WO2013131452A1 - 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法 - Google Patents

利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法 Download PDF

Info

Publication number
WO2013131452A1
WO2013131452A1 PCT/CN2013/072109 CN2013072109W WO2013131452A1 WO 2013131452 A1 WO2013131452 A1 WO 2013131452A1 CN 2013072109 W CN2013072109 W CN 2013072109W WO 2013131452 A1 WO2013131452 A1 WO 2013131452A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
cobalt nitrate
cobalt
spent catalyst
acid solution
Prior art date
Application number
PCT/CN2013/072109
Other languages
English (en)
French (fr)
Inventor
韩奕铭
刘倩倩
赖波
许莉
宋德臣
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13757151.9A priority Critical patent/EP2824075B1/en
Priority to AP2014007987A priority patent/AP2014007987A0/xx
Priority to RU2014140152/05A priority patent/RU2580744C1/ru
Priority to BR112014021849-8A priority patent/BR112014021849B1/pt
Priority to CA2866188A priority patent/CA2866188C/en
Priority to MX2014010568A priority patent/MX355250B/es
Priority to DK13757151.9T priority patent/DK2824075T3/en
Priority to SI201330896T priority patent/SI2824075T1/en
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to IN1922MUN2014 priority patent/IN2014MN01922A/en
Priority to AU2013230404A priority patent/AU2013230404B2/en
Priority to JP2014560229A priority patent/JP5837998B2/ja
Priority to KR1020147027913A priority patent/KR101567589B1/ko
Priority to SG11201405384YA priority patent/SG11201405384YA/en
Publication of WO2013131452A1 publication Critical patent/WO2013131452A1/zh
Priority to US14/477,909 priority patent/US8986644B2/en
Priority to ZA2014/07150A priority patent/ZA201407150B/en
Priority to HRP20171983TT priority patent/HRP20171983T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0438Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/322Oxalic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of preparation of inorganic substances, and specifically relates to a method for preparing high-purity cobalt nitrate crystals by using 0)/310 2 spent catalyst.
  • Biomass is the most abundant and cheapest renewable resource on the planet.
  • the annual amount of lignocellulosic biomass produced by photosynthesis in the world is as high as 150 billion tons, of which about 90% are not yet used by humans.
  • the biomass is gasified into syngas, and then the synthetic oil is produced by Fischer-Tropsch synthesis reaction. After the subsequent processing, rectification and other post-treatment processes, the synthetic oil can obtain ultra-clean gasoline and diesel oil superior to the European V standard, and has wide application prospects. .
  • the silica-supported cobalt-based Co/SiO 2 catalyst has high catalytic hydrogenation activity, the reaction rate is not affected by the water pressure, is not easy to deposit carbon and poison, and has low selectivity to form CO 2 , high selectivity of long-chain hydrocarbons, and products. It has less oxygen-containing compounds and is a better and most studied catalyst system in the Fischer-Tropsch synthesis reaction industry. China's cobalt resources are extremely scarce. The proven recoverable amount is less than 2% of the world's recoverable amount, while the annual use is close to 25% of the world's total consumption. Therefore, China's cobalt resources are heavily dependent on imports, and the price is high. Lead to higher catalyst costs.
  • the recovery of cobalt from the waste catalyst for cobalt-based Fischer-Tropsch synthesis is used for the regeneration of cobalt-based catalysts, which not only reduces the environmental pollution of the spent catalyst, but also improves the utilization of cobalt resources, and greatly reduces the production cost of the cobalt catalyst. Environmental and economic benefits.
  • Chinese Patent Application No. 200810055107.0 discloses a method for recovering cobalt in a cobalt-based Fischer-Tropsch synthesis catalyst, which comprises deionized water and a cobalt-containing Fischer-Tropsch catalyst (including Si0 2 , A1 2 0 3 , Zr0).
  • Chinese patent No. 200910272794.6 discloses a kind of A method for preparing high-purity cobalt nitrate by using Fischer-Tropsch synthesis with alumina-supported cobalt-based spent catalyst, the method comprising the steps of milling, concentrated hydrochloric acid dissolution, sodium sulfide cobalt, cobalt oxalate, calcination, nitric acid dissolution, evaporation crystallization, etc.
  • the final Co(N0 3 ) 2 .6H 2 0 purity is as high as 99% or more, but since the method does not reduce the spent catalyst and the intermediate product CoS grains formed during the recovery process are fine, the filtration is difficult, and the cobalt is easily lost. Thus, the recovery rate of cobalt is reduced to about 92%. Summary of the invention
  • the object of the present invention is to provide a method for preparing high-purity cobalt nitrate crystals using a Co/SiO 2 spent catalyst with high recovery rate and high product purity.
  • the present invention provides a method for preparing high-purity cobalt nitrate crystals by using a Co/SiO 2 spent catalyst, comprising the following steps:
  • Co/Si0 2 spent catalyst to be treated is calcined at 350-500 ° C for 3-6 h under air, cooled to room temperature and ground to a powder;
  • the flow rate of the mixed gas is controlled to be 1000 to 4000 h" 1 , the pressure in the reactor is 0.1 to 1 MPa, and the reaction temperature is 350 to 750 °C.
  • the concentration of the dilute nitric acid in the step 3) is controlled to be 1 to 3 mol/L. Further, the concentration of the dilute nitric acid solution in step 6) is controlled to be 1-3 mol/L.
  • the water bath temperature in step 4) is controlled to 70 ° C
  • the oxalic acid solution is preheated to 70 ° C
  • the washing is preheated to 70 ° C with deionized water.
  • the reduction reaction is controlled, the volume fraction of H 2 in the mixed gas is 50% or more, and the cobalt in the spent catalyst can be sufficiently reduced, and the reduced product of the catalyst is sufficiently dissolved in a dilute nitric acid to obtain a cobalt nitrate solution. Then, the cobalt nitrate solution is fully reacted with the oxalic acid solution to form a cobalt oxalate precipitate.
  • the excessive oxalic acid control in the step reaction is favorable for the complete precipitation of the cobalt and the conversion of the cobalt; and the pH of the solution is strictly controlled during the reaction between the cobalt nitrate and the oxalic acid.
  • the value is 1.5, because only at this pH value can ensure the complete precipitation of cobalt oxalate; the temperature of the solution during the reaction is controlled to 25 ⁇ 80 °C, preferably controlled at 70 °C, because if the temperature control is too low, the generated Cobalt oxalate particles are fine, which will cause a large loss in the subsequent filtration and washing steps; because the reaction forms a precipitate of cobalt oxalate, the released hydrogen ions reduce the pH of the solution, in order to complete the cobalt precipitation, the reaction The pH adjustment must be controlled at 1.5 at the end point.
  • the invention not only has high recovery rate but also high purity by strictly controlling the process conditions in the reaction process, and the product can be directly used in the production of Fischer-Tropsch synthesis catalyst for indirect liquefaction of biomass to synthetic oil. Moreover, the method of the invention has simple operation, short process, low requirements on equipment and process conditions, and is suitable for large-scale industrial application. detailed description
  • the purity of the product was determined to be 99.63% according to the method provided in GBT 15898-1995, and the recovery of cobalt in this example was 96.64%.
  • the purity of the product was determined to be 99.55% according to the method provided in GBT 15898-1995, and the recovery of cobalt in this example was 97.04%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供了一种利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法。该方法依次包括如下步骤:1)将待处理Co/SiO2废催化剂在350~500℃有空气的条件下焙烧3~6h,冷却至室温后研磨成粉末;2)将废催化剂粉末转入流化床反应器,在H2 、N2混合气体中进行还原反应8~12h;3)将经还原反应的废催化剂加入至过量稀硝酸溶液中充分溶解、过滤;4)用碱液调节所得到硝酸钴溶液的pH值至1.5,在25~80℃水浴条件下,加入草酸溶液进行反应,用稀碱溶液调节反应后溶液至pH值=1.5,趁热过滤得到草酸钴沉淀;5)将草酸钴沉淀干燥后在温度为550~650℃条件下煅烧4~8h;6)将所得氧化钴用稀硝酸溶液溶解;7)将所述硝酸钴溶液蒸发结晶得到Co(NO3) 2 ·6H2O晶体,该方法中Co(NO3) 2 ·6H2O的回收率高、产品纯度高。

Description

利用 ( 0/8102废催化剂制备高纯硝酸钴晶体的方法 技术领域
本发明属于无机物的制备技术领域, 具体是指一种利用 0)/3102废催化剂 制备高纯硝酸钴晶体的方法。 技术背景
随着环境污染的日益严重和石油资源的逐渐枯竭, 开发无污染、 可再生的 新能源成为人们研究的焦点。 生物质是地球上最丰富、 最廉价的可再生资源, 全世界每年通过光合作用产生的木质纤维素生物质高达 1500亿吨, 其中 90% 左右目前尚未被人类利用。 将生物质气化成合成气, 然后通过费托合成反应生 成合成油, 该合成油经过后续加工、 精馏等后处理工序, 可以得到优于欧 V标 准的超洁净汽柴油, 具有广泛的应用前景。
氧化硅负载的钴基 Co/Si02催化剂催化加氢活性高, 反应速率不受水分压 的影响, 不易积碳和中毒, 且生成 C02的选择性低, 长链烃的选择性高, 产物 中含氧化合物较少, 是目前费托合成反应工业中较好的且研究较多的催化剂体 系。 我国钴矿资源极其匮乏, 已探明的可开采量不足世界可开采量的 2%, 而 年使用量却接近世界消耗总量的 25%, 因此我国的钴资源严重依赖进口, 价格 昂贵, 最终导致催化剂成本较高。 从钴基费托合成用废催化剂中回收钴, 用于 钴基催化剂再生产, 不但减少了废催化剂对环境的污染, 提高了钴资源的利用 率, 而且大大降低了钴催化剂的生产成本, 具有良好的环保和经济效益。
本发明之前, 申请号为 200810055107.0 的中国专利公开了一种钴基费托 合成催化剂中钴的回收方法, 将去离子水和含钴费托废催化剂 (包括以 Si02、 A1203、 Zr02、 Ti02为载体的含钴废催化剂) 按重量比为 1~5: 1 加入反应釜 中, 将 CO气体通入反应釜, 加热并恒温进行反应; 然后降温将 CO气体从反应 釜中放出, 从反应釜中将水 (含钴溶液) 排出后, 在水中加入碱液溶液, 使钴 沉淀为 Co(OH)2 ; 在沉淀中加入硝酸溶解, 蒸发结晶, 得到 Co(N03 )2 6H20。 该方法是先得到得到 Co(OH)2沉淀,然后用稀硝酸溶解,所得的 Co(N03 )2 6H20 纯度较低只能在 98%以下。 申请号为 200910272794.6 的中国专利公开了一种 利用费托合成用氧化铝负载钴基废催化剂制备高纯硝酸钴的方法, 这种方法包 括碾磨、 浓盐酸溶解、 硫化钠沉钴、 草酸沉钴、 煅烧、 硝酸溶解、 蒸发结晶等 步骤, 最终得到的 Co(N03)2.6H20纯度高达 99%以上, 但由于该方法未对废催 化剂进行还原处理并且回收过程中生成的中间产物 CoS晶粒很细, 过滤困难, 容易损失钴, 从而导致钴的回收率降低, 为 92%左右。 发明内容
本发明的目的就是要提供一种回收率高、 产品纯度高的利用 Co/Si02废催 化剂制备高纯硝酸钴晶体的方法。
为实现上述目的, 本发明提供的利用 Co/Si02废催化剂制备高纯硝酸钴晶 体的方法, 包括如下步骤:
1)将待处理 Co/Si02废催化剂在 350~500°C有空气的条件下焙烧 3~6h, 冷 却至室温后研磨成粉末;
2) 将经焙烧处理后的废催化剂粉末转入流化床反应器, 在 H2、 N2混合气 体中进行还原反应 8~12h, 其中, 控制所述混合气体中 H2、 N2积比为 1~4: 1;
3) 将经还原反应的废催化剂加入至过量稀硝酸溶液中充分溶解、 过滤, 得到硝酸钴溶液;
4) 用碱液调节所得到硝酸钴溶液的 pH值至 1.5, 在 25~80°C水浴条件下, 加入预热至 25~80°C且 pH值为 1.5 的草酸溶液进行反应, 用稀碱溶液调节反 应后溶液至 pH值 = 1.5, 趁热过滤得到草酸钴沉淀, 用去离子水洗涤草酸钴沉 淀, 直至滤液为中性, 其中, 控制所加入草酸溶液中草酸的摩尔含量为硝酸钴 溶液中钴摩尔含量的 2~3倍;
5) 将草酸钴沉淀干燥后在温度为 550~650°C条件下煅烧 4~8h, 草酸钴分 解得氧化钴;
6) 将所得氧化钴用稀硝酸溶液溶解, 再次得硝酸钴溶液;
7) 将所述硝酸钴溶液蒸发结晶得到 Co(N03)26H20晶体。
进一步的, 步骤 2) 中所述还原反应时, 控制所述混合气的流速为 1000~4000h"1, 反应器中压力为 0.1~lMPa, 反应温度为 350~750°C。
再进一步地, 步骤 3) 中所述稀硝酸的浓度控制为 l~3mol/L。 更进一步的, 步骤 6 ) 中所述稀硝酸溶液浓度控制为 l~3mol/L。
还进一步的, 步骤 4 ) 中所述水浴温度控制为 70 °C, 所述草酸溶液预热至 70 °C , 所述洗涤用去离子水预热至 70 °C。
本发明利用费托合成用 Co/Si02废催化剂制备高纯硝酸钴晶体的方法, 通 过有氧焙烧脱除催化剂颗粒表面的重质烃类, 然后将费催化剂通过还原性混合 气体进行还原反应, 并控制还原反应时混合气中的 H2体积分数在 50%以上, 可 以使废催化剂中的钴得到充分的还原, 再采用过量稀硝酸将催化剂的还原产物 充分溶解得硝酸钴溶液。 然后, 将硝酸钴溶液与草酸溶液充分反应生成草酸钴 沉淀, 该步反应中控制草酸过量有利于钴完全沉淀, 提高钴的转化率; 而且在 硝酸钴与草酸反应过程中,严格控制溶液的 pH值在 1.5, 因为只有在该 pH值下, 才能确保草酸钴完全沉淀出来; 反应时溶液的温度控制为 25~80 °C, 优选为控 制在 70 °C, 因为如果温度控制过低, 生成的草酸钴颗粒偏细, 会在后续的过滤 和洗涤步骤中造成较大损失; 由于该反应在生成草酸钴沉淀的同时, 释放出的 氢离子使溶液 pH值减小, 为了使钴沉淀完全, 反应终点时必须将的 pH值调解 控制在 1.5。 然后在高温条件下将草酸钴分解生成氧化钴, 氧化钴溶解于稀硝 酸后再次得到硝酸钴溶液, 最后将该溶液蒸发结晶即得到高纯度的 Co(N03)2.6H20晶体。
本发明通过严格控制反应流程中的工艺条件, 使所得产品不仅回收率高, 而且纯度高, 产品可直接用于生物质间接液化制合成油的费托合成催化剂生产 中。 而且本发明方法操作简单, 流程短, 对设备和工艺条件要求低, 适于大规 模工业化应用。 具体实施方式
以下结合具体实施例来对本发明利用 Co/Si02废催化剂制备高纯硝酸钴晶 体的方法作进一步详细说明:
实施例 1
1 ) 取废 Co/Si02催化剂颗粒 20.01g, 元素分析结果为: 含钴 12.1 % ; 装入 马弗炉, 通入空气, 从室温开始程序升温至 350 °C并恒温 6小时, 脱除催化剂 颗粒表面的重质烃类, 然后冷却至室温, 将焙烧后的粉体物料冷却后取出, 研 磨成均匀粉末;
2) 把废催化剂粉末转入到流化床反应器中, 在 400°C、 lMPa、 H2/N2混 合气 (其中 H2、 N2积比为 1: 1)、 空速为 4000h- 1的条件下还原 10h;
3) 将经还原反应的废催化剂加入至 200ml浓度为 3mol/L 的稀硝酸充分 搅拌溶解, 过滤去除不溶物, 得到的滤液即硝酸钴溶液;
4) 用饱和 NaOH溶液调节硝酸钴溶液 pH值至 1.5; 选取 12.95g草酸固体 (H2C204.2H20)加去离子水使其刚好全部溶解, 用重量百分比为 1%的 NaOH 溶液调节至 pH=1.5, 得到草酸溶液, 草酸溶液预热至 70°C, 并在 70°C水浴条 件下向硝酸钴溶液中滴加(O.OlmL/s)草酸溶液, 边加边不断搅拌, 滴加完成后 继续保持搅拌 15min, 用重量百分比为 5%的 NaOH溶液调节反应终点溶液至 pH=1.5, 趁热过滤得到 CoC204沉淀; 用 70°C的去离子水洗涤 CoC204沉淀, 直 至滤液为中性为止;
5) 将上述步骤得到的 CoC204沉淀干燥后转入马弗炉中在 550°C下煅烧 5h, 得到 Co203;
6)将所得氧化钴加入 3mol/L硝酸溶液使其刚好完全溶解, 再次得到硝酸 钴溶液;
7) 将硝酸钴溶液置于 70°C水浴中蒸发浓縮, 至溶液表面出现结晶膜时, 立刻取下, 并保持搅拌, 直至结晶完成, 转至干燥器中质量保持恒重, 得到 Co(N03)2.6H20的质量为 11.57g。
根据 GBT 15898-1995 提供的方法测得产品中 Co(N03)2.6H20纯度为 99.40%, 本实施例钴的回收率为 96.18%。
实施例 2
1) 取废 Co/Si02催化剂颗粒 10.24g, 元素分析结果为: 含钴 18.36%; 装 入马弗炉, 通入空气, 从室温开始程序升温至 40CTC并恒温 4小时, 以脱除催 化剂颗粒表面的重质烃类,然后冷却至室温,将焙烧后的废催化剂冷却后取出, 研磨成均匀粉末;
2) 把废催化剂粉末转入到流化床反应器中, 在 750°C、 0.5MPa、 H2/N2 混合气 (其中 H2、 N2积比为 3 : 1)、 空速为 3000h- 1的条件下还原 8h;
3) 将经还原反应的废催化剂加入至 160mL浓度为 2mol/L的稀硝酸充分 搅拌溶解, 过滤去除不溶物, 得到的滤液即硝酸钴溶液;
4) 用饱和 NaOH溶液调节硝酸钴溶液 pH至 1.5; 选取 10.05g草酸固体 (H2C204-2H20) 加去离子水刚好全部溶解, 用重量百分比为 1%的氢氧化钠 溶液调节至 pH=1.5, 得到草酸溶液, 草酸溶液预热至 70°C, 并在 70°C水浴条 件下向硝酸钴溶液中滴加(O.OlmL/s)草酸溶液, 边加边不断搅拌, 滴加完成后 继续保持搅拌 15min, 用重量百分比为 5%的 NaOH溶液调节终点至 pH=l.5, 趁 热过滤得到 CoC204沉淀; 用 70°C的去离子水洗涤 CoC204沉淀, 直至滤液为中 性为止;
5)将上述步骤得到的 CoC204干燥后转入马弗炉中在 650°C下煅烧 4h, 得 到 Co203 ;
6) 将所得 Co203加入 3mol/L的硝酸溶液使其刚好完全溶解, 再次得硝酸 钴溶液;
7) 将硝酸钴溶液置于 70°C水浴中蒸发浓縮, 至溶液表面出现结晶膜时, 立刻取下, 并保持搅拌, 直至结晶完成, 转至干燥器中质量保持恒重, 得到 Co(N03)2.6H20的质量为 9.04g。
根据 GBT 15898-1995 提供的方法测得产品中 Co(N03)2.6H20纯度为 99.57%, 本实施例钴的回收率为 96.94%。
实施例 3
1) 取废 Co/Si02催化剂颗粒 15.62g, 元素分析结果为: 含钴 22.64%; 装 入马弗炉, 通入空气, 从室温开始程序升温至 500°C恒温 3小时, 以脱除催化 剂颗粒表面的重质烃类, 然后冷却至室温; 将焙烧后的废催化剂冷却后取出, 研磨成均匀粉末;
2) 把废催化剂粉末转入到流化床反应器中, 在 600°C、 O.lMPa, H2/N2 混合气 (其中 H2、 N2积比为 4 : 1)、 空速为 lOOOh- 1的条件下还原 12h;
3) 将经还原反应的废催化剂加入至 300mL浓度为 lmol/L的稀硝酸充分 搅拌溶解, 过滤去除不溶物, 得到的滤液即硝酸钴溶液;
4) 用 NaOH溶液调节硝酸钴溶液 pH至 1.5。 选取 18.91g草酸固体 (H2C204-2H20) 加去离子水至刚好全部溶解, 用重量百分比为 1%的氢氧化 钠溶液调节至 pH=1.5, 得到草酸溶液, 草酸溶液预热至 70°C, 并在 70°C水浴 条件下向硝酸钴溶液中滴加(O.OlmL/s)草酸溶液, 边加边不断搅拌, 滴加完成 后继续保持搅拌 15min, 用重量百分比为 5%的 NaOH溶液调节终点至 pH=1.5, 趁热过滤得到 CoC204沉淀; 用 70°C的去离子水洗涤 CoC204沉淀, 直至滤液为 中性为止;
5)将上述步骤得到的 CoC204干燥后转入马弗炉中在 600°C下煅烧 8h, 得 到 Co203 ;
6) 将所得 Co203加入 lmol/L浓硝酸溶液使其刚好完全溶解, 再次得到硝 酸钴溶液;
7) 将硝酸钴溶液置于 70°C水浴中蒸发浓縮, 至溶液表面出现结晶膜时, 立刻取下, 并保持搅拌, 直至结晶完成, 转至干燥器中质量保持恒重, 得到 Co(N03)2'6H20的质量为 16.94g。
根据 GBT 15898-1995 提供的方法测得产品中纯度为 99.63%, 本实施例 钴的回收率为 96.64%。
实施例 4
1) 取废 Co/Si02催化剂颗粒 15.62g, 元素分析结果为: 含钴 22.64%; 装 入马弗炉, 通入空气, 从室温开始程序升温至 450°C恒温 5h, 以脱除催化剂颗 粒表面的重质烃类, 然后冷却至室温; 将焙烧后的废催化剂冷却后取出, 研磨 成均匀粉末;
2) 把废催化剂粉末转入到流化床反应器中, 在 350°C、 0.3MPa、 H2/N2 混合气 (其中 H2、 N2积比为 3 : 1)、 空速为 3000h— 1的条件下还原 10h;
3) 将经还原反应的废催化剂加入至 300mL浓度为 lmol/L的稀硝酸充分 搅拌溶解, 过滤去除不溶物, 得到的滤液即硝酸钴溶液;
4) 用 NaOH溶液调节硝酸钴溶液 pH至 1.5。 选取 22.12g草酸固体 (H2C204-2H20) 加去离子水至刚好全部溶解, 用重量百分比为 1%的氢氧化 钠溶液调节至 pH=1.5, 得到草酸溶液, 草酸溶液预热至 80°C, 并在 80°C水浴 条件下向硝酸钴溶液中滴加(O.OlmL/s)草酸溶液, 边加边不断搅拌, 滴加完成 后继续保持搅拌 15min, 用重量百分比为 5%的 NaOH溶液调节终点至 pH=l.5, 趁热过滤得到 CoC204沉淀; 用 70°C的去离子水洗涤 CoC204沉淀, 直至滤液为 中性为止; 5)将上述步骤得到的 CoC204干燥后转入马弗炉中在 600°C下煅烧 6h, 得 到 Co203 ;
6) 将所得 Co203加入 lmol/L浓硝酸溶液使其刚好完全溶解, 再次得到硝 酸钴溶液;
7) 将硝酸钴溶液置于 70°C水浴中蒸发浓縮, 至溶液表面出现结晶膜时, 立刻取下, 并保持搅拌, 直至结晶完成, 转至干燥器中质量保持恒重, 得到 Co(N03)2.6H20的质量为 17.32g。
根据 GBT 15898-1995 提供的方法测得产品中纯度为 99.55%,本实施例钴 的回收率为 97.04%。

Claims

权 利 要 求 书
1、 一种利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方法, 其特征在于: 它包括如下步骤:
1)将待处理 Co/Si02废催化剂在 350~500°C有空气的条件下焙烧 3~6h, 冷 却至室温后研磨成粉末;
2) 将经焙烧处理后的废催化剂转入流化床反应器, 在 H2、 N2混合气体中 进行还原反应 8~12h, 其中, 控制所述混合气体中 H2、 N2积比为 1~4 : 1;
3) 将经还原反应的废催化剂加入至过量稀硝酸溶液中充分溶解、 过滤, 得到硝酸钴溶液;
4) 用碱液调节所得到硝酸钴溶液的 pH值至 1.5, 在 25~80°C水浴条件下, 加入预热至 25~80°C且 pH值为 1.5 的草酸溶液进行反应, 用稀碱溶液调节反 应后溶液至 pH值 = 1.5, 趁热过滤得到草酸钴沉淀, 用去离子水洗涤草酸钴沉 淀, 直至滤液为中性, 其中, 控制所加入草酸溶液中草酸的摩尔含量为硝酸钴 溶液中钴摩尔含量的 2~3倍;
5)将草酸钴沉淀干燥后在温度为 550~650°C条件下煅烧 4~8h, 得氧化钴;
6) 将所得氧化钴用稀硝酸溶液溶解, 再次得硝酸钴溶液;
7) 将所述硝酸钴溶液蒸发结晶得 Co(N03)2,6H20晶体。
2、 根据权利要求 1所述的利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方 法, 其特征在于: 步骤 2) 中所述还原反应时, 控制混合气的流速为 1000~4000h"1, 反应器的压力为 0.1~lMPa, 反应温度为 350~750°C。
3、 根据权利要求 1或 2所述的利用 0)/3102废催化剂制备高纯硝酸钴晶体 的方法, 其特征在于: 步骤 3) 中所述稀硝酸的浓度控制为 l~3mol/L。
4、 根据权利要求 1或 2所述的利用 0)/3102废催化剂制备高纯硝酸钴晶体 的方法, 其特征在于: 步骤 6) 中所述稀硝酸溶液的浓度控制为 l~3mol/L。
5、 根据权利要求 3所述的利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方 法, 其特征在于: 步骤 6) 中所述稀硝酸溶液的浓度控制为 l~3mol/L。
6、 根据权利要求 1或 2所述的利用 0)/3102废催化剂制备高纯硝酸钴晶体 的方法, 其特征在于: 步骤 4) 中所述水浴温度控制为 70°C, 所述草酸溶液预 热至 70°C, 所述洗涤用去离子水预热至 70°C。
7、 根据权利要求 3所述的利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方 法, 其特征在于: 步骤 4) 中所述水浴温度控制为 70°C, 所述草酸溶液预热至 70 °C, 所述洗涤用去离子水预热至 70°C。
8、 根据权利要求 4所述的利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方 法, 其特征在于: 步骤 4) 中所述水浴温度控制为 70°C, 所述草酸溶液预热至 70 °C, 所述洗涤用去离子水预热至 70°C。
9、根据权利要求 5所述的利用 Co/Si02废催化剂制备高纯硝酸钴晶体的方 法, 其特征在于: 步骤 4) 中所述水浴温度控制为 70°C, 所述草酸溶液预热至 70 °C, 所述洗涤用去离子水预热至 70°C。
PCT/CN2013/072109 2012-03-05 2013-03-04 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法 WO2013131452A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
IN1922MUN2014 IN2014MN01922A (zh) 2012-03-05 2013-03-04
AP2014007987A AP2014007987A0 (en) 2012-03-05 2013-03-04 Method for preparing high-purity cobalt nitrate crysatls from CO/SIO2 waste catalysts
AU2013230404A AU2013230404B2 (en) 2012-03-05 2013-03-04 Method for preparing high-purity cobalt nitrate crystals from Co/SiO2 waste catalysts
CA2866188A CA2866188C (en) 2012-03-05 2013-03-04 Method for preparing high-purity cobalt nitrate crystals from co/sio2 waste catalysts
MX2014010568A MX355250B (es) 2012-03-05 2013-03-04 Metodo para la preparacion de cristales de nitrato de cobalto de alta pureza a partir de catalizadores residuales de co/sio2.
DK13757151.9T DK2824075T3 (en) 2012-03-05 2013-03-04 PROCEDURE FOR MANUFACTURING HIGH PURITY OF COBAL NITRATE CRYSTALS FROM CO / SIO2 WASTE CATALOGS
SI201330896T SI2824075T1 (en) 2012-03-05 2013-03-04 A process for the preparation of high-purity cobalt nitrate crystals from Co / SiO2 waste catalysts
EP13757151.9A EP2824075B1 (en) 2012-03-05 2013-03-04 Method for preparing high-purity cobalt nitrate crystals from co/sio2 waste catalysts
RU2014140152/05A RU2580744C1 (ru) 2012-03-05 2013-03-04 СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ НИТРАТА КОБАЛЬТА ВЫСОКОЙ ЧИСТОТЫ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ Сo/SiO2
BR112014021849-8A BR112014021849B1 (pt) 2012-03-05 2013-03-04 Método para preparar cristais de nitrato de cobalto de alta pureza a partir do resíduo de catalisador de co/sio2
JP2014560229A JP5837998B2 (ja) 2012-03-05 2013-03-04 Co/sio2廃触媒を使用する高純度の硝酸コバルト結晶の調製方法
KR1020147027913A KR101567589B1 (ko) 2012-03-05 2013-03-04 Co/SiO2 폐촉매제로부터 고순도의 코발트 니트레이트 결정을 제조하는 방법
SG11201405384YA SG11201405384YA (en) 2012-03-05 2013-03-04 Method for preparing high-purity cobalt nitrate crystals from co/sio2 waste catalysts
US14/477,909 US8986644B2 (en) 2012-03-05 2014-09-05 Method for preparation of high purity, crystalline cobalt nitrate from spent cobalt/silica catalyst
ZA2014/07150A ZA201407150B (en) 2012-03-05 2014-10-02 Method for preparing high-purity cobalt nitrate crystals from co/sio2 waste catalysts
HRP20171983TT HRP20171983T1 (hr) 2012-03-05 2017-12-20 POSTUPAK PRIPREME KRISTALA KOBALTOVOG NITRATA VISOKE ČISTOĆE IZ ISTROŠENIH KATALIZATORA Co/SiO2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210055799.5A CN102583580B (zh) 2012-03-05 2012-03-05 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法
CN201210055799.5 2012-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/477,909 Continuation-In-Part US8986644B2 (en) 2012-03-05 2014-09-05 Method for preparation of high purity, crystalline cobalt nitrate from spent cobalt/silica catalyst

Publications (1)

Publication Number Publication Date
WO2013131452A1 true WO2013131452A1 (zh) 2013-09-12

Family

ID=46472943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072109 WO2013131452A1 (zh) 2012-03-05 2013-03-04 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法

Country Status (20)

Country Link
US (1) US8986644B2 (zh)
EP (1) EP2824075B1 (zh)
JP (1) JP5837998B2 (zh)
KR (1) KR101567589B1 (zh)
CN (1) CN102583580B (zh)
AP (1) AP2014007987A0 (zh)
AU (1) AU2013230404B2 (zh)
BR (1) BR112014021849B1 (zh)
CA (1) CA2866188C (zh)
DK (1) DK2824075T3 (zh)
HR (1) HRP20171983T1 (zh)
HU (1) HUE036070T2 (zh)
IN (1) IN2014MN01922A (zh)
MX (1) MX355250B (zh)
MY (1) MY157636A (zh)
RU (1) RU2580744C1 (zh)
SG (1) SG11201405384YA (zh)
SI (1) SI2824075T1 (zh)
WO (1) WO2013131452A1 (zh)
ZA (1) ZA201407150B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543496B (zh) * 2015-12-29 2017-10-20 武汉凯迪工程技术研究总院有限公司 费托合成废催化剂Co‑Rh/Al2O3中金属钴、铑和铝的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344682A (zh) * 2001-11-13 2002-04-17 山东大学 四氧化三钴纳米粉体的制备方法
US20060251563A1 (en) * 2001-12-21 2006-11-09 Gole James L Oxynitride compounds, methods of preparation, and uses thereof
CN101270420A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种钴基费托合成催化剂中钴的回收方法
CN101698152A (zh) * 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN101700913A (zh) * 2009-11-17 2010-05-05 中南民族大学 利用费托合成用氧化铝负载钴基废催化剂制备高纯硝酸钴

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190266C (zh) * 2002-08-19 2005-02-23 中国科学院山西煤炭化学研究所 一种用于费托合成的含钴废催化剂的回收方法
AU2005318130B2 (en) * 2004-12-23 2009-04-30 Shell Internationale Research Maatschappij B.V. Method of preparing catalyst support from a waste catalyst
WO2008139407A2 (en) * 2007-05-11 2008-11-20 Sasol Technology (Proprietary) Limited Catalysts
CN102796873B (zh) * 2012-03-05 2014-02-26 阳光凯迪新能源集团有限公司 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344682A (zh) * 2001-11-13 2002-04-17 山东大学 四氧化三钴纳米粉体的制备方法
US20060251563A1 (en) * 2001-12-21 2006-11-09 Gole James L Oxynitride compounds, methods of preparation, and uses thereof
CN101270420A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种钴基费托合成催化剂中钴的回收方法
CN101698152A (zh) * 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN101700913A (zh) * 2009-11-17 2010-05-05 中南民族大学 利用费托合成用氧化铝负载钴基废催化剂制备高纯硝酸钴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2824075A4

Also Published As

Publication number Publication date
EP2824075A1 (en) 2015-01-14
CA2866188C (en) 2017-04-18
KR20140130748A (ko) 2014-11-11
IN2014MN01922A (zh) 2015-07-10
DK2824075T3 (en) 2018-01-15
US20140377153A1 (en) 2014-12-25
HUE036070T2 (hu) 2018-06-28
AU2013230404A1 (en) 2014-10-16
CN102583580A (zh) 2012-07-18
RU2580744C1 (ru) 2016-04-10
SG11201405384YA (en) 2014-10-30
EP2824075B1 (en) 2017-10-11
CA2866188A1 (en) 2013-09-12
CN102583580B (zh) 2014-03-12
AU2013230404B2 (en) 2015-02-19
ZA201407150B (en) 2015-11-25
JP5837998B2 (ja) 2015-12-24
KR101567589B1 (ko) 2015-11-09
BR112014021849B1 (pt) 2020-12-15
HRP20171983T1 (hr) 2018-02-23
MX2014010568A (es) 2014-12-08
AP2014007987A0 (en) 2014-10-31
MY157636A (en) 2016-07-15
MX355250B (es) 2018-04-11
EP2824075A4 (en) 2015-11-18
US8986644B2 (en) 2015-03-24
SI2824075T1 (en) 2018-05-31
JP2015515362A (ja) 2015-05-28

Similar Documents

Publication Publication Date Title
KR101609803B1 (ko) 피셔-트롭쉬 합성에서 Co-Ru/Al2O3 폐촉매제로부터 금속 코발트, 루테늄 및 알루미늄의 종합적인 회수를 위한 공정
CN103007985B (zh) 一种将醇、醚转化为芳烃的催化剂及其制备、使用方法
CN102092749A (zh) 一种薄水铝石的制备方法
CN104785276B (zh) 一种以复合溶胶为硅源制备的费托合成催化剂及其制备方法与应用
CN102658143A (zh) 费托合成沉淀铁催化剂的制备方法
WO2012079505A1 (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN107262139A (zh) 一种改性分子筛zsm‑5催化剂的制备方法及其在生物质热解中的应用
CN108642271A (zh) 一种新型含钒页岩无铵沉钒生产二氧化钒的方法
CN105543496A (zh) 费托合成废催化剂Co-Rh/Al2O3中金属钴、铑和铝的回收方法
CN106607058B (zh) 合成气直接制低碳烯烃的铁系催化剂及其制备方法
CN103657626A (zh) Al2O3/CaMgO复合固体碱催化剂的制备方法
CN110773186B (zh) 一种高浓度二氧化硫还原制备硫磺的原位催化剂及其制备方法
WO2013131452A1 (zh) 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法
CN104046399B (zh) 一种焦炉煤气制天然气的耐硫甲烷化工艺
CN111186851B (zh) 一种回收沸腾焙烧炉电收尘粉制备改性铝基催化剂的方法
CN110038574B (zh) 一种海泡石衍生的具有尖晶石型结构的催化剂及其制备方法和应用
CN100567171C (zh) 一种制备高比表面积介孔氧化亚镍的方法
CN112619652A (zh) 合成气制低碳烯烃的催化剂及其制备方法
CN112625726B (zh) 合成气制低碳烯烃的方法
CN109569572B (zh) 一种大粒度钒酸铋球的制备方法
WO2013166653A1 (zh) 一种Ni-Mg/Al2O3催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2866188

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010568

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201405540

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2013757151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013757151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027913

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014140152

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013230404

Country of ref document: AU

Date of ref document: 20130304

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021849

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021849

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140903