochromic solutions. In fact, said capsules have the typical color of the solutions of the photochrome used in each case, which gives a first indication that their encapsulation has been produced satisfactorily. On the other hand, the capsules are presented as a dry solid that does not show a loss of solvent when they are subjected to vacuum, nor do they leave any stain of color (due to the photochrome) when they are deposited on a surface.
  • the measurement of this parameter was carried out by means of transient absorbance spectroscopy, which allows generating the B-state of the photochrome by irradiating the material with a short monochromatic pulse of laser light and then monitoring the kinetics of the interconversion thermal process B-> A through absorbance measures.
  • Said absorbance measurements can be performed both at the maximum absorbance of B (whereby a decay of the signal is observed as B is transformed into A) and at the maximum absorbance of A (whereby a signal increase as B transforms into A). In either case, the analysis of the measured absorbance change time profiles allows to establish the speed of the process B-> A.
  • Table 2 and Figure 4 show the results obtained in the kinetic measurements of the B-> A process for the following photochromic systems: Photorome I, Photorome III or Disperse Red 13.
  • Table 2 Half-life times of the B- ⁇ A process of various encapsulated or dispersed photochromes in polymer matrices at room temperature.
  • the photochromes are dissolved in toluene or chloroform inside the capsules.
  • the second example described in this patent application is the encapsulation of photochromic solutions inside melamine and formaldehyde capsules. Again, these capsules are prepared by interfacial polymerization of the corresponding monomers (melamine and formaldehyde), adapting the methodology for the synthesis of waterproof microcapsules developed by S. J. Pastine et al. (Chemicals on Demand with Phototriggerable Microcapsules, S. J. Pastine, D. Okawa, A. Zettl, J. M. J. Fréchet, J. Am. Chem. Soc. 2009, 131, 13586-13587).
  • the synthesis of the capsules begins with the formation of an emulsion that is created by homogenizing (by sonication or vigorous magnetic stirring) a mixture formed by an aqueous phase containing formaldehyde (37% w / w) and an organic phase (typically, toluene) containing the photochrome of interest and the stabilizer (PVP or SDS).
  • an aqueous melamine solution is added and the pH is adjusted until it reaches an acidic medium that favors the polycondensation reaction and the formation of the chemically crosslinked polymer of melamine-formaldehyde around the micro- and nanogrobes of solvent organic.
  • an aqueous melamine solution is added and the pH is adjusted until it reaches an acidic medium that favors the polycondensation reaction and the formation of the chemically crosslinked polymer of melamine-formaldehyde around the micro- and nanogrobes of solvent organic.
  • the thermal reversal kinetics B-> A of Photorome I photochrome is similar both inside melamine-formaldehyde capsules and inside polyamide capsules (see table 2), indicating the generality of the proposed methodology in this patent in relation to the material with which the capsule bark is prepared; the thermal reversal kinetics B-> A of Photorome I photochrome inside melamine-formaldehyde capsules is independent of the medium in which said capsules are located, either directly deposited on glass or dispersed inside a rigid matrix of PVA;
  • the dispersion of the capsules prepared inside rigid polymeric matrices makes it possible to obtain photochromic coatings with suitable mechanical properties and whose photoactivity reproduces that observed for the photochromic solution, that is, they maintain fast interconversion speeds B-> A.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

Recubrimiento con propiedades fotocromicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas El recubrimiento está formado por la combinación de los siguientes tres elementos: (1) una matriz polimérica, típicamente rígida, depositada sobre la superficie de interés; (2) micro- y/o nanocápsulas huecas y estancas dispersadas en el interior de dicha matriz; y (3) disoluciones de compuestos fotocrómicos (escogidos de un grupo que comprende espiroxazina, azobenzenos, o crómenos) en un disolvente líquido no reactivo (con el compuesto fotocrómico y con la pared de la cápsula) que se hallan encapsuladas en el interior de las micro- o nanocápsulas mencionadas.

Description

Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas
Campo de la invención
La presente invención hace referencia en un primer aspecto a un recubrimiento con propiedades fotocrómicas, aplicable a artículos ópticos y superficies acristaladas transparentes, translúcidas o reflectantes; sin embargo, ésta no es una limitación del material y el recubrimiento que se describe puede aplicarse también sobre superficies metálicas, por ejemplo. El recubrimiento está constituido por una matriz polimérica dentro de la cual se hallan dispersadas unas micro- o nanocápsulas huecas que contienen disoluciones de uno o varios fotocromos. La corteza de la cápsula aisla y protege la disolución de los fotocromos, de tal forma que al incorporar el material encapsulado en cualquier otro medio (por ejemplo, una matriz rígida), se mantiene la fotoactividad característica de los fotocromos en disolución. Además, la corteza actúa como agente compatibilizante que favorece la dispersión del material fotocrómico encapsulado en cualquier matriz polimérica. La invención es aplicable a cualquier tipo o combinación de compuestos fotocrómicos en el interior de cualquier matriz sólida sin que ello afecte a las propiedades ópticas y de interconversión de los fotocromos empleados.
En un segundo aspecto, la invención describe un método para obtención del citado recubrimiento. Y en un tercer aspecto, la invención propone el uso, en unas determinadas condiciones, del citado recubrimiento sobre una superficie rígida polimérica, metálica, de vidrio, etc.
Antecedentes de la invención
Los compuestos fotocrómicos son sistemas que por estimulación con radiación electromagnética interconvierten entre dos estados (A y B) que presentan diferente color. Una vez que la irradiación con luz es interrumpida, el estado fotoinducido B puede relajarse térmicamente y volver al estado inicial A (B A). Además, la interconversión B A puede ser inducida por vía fotoquímica irradiando a una longitud de onda diferente de aquella usada para la interconversión A B. Las velocidades de interconversión A B (proceso directo) y B A (proceso inverso) varían según las longitudes de onda usadas, la temperatura, las propiedades intrínsecas de los compuestos fotocrómicos (i.e. estructura, mecanismo de interconversión) y, obviamente, del medio donde están disueltas/dispersadas las moléculas del material fotocrómico. Generalmente, los procesos fotoinducidos (directo o inverso) son los más rápidos y su velocidad se ve menos afectada por esos parámetros experimentales. En cambio, cuando el proceso inverso se lleva a cabo térmicamente, su velocidad depende en gran medida de la temperatura y del medio.
Los dos estados de cada compuesto fotocrómico absorben en determinadas zonas del espectro electromagnético. La variedad de compuestos fotocrómicos disponible en el mercado permite cubrir diferentes regiones de ese espectro en la zona del UV-Vis. Entre los fotocromos más comunes se pueden destacar los siguientes tipos de moléculas y los correspondientes mecanismos de interconversión:
Espiroxazinas, que pasan de un estado cerrado a un estado abierto a través de la ruptura/formación de un enlace C-O;
Azobencenos, que pasan de un estado con configuración trans del enlace N=N a un estado con configuración cis; - Crómenos, que pasan de un estado cerrado a otro abierto.
Para todos esos sistemas fotocrómicos, la interconversión entre sus dos estados requiere un cambio geométrico y conformacional significativo a nivel molecular. Dichas interconversiones son generalmente rápidas en disolución, donde las moléculas disponen de una gran libertad de movimiento. En cambio, la velocidad de interconversión, y muy especialmente para el proceso inverso térmico B A, se ve muy afectada cuando estos compuestos están dispersados directamente en un entorno sólido. Éste es un problema significativo, ya que para muchas aplicaciones, estos compuestos se usan en estado sólido. Por ejemplo, en muchos casos se utilizan como recubrimientos, por lo que necesitan ser depositados sobre una superficie rígida polimérica, metálica, de vidrio, etc. Es evidente que la deposición directa del material sobre superficie tendría como principal desventaja la de quedar demasiado expuesto a los factores externos. Acciones mecánicas o ataques químicos (disolventes, ácidos-bases, reactivos) provocarían una degradación rápida del recubrimiento. Por otro lado, aunque en disolución el sistema fotocrómico tenga propiedades ópticas características, una vez que está depositado sobre una superficie en forma cristalina o dispersado en un polímero, sus propiedades pueden cambiar significativamente. En primer lugar, la ausencia de disolvente influye directamente en la energía de las bandas de absorción, alterando, de hecho, los espectros de absorción de los estados del sistema fotocrómico (y, por lo tanto, su color). En segundo lugar, la ausencia de disolventes y la presencia de impedimento estérico debido a las cadenas poliméricas situadas alrededor de la molécula fotocrómica o de otras moléculas fotocrómicas en fase cristalina alteran la cinética de interconversión disminuyendo significativamente la velocidad hasta, en algunos casos, perder la reversibilidad del proceso. Esta consecuencia podría resultar muy negativa en aquellos sistemas que requieren una recuperación del estado original del material fotocrómico de manera rápida. Por lo tanto, es importante conseguir un sistema que al mismo tiempo permita: a) proteger químicamente y físicamente el fotocromo del ambiente exterior y b) mantener las propiedades ópticas y de interconversión del mismo una vez depositado sobre una superficie. Para obtener este sistema, es necesario que en la capa sólida las moléculas fotocrómicas se encuentren en un micro/nanoambiente que permita protegerlas y conservar su fotoactividad.
Para conseguir este resultado, se han intentado varias aproximaciones:
1. Uno de los métodos más explotados durante los últimos años consiste en dispersar el material fotocrómico de interés en materiales porosos nanoestructurados como zeolitas, láminas de sílica mesoporosa o partículas de sílica mesoporosas (p. ej. DE102006033906, EP1849844). La presencia de cavidades de escala nanométrica en estos materiales permite que las moléculas de fotocromo se dispersen uniformemente en el interior de los poros de la matriz. Ello confiere un cierto grado de protección física a los fotocromos cuando el sistema matriz porosa-fotocromo es utilizado como recubrimiento. Además, los poros garantizan a las moléculas fotocrómicas un volumen libre suficiente a su alrededor como para que puedan mantener la cinética de interconversión observada en disolución. A pesar de ello, la presencia de poros en contacto con el exterior no evitaría la posibilidad de que disolventes y/u otros agentes químicos entren en su interior y degraden el material fotocrómico. Además, para que las moléculas fotocrómicas entren en los poros e interaccionen con la matriz porosa, los dos componentes deben tener una cierta compatibilidad, lo que limita el uso de esta metodología para algunos tipos de sistemas.
2. Con el objetivo de disponer de micro y/o nanocavidades donde dispersar las moléculas fotocrómicas de manera que éstas dispongan de la movilidad deseada, se ha propuesto la incorporación de los fotocromos en el interior de dendrímeros o polímeros híper-ramificados (p. ej. WO2009072988). A temperaturas mayores de 10 °C y gracias a la elevada flexibilidad de las ramas laterales de estos sistemas poliméricos, las moléculas de fotocromo incorporadas disponen de la movilidad adecuada para mantener en gran medida su fotoactividad. En el caso de los dendrímeros, éstos están constituidos por una corteza sólida y un núcleo flexible con cavidades internas donde se pueden incorporar pequeñas cantidades de disolvente y moléculas fotocrómicas con cierta afinidad por los grupos funcionales presentes en su interior. Por otro lado, los polímeros híper-ramificados son polímeros globulares de carácter anfifílico. Su exterior apolar les permite interaccionar con matrices apolares, y su núcleo polar es portador de aditivos orgánicos polares (en este caso, los fotocromos). Las moléculas fotocrómicas son físicamente incluidas en el sistema mediante co-precipitación, de forma que se distribuyen de manera homogénea en la matriz de interés sin modificar las propiedades de ésta. 3. En lugar de crear un micro/nanoambiente para el material fotocrómico que garantice el mantenimiento de la fotoactividad observada en disolución, en otros estudios se ha centrado la atención en desarrollar nuevos fotocromos con especiales mecanismos de interconversion. En particular, se han diseñado moléculas para las que la conversión entre los dos estados del sistema no requiera grandes cambios conformacionales, de manera que la cinética de este proceso se vea muy poco afectada por su encapsulación en matrices rígidas (A fast molecule that colors only under UV Light, Y. Kishimoto, J. Abe, J. Am. Chem. Soc. 2009, 131, 4227-4229). Estas moléculas, basadas en sistemas bisimidazol, sufren un ruptura homolítica fotoinducida de un enlace C-N para pasar de un estado a otro, dando lugar a la formación de dos radicales libres que rápidamente se recombinan para retornar al sistema inicial independientemente del medio. Sin embargo, sólo un número muy limitado de moléculas presentan estas propiedades, lo que limita su aplicación en base a las necesidades requeridas en cada caso (i.e. cambio de color deseado).
4. En vez de crear un volumen libre donde el fotocromo pueda tener alta movilidad, otra estrategia desarrollada durante los últimos años consiste en introducir las moléculas fotocrómicas en un medio de poca rigidez donde se puedan mover con facilidad. Por ejemplo, esto se puede conseguir mediante la incorporación de los compuestos fotocrómicos en matrices poliméricas con una baja temperatura de transición vitrea (Tg), de manera que tengan un comportamiento de líquido viscoso a temperatura ambiente. Como consecuencia de ello, las moléculas fotocrómicas disponen de suficiente libertad de movimiento como para mantener en gran medida su cinética de interconversion. Sin embargo, dichas matrices poliméricas de baja Tg presentan malas propiedades mecánicas, por lo que no es factible su uso como recubrimiento en la mayoría de aplicaciones. Para superar este inconveniente, se ha propuesto recubrir dichas matrices con otros materiales más resistentes mecánicamente. Por ejemplo, una aproximación de este tipo consiste en unir covalentemente las moléculas fotocrómicas de interés a oligómeros de baja Tg, los cuales se enrollan de manera espontánea alrededor del fotocromo y posteriormente se dispersan en una matriz polimérica rígida. De esta forma, el entorno nanométrico de las moléculas fotocrómicas es lo suficientemente flexible como para permitir su interconversión rápida entre los dos estados, a la vez que el polímero de alta Tg exterior confiere las propiedades mecánicas y estructurales deseadas al material (p. ej. WO2006024099, US2009093601, US574654, WO2009121148 y WO2009146509). En los sistemas citados en la literatura técnica se usa una relación oligómero/fotocromo alrededor de 1/1 y en una proporción bastante baja respecto a la masa total de la matriz polimérica rígida para minimizar los cambios en las propiedades mecánicas de dicha matriz.
5. Una aproximación muy relacionada con la metodología anterior ha sido desarrollada y patentada por "Koninklijke Philips Electronics NV" (WO 03/001555). En este caso, el compuesto fotocromico es incorporado en partículas con estructura "core-shell" (núcleo-corteza), las cuales pueden ser dispersadas en una matriz rígida de interés (por ejemplo, en un polímero con Tg superior a 50 °C). El núcleo de dichas cápsulas está constituido por polímeros de baja Tg (inferior a 40 °C, preferiblemente menor de 10 °C), donde las moléculas fotocrómicas se incorporan como dopante mediante "swelling" (hinchamiento o expansión). En dicho núcleo, las moléculas fotocrómicas disponen de suficiente movilidad como para preservar la interconversión rápida entre sus dos estados. Por otro lado, la corteza, compuesta por polímeros reticulados de Tg elevada, mantiene la integridad del núcleo y, en consecuencia, del fotocromo incorporado y lo protege de especies reactivas que puedan alterar sus propiedades. Además, las buenas propiedades mecánicas de dicha corteza permiten la incorporación del sistema fotocromico encapsulado en recubrimientos. Un problema que presenta esta aproximación es que el comportamiento del sistema es muy dependiente de la temperatura, y viene limitado por la Tg del núcleo de las partículas. Por ejemplo, si dicha Tg es ~ 10 °C, el sistema podría presentar diferentes velocidades de interconversión entre sus dos estados en función de cuál sea el contraste térmico entre el día y la noche. Una aproximación similar basada en cápsulas "core-shell" ha sido desarrollada por "American Optical Corporation" (US4367170). En este caso, el núcleo está constituido por un material orgánico resinoso en el cual se dispersa el compuesto fotocromico; en cuanto a la corteza, ésta se halla constituida por un material inorgánico adecuado. Como en la metodología precedente, la corteza protege al núcleo de los factores externos y permite la incorporación del sistema cápsula-fotocromo en matrices poliméricas rígidas para una eventual aplicación como recubrimiento. En ambos casos, un problema que se puede encontrar en este tipo de aproximación es la dificultad de disolver algunos tipos de fotocromos en resina orgánicas o en polímeros con baja Tg.
En esta invención se describe una nueva metodología mediante la cual se pueden introducir los fotocromos en matrices sólidas preservando el comportamiento y la cinética de interconversión que muestran en disolución. La aproximación que se usa consiste en la formación de cápsulas "core-shell", cuyo núcleo está constituido por una disolución del fotocromo de interés en un disolvente líquido y se halla protegido del exterior por una corteza sólida e impermeable que tenga resistencia mecánica y estructural. Ello permite que dichas cápsulas puedan ser incorporadas en matrices poliméricas rígidas sin que las propiedades ópticas y de interconversión del fotocromo contenido se hallen afectadas. Además, la corteza de las cápsulas actúa como capa protectora ante especies reactivas que pongan en riesgo la conservación de la actividad fotocrómica, contribuyendo al aumento de la estabilidad, y por lo tanto, de la durabilidad del sistema.
Los presentes inventores no han encontrado ejemplos precedentes en línea con esta aproximación. Por otro lado, aunque están descritos ejemplos de encapsulacion de pigmentos en cápsulas con disolventes, en ningún caso las especies encapsuladas tenían actividad fotocrómica (p. ej. US4517141 y US4428978). Además, cuando se han encontrado patentes que describen la encapsulacion de sistemas fotocromicos no se especifica la familia de cápsulas y únicamente se describen aplicaciones muy específicas para tintas (p. ej. US5807625 y US5017225). Por último, la tecnología reivindicada es más universal y más adaptable a las distintas aplicaciones respecto a las tecnologías existentes.
Breve descripción de la invención
La presente invención aporta un recubrimiento con propiedades fotocrómicas aplicable a artículos ópticos y superficies acristaladas, formado por la combinación de los siguientes tres elementos:
(1) una matriz polimérica (ventajosamente rígida) depositada sobre la superficie de interés;
(2) micro- y/o nanocápsulas huecas y estancas dispersadas en el interior de dicha matriz; y
(3) disoluciones de compuestos fotocromicos (escogidos de un grupo que comprende espiroxazina, azobencenos, o crómenos) en un disolvente líquido no reactivo (con el compuesto fotocrómico y con la pared de la cápsula) que se hallan encapsuladas en el interior de las micro- o nanocápsulas mencionadas.
La invención comprende cápsulas que encapsulan uno o más sistemas fotocromicos distintos, de manera que dichos sistemas fotocromicos absorben a diferentes longitudes de ondas. Asimismo dichas cápsulas pueden tener un tamaño micrométrico comprendido entre 1 y 10000 micrómetros o ser nanométricas con un tamaño comprendido entre 20 y 1000 nanómetros.
La corteza de la cápsula se escoge entre un material orgánico, inorgánico o híbrido y en particular puede ser de poliamida o de melamina y formaldehído.
Tal como se ha indicado, en un segundo aspecto la invención propone un método de obtención de un recubrimiento con propiedades fotocromicas aplicable a artículos ópticos y superficies acristaladas, el cual comprende:
la encapsulación de unos compuestos fotocromicos en unas micro- y/o nanocápsulas huecas y estancas, en disolución en un disolvente líquido no reactivo con el compuesto fotocrómico y con la pared o corteza de la cápsula de naturaleza polimérica,
la dispersión de dichas cápsulas en una matriz polimérica depositada sobre una superficie de interés a recubrir.
Por último la invención aporta el uso de uno o más compuestos fotocromicos en disolución y encapsulados según lo explicado anteriormente para la formación de recubrimientos aptos para superficies de artículos ópticos y superficies acristaladas, tinción transitoria, etc.
Los aspectos más innovadores que se pueden destacar sobre la propuesta de esta invención se pueden resumir en: 1. Las propiedades ópticas y de interconversión del fotocromo encapsulado en la manera descrita y dispersado en una matriz polimérica sólida se mantienen igual a las observadas en disolución.
2. La tecnología de micro/nanoencápsulacion desarrollada permite preparar recubrimientos fotocromicos dispersando las cápsulas en una matriz polimérica o bien simplemente depositando las cápsulas sobre la superficie de interés.
3. En un eventual recubrimiento fotocrómico, no se necesitan capas protectoras adicionales, dado que la propia corteza de la cápsula actúa como agente protector. De esta manera se aumenta la durabilidad de la actividad fotocrómica y se puede reducir el coste del recubrimiento fotocrómico.
4. La tecnología desarrollada permite mejorar simultáneamente a) la solubilidad del fotocromo y b) su compatibilidad con la matriz polimérica con la cual se desea preparar el recubrimiento fotocrómico.
En relación a la universalidad de la metodología propuesta y a las ventajas que se derivan de su uso, se puede destacar lo siguiente:
5. Se han desarrollado diferentes metodologías y utilizado diversos compuestos químicos para la formación de las cápsulas y, en todos los casos, los fotocromos encapsulados mantienen las propiedades observadas en disolución. Además, en todas esas metodologías, la incorporación del fotocromo en el núcleo de la cápsula es relativamente simple en cuanto es directa y no requiere procesos intermedios de expansión o "swelling". De hecho, en un único paso se forma la corteza de las cápsulas y se atrapa en su interior la disolución de los fotocromos.
6. Se ha observado que la tecnología desarrollada permite, una vez obtenidas las cápsulas que contienen las disoluciones fotocrómicas, la dispersión de dichas cápsulas en cualquier matriz polimérica (rígida o no) que sea orgánica, inorgánica o híbrida, dando la posibilidad de poder usar este tipo de material como recubrimiento para cualquier tipo de aplicación.
7. La tecnología desarrollada permite de crear cápsulas con un núcleo que puede estar constituido de cualquier disolvente (orgánico e inorgánico) o de mezcla de disolventes. La posibilidad de poder elegir el disolvente permite ampliar el número de sistemas fotocrómicos susceptibles de ser encapsulados. Así, moléculas fotocrómicas de diferentes tipos pueden ser disueltas en el disolvente adecuado de manera tal que se pueda aumentar su solubilidad, ajustar el espectro de absorción de las dos especies (A y
B) o, en caso de que la aplicación lo requiera, usar el material en diferentes rangos de temperatura.
8. Con la tecnología desarrollada se pueden sintetizar cápsulas de cualquier tamaño en el rango micro- y nanométrico. Este es un factor muy importante a la hora de preparar recubrimientos transparentes, ya que reduciendo el tamaño de las cápsulas se minimiza la dispersión de la luz visible y, por lo tanto, las cápsulas se pueden llegar a hacer imperceptibles en el medio donde se dispersan.
9. Se ha demostrado que la corteza de las cápsulas puede ser de cualquier naturaleza, incluyendo materiales de tipo orgánico, inorgánico o híbrido. Ello permite ajustar el tamaño y las propiedades mecánicas y ópticas de las cápsulas a los valores requeridos, así como disponer de sistemas que muestren una buena compatibilidad con la matriz polimérica en la cual se dispersarán eventualmente.
10. Se ha demostrado que puede llevarse a cabo la encapsulación de cualquier tipo de fotocromo. Por lo tanto, pueden encapsularse fotocromos que absorben en cualquier región (longitud de onda) del espectro UV-Vis. Además, la misma tecnología puede ser usada para la encapsulación de dos o más sistemas fotocrómicos que absorben a diferentes longitudes de ondas, aumentando las combinaciones de colores y entonces el número de aplicaciones del recubrimiento fotocrómico desarrollado.
11. La encapsulación de los fotocromos en disolución permite mantener sus propiedades ópticas y de interconversión, independientemente del mecanismo de interconversión implicado en su actividad fotocrómica.
12. Esta metodología permite sintetizar cápsulas que contengan disoluciones fotocrómicas a cualquier escala: desde escala de laboratorio a escala industrial.
Breve descripción de los dibujos
La Fig. 1 muestra imágenes de microscopía electrónica de transmisión (TEM) de cápsulas de poliamida de dimensiones nanométricas (diámetros entre 20-1000 nm) preparadas utilizando (a, b) PVP (25% w/w) o (c, d) Tween 20® (1% w/w) como estabilizante (barra= (a) 20 nm, (b) 200 nm, (c) 500 nm, (d) 100 nm).
La Fig. 2 muestra imágenes de microscopía óptica de microcápsulas de poliamidas (diámetros entre 1-100 μιη) preparadas utilizando PVP (20% w/w) como estabilizante (barra= (a) 50 μιη, (b) 50 μιτι, (c) 100 μη% (d) 200 μη% (e) 50 μη% (f) 50 μηη).
La Fig. 3 muestra imágenes de microscopía óptica de microcápsulas de poliamidas (diámetros entre 100-1000 μηη) preparadas utilizando (a, b) PVA (0.4% w/w) o (c, d) PVP (5% w/w) como estabilizante (barra= (a) 200 μη% (b) 200 μη% (c) 200 μη% (d) 200 μη% (e) 50 μη% (f) 200 μηη). La Fig. 4 muestra las medidas de espectroscopia de absorbancia transitoria realizadas para caracterizar la cinética del proceso de interconversión B->A de diversos fotocromos (Photorome I, Photorome III y Disperse Red 13) en: (a) matrices poliméricas rígidas de PVA y PVAc en las que estos fotocromos se hallan dispersados directamente; (b) cápsulas de poliamida en las que estos fotocromos se hallan encapsulados en disolución.
La Fig. 5 muestra imágenes de microscopía electrónica de transmisión (TEM) de cápsulas de melamina-formaldehído de dimensiones nanométricas (diámetros entre 20-1000 nm) preparadas utilizando SDS (1% w/w) como estabilizante (barra= (a) 200 nm, (b) 200 nm, (c) 200 nm, (d) 200 nm, (e) 100 nm, (f) 200 nm).
La Fig. 6 muestra imágenes de (a, b) microscopía TEM y (c, d) microscopía óptica de microcápsulas de melamina-formaldehído (diámetros entre 1-100 μιη) preparadas utilizando (a, b) PVP (25% w/w), (c) PVP (8% w/w) o (d) PVP (20% w/w) como estabilizante (barra= (a) 2 μη% (b) 5 μιτι, (c) 4 μη% (d) 100 μηη).
La Fig. 7 muestra imágenes de microscopía óptica de microcápsulas de melamina-formaldehído (diámetros entre 100-1000 μιη) preparadas utilizando (a) PVP (2% w/w) como estabilizante o (b, c) sin estabilizante (barra= (a) 100 μιη, (b) 100 μιη, (c) 200 μιη).
Breve descripción de unos ejemplos de ejecución de la invención
Ejemplos de micro/nanocápsulas sintetizadas con diferentes metodologías y que contienen diversos disolventes y fotocromos.
A continuación se describen en detalle algunos ejemplos de micro- y nanoencapsulación de compuestos fotocrómicos disueltos en disolventes y su aplicación a la formación de recubrimientos rígidos, tal y como se propone en esta invención. Estos ejemplos son solo algunos de los realizados en el desarrollo de la presente invención y con ellos se pretende mostrar que: a) la tecnología descrita permite encapsular los compuestos fotocrómicos en el interior de micro- y nanocápsulas con corteza rígida y que contienen disolvente líquido; b) los compuestos fotocrómicos encapsulados mantienen las propiedades ópticas y de interconversión que muestran cuando se hallan en disolución; c) las propiedades ópticas y de interconversión de los fotocromos encapsulados se mantienen cuando las cápsulas se dispersan en el interior de una matriz polimérica rígida o directamente se depositan sobre superficie; y d) el proceso puede considerarse universal y puede ser aplicado a la encapsulación de diferentes tipos de fotocromos y empleando diferentes disolventes, así como a diferentes tipos de cortezas de las cápsulas y matrices rígidas exteriores. Ejemplo 1
Este primer ejemplo consiste en la encapsulación de disoluciones de compuestos fotocrómicos en el interior de cápsulas de poliamida. La formación de las cápsulas de poliamida ocurre in situ a través de una policondensación interfacial mediante una metodología que se ha derivado de la propuesta por H. Misawa et al para la síntesis de microcápsulas impermeables (Láser Manipulation and Ablation of a Single Microcapsule in Water, H. Misawa, N. Kitamura, H. Masuhara, J. Am. Chem. Soc. 1991, 113, 7859-7863). Los monómeros que se usan en este tipo de proceso de polimerización son di- o tricloruros de acilo (disueltos generalmente en disolventes orgánicos) y poliaminas (di- o triaminas disueltas en fase acuosa). La primera etapa en el proceso de síntesis de las cápsulas consiste en la formación de una emulsión obtenida al mezclar y agitar vigorosamente una disolución orgánica del cloruro de acilo de interés con una fase acuosa que contiene un estabilizante (PVA, PVP, etc.). Ello conduce a la formación de pequeñas micro- y nanogotas de la fase orgánica dispersas en la fase acuosa mayoritaria, cuyo tamaño depende de la velocidad de agitación, de la naturaleza y concentración del estabilizante, del tipo de disolvente orgánico y de la relación inicial entre la fase orgánica y la acuosa. A continuación, se añade la amina de interés, lo que induce rápidamente el inicio del proceso de policondensación interfacial, donde cadenas de poliamida químicamente entrelazadas se van formando alrededor de las gotas de la emulsión y atrapando en su interior la fase orgánica empleada. Ello da lugar a la formación de cápsulas con disolvente orgánico en su interior cuyo tamaño micro- y nanométrico viene determinado por el de las gotas de la emulsión inicial. Además, si se disuelve el fotocromo en la disolución orgánica inicial, éste queda encapsulado junto con el disolvente en el interior de las cápsulas de poliamida una vez acabada la reacción de policondensación (3-24 horas). En el caso concreto del ejemplo que aquí se describe, se han usado como monómeros el cloruro de ferc-ftaloílo y la dietilentriamina, y PVP (polivinil pirrolidona), PVA (polivinil alcohol hidrolizado) o Tween 20® como estabilizantes.
Por otro lado, y para demostrar que el proceso de encapsulación desarrollado puede ser aplicado de manera general a diversos tipos de fotocromos que absorben en diferentes regiones del espectro UV-Vis ( max) y que interconvierten a través de distintos mecanismos, se ha llevado a cabo la encapsulación de varios tipos de fotocromos comerciales en cápsulas de poliamida. Cabe destacar que en función del tipo de fotocromo encapsulado se ha variado el disolvente que constituye el núcleo de la cápsula, demostrando así la universalidad del método desarrollado en lo que se refiere al disolvente encapsulado, que en este caso debe ser no miscible con agua (tabla 1).
Nombre Mecanismo
Disolventes hmax (nm) comercial interconversión
Photorome 1 cerrado-abierto Tolueno o CHCI3 605
Photorome III cerrado-abierto Tolueno 590 Disperse Red 13 trans-cis Tolueno 490
Tabla 1: Sistemas fotocrómicos y disolventes encapsulados en cápsulas de poliamida y longitudes de onda máxima de absorción de los estados fotoinducidos (B) de los fotocromos.
El tamaño de las cápsulas de poliamida preparadas ha sido ajustado a través de la variación controlada de las siguientes condiciones experimentales: velocidad de agitación durante el proceso de emulsificación (600 - 1500 rpm), naturaleza del estabilizante (PVA, PVP, Tween20) y concentración del estabilizante (PVA: 0.2 - 0.4%, PVP: 0.4 - 25%, Tween 20®: 1 - 10%). Variando estos parámetros se ha conseguido preparar tres familias de cápsulas de poliamida de tamaños diferentes, tal y como se ha determinado mediante medidas de microscopía electrónica y óptica: - nanocápsulas, con diámetro entre 20 - 1000 nm (figura 1), microcápsulas pequeñas, con diámetro entre 1 - 100 μιη (figura 2), microcápsulas grandes, con diámetro entre 100 - 1000 μιη (figura 3)
La estructura de las cápsulas de poliamida preparadas también ha sido analizada mediante medidas de microscopía. Tal y como se observa en las figuras 1-3, estas medidas permiten establecer que las cápsulas obtenidas constan de una corteza exterior y de una cavidad interior, dentro de la cual se espera haber encapsulado las disoluciones de fotocromos. De hecho, dichas cápsulas presentan el color típico de las disoluciones del fotocromo usado en cada caso, lo que da una primera indicación de que su encapsulacion se ha producido de manera satisfactoria. Por otro lado, las cápsulas se presentan como un sólido seco que no muestra pérdida de disolvente cuando son sometidas a vacío, ni dejan ninguna mancha de color (debida al fotocromo) cuando son depositadas sobre una superficie. Sin embargo, cuando se aplicó un esfuerzo de compresión sobre las cápsulas de ese tipo de dimensiones mayores (100 - 1000 μιη), se pudo observar en tiempo real mediante microscopía óptica la rotura de las cápsulas y la liberación de su contenido interno en forma de disolución del color esperado para el fotocromo. Ello demuestra la encapsulacion del compuesto fotocrómico en forma de disolución en el interior de las cápsulas de poliamida.
A su vez, medidas de densidades relativas han confirmado la presencia de los distintos disolventes en las cápsulas preparadas. Por ejemplo, las cápsulas que contienen tolueno en su interior (d = 0.865 g/mL) quedan suspendidas en la parte superior del sistema al ser dispersadas en fase acuosa (d = 1 g/mL), mientras que se desplazan a la parte inferior del recipiente al ser dispersadas en acetona (d = 0.791 g/mL). A su vez, las cápsulas que contienen cloroformo (d = 1.483 g/mL) se depositan en el fondo del recipiente tanto en fase acuosa como en acetona.
Finalmente, también se ha demostrado la presencia de disolvente en las cápsulas preparadas mediante medidas de resonancia magnética nuclear de protón. De hecho, dichas medidas han permitido comprobar que el disolvente (tolueno o cloroformo) se mantiene en el interior de las cápsulas durante semanas tanto si éstas se conservan al aire o en dispersión acuosa. Ello confirma la impermeabilidad de la corteza de las cápsulas de poliamida y la estabilidad del sistema preparado con el tiempo.
Una vez caracterizadas las propiedades de las cápsulas (tamaño, impermeabilidad, disolvente contenido, etc.), se ha estudiado su comportamiento óptico con el objetivo de establecer si los compuestos fotocromicos encapsulados presentan la misma fotoactividad que en disolución. Para ello se ha comparado el comportamiento fotocrómico de las cápsulas con el de disoluciones del mismo material y el de capas polímericas rígidas (de poliestireno (PS), polivinil acetato (PVAc) y polivinil alcohol (PVA)) en las que se halla disperso el compuesto fotocrómico. Dicho estudio se ha centrado en la determinación de la velocidad de interconversión térmica B->A del sistema, ya que éste es el parámetro experimental que más sensible es a las propiedades del entorno del fotocromo. La medida de ese parámetro se ha realizado mediante espectroscopia de absorbancia transitoria, que permite generar el estado B del fotocromo por irradiación del material con un pulso corto monocromático de luz láser y, a continuación, monitorizar la cinética del proceso térmico de interconversión B->A mediante medidas de absorbancia. Dichas medidas de absorbancia se pueden realizar tanto en el máximo de absorbancia de B (por lo que se observa un decaimiento de la señal a medida que B se transforma en A) como en el máximo de absorbancia de A (por lo que se observa un aumento de la señal a medida que B se transforma en A). En cualquiera de los dos casos, el análisis de los perfiles temporales de cambio de absorbancia medidos permite establecer la velocidad del proceso B->A. En este caso, nuestra atención se ha centrado especialmente en la determinación del tiempo de semivida del proceso (ti/2), que consiste en el tiempo necesario para que la concentración inicial de B decaiga en un 50%. Dicho parámetro y el perfil cinético del proceso B->A han sido determinados para las siguientes muestras a temperatura ambiente:
- capas poliméricas de PS, PVAc y PVA que contienen los fotocromos de interés en su interior y que han sido depositadas por "drop-casting" sobre una superficie de vidrio, cápsulas de poliamida de diversos tamaños que contienen los fotocromos de interés y que han sido depositadas directamente por "drop-casting" sobre una superficie de vidrio.
En la tabla 2 y en la figura 4 se muestran los resultados obtenidos en las medidas cinéticas del proceso B->A para los siguientes sistemas fotocromicos: Photorome I, Photorome III o Disperse Red 13.
Figure imgf000016_0001
Tabla 2: Tiempos de semivida del proceso B-^A de diversos fotocromos encapsulados o dispersos en matrices poliméricas a temperatura ambiente. En el caso de las muestras encapsuladas, los fotocromos se hallan disueltos en tolueno o cloroformo en el interior de las cápsulas.
De las gráficas representadas en la figura 4 y de los valores de ti/2 mostrados en la tabla 2 se puede concluir que, independientemente del compuesto fotocrómico elegido, su cinética de reversión térmica B->A es mucho más rápida en el interior de las cápsulas que cuando el fotocromo se dispersa directamente en una matriz polimérica rígida. De hecho, el comportamiento medido para los sistemas encapsulados es muy parecido al descrito en la bibliografía para esos mismos fotocromos en disolución, p. ej. ti/2= 1.4 s para Photorome I en disoluciones de etanol a temperatura ambiente (Oxidation of photochromic spirooxazines by coinage metal cations. Part I. Reaction with AgN03 : formation and characterisation of silver particles, P. Uznanski, C. Amiens, B. Donnadieu, Y. Coppel, B. Chaudret, New J. Chem. 2001, 25, 1486-1494). Además, dicho comportamiento es prácticamente independiente del disolvente introducido en el interior de las cápsulas y del tamaño de dichas cápsulas dentro del rango 20 nm - 1000 μιη. Ello demuestra una de las principales aportaciones de esta invención: las propiedades ópticas y de interconversión de cualquier sistema fotocrómico pueden preservarse si dicho sistema se encapsula en forma de disolución dentro de micro- y nanocápsulas. Ejemplo 2:
El segundo ejemplo que se describe en esta solicitud de patente consiste en la encapsulación de disoluciones fotocrómicas en el interior de cápsulas de melamina y formaldehído. De nuevo, estas cápsulas se preparan mediante polimerización interfacial de los correspondientes monómeros (melamina y formaldehído), adaptando la metodología para la síntesis de microcápsulas impermeables desarrollada por S. J. Pastine et al. (Chemicals on Demand with Phototriggerable Microcapsules, S. J. Pastine, D. Okawa, A. Zettl, J. M. J. Fréchet, J. Am. Chem. Soc. 2009, 131, 13586-13587). Como en el ejemplo precedente, la síntesis de las cápsulas se inicia con la formación de una emulsión que se crea al homogeneizar (mediante sonicación o agitación magnética vigorosa) una mezcla formada por una fase acuosa que contiene formaldehído (37% w/w) y una fase orgánica (típicamente, tolueno) que contiene el fotocromo de interés y el estabilizante (PVP o SDS). Una vez preparada la emulsión, se añade una disolución acuosa de melamina y se ajusta el pH hasta llegar a un medio ácido que favorezca la reacción de policondensación y la formación del polímero entrecruzado químicamente de melamina-formaldehído alrededor de las micro- y nanogotas de disolvente orgánico. De esta forma se obtienen micro- y nanocápsulas huecas con disolvente en su interior al cabo de unas 2 horas, las cuales contendrán compuestos fotocrómicos si éstos se han disuelto inicialmente en la fase orgánica.
Variando los parámetros experimentales, se han podido preparar tres familias de cápsulas con tamaños diferentes que contienen en su interior disoluciones fotocrómicas, tal y como se ha determinado mediante medidas de microscopía electrónica y óptica: nanocápsulas, con diámetro entre 20 - 1000 nm (figura 5), microcápsulas pequeñas, con diámetro entre 1 - : 100 μιη (figura 6), microcápsulas grandes, con diámetro entre 100 - 1000 μιη (figura 7). En dichas cápsulas se han introducido disoluciones de un único fotocromo (Photorome I, ver tabla 1), dado que en el ejemplo anterior ya se ha demostrado la universalidad de la metodología que aquí se propone para cualquier tipo de fotocromo, independientemente de sus propiedades ópticas y mecanismo de interconversión entre sus dos estados. Las propiedades de las cápsulas resultantes han sido estudiadas de forma análoga a lo realizado en dicho ejemplo previo. Así, por un lado, medidas de microscopía electrónica y óptica han permitido establecer la estructura de tipo "core-shell" de esas cápsulas, que consisten en una corteza de melamina-formaldehído y una cavidad interna hueca (ver figuras 5-7). Por otro lado, la presencia de disolvente en el interior de las cápsulas se ha demostrado mediante compresión y rotura de las cápsulas de mayor tamaño, medidas de densidad relativa y medidas de resonancia magnética nuclear de protón.
La cinética de reversión térmica B->A de las disoluciones fotocrómicas de Photorome I en el interior de cápsulas de melamina-formaldehído ha sido caracterizada mediante medidas de espectroscopia de absorbancia transitoria. En este caso, nuestra atención no se ha centrado en investigar la dependencia del comportamiento fotocrómico con el tamaño de las cápsulas, ya que este aspecto ha sido estudiado ampliamente en el ejemplo anterior. En cambio, se pretende comparar el comportamiento de los recubrimientos fotocrómicos preparados en base a las cápsulas con aquellos en que los fotocromos están directamente dispersados sin encapsular. Para ello se han realizado medidas de tres sistemas diferentes: - capas poliméricas de PVA que contienen el fotocromo Photorome I dispersado directamente en su interior y que han sido depositadas por "drop-casting" sobre una superficie de vidrio,
cápsulas de melamina-formaldehído de tamaño 1-1000 μιη que contienen disoluciones de Photorome I en tolueno y que han sido depositadas directamente por "drop-casting" sobre una superficie de vidrio,
capas poliméricas de PVA que contienen cápsulas de melamina-formaldehído de tamaño 1-1000 μιη en cuyo interior se encuentran disoluciones de Photorome I en tolueno y que han sido depositadas directamente por "drop-casting" sobre una superficie de vidrio. En la tabla 3 se muestran los tiempos de semivida medidos para esos tres sistemas. De esos datos se pueden inferir las siguientes conclusiones: la cinética de reversión térmica B->A del fotocromo Photorome I es mucho más rápida en el interior de las cápsulas de melamina-formaldehído que cuando se halla directamente dispersado en un entorno rígido como la capa polimérica de PVA, lo cual demuestra lo ventajoso de la encapsulación;
la cinética de reversión térmica B->A del fotocromo Photorome I es similar tanto en el interior de cápsulas de melamina-formaldehído como en el interior de cápsulas de poliamida (ver tabla 2), lo que indica la generalidad de la metodología que se propone en esta patente en relación al material con el que se prepara la corteza de las cápsulas; la cinética de reversión térmica B->A del fotocromo Photorome I en el interior de cápsulas de melamina-formaldehído es independiente del medio en el que se encuentran dichas cápsulas, ya sea directamente depositadas sobre vidrio o dispersas en el interior de una matriz rígida de PVA;
la dispersión de las cápsulas preparadas en el interior de matrices poliméricas rígidas permite obtener recubrimientos fotocromicos con propiedades mecánicas adecuadas y cuya fotoactividad reproduce la observada para el fotocromo en disolución, esto es, que mantienen rápidas velocidades de interconversión B->A.
Figure imgf000019_0001
Tabla 3: Tiempo de semivida del proceso B-^A del fotocromo Photorome I en diversos medios a temperatura ambiente.
En conclusión, se puede afirmar que se han desarrollado diferentes familias de micro- y nanocápsulas que contienen en su interior distintos tipos de compuestos fotocromicos y disolventes. Tal y como pretende esta invención, estudios posteriores de espectroscopia de absorbancia transitoria han demostrado que los fotocromos encapsulados interconvierten con una cinética similar a la observada para el mismo fotocromo en disolución, confirmando que la encapsulación de estos compuestos permite preservar sus propiedades sin que éstas se vean afectadas por la presencia de una matriz rígida exterior en la que se dispersan las cápsulas de fotocromo. Este comportamiento se ha observado para diversos tipos de cápsulas (tamaño, material de la corteza), fotocromos, disolventes y matrices rígidas, lo que demuestra la universalidad de la metodología que se propone en esta invención. Ello permite la preparación de todo tipo de recubrimientos fotocromicos basados en la encapsulacion de disoluciones de sistemas de interés y su posterior dispersión en matrices poliméricas rígidas.

Claims

REIVINDICACIONES
1. - Recubrimiento con propiedades fotocromicas aplicable a artículos ópticos y superficies acristaladas, estando formado dicho recubrimiento por una matriz polimérica depositada sobre una superficie de interés, en la que están incorporados unos compuestos fotocromicos, caracterizado porque dichos compuestos fotocromicos están encapsulados en el interior de unas micro y/o nanocápsulas huecas y estancas, disueltos en un disolvente líquido no reactivo con la pared o corteza de la cápsula, estando dichas micro y/o nanocápsulas dispersadas en el interior de dicha matriz polimérica.
2. - Recubrimiento, según la reivindicación 1, caracterizado porque los compuestos fotocromicos están escogidos de un grupo que comprende espiroxazina, azobencenos, o crómenos.
3.- Recubrimiento, según la reivindicación 1, caracterizado porque comprende cápsulas que encapsulan uno o más sistemas fotocromicos distintos, de manera que dichos sistemas absorben a diferentes longitudes de ondas.
4. - Recubrimiento, según la reivindicación 1, caracterizado porque dicha corteza se escoge entre un material orgánico, inorgánico o híbrido.
5. - Recubrimiento según la reivindicación 4, caracterizado porque dicha corteza es de poliamida o de melamina y formaldehido.
6. Recubrimiento, según la reivindicación 1, caracterizado porque la matriz polimérica dentro de la cual se hallan dispersadas las cápsulas con disoluciones fotocromicas puede ser orgánica, inorgánica o híbrida y de un grupo que comprende polivinil alcohol, polivinil acetato o poliestireno.
7. - Recubrimiento según la reivindicación 1 caracterizado porque las cápsulas tienen un tamaño micrométrico comprendido entre 1 y 10000 micrómetros.
8. - Recubrimiento según la reivindicación 1 caracterizado porque las cápsulas tienen un tamaño nanométrico comprendido entre 20 y 1000 nanómetros.
HOJA DE REEMPLAZO (Regla 26)
9. - Método de obtención de un recubrimiento con propiedades fotocrómicas aplicable a artículos ópticos y superficies acristaladas, caracterizado porque comprende la encapsulacion de unos compuestos fotocrómicos en unas micro- y/o nanocápsulas huecas y estancas, en disolución en un disolvente líquido no reactivo con el compuesto fotocrómico y con la pared o corteza de la cápsula, procediendo a la dispersión de dichas cápsulas en una matriz polimérica depositada sobre una superficie de interés.
10. - Uso de uno o más compuestos fotocrómicos según reivindicaciones de la 1 a la 8, disueltos en un disolvente líquido no reactivo y encapsulados en el interior de unas micro y/o nanocápsulas huecas y estancas y posteriormente dispersados en el interior de una matriz polimérica, para recubrir superficies de artículos ópticos, superficies acristaladas, en particular para tinción transitoria.
11. - Uso, según la reivindicación 10, caracterizado porque dichas micro cápsulas tienen un tamaño entre 1 y 10000 micrómetros.
12. - Uso según la reivindicación 10, caracterizado porque dichas nano cápsulas tienen un tamaño entre 20 y 1000 nanómetros.
13.- Uso según la reivindicación 10, caracterizado porque dicho artículo óptico es una lente.
14. - Uso según la reivindicación 10, caracterizado porque dicha superficie acristalada es transparente o translúcida.
15. - Uso según la reivindicación 10, caracterizado porque dicha superficie acristalada es reflectante y apta para ser utilizada como espejo.
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2013/070132 2012-03-08 2013-03-05 Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas WO2013132123A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380024399.0A CN104394980B (zh) 2012-03-08 2013-03-05 具有光致变色性质的涂层、产生所述涂层的方法及其适用于光学制品和光滑表面的用途
US14/382,826 US9885808B2 (en) 2012-03-08 2013-03-05 Coating with photochromic properties, method for producing said coating and use thereof applicable to optical articles and glazed surfaces
KR1020147027447A KR20140145140A (ko) 2012-03-08 2013-03-05 광학 용품 및 글레이징 처리한 표면에 도포할 수 있는 포토크로믹성을 갖는 코팅, 이 코팅의 제조 방법 및 그것의 용도
EP13758269.8A EP2823883B1 (en) 2012-03-08 2013-03-05 Coating with photochromic properties, method for producing said coating and use thereof applicable to optical articles and glazed surfaces
ES13758269.8T ES2692949T3 (es) 2012-03-08 2013-03-05 Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas
JP2014560415A JP6151725B2 (ja) 2012-03-08 2013-03-05 フォトクロミック特性を有するコーティング、そのコーティングの製造方法、ならびに光学物品および光沢表面に適用可能なそれらの使用
IL234381A IL234381B (en) 2012-03-08 2014-08-31 A coating with photochromic properties, a method for the production of the coating and its use suitable for optical objects and glazed surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200238 2012-03-08
ESP201200238 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013132123A1 true WO2013132123A1 (es) 2013-09-12

Family

ID=49115978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070132 WO2013132123A1 (es) 2012-03-08 2013-03-05 Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas

Country Status (8)

Country Link
US (1) US9885808B2 (es)
EP (1) EP2823883B1 (es)
JP (1) JP6151725B2 (es)
KR (1) KR20140145140A (es)
CN (1) CN104394980B (es)
ES (1) ES2692949T3 (es)
IL (1) IL234381B (es)
WO (1) WO2013132123A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050631A1 (en) 2015-09-23 2017-03-30 Koninklijke Philips N.V. Display device and driving method
US9864118B2 (en) 2014-12-31 2018-01-09 Saint-Gobain Performance Plastics Corporation Photochromic solar control films

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017049A1 (en) 2009-07-27 2011-02-10 Cardiac Pacemakers, Inc. Medical device for treating heart failure through blood volume redistribution
US10017690B2 (en) * 2015-05-28 2018-07-10 Xerox Corporation Photochromatic composition for 3D printing
US10227527B2 (en) 2015-12-14 2019-03-12 Indizen Optical Technologies of America, LLC Nanoemulsion optical materials
WO2018102266A1 (en) * 2016-12-02 2018-06-07 3M Innovative Properties Company Photochromic articles containing a porous material with a photochromic dye and fluid, methods of making and using
US20210017327A1 (en) * 2017-12-15 2021-01-21 Mitsui Chemicals, Inc. Polymerizable composition for optical materials and application of same
CN109880509A (zh) * 2019-01-29 2019-06-14 张家港康得新光电材料有限公司 水性变色涂料及其涂膜制品
CN115011327B (zh) * 2022-06-07 2023-07-18 江南大学 一种封装型光致变色微球及其制备方法与应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US574654A (en) 1897-01-05 Telephone-receiver
US4367170A (en) 1975-01-24 1983-01-04 American Optical Corporation Stabilized photochromic materials
US4428978A (en) 1980-05-28 1984-01-31 Bayer Aktiengesellschaft Concentrated microcapsule suspensions for reaction copying papers
US4517141A (en) 1982-06-30 1985-05-14 Bayer Aktiengesellschaft Production of microcapsules having walls of polyaddition products of water-insoluble polyamines with water-soluble polyisocyanate adducts
US5017225A (en) 1987-12-02 1991-05-21 Japan Capsular Products Inc. Microencapsulated photochromic material, process for its preparation and a water-base ink composition prepared therefrom
US5807625A (en) 1988-01-12 1998-09-15 Sicpa Holding S.A. Security document with reversibly photochromic printing inks
US20030030040A1 (en) * 2001-08-08 2003-02-13 Luthern John Joseph Reversibly variable photochromic color composition for articles composed of synthetic resin
US20030086978A1 (en) * 2001-09-18 2003-05-08 Korea Research Institute Of Chemical Technology Photochromic nanocapsule and preparation method thereof
WO2004001555A2 (en) 2002-06-25 2003-12-31 International Business Machines Corporation Method and system for monitoring performance of application in a distributed environment
WO2006024099A1 (en) 2004-09-02 2006-03-09 Polymers Australia Pty Limited Photochromic compounds comprising polymeric substituents and methods for preparation and use thereof
DE102006033906A1 (de) 2005-07-19 2007-02-01 Innovent E.V. Technologieentwicklung Schaltbares photochromes Substrat
EP1849844A2 (de) 2006-04-26 2007-10-31 Innovent e.V. Technologieentwicklung Modifizierter polymerer Kunststoff, Verfahren zu dessen Herstellung und dessen Verwendung
WO2009072988A1 (en) 2007-12-07 2009-06-11 Polycore Optical Pte Ltd Encapsulated photochromic dyes
WO2009121148A1 (en) 2008-04-03 2009-10-08 Advanced Polymerik Pty Ltd Dye comprising functional substituent
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
US20110082035A1 (en) * 2009-10-01 2011-04-07 Xerox Corporation Photochromic materials incorporated in polymer backbone

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969754A (en) 1959-07-14 1964-09-16 Ncr Co Transparent optical viewing device
JPS61236531A (ja) * 1985-04-12 1986-10-21 Kureha Chem Ind Co Ltd 調光材料
JPH0351195A (ja) * 1989-07-19 1991-03-05 Brother Ind Ltd フォトクロミック色素含有記録材料
JPH03137634A (ja) * 1989-10-24 1991-06-12 Dainippon Ink & Chem Inc フォトクロミック材料、これを用いた光学記録媒体および遮光材料
US5221288A (en) * 1990-10-09 1993-06-22 Matsui Shikiso Chemical Co., Ltd. Thermochromic dyeing method and cellulose product dyed thereby
JPH04209692A (ja) * 1990-12-03 1992-07-31 Asahi Glass Co Ltd フォトクロミック材料
GB2270321A (en) 1992-09-02 1994-03-09 Matsui Shikiso Kagaku Kogyosho A microencapsulated photochromic composition for textile printing paste use
JP3537476B2 (ja) * 1994-01-28 2004-06-14 旭電化工業株式会社 フォトクロミック組成物
JPH07245734A (ja) 1994-03-03 1995-09-19 Pioneer Electron Corp 拡大観察装置及び凹面鏡
US6117455A (en) 1994-09-30 2000-09-12 Takeda Chemical Industries, Ltd. Sustained-release microcapsule of amorphous water-soluble pharmaceutical active agent
JP3790567B2 (ja) 1994-09-30 2006-06-28 武田薬品工業株式会社 徐放剤
JPH08209119A (ja) 1995-02-08 1996-08-13 Asahi Denka Kogyo Kk フォトクロミック組成物
JPH0931453A (ja) 1995-07-18 1997-02-04 Fuji Photo Film Co Ltd マイクロカプセルとそれを用いた要素
JPH09183969A (ja) 1995-10-30 1997-07-15 Fuji Photo Film Co Ltd 感光性組成物とそれを用いた要素
JPH09241626A (ja) 1996-03-08 1997-09-16 Fuji Photo Film Co Ltd フォトクロミック化合物を用いた感光性組成物と要素
FR2755856B1 (fr) * 1996-11-21 1999-01-29 Merck Clevenot Laboratoires Microcapsules de chitine ou de derives de chitine contenant une substance hydrophobe, notamment un filtre solaire et procede de preparation de telles microcapsules
AR012448A1 (es) * 1997-04-18 2000-10-18 Ipsen Pharma Biotech Composicion en forma de microcapsulas o de implantes que comprende un excipiente biodegradable, polimero o co-polimero, o una mezcla de talesexcipientes, y una sustancia activa o una mezcla de sustancias activas, procedimiento para la preparacion de una sustancia soluble en agua de elevada
FR2806005B1 (fr) * 2000-03-10 2002-06-14 Univ Claude Bernard Lyon Procede de preparation de particules colloidales sous forme de nanocapsules
JP4312043B2 (ja) * 2003-04-28 2009-08-12 株式会社リコー 画像表示媒体および画像形成方法
JP4475891B2 (ja) * 2003-06-20 2010-06-09 ホソカワミクロン株式会社 経肺製剤の製造方法
FR2864900B1 (fr) * 2004-01-09 2007-10-12 Oreal Dispersion aqueuse de nanocapsules a coeur huileux
JP2006026457A (ja) * 2004-07-12 2006-02-02 Konica Minolta Medical & Graphic Inc メタロセンワックスを壁材とするマイクロカプセルおよびその製造方法
JP4476201B2 (ja) 2005-09-13 2010-06-09 株式会社リコー 画像表示媒体および画像形成方法
GB2431159B (en) * 2005-10-12 2010-09-15 Fikri Mehmet A thermochromic and/or photochromic composition
JP5019826B2 (ja) 2006-07-28 2012-09-05 第一稀元素化学工業株式会社 ジルコニアゾル及びその製造方法
US7541119B2 (en) * 2007-06-13 2009-06-02 Xerox Corporation Inkless reimageable printing paper and method
JP2009120536A (ja) 2007-11-15 2009-06-04 Tokuyama Corp クロメン化合物
JP2009144011A (ja) * 2007-12-12 2009-07-02 Panasonic Electric Works Co Ltd 帯電防止皮膜形成用樹脂組成物、帯電防止基材、液晶装置
CN101225296A (zh) 2008-02-01 2008-07-23 北京服装学院 光致变色微胶囊的制备方法
KR101313856B1 (ko) 2008-05-09 2013-09-30 가부시끼가이샤 도꾸야마 크로멘 화합물
JP2010079176A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 光学レンズ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US574654A (en) 1897-01-05 Telephone-receiver
US4367170A (en) 1975-01-24 1983-01-04 American Optical Corporation Stabilized photochromic materials
US4428978A (en) 1980-05-28 1984-01-31 Bayer Aktiengesellschaft Concentrated microcapsule suspensions for reaction copying papers
US4517141A (en) 1982-06-30 1985-05-14 Bayer Aktiengesellschaft Production of microcapsules having walls of polyaddition products of water-insoluble polyamines with water-soluble polyisocyanate adducts
US5017225A (en) 1987-12-02 1991-05-21 Japan Capsular Products Inc. Microencapsulated photochromic material, process for its preparation and a water-base ink composition prepared therefrom
US5807625A (en) 1988-01-12 1998-09-15 Sicpa Holding S.A. Security document with reversibly photochromic printing inks
US20030030040A1 (en) * 2001-08-08 2003-02-13 Luthern John Joseph Reversibly variable photochromic color composition for articles composed of synthetic resin
US20030086978A1 (en) * 2001-09-18 2003-05-08 Korea Research Institute Of Chemical Technology Photochromic nanocapsule and preparation method thereof
WO2004001555A2 (en) 2002-06-25 2003-12-31 International Business Machines Corporation Method and system for monitoring performance of application in a distributed environment
WO2006024099A1 (en) 2004-09-02 2006-03-09 Polymers Australia Pty Limited Photochromic compounds comprising polymeric substituents and methods for preparation and use thereof
US20090093601A1 (en) 2004-09-02 2009-04-09 Polymers Australia Pty Limited Photochromic Compounds Comprising Polymeric Substituents And Methods For Preparation And Use Thereof
DE102006033906A1 (de) 2005-07-19 2007-02-01 Innovent E.V. Technologieentwicklung Schaltbares photochromes Substrat
EP1849844A2 (de) 2006-04-26 2007-10-31 Innovent e.V. Technologieentwicklung Modifizierter polymerer Kunststoff, Verfahren zu dessen Herstellung und dessen Verwendung
WO2009072988A1 (en) 2007-12-07 2009-06-11 Polycore Optical Pte Ltd Encapsulated photochromic dyes
WO2009121148A1 (en) 2008-04-03 2009-10-08 Advanced Polymerik Pty Ltd Dye comprising functional substituent
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
US20110082035A1 (en) * 2009-10-01 2011-04-07 Xerox Corporation Photochromic materials incorporated in polymer backbone

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. MISAWA; N. KITAMURA; H. MASUHARA: "Laser Manipulation and Ablation of a Single Microcapsule in Water", J. AM. CHEM. SOC., vol. 113, 1991, pages 7859 - 7863
P. UZNANSKI; C. AMIENS; B. DONNADIEU; Y. COPPEL; B. CHAUDRET: "Oxidation of photochromic spirooxazines by coinage metal cations. Part . Reaction with AgN0 : formation and characterization of silver particles", NEW J. CHEM., vol. 25, 2001, pages 1486 - 1494
S. J. PASTINE; D. OKAWA; A. ZETTL; J. M. J. FR6CHET: "Chemicals on Demand with Phototriggerable Microcapsules", J. AM. CHEM. SOC., vol. 131, 2009, pages 13586 - 13587
See also references of EP2823883A4
Y. KISHIMOTO; J. ABE: "A fast molecule that colors only under UV Light", J. AM. CHEM. SOC., vol. 131, 2009, pages 4227 - 4229

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864118B2 (en) 2014-12-31 2018-01-09 Saint-Gobain Performance Plastics Corporation Photochromic solar control films
WO2017050631A1 (en) 2015-09-23 2017-03-30 Koninklijke Philips N.V. Display device and driving method
US10451906B2 (en) 2015-09-23 2019-10-22 Koninklijke Philips N.V. Display device and driving method

Also Published As

Publication number Publication date
EP2823883A4 (en) 2015-03-04
IL234381B (en) 2018-01-31
CN104394980A (zh) 2015-03-04
US20150024126A1 (en) 2015-01-22
EP2823883A1 (en) 2015-01-14
JP6151725B2 (ja) 2017-06-21
JP2015513597A (ja) 2015-05-14
KR20140145140A (ko) 2014-12-22
EP2823883B1 (en) 2018-09-19
CN104394980B (zh) 2018-10-09
ES2692949T3 (es) 2018-12-05
US9885808B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2013132123A1 (es) Recubrimiento con propiedades fotocrómicas, método de obtención de dicho recubrimiento y uso aplicable a artículos ópticos y superficies acristaladas
Sun et al. Recent progress in smart polymeric gel‐based information storage for anti‐counterfeiting
Tao et al. Self‐assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes
Julià-López et al. Solid materials with tunable reverse photochromism
Luo et al. Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution
Zhang et al. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives
Abdollahi et al. Light-induced aggregation and disaggregation of stimuli-responsive latex particles depending on spiropyran concentration: Kinetics of photochromism and investigation of reversible photopatterning
Yi et al. UV-induced disruption of microcapsules with azobenzene groups
Guan et al. Stimuli‐Responsive Hybridized Nanostructures
Dai et al. Novel capsules with high stability and controlled permeability by hierarchic templating
Bédard et al. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer
Luo et al. Near‐infrared light responsive multi‐compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface
Bian et al. Bioinspired Perovskite Nanocrystals‐Integrated Photonic Crystal Microsphere Arrays for Information Security
BR112018012014B1 (pt) Materiais óticos de nanoemulsão
EP4069798A1 (en) A photoinduced thermochromic or thermoluminescent composition
Prevot et al. Behavior of temperature‐sensitive PNIPAM confined in polyelectrolyte capsules
Gao et al. Visible‐light‐switchable azobenzenes: Molecular design, supramolecular systems, and applications
He et al. Novel stimuli-responsive spiropyran-based switch@ HOFs materials enable dynamic anticounterfeiting
Xu et al. Dual‐Modal Invisible Photonic Crystal Prints from Photo/Water Responsive Photonic Crystals
Roghani‐Mamaqani et al. Photoresponsive polymers
Guerrero‐Martínez et al. Microcontainers with fluorescent anisotropic zeolite L cores and isotropic silica shells
Li et al. Achieving Enhanced Photochromism of Spiropyran in Pretreated Nanoporous Lanthanide Metal–Organic Frameworks for Information Storage Applications
Tedeschi et al. Engineering of layer-by-layer coated capsules with the prospect of materials for efficient and directed electron transfer
Caire da Silva et al. Self‐assembly of giant polymer vesicles by light‐assisted solid hydration
Chen et al. Rewritable polymer materials for ultraviolet laser based on photochromic microcapsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 234381

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 14382826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014560415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013758269

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027447

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021979

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021979

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140905