WO2013129234A1 - マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム - Google Patents

マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム Download PDF

Info

Publication number
WO2013129234A1
WO2013129234A1 PCT/JP2013/054360 JP2013054360W WO2013129234A1 WO 2013129234 A1 WO2013129234 A1 WO 2013129234A1 JP 2013054360 W JP2013054360 W JP 2013054360W WO 2013129234 A1 WO2013129234 A1 WO 2013129234A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
predetermined wavelength
wavelength
core optical
Prior art date
Application number
PCT/JP2013/054360
Other languages
English (en)
French (fr)
Inventor
林 哲也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2014502166A priority Critical patent/JP6237615B2/ja
Priority to DK13754674.3T priority patent/DK2821823T3/da
Priority to EP13754674.3A priority patent/EP2821823B1/en
Priority to CN201380011498.5A priority patent/CN104145198B/zh
Publication of WO2013129234A1 publication Critical patent/WO2013129234A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads

Definitions

  • the present invention relates to a multi-core optical fiber, a multi-core optical fiber cable, and a multi-core optical fiber transmission system.
  • a multi-core optical fiber having a structure in which each of a plurality of core portions extending along a central axis (fiber axis) is covered with a common cladding portion is expected as an optical transmission line capable of transmitting a large amount of information. ing.
  • Various studies have been made on such multi-core optical fibers for the purpose of transmitting a larger amount of information (for example, see Non-Patent Documents 1 and 2).
  • Non-Patent Document 1 discusses the number of cores per unit cross-sectional area as a performance index of a multi-core optical fiber.
  • Non-Patent Document 2 the ratio of “the sum of the effective cross-sectional areas (A eff ) of the individual cores” to the “fiber cross-sectional area” is studied as a performance index of the multi-core optical fiber.
  • a eff effective cross-sectional areas
  • the inventor found a problem that the frequency utilization efficiency per unit cross-sectional area does not improve, and conversely deteriorates. did.
  • the present invention has been made in view of the above, and provides a multi-core optical fiber, a multi-core optical fiber cable, and a multi-core optical fiber transmission system having a structure for improving frequency utilization efficiency per unit cross-sectional area. It is aimed.
  • the multicore optical fiber according to the present embodiment includes a plurality of core portions extending along a predetermined axis, a clad that integrally covers each of the plurality of core portions, and an outer peripheral surface of the clad. A coating provided thereon is provided.
  • each of the plurality of core portions enables single mode transmission at a predetermined wavelength.
  • the multi-core optical fiber according to the first aspect has a transmission loss at a predetermined wavelength that is a transmission loss of a predetermined core unit n having the largest crosstalk from the other core units among a plurality of core units.
  • the nonlinear refractive index of the predetermined core portion n at a predetermined wavelength is n 2, n [m 2 / W], and the effective area of the predetermined core portion n at a predetermined wavelength is A eff , N [ ⁇ m 2 ], chromatic dispersion of a predetermined core part n at a predetermined wavelength, D n [ps / (nm ⁇ km)], power from all other core parts to a predetermined core part n at a predetermined wavelength
  • the sum of coupling coefficients is ⁇ n [/ km]
  • the number of core parts included in the multi-core optical fiber is N core
  • the cross-sectional area of the entire multi-core optical fiber on a cross section orthogonal to a predetermined axis is A coat ,
  • each of the plurality of core portions enables single mode transmission at a predetermined wavelength.
  • the multi-core optical fiber according to the second aspect has a transmission loss of ⁇ dB, n [dB / km] at the predetermined wavelength of the n-th core portion among the plurality of core portions, and the n-th core at the predetermined wavelength.
  • the nonlinear refractive index of the portion is n 2, n [m 2 / W], the effective area of the n-th core portion at a predetermined wavelength is A eff, n [ ⁇ m 2 ], and the n-th core portion at a predetermined wavelength is The chromatic dispersion is D n [ps / (nm ⁇ km)], and the sum of the power coupling coefficients from all the other core parts to the nth core part among a plurality of core parts at a predetermined wavelength is ⁇ n [/ km].
  • the cross sectional area of the entire multi-core optical fiber on the cross section orthogonal to the predetermined axis is A coat , the following formula (2): It is preferable to satisfy.
  • the transmission loss is a spatial mode that is not guided at a transmission loss of 1 dB / km or less at a predetermined wavelength, and the transmission loss at a predetermined wavelength is 0.9 dB / m or more.
  • the multi-core optical fiber according to the third aspect is the m-th space guided with a transmission loss of 1 dB / km or less at a predetermined wavelength among the spatial modes in the n-th core portion included in the plurality of core portions.
  • the transmission loss of the mode which is ⁇ dB, nm [dB / km], the transmission loss at a predetermined wavelength, and the nonlinear refractive index of the mth spatial mode in the nth core portion, n 2, nm [m 2 / W], the effective area of the m-th spatial mode in the n-th core portion, and the effective area at a predetermined wavelength is A eff, nm [ ⁇ m 2 ], the n-th core Chromatic dispersion of the m-th spatial mode in the unit, and the chromatic dispersion at a predetermined wavelength is D nm [ps / (nm ⁇ km)], from all of the plurality of core units to the n-th core unit Of power coupling coefficient
  • the sum is ⁇ n [/ km] and the cross-sectional area of the entire multi-core optical fiber on the cross section orthogonal to the predetermined axis is A coat , the following formula (3): It is preferable to satisfy.
  • At least one of the plurality of core parts includes a plurality of core part inner cores and a plurality of core part inner cores.
  • the power coupling coefficient between adjacent core cores among a plurality of core cores constituting such a fine structure is 10 ⁇ 2 [/ km] or more.
  • a power coupling coefficient between adjacent core cores among a plurality of core cores constituting the microstructure is 1 [/ km] or more. Is preferred.
  • the effective area of the fundamental mode in at least one of the plurality of core portions, and the effective area at a predetermined wavelength is 87 ⁇ m 2 or less is preferable.
  • an effective cross-sectional area of the fundamental mode in at least one of the plurality of cores in the core portion and effective at a predetermined wavelength is preferably 87 ⁇ m 2 or less.
  • a refractive index lower than that of the cladding is provided between at least one of the plurality of core parts and the cladding.
  • a depressed layer may be provided.
  • the depressed layer is made of a solid having a refractive index lower than that of the cladding, or the core portion so that the average refractive index in the circumferential direction when viewed from the central axis of the core portion is lower than that of the cladding. Is constituted by a plurality of holes arranged in the clad in a state of surrounding.
  • a refractive index lower than that of the clad is provided between at least one of the core parts and the clad.
  • an inner cladding layer having a refractive index lower than that of the core portion and higher than that of the trench layer may be provided between the core portion and the trench layer.
  • the trench layer is made of a solid having a refractive index lower than that of the cladding, or the core portion is formed so that the average refractive index is lower than that of the cladding in the circumferential direction when viewed from the central axis of the core portion. It is composed of a plurality of holes arranged in the clad in an enclosed state.
  • the predetermined wavelength is any one of 1 ⁇ m to 2.5 ⁇ m.
  • the predetermined wavelength is any wavelength of 1.26 ⁇ m to 1.65 ⁇ m, and a plurality of core portions Each may be made of silica glass, and the nonlinear refractive index n 2 of each of the plurality of core portions at the predetermined wavelength may be 2 ⁇ 10 ⁇ 20 to 3 ⁇ 10 ⁇ 20 [m 2 / W].
  • GeO 2 may be added to each of the plurality of core portions.
  • the nonlinear refractive index n 2 is about 2.3 ⁇ 10 ⁇ 20. [M 2 / W] may be used. Conversely, as a thirteenth aspect applicable to the eleventh aspect, GeO 2 may not be added to each of the plurality of core portions, and in this case, the nonlinear refractive index n 2 is about 2.2 ⁇ 10 It may be ⁇ 20 [m 2 / W].
  • the transmission loss of the fundamental mode in each of the plurality of core portions is 0.195 dB / km at a wavelength of 1550 nm.
  • the difference of the transmission loss between different core parts among the plurality of core parts is 0.02 dB / km or less at the maximum, and is the chromatic dispersion of the fundamental mode in each of the core parts and has a wavelength of 1550 nm.
  • the chromatic dispersion at is preferably 17 ps / (nm ⁇ km) or more.
  • the distance between the center of the core portion whose center is most distant from the center of the multi-core optical fiber and the center of the multi-core optical fiber is represented by rom ,
  • is the shortest distance between the centers of two core portions
  • N core is the number of core portions included in the multi-core optical fiber
  • Bending loss at a fundamental mode radius of 7.5 mm and bending loss ⁇ R7.5 [dB / m] at a wavelength of 1550 nm is 10 dB / m or less
  • the relationship between the product R pack ⁇ R eff of ⁇ effective core filling rate R pack and the core- arrangeable area ratio R eff , defined by (1), and ⁇ R7.5 [dB / m] is expressed by the following formula (6): It is preferable to satisfy.
  • the bending loss at a radius of 5 mm of the fundamental mode in at least one of the plurality of core portions, and the bending loss ⁇ R5 [dB / m] at a wavelength of 1550 nm is 10 dB. / M or less is preferable.
  • the product R pack ⁇ R eff of the effective core filling rate R pack and the core arrangeable region ratio R eff is preferably about 1/8 or more.
  • the number of spatial modes guided without being effectively cut off in each of the plurality of core portions is 1530 nm to 1550 nm. It is constant in the wavelength band, the predetermined wavelength is 1550 nm, and ⁇ n at the predetermined wavelength may be about 5.3 ⁇ 10 ⁇ 9 / km to about 1.7 ⁇ 10 ⁇ 5 / km.
  • a spatial mode in which the light is effectively guided without being cut off in at least one of the plurality of core portions is 1530 nm to 1550 nm. It is constant in the wavelength band, the predetermined wavelength is 1550 nm, and ⁇ n at the predetermined wavelength may be about 5.3 ⁇ 10 ⁇ 9 / km to about 1.7 ⁇ 10 ⁇ 5 / km.
  • the number is constant in the wavelength range of 1530 nm to 1565 nm, the predetermined wavelength is 1565 nm, and the ⁇ n at the predetermined wavelength is about 1.5 ⁇ 10 ⁇ 8 / km to about 1.7 ⁇ 10 ⁇ 5 / km. Furthermore, as a nineteenth aspect applicable to at least any one of the first to sixteenth aspects, a space that guides without effectively cutting off at least one of the plurality of core portions.
  • the number of modes is constant in the wavelength range of 1530 nm to 1625 nm, the predetermined wavelength is 1625 nm, and the ⁇ n at the predetermined wavelength is about 9.7 ⁇ 10 ⁇ 8 / km to about 1.7 ⁇ 10 ⁇ . It may be 5 / km.
  • the outer diameter of the cladding is not less than about 125 ⁇ m and not more than about 225 ⁇ m, and the thickness of the coating is not more than about 42.5 ⁇ m. It may be.
  • the multi-core optical fiber cable according to the present embodiment may have a structure in which the multi-core optical fiber according to at least one of the first to twentieth aspects as described above is incorporated.
  • the multi-core optical fiber cables according to the twenty-second to twenty-fourth include a plurality of multi-core optical fibers and integrally cover the plurality of built-in multi-core optical fibers. And a tensile strength body extending along the central axis of the multi-core optical fiber cable.
  • Each of the built-in multicore optical fibers has the same structure as the multicore optical fiber according to at least one of the first to twentieth aspects as described above.
  • each of the plurality of multi-core optical fibers includes a plurality of core portions extending along a predetermined axis, a clad that integrally covers each of the plurality of core portions, And a coating provided on the outer peripheral surface, and each of the plurality of core portions enables single mode transmission at a predetermined wavelength.
  • the transmission loss of the predetermined core part n having the largest crosstalk from the other cores among the plurality of core parts, and the transmission loss at a predetermined wavelength.
  • the nonlinear refractive index of the core n at a predetermined wavelength is n 2, kn [m 2 / W], and the effective area of the core n at a predetermined wavelength is A eff, kn [ ⁇ m 2 ], the chromatic dispersion of the core part n at a predetermined wavelength, D kn [ps / (nm ⁇ km)], and the sum of the power coupling coefficients from all other core parts to the predetermined core part n at the predetermined wavelength ⁇ n [/ km], the number of cores included in the k-th multi-core optical fiber is N core, k, and the cross-sectional area of the entire multi-core optical fiber cable orthogonal to the central axis is A cab
  • the multi-core optical fiber cable according to the twenty-second aspect is represented by the following formula (8): It is preferable to satisfy.
  • each of the plurality of multi-core optical fibers includes a plurality of core portions extending along a predetermined axis, a clad that integrally covers the plurality of core portions, And a coating provided on the outer peripheral surface, and each of the plurality of core portions enables single mode transmission at a predetermined wavelength.
  • the transmission loss of the n-th core portion among the plurality of core portions and the transmission loss at a predetermined wavelength is expressed as ⁇ dB, kn [dB / km].
  • the nonlinear refractive index of the n-th core part at a predetermined wavelength is n 2, kn [m 2 / W], the effective cross-sectional area of the n-th core part at a predetermined wavelength is A eff, kn [ ⁇ m 2 ], The wavelength dispersion of the n-th core part at a wavelength of D kn [ps / (nm ⁇ km)], and the power coupling coefficient from all the other core parts to the n-th core part among the plurality of core parts at a predetermined wavelength the sum of the ⁇ kn [/ km], further, the cross-sectional area of the entire multi-core optical fiber cable that is perpendicular to the central axis when the a coat, multi-core optical fiber cable according to the 23rd aspect of the following formula 9): It is preferable to satisfy.
  • each of the plurality of multicore optical fibers includes a plurality of core portions extending along a predetermined axis, a clad that integrally covers the plurality of core portions, and an outer peripheral surface of the clad.
  • a spatial mode transmission loss that is not guided at a transmission loss of 1 dB / km or less at a predetermined wavelength, and the transmission loss at the predetermined wavelength is 0.9 dB / m or more.
  • the m-th wave guided with a transmission loss of 1 dB / km or less at a predetermined wavelength among the spatial modes in the n-th core portion among the plurality of core portions Is the transmission loss of the spatial mode of the antenna, the transmission loss at a predetermined wavelength being ⁇ dB, km [dB / km], and the nonlinear refractive index of the m-th spatial mode at the n-th core part, which is the nonlinear refraction at the predetermined wavelength.
  • the rate is n 2, kmm [m 2 / W], the effective area of the m-th spatial mode in the n-th core part, and the effective area at a predetermined wavelength is A eff, km [ ⁇ m 2 ], n-th
  • the chromatic dispersion of the m-th spatial mode in the core portion of the core, and the chromatic dispersion at a predetermined wavelength is D kmm [ps / (nm ⁇ km)],
  • the sum of the power coupling coefficients from all the core parts to the n-th core part is ⁇ kn [/ km] and the cross-sectional area of the entire multi-core optical fiber cable orthogonal to the central axis is A cable
  • the multi-core optical fiber cable according to the aspect of 24 has the following mathematical formula (10): It is preferable to satisfy.
  • the predetermined wavelength is any of 1.26 ⁇ m to 1.65 ⁇ m.
  • Each of the plurality of core portions is made of silica glass, and the nonlinear refractive index n 2 of each of the plurality of core portions at a predetermined wavelength is 2 ⁇ 10 ⁇ 20 to 3 ⁇ 10 ⁇ 20 [m 2 / W It is preferable that As a twenty-sixth aspect applicable to the twenty-fifth aspect, GeO 2 may be added to each of the plurality of core portions, and in this case, the nonlinear refractive index n 2 is about 2.3 ⁇ 10 ⁇ 20.
  • [M 2 / W] is preferable.
  • GeO 2 may not be added to each of the plurality of core portions, and in this case, the nonlinear refractive index n 2 is about 2.2 ⁇ 10 It is preferably ⁇ 20 [m 2 / W].
  • the multi-core optical fiber transmission system As a twenty-eighth aspect, in the multi-core optical fiber transmission system according to the present embodiment, as a transmission path, the multi-core optical fiber according to at least one of the first to twentieth aspects, or the twenty-first to twenty-first aspects.
  • a multi-core optical fiber cable according to at least one of the 27 aspects is provided, and signals are transmitted by spatial multiplexing.
  • the multi-core optical fiber transmission system may include an optical amplification repeater.
  • the optical amplification repeater amplifies light attenuated by propagating through a multi-core optical fiber or a multi-core optical fiber cable on a transmission line.
  • the mode field diameter of any one of a plurality of core portions in any multicore optical fiber included in the multicore optical fiber or the multicore optical fiber cable, and the mode field of the core of the optical amplifying repeater is preferably 1 ⁇ m or less in order to avoid an unnecessary increase in transmission loss.
  • a multi-core optical fiber, a multi-core optical fiber cable, and a multi-core optical fiber transmission system with improved frequency utilization efficiency per unit cross-sectional area can be obtained.
  • SSE lim, max, MCF / SSE lim, SMF in each case of 80 km, 160 km, 320 km, 640 km, 1280 km, 3200 km, 6400 km, 12000 km, and bending loss when the bending radius is 7.5 mm at a wavelength of 1550 nm. It is a figure which shows the relationship.
  • L is 80 km, 160 km, 320 km, 640 km, 1280 km, 3200 km, 6400 km, 12000 km, SSE lim, max, MCF / SSE lim, SMF in each case, and bending loss when the bending radius is 5 mm at a wavelength of 1550 nm It is a figure explaining a relationship.
  • the multi-core optical fiber according to the present embodiment has improved frequency utilization efficiency per unit cross-sectional area of the fiber.
  • the core is 1
  • the limit of frequency utilization efficiency SE (Spectral Efficiency) can be obtained from the Shannon limit, and is expressed by the following formula (11).
  • SNR signal-to-noise ratio
  • OSNR optical signal-to-noise ratio
  • B ref indicates an OSNR reference band
  • R S indicates a symbol rate.
  • the reference band is generally 12.48 GHz (0.1 nm near a wavelength of 1550 nm).
  • SNR the signal and noise bands are equal, but in OSNR, the noise band is defined by the reference band.
  • Equation (13) The relationship between SE and OSNR per polarization when there is polarization multiplexing is expressed by Equation (13).
  • a signal is transmitted by Nyquist WDM (wavelength division multiplexing) using a transmission path composed only of a single mode optical fiber without dispersion compensation and an erbium-doped optical fiber amplifier (EDFA).
  • EDFA erbium-doped optical fiber amplifier
  • the relationship between the OSNR and the input power P TX, ch of the signal light can be expressed by the following formulas (14) to (16) based on the description in Reference Document 2.
  • P ASE is ASE noise caused by EDFA
  • P NLI is non-linear interference noise.
  • N S is the number of spans
  • G is EDFA gain
  • F is the EDFA NF (Noise Figure: Noise Figure)
  • h Planck's constant
  • [nu is the optical frequency
  • B n B ref
  • ⁇ 2 is the chromatic dispersion
  • R S is Symbol rate.
  • is a nonlinear index of the fiber expressed as n 2 ⁇ / (cA eff ) using the light velocity c, the angular frequency ⁇ of the light, and the nonlinear refractive index n 2 .
  • G and L eff satisfy the following expressions (17) and (18).
  • is a transmission loss
  • L S is a span length.
  • Equation (21) when P TX, ch for taking the maximum value of SNR is derived from Equation (21), it can be seen that the maximum value is obtained in Equation (24), and the maximum value SNR max at that time is expressed by Equation (25). As shown in.
  • Equation (32) the above equation (29) can be expressed in the form of the following equation (30).
  • this numerical formula (30) has a different form from the numerical formula (21)
  • P TX, ch taking the maximum value is the same as the numerical formula (24).
  • the maximum value is expressed by Equation (31)
  • SE lim per polarization is expressed by Equation (32).
  • the power coupling coefficient between the central core and the outer core is ⁇
  • the fiber length is L
  • only the central core the ratio of the optical power at the outer peripheral core to the optical power at the central core when light is incident is assumed to be a value represented by the following formula (33).
  • P signal is defined in such a way that the light once incident on the central core and once coupled to the outer core includes the intensity of the light coupled to the central core again. If is large, it may be an inaccurate value. Therefore, this point can be an error factor in the equations (31) and (32).
  • Equation (40) The difference between the equation (32) and the equation (40) can be ignored when the crosstalk is sufficiently small (for example, ⁇ 20 dB or less), but when the crosstalk is large, the equation (40) Since it is considered that the equation more accurately considers the influence of crosstalk, SE lim per polarization is calculated and examined below using Equation (40).
  • the transmission loss in the multi-core optical fiber is preferably at least equal to or lower than that of a general-purpose single mode optical fiber, that is, 0.195 dB / km or less at a wavelength of 1550 nm, from the viewpoint of improving SE lim. From the viewpoint of improving SE lim, it is more preferable that the fiber is equal to or less than the fiber, that is, less than 0.180 dB / km at a wavelength of 1550 nm. It is more preferable from the viewpoint of improving SElim.
  • the chromatic dispersion D in the multi-core optical fiber is preferably at least equal to or greater than that of a general-purpose single mode optical fiber, that is, 17 ps / (nm ⁇ km) or more at a wavelength of 1550 nm from the viewpoint of improving SE lim. From the standpoint of improving SE lim, it is more than equal to the cutoff wavelength shift fiber for capacity transmission, that is, 20 ps / (nm ⁇ km) or more at a wavelength of 1550 nm.
  • the total SE lim per unit cross-sectional area (space / frequency utilization efficiency limit SSE lim ) is calculated.
  • the power coupling coefficient ⁇ between two specific cores incorporated in the multi-core optical fiber is set such that the mode coupling coefficient between the two cores is ⁇ , the propagation constant of each of the two cores is ⁇ , The distance is ⁇ , the average bend radius between fibers is R, and is calculated from the following equation (41).
  • the power coupling coefficient ⁇ of a general multicore optical fiber is And can be expressed as the following mathematical formula (42).
  • S ff is the power spectrum of the phase modulation component in the longitudinal direction of the fiber caused by perturbation that changes in the longitudinal direction of the fiber such as fiber bending, twisting and structural variation
  • ⁇ m, n is the propagation constant between the cores. It is a difference, and S ff ( ⁇ m, n ) represents the degree of occurrence of phase matching between cores.
  • Equation (42) When comparing Equation (41) and Equation (42), S ff ( ⁇ m, n ) in Equation (42) corresponds to (2 / ⁇ ) ⁇ (R / ⁇ ) in Equation (41).
  • the relationship expressed by the following formula (43) is established.
  • the power coupling coefficient can be expressed by a simple formula shown in Formula (45) by introducing an equivalent bend radius R 0 that satisfies the relationship shown in Formula (44) without being limited to the homogeneous core type multi-core optical fiber. .
  • R 0 In the state where the multi-core optical fiber is laid, R 0 is considered to be about 0.3 to 3 m. Therefore, it is considered that the power coupling coefficient ⁇ is obtained by substituting any value selected from the range of 0.3 to 3 as R 0 in the above equation (45).
  • FIG. 1 shows the dependence of SE lim on A eff and the shortest core interval ⁇ .
  • FIG. 1 shows that SE lim changes rapidly by changing the shortest core interval ⁇ . This change is due to a change in crosstalk. It can also be seen that when A eff increases, the shortest core interval ⁇ needs to be increased in order to suppress the influence of crosstalk, and at this time, the maximum value of SE lim also increases.
  • the exclusive cross-sectional area per core (the area of the region surrounded by the broken line centering on one core in FIG. 2) is (3 1/2 / 2) ⁇ 2 using the core interval ⁇ .
  • the space / frequency efficiency limit SSE lim is a value represented by the equation (46).
  • FIG. 3 shows the result of normalization by SSE lim (SSE lim, SMF ) with no crosstalk and using a fiber coating diameter of 250 ⁇ m as the core interval ⁇ . According to FIG. 3, a small region of the A eff, SSE lim, SMF with standardized SSE lim, MCF since exhibits a peak, SSE lim of the multi-core optical fiber A small A eff, MCF can be maximized I understand that.
  • FIG. 4 shows a cross-sectional structure of a multi-core optical fiber for considering SSE in a practical multi-core optical fiber.
  • FIG. 4 shows an example in which one core is arranged at the center and six cores are arranged on the circumference centering on the core. As shown in FIG.
  • a general multi-core optical fiber has a clad having a radius r clad from the center, and the periphery thereof is covered with a coating having a thickness d coat .
  • the radius of the multi-core optical fiber as a whole becomes r coat .
  • a clad having a predetermined clad thickness d clad is also formed outside the outermost core.
  • the SE lim per core of the multi-core optical fiber when the conditions such as the wavelength, NF of the EDFA, total signal bandwidth B O , and span length are aligned with the calculation conditions of the single-core fiber are as follows. Substituting it into the formula (40) and rearranging it and doubling it can be obtained as the following formula (49).
  • the unit of each parameter is ⁇ [/ km], L [km], ⁇ dB [dB / km], n 2 [m 2 / W], A eff [ ⁇ m 2 ], chromatic dispersion D [ps]. / (Nm ⁇ km)].
  • the relationship of the following formula (51) is established between ⁇ 2 [ps 2 / km] and D [ps / (nm ⁇ km)] (c is in a vacuum) (The speed of light [m / s], and the unit of wavelength ⁇ in this equation is nm).
  • the SSE lim of the multi-core optical fiber in this case can be expressed as the following formula (52) using the number of cores N core .
  • the SSE lim SSE lim of the multi-core optical fiber according to references 6, and MCF_A, SSE lim shows a value obtained by taking the ratio of the SMF, a graph plotting the relationship between L in FIG.
  • SSE lim and MCF_A are slightly less than 7 times SSE lim and SMF .
  • MCF_A In order for SSE lim, MCF_A to be N times times or more of SSE lim, SMF , the following formula (53) must be satisfied.
  • N times is preferably 7 or more, It is more desirably 10 or more, further desirably 15 or more, and further desirably 20 or more.
  • Equation (54) is obtained.
  • 6 ⁇ is from six adjacent cores to a certain core portion n (nth core portion) when the core arrangement is a hexagonal lattice. since corresponding to the total cross-talk ⁇ n of, it has replaced the 6 ⁇ in ⁇ n.
  • Equation (55) is ⁇ dB , D, n 2 , A eff in the core part n, respectively.
  • SNR in the core part n the fractional term in the logarithm with 2 in Equation (54)
  • Equation (55) can be rewritten.
  • the natural logarithm portion in the equation (55) has a small dependence on ⁇ dB and D, it can be approximated by considering it as a substantially constant, so that the equation (56) can be further obtained.
  • N times is preferably 7 or more, more preferably 10 or more, and further preferably 15 or more. More preferably, it is 20 or more.
  • any one of the mathematical expressions (54) to (56) is satisfied.
  • the multi-core fiber it is preferable that all the core portions have the same structure, and it is preferable that each core portion operates in a single mode.
  • a multi-core fiber satisfying Equation (55) or Equation (56) is obtained on the assumption that the SNR (fractional term in the logarithm with 2 in Equation (54)) in the core part n is sufficiently large (100 or more). Therefore, it is desirable that at least 80 ⁇ n ⁇ 0.01.
  • the transmission loss of the n-th core part is expressed as ⁇ dB, n [dB / km], nonlinear refraction.
  • the rate is n 2, n [m 2 / W], the effective area is A eff, n [ ⁇ m 2 ], the chromatic dispersion is D n [ps / (nm ⁇ km)], and the other to the n-th core part
  • N times is 7 or more in Equations (57) to (59) instead of Equations (54) to (56)
  • it is 10 or more, more preferably 15 or more, and further preferably 20 or more.
  • the fractional term in the logarithm with the base 2 of the formula (57) is sufficiently large as in the formula (55) and the formula (56) (100 In view of the above assumption, it is desirable that at least 80 ⁇ n ⁇ 0.01.
  • the transmission loss of the m-th spatial mode of the n-th core part is ⁇ dB, nm [dB / km], and the nonlinear refractive index is n 2, nm [m 2 / W], effective area A eff, nm [ ⁇ m 2 ], chromatic dispersion D nm [ps / (nm ⁇ km)], all other to the n th core
  • the sum of the power coupling coefficients from the core part (that is, the sum of the power coupling coefficients from “all the spatial modes of all other core parts” to “all the spatial modes of the nth core part”) is expressed as ⁇
  • the multi-core fiber satisfying the formula (61) or the formula (62) has a sufficiently large fractional term in the logarithm with the base 2 of the formula (60) as in the case of the formula (55) and the formula (56) (100 It is desirable that at least 80 ⁇ n ⁇ 0.01 based on the assumption obtained under the above assumption.
  • the spatial mode that is the object of calculation in Equations (60) to (62) is a spatial mode that is guided without being effectively cut off, and has a transmission loss of 1 dB / km, for example.
  • the following spatial modes are preferred.
  • the spatial mode in which the transmission loss exceeds 1 dB / km is desirably cut off at least 0.9 dB / m in order to be sufficiently cut off.
  • crosstalk between spatial modes in the same core part can be compensated by signal processing.
  • the signal processing method may be a method of numerically calculating a digitized signal, or a method of performing an electrical or optical analog signal using an analog electrical signal processing circuit or an optical signal processing circuit.
  • FIG. 6 shows a relationship between “values normalized by max and MCF ”.
  • SSE lim and MCF at each A eff are normalized so that the maximum value in the direction of the horizontal axis (axis of core interval ⁇ ) in FIG.
  • 6 ⁇ N S L S when A eff is in the range of about 30 to about 270, 6 ⁇ N S L S needs to be about 1 ⁇ 10 ⁇ 2 in order to maximize SSE lim and MCF. I understand that. Furthermore, in order to make SSE lim and MCF 90% or more of the maximum value, 6 ⁇ N S L S needs to be about 4 ⁇ 10 ⁇ 4 to about 3 ⁇ 10 ⁇ 2 , and more than 80% 6 ⁇ N S L S needs to be about 2 ⁇ 10 ⁇ 5 to about 1 ⁇ 10 ⁇ 1 to keep it in the range, and to keep it in the range of 60% or more, 6 ⁇ N S L S becomes about 1 ⁇ 10 should -8 is about 2 ⁇ 10 -1.
  • 6 ⁇ N S L S is approximately 1 ⁇ 10 -8 to about 2 ⁇ 10 -1
  • 6 ⁇ N S L S is preferably about 2 ⁇ 10 ⁇ 5 to about 1 ⁇ 10 ⁇ 1 and more preferably 6 ⁇ N S L S is about 4 ⁇ 10 ⁇ 4 to about 3 ⁇ 10 ⁇ 2 . It is more preferable.
  • N S L S 3200km
  • N S L be changed S SSE lim, MCF / SSE lim , max, MCF and 6ItaN S L relationship between S is approximately the value of A eff Do not depend.
  • the preferable range of 6 ⁇ N S L S in which SSE lim, MCF / SSE lim, max, MCF becomes large varies.
  • FIG. 7 shows that “N S L S ” and “SSE lim, MCF / SSE lim, max, MCF are 6 ⁇ N S L S that maximizes, and SSE lim, MCF / SSE lim, max, MCF maintain a certain value or more.
  • N S L S and “SSE lim, MCF / SSE lim, max, MCF are the maximum ⁇ , and SSE lim, MCF / SSE lim, max, MCF maintain a certain value or more.
  • the relationship between the upper limit and the lower limit of ⁇ to be performed is shown.
  • the N S 1 region, the range of preferred ⁇ is almost constant in the range where N S is increased, is seen going to shift towards the preferred range of ⁇ with increasing N S is small.
  • is about 3.6 ⁇ 10 ⁇ 9 / km to about 2.3 ⁇ 10 ⁇ 6 / km ( That is, ⁇ n is preferably about 2.2 ⁇ 10 ⁇ 8 / km to about 1.4 ⁇ 10 ⁇ 5 / km). Further, in order to maintain SSE lim, MCF / SSE lim, max, MCF at 0.9 or more, ⁇ is about 1.4 ⁇ 10 ⁇ 8 / km to about 1.7 ⁇ 10 ⁇ 6 / km (ie, ⁇ n is preferably about 8.3 ⁇ 10 ⁇ 8 / km to about 1.0 ⁇ 10 ⁇ 5 / km).
  • is about 5.3 ⁇ 10 ⁇ 8 / km to about 1.1 ⁇ 10 ⁇ 6 / km (ie, ⁇ n is preferably about 3.2 ⁇ 10 ⁇ 7 / km to about 6.6 ⁇ 10 ⁇ 6 / km).
  • Fig. 4 (a) in Reference 6 shows an example of the wavelength dependence of the crosstalk of an actual multi-core optical fiber. Since the wavelength dependence of crosstalk is equal to the wavelength dependence of ⁇ , it can be seen that the wavelength dependence of ⁇ of an actual multicore optical fiber can take a value of approximately 10/75 [dB / nm]. Considering the wavelength dependence of ⁇ , ⁇ changes about 4.67 dB (about 2.93 times) in the C band 1530 nm to 1565 nm, and ⁇ is about 12.67 dB in the C + L band 1530 nm to 1625 nm.
  • the value is about 1 / 18.5
  • the S + C + L band is used, the value is about 1/158.
  • ⁇ at the wavelength is about 2.6 ⁇ 10 ⁇ 9 / km or more (that is, ⁇ n is about 1.5 ⁇ 10 ⁇ 8 / km or more), and SSE lim, MCF over the entire wavelength band used.
  • ⁇ at the first wavelength is further about 1.1 ⁇ 10 ⁇ 8 / km or more (ie, ⁇ n is about 6.4 ⁇ 10 ⁇ 8 / km or more), and in order to maintain SSE lim, MCF / SSE lim, max, MCF at 0.9 or more over the entire wavelength band used, ⁇ at the first wavelength is further increased.
  • ⁇ n Is preferably about 2.4 ⁇ 10 -7 / km or more
  • ⁇ at a wavelength is about 1.6 ⁇ 10 ⁇ 8 / km or more (that is, ⁇ n is about 9.7 ⁇ 10 ⁇ 8 / km or more), and SSE lim, MCF over the entire wavelength band used.
  • ⁇ at the first wavelength is further about 6.7 ⁇ 10 ⁇ 8 / km or more (ie, ⁇ n is about 4.0 ⁇ 10 ⁇ 7 / km or more), and in order to maintain SSE lim, MCF / SSE lim, max, MCF at 0.9 or more in the entire used wavelength band, ⁇ at the first wavelength is further increased.
  • the ⁇ is about 9.7 ⁇ 10 ⁇ 7 / km or more (that is, ⁇ n is about 5.8 ⁇ 10 ⁇ 6 / km or more).
  • ⁇ at the wavelength is further about 1.4 ⁇ 10 ⁇ 7 / km or more (that is, ⁇ n is about 8.3 ⁇ 10 ⁇ 7 / km or more), and SSE lim, MCF over the entire wavelength band used.
  • ⁇ at the first wavelength is further about 5.8 ⁇ 10 ⁇ 7 / km or more (ie, ⁇ n is about 3.5 ⁇ ). 10 ⁇ 6 / km or more).
  • FIG. 9 shows the relationship between SSE lim, max, MCF / SSE lim, SMF and A eff when L is 80 km, 160 km, 320 km, 640 km, 1280 km, 3200 km, 6400 km, 12000 km.
  • SSE lim, SMF as described above, a A eff is 80 [mu] m 2, no crosstalk is SSE lim single-core optical fiber core spacing ⁇ is assumed to be 250 ⁇ m fiber coating diameter. From FIG. 9, it can be seen that at least in the range shown in FIG. 9, SSE lim, max, MCF increases as A eff decreases. It can also be seen that the relationship between SSE lim, max, MCF / SSE lim, SMF and A eff does not change greatly even if L changes.
  • each individual value that is not the ratio of SSE lim, max, MCF and SSE lim, SMF varies greatly according to L.
  • SSE lim, max, MCF / SSE lim, SMF can be set to 30 or more
  • a eff 9 shows that SSE lim, max, MCF / SSE lim, SMF can be made 40 or more if is about 50 ⁇ m 2 or less.
  • a eff in the first wavelength it is preferably 87 .mu.m 2 or less, still more preferably 50 [mu] m 2 or less.
  • FIGS. SSE lim, SMF the relationship between SSE lim, max, MCF / SSE lim, SMF and bending loss is shown in FIGS. SSE lim, SMF, as described above, a A eff is 80 [mu] m 2, no crosstalk is SSE lim single-core optical fiber core spacing ⁇ is assumed to be 250 ⁇ m fiber coating diameter. 10 and 11 that the SSE lim, max, MCF increases as the bending loss of each core of the multi-core optical fiber decreases . This is because the small bending loss means that the light is strongly confined in the core, that is, the desired crosstalk can be realized with a shorter core interval.
  • FIGS. 12A and 12B show the relationship between SSE lim, max, MCF / SSE lim, SMF and A eff when the standard deviation of the axis deviation amount is any of 0 to 1 ⁇ m.
  • the numerical value in the legend is the standard deviation [ ⁇ m] of the axis deviation.
  • FIG. 13 shows the relationship between SSE lim, max, MCF / SSE lim, SMF and A eff in this case.
  • SSE lim, max, MCF / SSE lim, SMF becomes small if A eff is small. Therefore, in order to avoid a significant decrease in SSE lim, max, MCF / SSE lim, SMF
  • a eff is about 50 ⁇ m 2 or more.
  • MFD of the EDFA is of a (approximately 10 [mu] m 2 intensity to 50 [mu] m 2 little over A eff) 4 to 8 ⁇ m at the wavelength 1550nm is common.
  • a eff is increased in a 1-core transmission fiber to reduce nonlinear noise. Therefore, there is a large MFD mismatch between the EDFA and the 1-core transmission fiber.
  • the dopant in the glass is diffused by the heat treatment, and a process (TEC (Thermal Expanded Core) process) is performed so that the change in the refractive index distribution between the EDFA and the one-core transmission fiber becomes gradual.
  • TEC Thermal Expanded Core
  • the TEC process takes a certain processing time.
  • the MFD of the multi-core optical fiber according to this embodiment is desirably 4 to 8 ⁇ m at the wavelength of 1550 nm. Even when the TEC process is performed, the connection loss can be reduced when the difference in MFD between the EDFA and the multi-core optical fiber is small.
  • the cable cutoff wavelength of the core is 1530 nm or less
  • the power coupling coefficient at the wavelength of 1565 nm is ⁇
  • is about 2.6 ⁇ 10 ⁇ 9 / km.
  • ⁇ n is about 1.5 ⁇ 10 ⁇ 8 / km to about 1.7 ⁇ 10 ⁇ 5 / km.
  • the total frequency utilization efficiency per area is improved, and it is particularly effectively used for transmission in the C band having a wavelength of 1530 nm to 1565 nm.
  • the C band is a band with a particularly low transmission loss, and noise due to optical amplification can be reduced.
  • Each of the cores has a cable cutoff wavelength of 1530 nm or less, and a power coupling coefficient at a wavelength of 1625 nm is ⁇ , and ⁇ is about 1.6 ⁇ 10 ⁇ 8 / km to about 2.9 ⁇ 10 ⁇ 6 / km (ie, ⁇ n is about 9.7 ⁇ 10 ⁇ 8 / km to about 1.7 ⁇ 10 ⁇ 5 / km), the total frequency utilization efficiency per unit cross-sectional area of the multi-core optical fiber is improved. Effectively used for C + L band transmission of ⁇ 1625 nm.
  • the C + L band is also a band with low transmission loss and noise due to optical amplification can be reduced, it is easy to improve the signal-to-noise ratio of each core of the multi-core optical fiber and improve the space / frequency utilization efficiency. Further, by limiting the wavelength band to be used in the range of C + L band, the change in ⁇ due to the change in wavelength can be suppressed to be small, and the space / frequency utilization efficiency can be maintained high in all or most of the wavelength band used.
  • the frequency utilization efficiency per unit cross-sectional area of the fiber can be improved even with a short core interval. This is because it is possible to increase the confinement of light in the core by increasing the cable cut-off wavelength, so that a desired crosstalk can be realized with a shorter ⁇ .
  • the S band having a wavelength of 1460 nm to 1530 nm can also be used as the transmission band.
  • the cable cutoff wavelength of the core is 1360 nm or more, more preferably 1390 nm or more, the cable cutoff wavelength can be increased within a range that satisfies 1460 nm or less.
  • the frequency utilization efficiency per unit cross-sectional area can be improved.
  • is about 1.4 ⁇ 10 ⁇ 7 / km to about 2.9 ⁇ 10 ⁇ 6 / km (that is, ⁇ n is about 8.3 ⁇ 10 ⁇ 7 / km to about 1.7 ⁇ 10 ⁇ 5 / km).
  • the multi-core optical fiber of the above can be A eff of the core at the first wavelength, each can be a manner is 87 .mu.m 2 or less, and further 50 [mu] m 2 or less is manner.
  • the core A at the first wavelength is used. It is preferable that eff is 50 ⁇ m 2 or more.
  • it in order to further improve the frequency utilization efficiency per unit cross-sectional area of the fiber, it may further include a depressed layer having a refractive index lower than that of the clad between the core and the clad. preferable.
  • a trench layer having a refractive index lower than that of the cladding is further provided between the core and the cladding.
  • the smaller the d coat and d clad can reduce the cross-sectional area of the multi-core optical fiber and improve the SSE lim of the multi-core optical fiber. it can.
  • the coating has a higher refractive index than the cladding in order to suppress the propagation of the cladding mode. Therefore, if d clad is too thin, the light propagating through the outermost core leaks to the coating. As a result, the transmission loss of the outermost core increases, so that an appropriate size of d clad is required according to the core design.
  • the increase in transmission loss of the outermost core can be suppressed even with a smaller d clad . From this point as well, it is desirable that ⁇ cc is long, and bending loss and A eff is preferably as small as possible.
  • the 2r clad of the multi-core optical fiber is preferably 125 ⁇ m or more and 225 ⁇ m or less, more preferably 150 ⁇ m or more and 225 ⁇ m or less, further preferably 175 ⁇ m or more and 225 ⁇ m or less, and 200 ⁇ m or more and 225 ⁇ m or less. More preferably.
  • the value of Expression (47) is a value that varies depending on d coat .
  • d coat is 62.5 ⁇ m, but there is room for thinning d coat .
  • a single mode optical fiber having a 2r coat of 200 ⁇ m and a 2r clad of 125 ⁇ m has already been proposed for the purpose of reducing the cable diameter.
  • the d coat is 37.5 ⁇ m.
  • the adverse effect on the fiber due to the thin d coat is that when the fiber is given a microbend , the thinner the d coat , the more microbends that are generated in the glass part of the fiber (from the clad to the inside). It is easy to increase loss. However, it is known that when the cladding diameter is increased, the microbend generated in the glass portion of the fiber is reduced. Therefore, especially in a multi-core optical fiber having a cladding diameter larger than 125 ⁇ m, d coat is preferably 37.5 ⁇ m or less, and d coat is 42.5 ⁇ m or less even if the manufacturing variation of 2r coat is considered to be ⁇ 10 ⁇ m. Is desirable. In the following calculation, first, in order to discuss the performance of the inner part (bare fiber) from the clad of the multi-core optical fiber, the d coat is fixed to 37.5 ⁇ m and examined.
  • Equation (40) assumes that the cores are arranged in a triangular lattice shape and assumes that there are six adjacent cores for all the cores, but in the case of the multi-core optical fiber shown in FIG. The number of cores adjacent to the outermost peripheral core is three. Therefore, strictly speaking, the condition relating to the core of the optical fiber is different from the formula (40).
  • the effect on SE lim due to the change in the number of adjacent cores from 6 to 3 is due to crosstalk in the direction in which the core interval ⁇ is slightly shorter by 1 ⁇ m when A eff is 80 ⁇ m 2 as shown in FIG. Since it is confirmed that the change position of SE lim is shifted, and there is no significant influence on the overall trend of the results, examination was performed using Equation (40) for the sake of simplicity.
  • Triangular lattice 1 A core arrangement in which a core is arranged at the center of an optical fiber and the core is increased by one layer on the outer periphery.
  • Triangular lattice 2 A core arrangement (see FIG. 15B) in which the center of the optical fiber is the midpoint of the innermost three cores and the core is increased by one layer on the outer periphery, and the core of “triangular lattice 1” Of the placements, the one that can place more cores is selected.
  • Triangular lattice 1 A core arrangement in which a core is arranged at the center of an optical fiber and the core is increased by one layer on the outer periphery.
  • Triangular lattice 2 A core arrangement (see FIG. 15B) in which the center of the optical fiber is the midpoint of the innermost three cores and the core is increased by one layer on the outer periphery, and the core of “triangular lattice 1” Of the placements, the one that can place more cores is
  • FIG. 16 shows the relationship between r om, max / ⁇ and the number of cores N core for each of the above cases 1) to 3).
  • the relationship of FIG. 16, in the case of "triangular lattice 1" above, the core layer number When n layer, a central one core when the n layer 1 on the basis of FIG. 15 (A), the following formula (65) and Equation (66) hold.
  • N core in the case of “triangular lattice 2” is It can be calculated as the larger one of Equation (66) and Equation (68).
  • the maximum radius r pack, max that can be filled with respect to the number of circles in Reference Document 8 when a circle of equal radius is filled in the unit circle is “ "radius”.
  • the relationship of the following mathematical formula (69) is established between r pack, max and r om, max and ⁇ .
  • the problem of how to arrange the cores on the cross section of the multi-core optical fiber is the problem of how many circles with the radius r pack, max represented by Equation (69) can be filled in the unit circle. In other words.
  • d clad 35 ⁇ m.
  • r om, max 77.5 ⁇ m.
  • FIG. 17 is a diagram showing the result of the core arrangement of “triangular lattice 1”
  • FIG. 18 is a diagram showing the result of the core arrangement of “triangular lattice 2”
  • FIG. 20 is a diagram showing the relationship between the core interval ⁇ and the number of cores under the above three conditions. According to these figures, it was found that the overall tendency is similar even if the core arrangement pattern is different, and that SSE lim increases when A eff is reduced and ⁇ is also reduced. This is the same as the case where the core is ideally arranged. The reason for this tendency is that if A eff is reduced, ⁇ can be reduced and the number of cores can be increased without being affected by crosstalk.
  • the dependency on A eff and ⁇ differs depending on the pattern of core arrangement.
  • the core interval ⁇ is 77.5 ⁇ m or less
  • the number of cores that can be filled is 1 to 7
  • the core is about 38.75 ⁇ m or less.
  • the number goes from 7 to 19.
  • it is about 38.75 ⁇ m or less it is clear from FIG. 17 that the influence of crosstalk is large in the calculated range, and the increase in the number of cores does not lead to the increase in SSE lim .
  • the “triangular lattice 2” is more preferable than the “triangular lattice 1” because the number of cores can be increased efficiently even if the amount of decrease in ⁇ is small, and the SSE lim is improved. It was found that the number of cores can be increased efficiently in the case of “maximum filling within a known range” than in the case of the above, even if the amount of decrease in ⁇ is small, which is further preferable for improving the SSE lim .
  • the problem of how to arrange the cores on the cross section of the multi-core optical fiber is that how many circles with the radius r pack, max represented by the equation (69) can be filled in the unit circle. In other words.
  • N core ⁇ r pack, max 2 in the case of the core arrangements of “triangular lattice 1”, “triangular lattice 2”, and “most filled in a known range”.
  • the relationship is shown in FIG. 21 and FIG.
  • N core ⁇ r pack, max 2 maintains a large value with respect to 1 / r pack, max 2 in a wide range
  • FIG. 21 and FIG. 22 together, N core ⁇ r pack, max 2 always maintains about 0.61 or more when N core is 7 or 8 or more. It turns out that it is preferable.
  • r om, max cannot always be known clearly, and therefore, r pack, max cannot be clearly known. Then, it examines using rom based on actual core arrangement
  • the exclusive cross-sectional area per core (the area of the area surrounded by the broken line centering on one core in FIG. 2) is calculated using the core interval ⁇ . (3 1/2 / 2) ⁇ 2 and expressed.
  • the core fill in the actual fiber so is replaced with filling the circle of radius lambda / 2 in the radius r om + ⁇ / 2 circle, per core at radius r om + ⁇ / 2 within the region
  • the exclusive cross-sectional area is ⁇ (r om + ⁇ / 2) 2 / N core
  • the effective core filling ratio R pack which is the ratio of the ideal cross-sectional area per core in an actual fiber, is given by the following formula: (73).
  • FIG. 23 shows the relationship between N core and R pack in the case of the core arrangements of “triangular lattice 1”, “triangular lattice 2”, and “most filled in a known range”.
  • N core increases discretely, whereas in the case of “maximum filling in a known range”, N core increases almost continuously.
  • R pack ⁇ R eff itself can be higher than that of a known multicore optical fiber (for example, the multicore optical fiber of Reference 6) if it is about 1/8 or more.
  • the core having 7 or more, since R pack is 0.37 or higher at a minimum, in order to at least 1/8 or more R pack ⁇ R eff is R eff is preferably 0.34 or more.
  • R pack is at least 0.42 or more, so in order to make R pack ⁇ R eff at least 1/8 or more, R eff is 0.30 or more. It is preferable.
  • R eff increases as r om increases. That is, it is preferable that 2r clad is large because R eff becomes large.
  • ⁇ R7.5 is in the range of 0.01 dB / m to 100 dB / m and ⁇ R5 is in the range of 0.01 dB / m to 10 dB / m.
  • ⁇ R7.5 is large, it is preferably at most 10 dB / m or less.
  • each of the uncoupled core portions 20 includes a plurality of core portion inner cores 21 adjacent to each other and a core portion inner cladding 210 having a refractive index lower than that of the core portion inner core 21. It has a fine structure.
  • the power coupling coefficient between the adjacent cores 21 in the core is desirably 10 ⁇ 2 / km or more, and is 1 / km or more. More desirable is.
  • the refractive indexes of the core inner clad 210 and the clad 10 may or may not be equal.
  • the multi-core optical fiber 100 ⁇ / b> B is also provided with a coating layer 40 on the outer periphery of the clad 10.
  • the depressed layer is made of a solid having a refractive index lower than that of the clad 10, or the average refractive index thereof is lower than that of the clad 10 in the circumferential direction when viewed from the central axis of the core portion 20.
  • the core portion 20 may be surrounded by a plurality of holes arranged in the clad 10.
  • the trench layer may be made of a solid having a lower refractive index than that of the clad 10 or may be made of a plurality of holes arranged in the clad 10.
  • the multi-core optical fiber 100C shown in FIG. 30 has a structure in which each of the core portions 20 is individually surrounded by the depressed layer 22, and in the multi-core optical fiber 100D shown in FIG. Is provided with a structure surrounded by the inner cladding layer 23 and the trench layer 24.
  • the coating layer 40 is provided on the outer peripheral surface of the clad 10. In this case, the space between the core inner cores 21 can be narrowed, rather than surrounding each of the core inner cores 21 individually with the depressed layer 22 or with the inner cladding layer 23 and the trench layer 24, and the SSE lim is further reduced. Can be improved.
  • the refractive indexes of the core inner clad 210 and the depressed layer 22 or the inner clad layer 23 may or may not be equal.
  • the number of core-in-cores 21 in one core unit 20 is seven, but is not limited to the number of core-in-cores 21 in one core unit 20, but three cores The above is desirable.
  • each core unit 20 guides a plurality of propagation modes
  • the document R. Ryf etal. “Coherent 1200-km 6 x 6 MIMO Mode-Multiplexed Transmission over 3-core Microstructured Fiber,” ECOC2011, paper Th .13.C.1 and references C. Koebele et al., “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb / s with low MIMO-DSP Complexity,” ECOC2011, paper Th.13.C.3
  • the transmission is performed using a transmission system characterized in that a mixed signal among a plurality of propagation modes in the core unit 20 is decoded using a MIMO (Multiple Input Multiple Multiple Output) technique. Is preferred.
  • MIMO Multiple Input Multiple Multiple Output
  • the multi-core optical fiber 100E shown in FIG. 32 has an outer periphery core light leakage having a refractive index lower than that of the clad 10 so as to surround all the core portions 20 together in the vicinity of the outer periphery of the clad 10 surrounding the core portion 20. It is also preferable to provide the prevention layer 30.
  • the covering layer 40 is provided further outside the outer core light leakage prevention layer 30.
  • each part including the core part 20 covered with the clad 10 in addition to the clad 10 is made of silica glass, and the refractive index of each part including the core part 20 is It can be controlled by adjusting the addition amount of the refractive index adjusting agent.
  • a refractive index increasing agent such as GeO 2 or Cl may be added to the core part 20 or the core part inner core 21.
  • a refractive index reducing agent such as F is added to the cladding 10 or the inner cladding 210 without adding GeO 2 or the like to the core 20 or the inner core 21, the relative refractive index of each part. It becomes possible to control the difference.
  • the overall outer diameter of each of the multi-core optical fibers 100A to 100E is given by 2r coat as shown in FIGS.
  • the multi-core optical fiber 100 (100A to 100E) according to the present embodiment as described above can be applied alone to an optical transmission medium of a transmission system, and can also be applied to an optical cable.
  • FIG. 33 is a view showing an example of the multi-core optical fiber cable 200 according to the present embodiment, and has a structure in which four multi-core optical fibers 100 described above are bundled.
  • the multi-core optical fiber cable 200 includes a cable jacket 220 in which four multi-core optical fibers 100 are housed. In the cable jacket 220, four multi-core optical fibers centering on a tension member 210 are provided.
  • the fiber 100 has a bundled structure.
  • FIG. 34 is a diagram illustrating an example of a multi-core optical fiber transmission system 300 according to the present embodiment.
  • the multi-core optical fiber transmission system 300 includes a transmitter 310, a receiver 320, a transmitter 310, and a receiver.
  • 320 includes the multi-core optical fiber 100 (100A to 100E) according to the present embodiment and the multi-core optical fiber cable 200 according to the present embodiment as an optical transmission medium (transmission path) disposed between 320, and further in the transmission path.
  • the optical amplification repeater 330 is arranged.
  • the optical amplification repeater 330 amplifies the light guided through the core in the optical amplification repeater 330.
  • the optical amplification repeater 330 preferably includes an amplification optical fiber 331.
  • the multi-core optical fiber transmission system shown in FIG. 34 transmits signals by spatial multiplexing.
  • signal light of different modulation schemes may be wavelength multiplexed by optimizing the modulation scheme for each wavelength of the signal light.
  • the number of cores per cross-sectional area in existing communication optical fiber cables is at most 2 cores /
  • An optical fiber cable that is a little over mm 2 and has 2.5 cores / mm 2 or more is not known.
  • the number of cores per cross-sectional area of a general-purpose single mode optical fiber that is not cabled is about 20.4 cores / mm 2 , the cable
  • the space / frequency utilization efficiency as a cable deteriorates to about 1/10 of the space / frequency utilization efficiency as an optical fiber.
  • eff is N core, k , ⁇ dB, kn , D kn , n 2, kn , A eff, kn
  • the following formulas (83) to (56) based on formulas (54) to (56)
  • the space / frequency utilization efficiency of the multi-core optical fiber cable satisfying any one of (85) is required to be able to realize a space / frequency utilization efficiency equal to or greater than N times of the space / frequency utilization efficiency of the general-purpose single mode optical fiber.
  • the number of cores per cross-sectional area is 2.5 cores / mm 2 or more.
  • the equations (83) to (85) In a multi-core optical fiber cable that satisfies any one of the above, N times is preferably 2.5 / 20.4 or more, more preferably 5 / 20.4 or more, and 7.5 / 20.4 or more.
  • it is more preferably 10 / 20.4 or more, further preferably 12.5 / 20.4 or more, and 15 / 20.4 or more. More preferably, more preferably it is 17.5 / 20.4 or more, and further preferably 1 or more.
  • ⁇ dB, kn , D kn , n 2, kn , A eff, kn A value can be used as a representative value, or an average value of all core values can be used.
  • the mathematical formula (55) and the mathematical formula (56) in the multicore optical fiber cable in the multicore optical fiber cable satisfying the mathematical formula (84) or the mathematical formula (85), at least 80 ⁇ n ⁇ 0.01 Is desirable.
  • the transmission loss of the n-th core part of the k-th multi-core optical fiber is expressed by ⁇ dB, kn [ dB / km], nonlinear refractive index n 2, kn [m 2 / W], effective area A eff, kn [ ⁇ m 2 ], chromatic dispersion D kn [ps / (nm ⁇ km)], k th
  • Equations (57) to (59) Originally, the space / frequency utilization efficiency of the multi-core optical fiber cable satisfying any of the following formulas (86) to (88) is the space / frequency utilization more than N times of the space / frequency utilization efficiency of the general-purpose single mode optical fiber. Can achieve efficiency Door is required.
  • N times is preferably 2.5 / 20.4 or more, and 5 / 20.4. More preferably, it is more preferably 7.5 / 20.4 or more, further preferably 10 / 20.4 or more, and further preferably 12.5 / 20.4 or more. 15 / 20.4 or more is more desirable, 17.5 / 20.4 or more is more desirable, and 1 or more is more desirable.
  • each core unit preferably operates in a single mode.
  • ⁇ dB, kn , D kn , n 2, kn , A eff, kn are values in a certain multi-core optical fiber. Can be used as a representative value, or an average value of all multi-core optical fibers can be used.
  • the transmission loss of the m-th spatial mode of the n-th core part of the k-th multi-core optical fiber is similarly expressed as ⁇ dB, kmm [dB / km], the nonlinear refractive index is n 2, nm [m 2 / W], the effective area is A eff, km [ ⁇ m 2 ], the wavelength dispersion is D km [ps / (nm ⁇ km)], the k-th multi-core Sum of power coupling coefficients from all other core parts to the nth core part in the optical fiber (ie, “all spatial modes of the nth core part in the kth multicore optical fiber, respectively, (Sum of power coupling coefficients from “all spatial modes of all other cores in the k-th multi-core optical fiber”) to ⁇ kn [/ km]
  • the formulas (89) to (9) Spatial and spectral efficiency of the multi-core optical fiber cable
  • N times is preferably 2.5 / 20.4 or more, and is 5 / 20.4 or more. Is more preferably 7.5 / 20.4 or more, more preferably 10 / 20.4 or more, further preferably 12.5 / 20.4 or more, and 15 / More preferably, it is 20.4 or more, more preferably 17.5 / 20.4 or more, and further preferably 1 or more.
  • ⁇ dB, kmm , D kmm , n2 , kmm , Aeff, kmm are values in a certain multicore optical fiber. Can be used as a representative value, or an average value of all multi-core optical fibers can be used.
  • the number of the multi-core optical fibers incorporated in the multi-core optical fiber cable of the present invention is preferably large, and is preferably 8 or more, in order to reduce the cross-sectional area ratio of the outer skin and the strength member in the cross-sectional area of the cable. More preferably, the number is more than 32, and more preferably 32 or more.
  • the built-in multi-core optical fiber and the outer sheath are filled with any of gas, liquid, and gel substance. It is preferable that the built-in multi-core optical fibers are built in without being bonded to each other. It is preferable that a plurality of built-in multicore optical fibers are built in a state of a fiber ribbon bonded to each other.
  • the core part and the clad part of the multi-core optical fiber in the present invention are preferably made of glass or resin, and more preferably silica glass.
  • the coating layer is preferably one of resin, metal, and carbon. It is also preferable that the cladding has a photonic crystal structure and the core is solid or hollow.
  • the desirable configuration in the multi-core optical fiber of the present invention is also desirable in the multi-core optical fiber incorporated in the multi-core optical fiber cable of the present invention.

Abstract

 本実施形態に係るマルチコア光ファイバは、複数のコア部と、共通のクラッドと、被覆を備える。特に、単位断面積あたりの周波数利用効率を向上させるため、コア部の数、当該マルチコア光ファイバ全体の断面積、他のコア部全てからコア部nへのパワー結合係数の和の他、他のコア部からのクロストークが最も大きなコア部nの、伝送損失、非線形屈折率、実効断面積、および波長分散に代表される光学特性が、所定の関係を満たすよう設定されている。

Description

マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム
 本発明は、マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システムに関するものである。
 中心軸(ファイバ軸)に沿って延在する複数のコア部それぞれが共通のクラッド部で覆われた構造を有するマルチコア光ファイバは、大容量の情報を伝送することができる光伝送路として期待されている。このようなマルチコア光ファイバについて、より大容量の情報を伝送することを目的として種々の検討がなされていている(例えば、非特許文献1,2参照)。
K. Imamura et al., ECOC2010, P1.09 K. Takenaga et al., ECOC2011, Mo.1.LeCervin.2
 発明者は、従来のマルチコア光ファイバについて詳細に検討した結果、以下のような課題を発見した。即ち、上記非特許文献1,2では、マルチコア光ファイバの性能評価において、単位断面積当たりの伝送容量や周波数利用効率の観点からの評価がなされていない。例えば、非特許文献1では、単位断面積当たりのコア数をマルチコア光ファイバの性能指標として検討が行われている。また、非特許文献2では、「ファイバ断面積」に対する「個別コアの実効断面積(Aeff)の和」の比率をマルチコア光ファイバの性能指標として検討が行われている。このような性能指標を用いてマルチコア光ファイバの性能を検討した結果、発明者は、単位断面積当たりの周波数利用効率には向上が見られない、また、逆に悪化してしまうという課題を発見した。
 本発明は上記を鑑みてなされたものであり、単位断面積あたりの周波数利用効率を向上させるための構造を備えたマルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システムを提供することを目的としている。
 本実施形態に係るマルチコア光ファイバは、第1~第3の態様それぞれにおいて、所定軸に沿ってそれぞれ伸びる複数のコア部と、複数のコア部それぞれを一体的に覆うクラッドと、クラッドの外周面上に設けられた被覆を備える。
 特に、第1の態様に係るマルチコア光ファイバにおいて、複数のコア部それぞれが、所定の波長におけるシングルモード伝送を可能にする。また、この第1の態様に係るマルチコア光ファイバは、複数のコア部のうち他のコア部からのクロストークが最も大きな所定のコア部nの伝送損失であって所定の波長における伝送損失をαdB,n[dB/km]、所定の波長における所定のコア部nの非線形屈折率をn2,n[m/W]、所定の波長における所定のコア部nの実効断面積をAeff,n[μm]、所定の波長における所定のコア部nの波長分散をD[ps/(nm・km)]、所定の波長において他のコア部全てから所定のコア部nへのパワー結合係数の和をη[/km]、当該マルチコア光ファイバに含まれるコア部の数をNcore、所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、以下の数式(1):
Figure JPOXMLDOC01-appb-M000011

を満たすのが好ましい。
 第2の態様に係るマルチコア光ファイバにおいても、複数のコア部それぞれが、所定の波長におけるシングルモード伝送を可能にする。また、この第2の態様に係るマルチコア光ファイバは、複数のコア部のうち第nのコア部の所定波長における伝送損失をαdB,n[dB/km]、所定の波長における第nのコア部の非線形屈折率をn2,n[m/W]、所定の波長における第nのコア部の実効断面積をAeff,n[μm]、所定の波長における第nのコア部の波長分散をD[ps/(nm・km)]、所定の波長において複数のコア部のうち他のコア部全てから第nのコア部へのパワー結合係数の和をη[/km]、所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、以下の数式(2):
Figure JPOXMLDOC01-appb-M000012

を満たすのが好ましい。
 更に、第3の態様に係るマルチコア光ファイバでは、所定の波長において伝送損失1dB/km以下で導波されない空間モードの伝送損失であって所定の波長における伝送損失が0.9dB/m以上である。特に、この第3の態様に係るマルチコア光ファイバは、複数のコア部に含まれる第nのコア部における空間モードのうち所定の波長において伝送損失1dB/km以下で導波される第mの空間モードの伝送損失であって所定の波長における伝送損失をαdB,nm[dB/km]、第nのコア部における第mの空間モードの非線形屈折率であって所定の波長における非線形屈折率をn2,nm[m/W]、第nのコア部における第mの空間モードの実効断面積であって所定の波長における実効断面積をAeff,nm[μm]、第nのコア部における第mの空間モードの波長分散であって所定の波長における波長分散をDnm[ps/(nm・km)]、複数のコア部のうち他のコア部全てから第nのコア部へのパワー結合係数の和をη[/km]、所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、以下の数式(3):
Figure JPOXMLDOC01-appb-M000013

を満たすのが好ましい。
 なお、上記第1~第3の態様のうち少なくとも何れかの態様に適用可能な第4の態様として、複数のコア部のうち少なくとも何れかは、複数のコア部内コアと、複数のコア部内コアそれぞれを一体的に覆う、複数のコア部内コアそれぞれよりも低い屈折率を有するコア部内クラッドにより構成される微細構造を備えてもよい。また、このような微細構造を構成する複数のコア部内コアのうち隣接するコア部内コア間のパワー結合係数は、10-2[/km]以上であるのが好ましい。加えて、上記第4の態様に適用可能な第5の態様として、微細構造を構成する複数のコア部内コアのうち隣接するコア部内コア間のパワー結合係数は、1[/km]以上であるのが好ましい。
 上記第1~第3の態様のうち少なくとも何れかに適用可能な第6の態様として、複数のコア部のうち少なくとも何れかにおける基底モードの実効断面積であって所定の波長における実効断面積は、87μm以下であるのが好ましい。一方、上記第4および第5の態様のうち少なくとも何れかに適用可能な第7の態様として、複数のコア部内コアのうち少なくとも何れかにおける基底モードの実効断面積であって所定の波長における実効断面積は87μm以下であるのが好ましい。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第8の態様として、複数のコア部の少なくとも何れかのコア部とクラッドとの間には、クラッドよりも低い屈折率を有するディプレスト層が設けられても良い。この場合、ディプレスト層は、クラッドよりも屈折率が低い固体により構成されるか、或いは、コア部の中心軸からみて周方向に平均的にその屈折率がクラッドよりも低くなるようにコア部を取り囲んだ状態でクラッド中に配置された複数の空孔により構成される。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第9の態様として、複数のコア部の少なくとも何れかのコア部とクラッドとの間には、クラッドよりも低い屈折率を有するトレンチ層が設けられるとともに、該コア部とトレンチ層との間に、コア部よりも低く且つトレンチ層よりも高い屈折率を有する内クラッド層が設けられても良い。この場合、トレンチ層は、クラッドよりも屈折率が低い固体により構成されるか、或いは、コア部の中心軸からみて周方向に平均的にその屈折率がクラッドよりも低くなるようにコア部を取り囲んだ状態でクラッド中に配置された複数の空孔により構成される。
 上記第1~第9の態様のうち少なくとも何れかの態様に適用可能な第10の態様として、所定の波長が1μm乃至2.5μmのいずれかの波長であるのが好ましい。また、上記第1~第9の態様のうち少なくとも何れかの態様に適用可能な第11の態様として、所定の波長が1.26μm乃至1.65μmのいずれかの波長であり、複数のコア部それぞれがシリカガラスからなり、該所定の波長における複数のコア部それぞれの非線形屈折率nが2×10-20乃至3×10-20[m/W]であっても良い。なお、上記第11の態様に適用可能な第12の態様として、複数のコア部それぞれにはGeOが添加されても良く、この場合、非線形屈折率nは約2.3×10-20[m/W]であればよい。逆に、上記第11の態様に適用可能な第13の態様として、複数のコア部それぞれにはGeOが添加されなくても良く、この場合、非線形屈折率nは約2.2×10-20[m/W]であれば良い。
 上記第11~第13の態様のうち少なくとも何れかの態様に適用可能な第14の態様として、複数のコア部それぞれにおける基底モードの伝送損失であって波長1550nmにおける伝送損失は0.195dB/km以下であり、複数のコア部のうち互いに異なるコア部間での前記伝送損失の差が最大でも0.02dB/km以下であり、複数のコア部それぞれにおける基底モードの波長分散であって波長1550nmにおける波長分散が17ps/(nm・km)以上であるのが好ましい。特に、この第14の態様において、複数のコア部のうち、その中心が最も当該マルチコア光ファイバの中心から離れているコア部の中心と、当該マルチコア光ファイバの中心との間の距離をrom、複数のコア部のうち2つのコア部の中心間の距離として最も短い距離をΛ、当該マルチコア光ファイバに含まれるコア部の数をNcoreとするとき、複数のコア部のうち何れかにおける基底モードの半径7.5mmにおける曲げ損失であって波長1550nmにおける曲げ損失αR7.5[dB/m]が10dB/m以下であり、且つ、以下の数式(4)および(5):
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-M000015

で定義される有効コア充填率Rpackとコア配置可能領域比率Reffの積Rpack・ReffとαR7.5[dB/m]との関係は、以下の数式(6):
Figure JPOXMLDOC01-appb-M000016

を満たすのが好ましい。
 上記第14の態様に適用可能な第15の態様として、複数のコア部のうち少なくとも何れかにおける基底モードの半径5mmにおける曲げ損失であって波長1550nmにおける曲げ損失αR5[dB/m]は10dB/m以下であるのが好ましいい。更にこの第15の態様として、有効コア充填率Rpackとコア配置可能領域比率Reffの積Rpack・Reffと、αR5[dB/m]との関係は、以下の数式(7):
Figure JPOXMLDOC01-appb-M000017

を満たすのが好ましい。
 上記第14または第15の態様に適用可能な第16の態様として、有効コア充填率Rpackとコア配置可能領域比率Reffの積Rpack・Reffは約1/8以上であるのが好ましい。
 上記第1~第16の態様のうち少なくとも何れかの態様に適用可能な第17の態様として、複数のコア部それぞれにおいて実効的にカットオフせずに導波する空間モード数は1530nm乃至1550nmの波長域において一定であり、所定の波長は1550nmであり、該所定の波長におけるηは約5.3×10-9/km乃至約1.7×10-5/kmであってもよい。同様に、上記第1~第16の態様のうち少なくとも何れかの態様に適用可能な第18の態様として、複数のコア部の少なくとも何れかにおいて実効的にカットオフせずに導波する空間モード数は1530nm乃至1565nmの波長域において一定であり、所定の波長は1565nmであり、該所定の波長における前記ηは約1.5×10-8/km乃至約1.7×10-5/kmであってもよい。更に、上記第1~第16の態様のうち少なくとも何れかの態様に適用可能な第19の態様として、複数のコア部のうち少なくとも何れかにおいてを実効的にカットオフせずに導波する空間モード数は波長1530nm乃至1625nmの波長域において一定であり、所定の波長は1625nmであり、該所定の波長における前記ηは約9.7×10-8/km乃至約1.7×10-5/kmであってもよい。
 上記第1~第19の態様のうち少なくとも何れかの態様に適用可能な第20の態様として、クラッドの外径は約125μm以上且つ約225μm以下であり、被覆の厚さは約42.5μm以下であっても良い。
 第21の態様として、本実施形態に係るマルチコア光ファイバケーブルは、上述のような第1~第20の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバを内蔵した構造を備えても良い。
 この第21の態様のより具体的な構成として、第22~第24に係るマルチコア光ファイバケーブルは、複数のマルチコア光ファイバを内蔵するとともに、内蔵される複数のマルチコア光ファイバを一体的に被覆する外皮と、当該マルチコア光ファイバケーブルの中心軸に沿って伸びる抗張力体と、を備える。なお、内蔵される複数のマルチコア光ファイバそれぞれは、上述のような第1~第20の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバと同様の構造を有する。
 特に、第22の態様に係るマルチコア光ファイバケーブルにおいて、複数のマルチコア光ファイバそれぞれは、所定軸に沿ってそれぞれ伸びる複数のコア部と、複数のコア部それぞれを一体的に覆うクラッドと、クラッドの外周面上に設けられた被覆とを備えるとともに、複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にする。また、複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、複数のコア部のうち他のコアからのクロストークが最も大きな所定のコア部nの伝送損失であって所定の波長における伝送損失をαdB,kn[dB/km]、所定の波長におけるコア部nの非線形屈折率をn2,kn[m/W]、所定の波長におけるコア部nの実効断面積をAeff,kn[μm]、所定の波長におけるコア部nの波長分散をDkn[ps/(nm・km)]、所定の波長において他のコア部全てから所定のコア部nへのパワー結合係数の和をη[/km]、当該第kのマルチコア光ファイバに含まれるコア部の数をNcore,kとし、更に、中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcableとするとき、この第22の態様に係るマルチコア光ファイバケーブルは、以下の数式(8):
Figure JPOXMLDOC01-appb-M000018

を満たすのが好ましい。
 また、第23の態様に係るマルチコア光ファイバケーブルにおいても、複数のマルチコア光ファイバそれぞれは、所定軸に沿ってそれぞれ伸びる複数のコア部と、複数のコア部を一体的に覆うクラッドと、クラッドの外周面上に設けられた被覆とを備えるとともに、複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にする。また、複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、複数のコア部のうち第nのコア部の伝送損失であって所定の波長における伝送損失をαdB,kn[dB/km]、所定の波長における第nのコア部の非線形屈折率をn2,kn[m/W]、所定の波長における第nのコア部の実効断面積をAeff,kn[μm]、所定の波長における第nのコア部の波長分散をDkn[ps/(nm・km)]、所定の波長において複数のコア部のうち他のコア部全てから第nのコア部へのパワー結合係数の和をηkn[/km]とし、更に、中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcoatとするとき、この第23の態様に係るマルチコア光ファイバケーブルは、以下の数式(9):
Figure JPOXMLDOC01-appb-M000019

を満たすのが好ましい。
 一方、第24に係るマルチコア光ファイバケーブルにおいて、複数のマルチコア光ファイバそれぞれは、所定軸に沿ってそれぞれ伸びる複数のコア部と、複数のコア部を一体に覆うクラッドと、クラッドの外周面上に設けられた被覆とを備えるとともに、所定の波長において伝送損失1dB/km以下で導波されない空間モードの伝送損失であって該所定の波長における伝送損失が0.9dB/m以上である。また、複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、複数のコア部のうち第nのコア部における空間モードのうち所定の波長において伝送損失1dB/km以下で導波される第mの空間モードの伝送損失であって所定の波長における伝送損失をαdB,knm[dB/km]、第nのコア部における第mの空間モードの非線形屈折率であって所定の波長における非線形屈折率をn2,knm[m/W]、第nのコア部における第mの空間モードの実効断面積であって所定の波長における実効断面積をAeff,knm[μm]、第nのコア部における第mの空間モードの波長分散であって所定の波長における波長分散をDknm[ps/(nm・km)]、所定の波長において複数のコア部のうち他のコア部全てから第nのコア部へのパワー結合係数の和をηkn[/km]とし、更に、中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcableとするとき、この第24の態様に係るマルチコア光ファイバケーブルは、以下の数式(10):
Figure JPOXMLDOC01-appb-M000020

を満たすのが好ましい。
 なお、上記22~第24の態様のうち少なくとも何れかの態様に適用可能な第25の態様として、内蔵される複数のマルチコア光ファイバそれぞれにおいて、所定の波長は1.26μm乃至1.65μmのいずれかの波長であり、複数のコア部のそれぞれはシリカガラスからなり、所定の波長において複数のコア部それぞれの非線形屈折率nは2×10-20乃至3×10-20[m/W]であるのが好ましい。なお、上記第25の態様に適用可能な第26の態様として、複数のコア部それぞれにはGeOが添加されても良く、この場合、非線形屈折率nは約2.3×10-20[m/W]であるのが好ましい。また、上記第25の態様に適用可能な第27の態様として、複数のコア部それぞれにはGeOが添加されてなくても良く、この場合、非線形屈折率nは約2.2×10-20[m/W]であるのが好ましい。
 第28の態様として、本実施形態に係るマルチコア光ファイバ伝送システムは、伝送路として、上記第1~第20の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバ、または、上記第21~第27の態様のうち少なくとも何れかの態様に係るマルチコア光ファイバケーブルを備え、空間多重により信号を伝送する。
 上記第28の態様に適用可能な第29の態様として、当該マルチコア光ファイバ伝送システムにおいて、波長多重伝送時に、信号光の波長ごとに変調方式を最適化することにより、異なる変調方式の信号光が波長多重されるのが好ましい。また、上記第28または第29の態様に適用可能な第30の態様として、当該マルチコア光ファイバ伝送システムは、光増幅中継器を備えても良い。光増幅中継器は、伝送路上において、マルチコア光ファイバまたはマルチコア光ファイバケーブル中を伝搬することにより減衰した光を増幅する。特に、この第30の態様において、マルチコア光ファイバまたはマルチコア光ファイバケーブルに含まれる何れかのマルチコア光ファイバにおける複数のコア部のうち何れかのモードフィールド径と、光増幅中継器のコアのモードフィールド径との差は、不要な伝送損失の増加を避けるため、1μm以下であるのが好ましい。
 本発明によれば、単位断面積あたりの周波数利用効率が向上したマルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システムが得られる。
は、シングルコア光ファイバにおけるSElimの実効コア断面積Aeffおよび最短コア間隔Λに対する依存性を示す図である。 は、コアを無限に敷き詰めた例を説明する図である。 は、マルチコア光ファイバの場合のSSElim(SSElim,MCF)を、シングルコア光ファイバのSSElim(SSElim,SMF)により規格化した結果を示す図である。 は、実用のマルチコア光ファイバにおけるSSEを考えるためのマルチコア光ファイバの断面構造を示したものである。 は、SSElim,SMFとの比をとった値と、Lとの関係をプロットした結果を示す図である。 は、「6ηN」と「各AeffにおけるSSElim,MCFを当該AeffでのSSElim,MCFの最大値SSElim,max,MCFにより規格化した値」との関係を示す図である。 は、「N」と「SSElim,MCF/SSElim,max,MCFが最大(つまり1)になる6ηNと、SSElim,MCF/SSElim,max,MCFが一定の値以上を維持する6ηNの上限と下限」との関係を示す図である。 は、「N」と「SSElim,MCF/SSElim,max,MCFが最大(つまり1)になるηと、SSElim,MCF/SSElim,max,MCFが一定の値以上を維持するηの上限と下限」との関係を示す図である。 は、Lが80km、160km、320km、640km、1280km、3200km、6400km、12000km、それぞれの場合のSSElim,max,MCF/SSElim,SMFとAeffとの関係を示す図である。 は、Lが80km、160km、320km、640km、1280km、3200km、6400km、12000km、それぞれの場合のSSElim,max,MCF/SSElim,SMFと、波長1550nmで曲げ半径7.5mmのときの曲げ損失との関係を示す図である。 は、Lが80km、160km、320km、640km、1280km、3200km、6400km、12000km、それぞれの場合のSSElim,max,MCF/SSElim,SMFと、波長1550nmで曲げ半径5mmのときの曲げ損失との関係を説明する図である。 は、光ファイバを接続した場合の接続ロスの影響を考慮して、SSElim,max,MCF/SSElim,SMFとAeffとの関係を計算した結果を示す図である。 は、光ファイバ同士の接続間隔を変えた場合のSSElim,max,MCF/SSElim,SMFとAeffとの関係を計算した結果を示す図である。 は、隣接コアの数が6から3に変わることによるSSElimへの影響の例を示す図である。 は、三角格子1・三角格子2のコア配置を説明する図である。 は、rom,max/Λとコア数との関係を示す図である。 は、2rclad=225μmのとき、「三角格子1」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、2rclad=225μmのとき、「三角格子2」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、2rclad=225μmのとき、「既知の範囲で最多充填」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、コア間隔Λとコア数の関係を示す図である。 は、1/rpack,max とNcoreとの関係を示す図である。 1/rpack,max とNcore・rpack,max との関係を示す図である。 は、「三角格子1」、「三角格子2」、「既知の範囲で最多充填」それぞれの場合についてのNcoreとNcore・Rpackの関係を示す図である。 は、2rclad=125μmのとき、「既知の範囲で最多充填」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、2rclad=150μmのとき、「既知の範囲で最多充填」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、2rclad=175μmのとき、「既知の範囲で最多充填」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、2rclad=200μmのとき、「既知の範囲で最多充填」の場合のSSElimのAeff,Λ依存性を求めた結果を示す図である。 は、コア部がそれぞれ1つのコアから構成されるマルチコア光ファイバの断面模式図である。 は、コア部が複数の結合コアから構成されるマルチコア光ファイバの一例を説明する断面模式図である。 は、ディプレスト層を備えるマルチコア光ファイバの一例を説明する断面模式図である。 は、内クラッド層およびトレンチ層を備えるマルチコア光ファイバの一例を説明する断面模式図である。 は、クラッドの外側に外周コア漏洩防止層を備えるマルチコア光ファイバの一例を説明する断面模式図である。 は、本実施形態に係るマルチコア光ファイバケーブルの一例を示す斜視図である。 は、本実施形態に係るマルチコア光ファイバ伝送システムの一例を示す図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
 (1-シングルコア光ファイバの周波数利用効率について)
  本実施形態に係るマルチコア光ファイバは、ファイバの単位断面積あたりの周波数利用効率が向上したものであるが、マルチコア光ファイバの単位断面積あたり周波数利用効率について検討する前に、まず、コアが1つでありその周囲にクラッドが設けられたシングルモードのシングルコア光ファイバについて、検討する。
 コアが1つである場合、周波数利用効率SE(Spectral Efficiency)の限界については、シャノン限界から求めることができ、以下の数式(11)で示される。
Figure JPOXMLDOC01-appb-M000021
 ここで信号対ノイズ比SNR(Signal to Noise Ratio)と光信号対ノイズ比OSNR(Optical Signal-to-Noise Ratio)との関係は、文献R.-J. Essiambre et al., “Capacity limits of optical fiber networks,”Journalof Lightwave Technol., vol. 28, no. 4, pp. 662-701 (2010)(以下、参考文献1とする)の式(39)に基づき、数式(12)で示すことができる。
Figure JPOXMLDOC01-appb-M000022

ここで、Brefは、OSNRの参照帯域を示し、Rはシンボルレートを示す。参照帯域とは、一般に、12.48GHz(波長1550nm付近での0.1nm)である。また、pは、2偏波分のノイズを何偏波分の信号で受け持つかを示す数字であり、偏波多重がある場合はp=2となり、偏波多重がない場合は、p=1となる。SNRでは、信号とノイズの帯域が等しくされているが、OSNRではノイズの帯域が参照帯域で規定されている。
 偏波多重がある場合の1偏波あたりのSEとOSNRの関係は、数式(13)となる。
Figure JPOXMLDOC01-appb-M000023
 しかしながら実際には、光ファイバに入力させる信号光の強度を上げれば上げるほどOSNRが改善し、SEが向上するわけではない。信号光の強度を上げると、ファイバの非線形によるノイズが発生し、OSNRおよびSEが悪化することが知られている(参考文献1参照)。
 ここで、分散補償無しのシングルモード光ファイバおよびエルビウム添加光ファイバ増幅器(erbium-doped optical fiber amplifier:EDFA)のみで構成された伝送路を用いてナイキストWDM(波長分割多重方式)により信号を伝送する場合について、Pierluigi Poggiolini et al., “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” Photon. Technol. Lett., vol. 23, no. 11, pp. 742-744 (2011)(以下、参考文献2とする)記載の入力光パワーとOSNRとの関係を利用して、非線形によるノイズの影響を考慮した所謂非線形シャノン限界を算出する。上記の条件において、OSNRと信号光の入力パワーPTX,chの関係は、参考文献2の記載に基づき、以下の数式(14)~数式(16)と表すことができる。ただし、PASEはEDFAによるASEノイズで、PNLIは非線形による干渉ノイズである。Nはスパン数、GはEDFAゲイン、FはEDFAのNF(雑音指数:Noise Figure)、hはプランク定数、νは光の周波数、B=Bref、βは波長分散、Rはシンボルレートである。γは、光速cと光の角周波数ωと非線形屈折率nを用いて、nω/(cAeff)と表されるファイバの非線形指数である。
Figure JPOXMLDOC01-appb-M000024
 GおよびLeffは以下の数式(17)および数式(18)の関係を満たす。αは伝送損失、Lはスパン長である。
Figure JPOXMLDOC01-appb-M000025
 上記数式(14)~数式(17)を数式(12)および数式(13)に代入し、整理すると、以下の数式(19)および数式(20)が得られる。
Figure JPOXMLDOC01-appb-M000026
 また、上記数式(19)は、次の数式(21)~数式(23)の形式で表すことができる。
Figure JPOXMLDOC01-appb-M000027
 したがって、SNRが極大値を取るためのPTX,chを数式(21)から導くと、数式(24)のときに極大値を取ることが分かり、そのときの極大値SNRmaxは数式(25)で示すとおりとなる。
Figure JPOXMLDOC01-appb-M000028
 この結果、数式(20)の極大値SElimは数式(26)のように求めることができる。なお、B =Nch で総信号帯域を示す。
Figure JPOXMLDOC01-appb-M000029
 なお、以上の計算では、前提として偏波多重の場合を考えてきたので、数式(20)および数式(26)をそれぞれ2倍したものが、2チャンネル分(2偏波分)、即ち、1コアあたりの非線形シャノン限界とその最大値となる。
 (2-マルチ光ファイバにおける1コアあたりの周波数利用効率について:その1)
  上記の結果を元に、マルチコア光ファイバにおける1コアあたりの周波数利用効率を検討する。ここでは、入力光がクロストークにより減衰しない仮定の場合について検討する。
 この場合、数式(19)におけるノイズにノイズ成分として、クロストーク光の強度PXTが追加され、数式(27)のようになる。
Figure JPOXMLDOC01-appb-M000030
 ここで、クロストークXを数式(28)と定義しておくことで、上記の数式(27)は数式(29)と表すことができる。
Figure JPOXMLDOC01-appb-M000031
 ここで、上記の数式(29)は、次の数式(30)の形式で表すことができる。
Figure JPOXMLDOC01-appb-M000032

この数式(30)は、数式(21)と形式が異なる箇所があるものの、極大値を取るPTX,chは、数式(24)と同様である。この値を用いると、極大値は数式(31)となり、1偏波当たりのSElimは数式(32)となる。
Figure JPOXMLDOC01-appb-M000033
 (3-マルチ光ファイバにおける1コアあたりの周波数利用効率について:その2)
  次に、マルチコア光ファイバにおいて、入力光のクロストークによる減衰を考慮した場合の1コアあたりの周波数利用効率を検討する。
 マルチコア光ファイバのコアにおける光の強度は、パワー結合方程式にしたがって、光ファイバの長手方向に変化することが知られている。この点は、例えば、K. Takenaga et al.,“An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun., vol.E94-B, no. 2, pp. 409-416 (2011).(以下、参考文献3とする)に記載されている。具体的には、例えば三角格子状に7つのコアを配置した7コア光ファイバの場合、中心コアと外周コアとの間のパワー結合係数をη、ファイバ長をLとし、中心コアに対してのみ光を入射した場合の、中心コアにおける光パワーに対する外周コアでの光パワーの比率は、参考文献3によれば、以下の数式(33)に示す値になるとされている。
Figure JPOXMLDOC01-appb-M000034
 次に、中心コアへのクロストークについて検討する。上記の数式(28)におけるPsignalが中心コアを伝搬する光のパワーであるとし、PXTが中心コアを伝搬する光のパワーのうち、外周コアに入射された光のパワーであると考えると、中心コアへのクロストークは、下記数式(34)に示す値になると考えられる。
Figure JPOXMLDOC01-appb-M000035
 しかしながら、上記数式(34)では、中心コアに入射した後一旦外周コアに結合した光が再度中心コアに結合した光の強度を含む形でPsignalを定義しているので、コア間のクロストークが大きい場合には、不正確な値となると考えられる。よって、数式(31)および数式(32)では、この点が誤差要因となり得る。
 したがって、上記の問題を解決した数式を検討する。マルチコア光ファイバを構成する全コアに対して、ほぼ同等のパワーの信号光を入射した場合、コア間でのパワー結合は最初から平衡に達しているので、長尺伝搬後も各コアでの光パワーの平均値は等しいままである。しかし、各コアの信号パワーは、パワー結合係数に応じて他のコアとの間で交換されており、他コアへの結合を経ない信号光のパワーはどんどん減っていく。このことから、中心コアの信号光のパワーPsignalはexp(-6ηL)を係数として減少していくと考えられる。逆に、[1-exp(-6ηL)]で示す割合の光は1回以上の結合を経た光のパワーPcoupledと考えられる。この点を考慮して、SNRを算出すると、下記の数式(35)~数式(38)が導かれる。
Figure JPOXMLDOC01-appb-M000036
 さらに、数式(38)を用いると、SNRの極大値は数式(39)となり、1偏波当たりのSElimは数式(40)となる。
Figure JPOXMLDOC01-appb-M000037
 上記の数式(32)と数式(40)との相違点は、クロストークが十分小さい場合(例えば、-20dB以下)の場合は無視できるが、クロストークが大きい場合には、数式(40)のほうがより正確にクロストークの影響を考慮した数式であると考えられるので、以下では、1偏波当たりのSElimは数式(40)を用いて算出し検討を行う。
 数式(40)において、伝送損失αは小さい方がSElimは向上し、波長分散βの絶対値は大きい方がSElimは向上する。よって、マルチコア光ファイバにおける伝送損失は、少なくとも汎用シングルモード光ファイバ同等以下、即ち、波長1550nmにおいて0.195dB/km以下であることが、SElim向上の観点からは好ましく、低損失純石英コア光ファイバ同等以下、即ち、波長1550nmにおいて0.180dB/km未満であることがSElim向上の観点からは更に好ましく、極低損失純石英コア光ファイバ同等以下、即ち、波長1550nmにおいて0.170dB/km未満であることがSElim向上の観点からは更に好ましい。同様に、マルチコア光ファイバにおける波長分散Dは、少なくとも汎用シングルモード光ファイバ同等以上、即ち、波長1550nmに於いて17ps/(nm・km)以上であることがSElim向上の観点からは好ましく、大容量伝送向けのカットオフ波長シフトファイバ同等以上、即ち、波長1550nmにおいて20ps/(nm・km)以上であることがSElim向上の観点からは更に好ましい。
 (4-マルチ光ファイバの単位断面積あたりの周波数利用効率について)
  上記数式(40)により算出されたSElimを用いて、単位断面積あたりの合計SElim(空間・周波数利用効率の限界SSElim)を算出する。まずは、複数のコアを備え、各コアは使用波長に於いてシングルモード動作する場合を例にとって考える。このとき、マルチコア光ファイバに内蔵される特定の2つのコア間のパワー結合係数ηは、2つのコア間のモード結合係数をκとし、2つのコアそれぞれの伝搬定数をβとし、2つのコアの間隔をΛとし、ファイバ間の平均曲げ半径をRとし、以下の数式(41)より算出される。
Figure JPOXMLDOC01-appb-M000038
 ここでは、同種コア型のマルチコア光ファイバが長手方向に沿って十分軸周りに捩れた状態を想定している。一方、J.M. Fini et al., “Crosstalk in multi-coreoptical fibres” inECOC2011, paper Mo.1.LeCervin.4.(以下、参考文献5とする)では、一般的なマルチコア光ファイバのパワー結合係数ηは、以下の数式(42)と表すことができる。なお、Sffはファイバ曲げ、捩れ、構造ばらつきなどのファイバ長手方向に変化する摂動に起因して生じる、ファイバ長手方向での位相変調成分のパワースペクトルで、Δβm,nはコア間の伝搬定数差であり、Sff(Δβm,n)がコア間での位相整合の発生度合いを表す。
Figure JPOXMLDOC01-appb-M000039
 数式(41)と数式(42)とを比較すると、数式(42)におけるSff(Δβm,n)と、数式(41)における(2/β)・(R/Λ)とは対応するので、同種コア型マルチコア光ファイバ(即ち、Δβm,n=0の場合)においては、以下の数式(43)に示す関係が成り立つ。一般に同種コア型マルチコア光ファイバに限らずとも、数式(44)に示す関係が成り立つ等価曲げ半径Rを導入することで、パワー結合係数を数式(45)に示す簡単な式で示すことができる。
Figure JPOXMLDOC01-appb-M000040
 マルチコア光ファイバを敷設した状態では、Rは0.3~3m程度になると考えられる。したがって、パワー結合係数ηは、上記の数式(45)のRとして0.3~3の範囲から選ばれる何れかの値を代入したものになると考えられる。
 以下では、伝送損失が0.18dBであり、λcc=1530nmのステップインデックス型コアを三角格子に配置したマルチコア光ファイバを用いて、80kmスパン、全長(ファイバリンク長L=N)3200kmの伝送路おいて、クロストークはR=1m相当の摂動を仮定して数式(45)を用いて計算し、EDFAのNFが6dBであって、総信号帯域Bが10THzであるナイキストWDM信号を伝送した場合について検討した結果を示す。また、本稿ではnは2.34×10-20/Wを仮定した。
 ここで、SElimのAeffおよび最短のコア間隔Λに対する依存性を図1に示す。図1では、最短のコア間隔Λを変化させることにより、SElimが急激に変化することが示されている。この変化は、クロストークの変化に起因するものである。また、Aeffが大きくなるとクロストークの影響を抑えるために最短のコア間隔Λを大きくすることが必要であり、このときSElimの最大値も大きくなることが分かる。
 次に、単位断面積あたりの合計SElim(空間・周波数利用効率の限界SSElim)のAeffおよび最短のコア間隔Λに対する依存性について検討する。
 前提として、図2に示されたように、理想的にコアを無限に敷き詰めた場合について考える。この場合、1コアあたりの専有断面積(図2中の1コアを中心として破線で囲んだ領域の面積)は、コア間隔Λを用いて(31/2/2)Λとなるので、空間・周波数効率の限界SSElimは、数式(46)に示される値となる。
Figure JPOXMLDOC01-appb-M000041
 このSSElimを用いて、マルチコア光ファイバの場合のSSElim(SSElim,MCF)を、シングルコア光ファイバ(伝送損失が0.18dB、Aeff=80μm、λcc=1530nmのステップインデックス型コアで、クロストークはなし、コア間隔Λとしてファイバ被覆径である250μmを用いた)のSSElim(SSElim,SMF)により規格化した結果を図3に示す。図3によれば、Aeffの小さな領域で、SSElim,SMFで規格化されたSSElim,MCFがピークを示すことから、Aeffを小さくするとマルチコア光ファイバのSSElim,MCFが極大化し得ることが分かる。これは、Aeffを縮小する際に、非線形耐性の悪化によってSElimが劣化することよりも、コアへの光の閉じ込め強化によりコア間隔Λを短くした場合でもクロストークを低く維持できることによって1コアあたりの専有面積を低減できる効果のほうが大きいためである。
 (5-実際の光ファイバ構造におけるSSE)
  上記の説明では、マルチコア光ファイバにおけるコア配置について理想的に無限にコアを詰め込んだ場合として考えたが、実用に供されるマルチコア光ファイバでは、そのような構成を採っていることはほとんどなく、所定の半径のクラッドに覆われ、更にその外側が被覆に覆われた構成とされている。図4は、実用のマルチコア光ファイバにおけるSSEを考えるためのマルチコア光ファイバの断面構造を示したものである。図4では、中心にコアが1つ配置され、当該コアを中心とした円周上に6つのコアが配置されている例が示されている。図4に示されたように、一般的なマルチコア光ファイバでは中心から、半径がrcladのクラッドがあり、その周囲が厚さdcoatの被覆により覆われている。その結果、マルチコア光ファイバ全体としては、その半径がrcoatとなる。また、内部にコアを複数配置した場合にその最外周のコアの外側にも所定のクラッド厚dcladのクラッドが形成される。ファイバ中心から最外周コアの中心までの距離をromとすると、rclad=rom+dcladが成り立つ。
 通常マルチコア光ファイバは被覆に覆われているので、このマルチコア光ファイバのSSElimは、各コアのSElimを足し合わせたものをファイバ断面積Acoat=πrcoat で除したものになり、以下の数式(47)で示すことができる。
Figure JPOXMLDOC01-appb-M000042
 このとき、波長1550nm、EDFAのNFを6dB、総信号帯域B=10THz、また、スパン長80kmを仮定し、伝送損失が0.18dB、Aeff=80μm、n=2.34×10-20/W、λcc=1530nmのステップインデックス型コアを備えた、2rcoatが250μmのシングルコアファイバで偏波多重を行う場合のSSElimであるSSElim,SMF[bit/s/Hz/mm]のL[km]依存性は、数式(33)と数式(47)を用いて整理すると、下記数式(48)のように求めることができる。ただし、ここでは、N=L/Lを用いて、スパン中間でのLにおけるSSElim,SMFを線形補間している。
Figure JPOXMLDOC01-appb-M000043
 また、波長や、EDFAのNF、総信号帯域B、また、スパン長などの条件を上記シングルコアファイバの計算条件と揃えた際のマルチコア光ファイバの1コア当たりのSElimは、各数値を数式(40)に代入して整理し、2倍すると下記数式(49)のように求めることができる。
Figure JPOXMLDOC01-appb-M000044
 このとき、それぞれのパラメータの単位は、η[/km]、L[km]、αdB[dB/km]、n[m/W]、Aeff[μm]、波長分散D[ps/(nm・km)]である。また、ここで、β[ps/km]とD[ps/(nm・km)]との間には、以下の数式(51)の関係が成り立つことを利用した(cは真空中の光速[m/s]で、この式での波長λの単位はnmである)。
Figure JPOXMLDOC01-appb-M000045
 よって、この場合のマルチコア光ファイバのSSElimは、コア数Ncoreを用いて、以下の数式(52)のように表すことができる。
Figure JPOXMLDOC01-appb-M000046
 公知文献に記載されたマルチコア光ファイバで、数式(52)を用いてSSElimを計算可能なものを探してみると、T. Hayashi et al., “Ultra-Low-Crosstalk Multi-Core Fiber Feasible to Ultra-Long-Haul Transmission,” OFC2011, paper PDPC2(以下、参考文献6)に記載のマルチコア光ファイバのSSElimを、n=2.34×10-20/Wとすることで、計算可能、且つ、最も大きな値を得た。参考文献6に記載のマルチコア光ファイバのSSElimをSSElim,MCF_Aとし、SSElim,SMFとの比をとった値と、Lとの関係をプロットしたグラフを図5に示す。SSElim,MCF_AはSSElim,SMFの7倍弱である。SSElim,MCF_AがSSElim,SMFのNtimes倍以上になる為には、下記数式(53)が成り立つ必要があり、本発明のマルチコア光ファイバでは、Ntimesが7以上であることが望ましく、10以上であることが更に望ましく、15以上であることが更に望ましく、20以上であることが更に望ましい。
Figure JPOXMLDOC01-appb-M000047
 ここで、SSElim,MCF_A/SSElim,SMFのL依存性は十分小さいので、数式(53)にL=80kmを代入し、数式(53)を変形すると、以下の数式(54)を得ることができる。ここで、数式(49)、数式(52)、および数式(53)において、6ηは、コア配置が六方格子状の場合の、あるコア部n(第nのコア部)への隣接6コアからの総クロストークηに相当するので、6ηをηで置き換えている。また、αdB,n、D、n2,n、Aeff,nは、それぞれ、該コア部nにおけるαdB、D、n、Aeffである。更に、該コア部nにおけるSNR(数式(54)の2を底とする対数中の分数項)が十分大きい(100以上)場合、幾つかの近似ができ数式(55)に書きかえることができる。数式(55)中の自然対数の部分はαdBやDへの依存性が小さいのでほぼ定数とみなして近似することができるので、そうすると更に数式(56)を得ることができる。数式(53)の場合と同様に、数式(54)~数式(56)においても、Ntimesが7以上であることが望ましく、10以上であることが更に望ましく、15以上であることが更に望ましく、20以上であることが更に望ましい。
Figure JPOXMLDOC01-appb-M000048
 数式(54)~数式(56)は、全コア部が均一で、コア部それぞれがシングルモード動作することを前提とした式であるので、数式(54)~数式(56)のいずれかを満たすマルチコアファイバは、全てのコア部が同一構造であることが好ましく、コア部それぞれがシングルモード動作することが好ましい。数式(55)または数式(56)を満たすマルチコアファイバは、該コア部nにおけるSNR(数式(54)の2を底とする対数中の分数項)が十分大きい(100以上)と仮定して求めた前提から、少なくとも80η≦0.01であることが望ましい。
 より一般的な、コア部同士で光学特性が異なったり、コア部間クロストークが異なったりする場合を考えると、第nのコア部の伝送損失をαdB,n[dB/km]、非線形屈折率をn2,n[m/W]、実効断面積をAeff,n[μm]、波長分散をD[ps/(nm・km)]、第nのコア部への他の全てのコア部からのパワー結合係数の和をη[/km]としたとき、数式(54)~数式(56)の代わりに数式(57)~数式(59)において、Ntimesが7以上であることが望ましく、10以上であることが更に望ましく、15以上であることが更に望ましく、20以上であることが更に望ましい。数式(58)または数式(59)を満たすマルチコアファイバは、数式(55)や数式(56)の場合と同様に、数式(57)の2を底とする対数中の分数項が十分大きい(100以上)と仮定して求めた前提から、少なくとも80η≦0.01であることが望ましい。
Figure JPOXMLDOC01-appb-M000049
 また、コア部それぞれが複数の空間モードを導波する場合は、同様にして、第nのコア部の第mの空間モードの伝送損失をαdB,nm[dB/km]、非線形屈折率をn2,nm[m/W]、実効断面積をAeff,nm[μm]、波長分散をDnm[ps/(nm・km)]、第nのコア部への他の全てのコア部からのパワー結合係数の和(即ち、「第nのコア部の全ての空間モードそれぞれ」への「他の全てのコア部の全ての空間モード」からのパワー結合係数の和)をη[/km]としたときは、数式(54)~数式(56)や数式(57)~数式(59)の代わりに、下記の数式(60)~数式(62)のいずれかにおいて、Ntimesが7以上であることが望ましく、10以上であることが更に望ましく、15以上であることが更に望ましく、20以上であることが更に望ましい。数式(61)または数式(62)を満たすマルチコアファイバは、数式(55)や数式(56)の場合と同様に、数式(60)の2を底とする対数中の分数項が十分大きい(100以上)と仮定して求めた前提から、少なくとも80η≦0.01であることが望ましい。
Figure JPOXMLDOC01-appb-M000050
 なお、数式(60)~数式(62)での計算の対象である空間モードとは、実効的にカットオフされずに導波される空間モードのことであり、例えば、伝送損失が1dB/km以下である空間モードが好適である。伝送損失が1dB/kmを超える空間モードは、十分カットオフされる為に、少なくとも0.9dB/m以上の伝送損失であることが望ましい。ここでは、同一コア部内の空間モード間クロストークは、信号処理により補償できることが好適。前記信号処理の手法は、デジタル化した信号を数値計算する手法でも良く、電気或いは光のアナログ信号を、アナログの電気信号処理回路または光信号処理回路を用いて行う手法でも良い。
 以下、具体的にどの様な特性や構造を持つマルチコア光ファイバがSSEを向上させるために好ましいのかについて、数式(46)に基づいて考えていく。まず、図3の結果を用いて、各Aeffの値ごとに、「6ηN」と「各AeffにおけるSSElim,MCFを各AeffでのSSElim,MCFの最大値SSElim,max,MCFにより規格化した値」との関係を求めたものを図6に示す。図6は、つまり、図3の横軸軸(コア間隔Λの軸)方向での最大値が1になる様に、各AeffにおけるSSElim,MCFを規格化し、横軸の変数をコア間隔Λから6ηNに変更して、6ηNと前記規格化したSSElim,MCFとの関係を、全てのAeffの場合について2次元グラフに重ねてプロットしたグラフと言い換えて説明することもできる。図6では、Aeffが約30~約270の範囲のデータを示しているが、Aeffの値に関係なく、バラツキの小さな1本の曲線上にデータはプロットされている。このことから、SSElim,MCF/SSElim,max,MCFと6ηNとの関係はAeffの値にほぼ依存しないということが分かる。また、図6によれば、Aeffが約30~約270の範囲にある場合、SSElim,MCFを極大化するためには、6ηNが約1×10-2である必要があることが分かる。さらに、SSElim,MCFをその極大値に対して90%以上の値とするには、6ηNが約4×10-4から約3×10-2である必要があり、80%以上の範囲に保つには、6ηNが約2×10-5から約1×10-1である必要があり、60%以上の範囲に保つには、6ηNが約1×10-8から約2×10-1である必要がある。これは、言い換えると、Aeffの大きさに関係なく、それぞれのAeffにおけるSSElim,MCFを極大化する為には、6ηNが約1×10-8から約2×10-1であることが好ましく、6ηNが約2×10-5から約1×10-1であるが更に好ましく、6ηNが約4×10-4から約3×10-2であることがさらに好ましいということである。
 これはN=3200kmのときの結果であるが、Nを変えてもSSElim,MCF/SSElim,max,MCFと6ηNとの関係はAeffの値にほぼ依存しない。但し、SSElim,MCF/SSElim,max,MCFが大きくなる好ましい6ηNの範囲は変化する。図7に「N」と「SSElim,MCF/SSElim,max,MCFが最大になる6ηNと、SSElim,MCF/SSElim,max,MCFが一定の値以上を維持する6ηNの上限と下限」との関係を示す。Nが増加すると共に、「SSElim,MCF/SSElim,max,MCFが最大になる6ηNと、SSElim,MCF/SSElim,max,MCFが一定の値以上を維持する6ηNの上限と下限」が増加する様子が見て取れる。ここでは、Nが80km以下ではN=1とし、80km以上ではL=80kmとしたが、Nが変化するときとLが変化するときで、傾きが異なっていることが分かる。次に、図8に「N」と「SSElim,MCF/SSElim,max,MCFが最大になるηと、SSElim,MCF/SSElim,max,MCFが一定の値以上を維持するηの上限と下限」との関係を示す。N=1の領域では、好ましいηの範囲はほぼ一定で、Nが増加する範囲では、Nの増加につれて好ましいηの範囲が小さい方へずれていくのが分かる。例えば、SSElim,MCF/SSElim,max,MCFが0.8以上を維持する為には、N=12000kmまで伝送させることを考えると、ηが約2.9×10-6/km以下であることが好ましい。また、N=1の短距離での伝送を考えるとηが約8.8×10-10/km以上であることが好ましい。η=6ηで考えれば、ηは約5.3×10-9/km乃至約1.7×10-5/kmであることが好ましい。
 同様に、SSElim,MCF/SSElim,max,MCFが0.85以上を維持する為には、ηが約3.6×10-9/km乃至約2.3×10-6/km(即ち、ηが約2.2×10-8/km乃至約1.4×10-5/km)であることが好ましい。更に、SSElim,MCF/SSElim,max,MCFが0.9以上を維持する為には、ηが約1.4×10-8/km乃至約1.7×10-6/km(即ち、ηが約8.3×10-8/km乃至約1.0×10-5/km)であることが好ましい。更に、SSElim,MCF/SSElim,max,MCFが0.95以上を維持する為には、ηが約5.3×10-8/km乃至約1.1×10-6/km(即ち、ηが約3.2×10-7/km乃至約6.6×10-6/km)であることが好ましい。
 ところで、参考文献6のFig. 4(a)には、実際のマルチコア光ファイバのクロストークの波長依存性の一例が示されている。クロストークの波長依存性はηの波長依存性に等しいことから、実際のマルチコア光ファイバのηの波長依存性はおおよそ10/75[dB/nm]といった値を採り得ることが分かる。このηの波長依存性で考えると、C帯の1530nm~1565nmの範囲でηは約4.67dB(約2.93倍)変化し、C+L帯の1530nm~1625nmの範囲でηは約12.67dB(約18.5倍)変化し、S+C+L帯の1460nm~1625nmの範囲でηは約22dB(約158倍)変化することが分かる。よって使用波長帯での最長波長(第1の波長)でのηに対して、使用波長帯の最短は長(第2の波長)でのηは、C帯のみを用いている場合は約1/2.93、C+L帯を用いている場合は約1/18.5、S+C+L帯を用いている場合は約1/158の値をとる。これらの比率は、η=6ηについても、ηと同様である。
 したがって、使用波長帯をC帯とし、第1の波長を1565nmとすると、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.8以上を維持する為には、第1の波長でのηが更に約2.6×10-9/km以上(即ち、ηが約1.5×10-8/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.85以上を維持する為には、第1の波長でのηが更に約1.1×10-8/km以上(即ち、ηが約6.4×10-8/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.9以上を維持する為には、第1の波長でのηが更に約4.1×10-8/km以上(即ち、ηが約2.4×10-7/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.95以上を維持する為には、第1の波長でのηが更に約1.5×10-7/km以上(即ち、ηが約9.3×10-7/km以上)であることが好ましい。
 また、使用波長帯をC+L帯とし、第1の波長を1625nmとすると、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.8以上を維持する為には、第1の波長でのηが更に約1.6×10-8/km以上(即ち、ηが約9.7×10-8/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.85以上を維持する為には、第1の波長でのηが更に約6.7×10-8/km以上(即ち、ηが約4.0×10-7/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.9以上を維持する為には、第1の波長でのηが更に約2.6×10-7/km以上(即ち、ηが約1.5×10-6/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.95以上を維持する為には、第1の波長でのηが更に約9.7×10-7/km以上(即ち、ηが約5.8×10-6/km以上)であることが好ましい。また、使用波長帯をS+C+L帯とし、第1の波長を1625nmとすると、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.8以上を維持する為には、第1の波長でのηが更に約1.4×10-7/km以上(即ち、ηが約8.3×10-7/km以上)であることが好ましく、使用波長帯域全体でSSElim,MCF/SSElim,max,MCFが0.85以上を維持する為には、第1の波長でのηが更に約5.8×10-7/km以上(即ち、ηが約3.5×10-6/km以上)であることが好ましい。
 次に、Lを80km、160km、320km、640km、1280km、3200km、6400km、12000kmとした場合におけるSSElim,max,MCF/SSElim,SMFとAeffとの関係を図9に示す。SSElim,SMFは、前述の通り、Aeffが80μmであって、クロストークがなく、コア間隔Λがファイバ被覆径の250μmであると仮定したシングルコア光ファイバのSSElimである。図9より、少なくとも図9に示した範囲においては、Aeffが小さくなるとSSElim,max,MCFが大きくなることが分かる。また、SSElim,max,MCF/SSElim,SMFとAeffとの関係はLが変わっても大きな変化はないことが分かる。但し、参考までに、SSElim,max,MCFとSSElim,SMFの比ではないそれぞれ個別の値はLに応じて大きく変化している。ここで、例えば、L=3200kmのときのマルチコア光ファイバのAeffが約87μm以下とすれば、SSElim,max,MCF/SSElim,SMFを30以上とすることができ、また、Aeffが約50μm以下とすれば、SSElim,max,MCF/SSElim,SMFを40以上とすることができることが図9より分かる。よって第一の波長に於けるAeffは、87μm以下であることが好ましく、50μm以下であることが更に好ましい。
 次に、SSElim,max,MCF/SSElim,SMFと曲げ損失との関係を図10および図11に示す。SSElim,SMFは、前述の通り、Aeffが80μmであって、クロストークがなく、コア間隔Λがファイバ被覆径の250μmであると仮定したシングルコア光ファイバのSSElimである。図10および図11より、マルチコア光ファイバの各コアの曲げ損失が小さい方が、SSElim,max,MCFが大きくなることが分かる。これは、曲げ損失が小さいということはコアへの光の閉じ込めの強いということであり、即ち、所望のクロストークをより短いコア間隔で実現できるということによるものである。このことを考えると、SSElim,max,MCF/SSElim,SMFと曲げ損失の関係が、SSElim,max,MCF/SSElim,SMFとAeffとの関係よりも、より本質的な関係であると考えられる。例えば、図10によると、半径7.5mmの曲げを付与した際のマルチコア光ファイバの各コアの曲げ損失が波長1550nmにおいて約1.3dB/m以下であれば、1スパンのL=80kmでもSSElim,max,MCF/SSElim,SMFを30以上とすることができ、また、曲げ損失が約0.4dB/m以下であれば、150スパンのL=12000kmでもSSElim,max,MCF/SSElim,SMFを30以上とすることができる。半径5mmの曲げを付与した際のマルチコア光ファイバの各コアの曲げ損失が波長1550nmにおいて約0.36dB/m以下とすれば、SSElim,max,MCF/SSElim,SMFを40以上とすることができることが図11より分かる。また、L=80kmの場合、SSElim,max,MCF/SSElim,SMFと半径7.5mmの曲げ損失αR7.5、および、半径5mmの曲げ損失αR5の関係は、下記の数式(63)および(64)で近似できる。ただし、この近似は、αR7.5が0.01dB/m~100dB/mの範囲と、αR5が0.01dB/m~10dB/mの範囲において成り立つ。
Figure JPOXMLDOC01-appb-M000051
 一方で、Aeffを小さくすると、光ファイバ同士を光軸に沿って接続した際の軸ずれによるロスが増加するという懸念がある。図12では、光ファイバを接続した場合の接続損失の影響を考慮して、SSElim,max,MCF/SSElim,SMFとAeffとの関係を改めて計算したものである。図12(A)では1km毎に光ファイバを接続すると仮定し、図12(B)では10km毎に光ファイバを接続すると仮定した。また、軸ずれ量とは、光ファイバ自体のズレおよびコアの配置のズレに基づく各コア同士の軸ずれの大きさを指す。ここでは、接続位置での軸ずれ量は正規分布に従いランダムに生じるものと仮定した。図12(A)および12(B)では、それぞれ軸ずれ量の標準偏差が0~1μmのいずれかである場合の、SSElim,max,MCF/SSElim,SMFとAeffとの関係を表しており、凡例の数値は軸ずれ量の標準偏差[μm]である。この結果、図12(A)および12(B)に示すように、光ファイバの接続間隔や軸ずれ量が変わると、SSElim,max,MCF/SSElim,SMFとAeffとの関係が大きく変わることが確認された。
 ここで、マルチコア光ファイバ同士を接続する際の現実的な軸ずれ量の標準偏差として0.5μmを仮定し、光ファイバ同士の接続間隔を1km、1.5km、2km、3km、10kmと変えた場合のSSElim,max,MCF/SSElim,SMFとAeffとの関係を図13に示す。接続間隔が1kmと短い場合には、Aeffが小さいとSSElim,max,MCF/SSElim,SMFが小さくなるので、SSElim,max,MCF/SSElim,SMFの大幅な低下を避けるためにはAeffが約50μm以上であることが好ましい。例えば内蔵ファイバ数の多い太いケーブルが用いられる場合に製造・敷設上の制限によって、1km程度の光ファイバが敷設時に接続されて用いられる場合もあるが、Aeffを50μm以上としておくことで、SSElim,max,MCF/SSElim,SMFの低下を抑制することが可能となる。
 1スパンごとに、マルチコア光ファイバは、信号光の増幅の為に、EDFAに接続されるので、1スパン当たり2箇所(EDFAへの入力と出力)のEDFAとマルチコア光ファイバの接続があることが一般的である。EDFAのMFDは波長1550nmにおいて4乃至8μm(Aeffでおおよそ10μm強乃至50μm強)であるのが一般的である。通常、1コア伝送用ファイバにおいては、非線形雑音低減の為にAeffを拡大しており、その為EDFAと1コア伝送用ファイバの間でMFDの不整合が大きく、単なる接続では接続損失が大きくなってしまうので、熱処理によりガラス中のドーパントを拡散し、EDFAと1コア伝送用ファイバの間での屈折率分布の変化が緩やかになる様な処理(TEC(ThermallyExpanded Core)処理)が行われるが、TEC処理には一定の処理時間がかかる。1スパン内のファイバ接続点が多くない場合、マルチコア光ファイバのAeffが小さい方が、即ちMFDが小さい方が、SSElim,max,MCF/SSElim,SMFを大きくできるので、マルチコア光ファイバのMFDをEDFAのMFDと近い値(4乃至8μm)にすることで、SSElim,max,MCF/SSElim,SMFの拡大と、マルチコア光ファイバとEDFAの間の接続ロスの低減を同時に実現できる。よって、本実施形態に係るマルチコア光ファイバのMFDは、波長1550nmにおいて4乃至8μmであることが望ましい。TEC処理を行う場合でも、EDFAとマルチコア光ファイバのMFDの差が小さい方が、接続ロスを小さくできる。
 以上のように、本実施形態に係るマルチコア光ファイバは、コアのケーブルカットオフ波長がそれぞれ1530nm以下であり、波長1565nmにおけるパワー結合係数をηとし、ηが約2.6×10-9/km乃至約2.9×10-6/km(即ち、ηが約1.5×10-8/km乃至約1.7×10-5/km)であることにより、マルチコア光ファイバの単位断面積あたりの総周波数利用効率が向上し、特に波長1530nm~1565nmのC帯の伝送に効果的に用いられる。C帯は伝送損失の特に低い帯域であり、光増幅による雑音を低減できることから、マルチコア光ファイバの各コアの信号対雑音比を改善し、空間・周波数利用効率を向上させやすい。また、C帯の範囲に使用波長帯を制限することで、波長の変化によるηの変化も小さく抑え、使用波長帯の全て或いは殆どの帯域で、空間・周波数利用効率を高く維持できる。
 また、コアのケーブルカットオフ波長はそれぞれ1530nm以下であり、波長1625nmにおけるパワー結合係数をηとし、ηが約1.6×10-8/km乃至約2.9×10-6/km(即ち、ηが約9.7×10-8/km乃至約1.7×10-5/km)である場合、マルチコア光ファイバの単位断面積あたりの総周波数利用効率が向上し、特に波長1530nm~1625nmのC+L帯の伝送に効果的に用いられる。C+L帯も伝送損失の低い帯域であり、光増幅による雑音を低減できることから、マルチコア光ファイバの各コアの信号対雑音比を改善し、空間・周波数利用効率を向上させやすい。また、C+L帯の範囲に使用波長帯を制限することで、波長の変化によるηの変化も小さく抑え、使用波長帯の全て或いは殆どの帯域で、空間・周波数利用効率を高く維持できる。
 また、コアのケーブルカットオフ波長が1460nm以上である場合、短いコア間隔であってもファイバの単位断面積あたりの周波数利用効率が向上させることが可能となる。これはケーブルカットオフ波長を長くすることで、コアへの光の閉じ込めを強めることが可能な為、所望のクロストークをより短いΛで実現できるからである。また、コアのケーブルカットオフ波長が1460nm以下である場合には、伝送帯域として、波長1460nm~1530nmのS帯も用いることもできる。その場合であっても、コアのケーブルカットオフ波長が1360nm以上、より好ましくは1390nm以上とすると、1460nm以下を満たす範囲でケーブルカットオフ波長を長くすることができ、短いコア間隔であってもファイバの単位断面積あたりの周波数利用効率が向上させることが可能となる。このとき、ηが約1.4×10-7/km乃至約2.9×10-6/km(即ち、ηが約8.3×10-7/km乃至約1.7×10-5/km)であることが好ましい。
 また、上記のマルチコア光ファイバは、第1の波長におけるコアのAeffがそれぞれ87μm以下である態様とすることができ、更に50μm以下である態様とすることができる。Aeffを上記の範囲とすることで、ファイバの単位断面積あたりの周波数利用効率がより向上する。
 また、ファイバ敷設時に短い長さのファイバを繰り返し接続して形成した長い光ファイバリンクでの使用においてもファイバの単位断面積あたりの周波数利用効率を高めるためには、第1の波長におけるコアのAeffがそれぞれ50μm以上であることが好ましい。
 なお、実際の光ファイバにおいては、ファイバの単位断面積あたりの周波数利用効率をより向上させるためには、コアとクラッドとの間に、クラッドよりも屈折率が低いディプレスト層を更に有することが好ましい。また、ファイバの単位断面積あたりの周波数利用効率を向上させる他の構成として、具体的には、コアとクラッドとの間に、クラッドよりも屈折率が低いトレンチ層を更に有し、コアとトレンチ層との間に、コアよりも屈折率が低くトレンチ層よりも屈折率が高い内クラッド層を更に有する態様とすることもできる。これらの構成を有することにより、Aeffやλccを維持しながら、伝搬モードの光のコアへの閉じ込めを強めることが可能となり、所望のクロストークをより短いコア間隔で実現できるので、ファイバの単位断面積あたりの周波数利用効率のさらなる向上が可能となる。
 段落「0076」から段落「0092」まで、理想的にコアを無限に敷き詰めた数式(46)の場合について検討を行うことで、望ましいコアの特性と、望ましいコア間のパワー結合係数(ひいてはコア間隔)について明らかにしてきた。しかし、実際のマルチコア光ファイバのSSElimを向上させる為には、数式(47)で求めたマルチコア光ファイバのSSElimを大きくする必要がある。
 最外周のコアにおけるファイバの中心からの距離が決まっている場合、dcoatやdcladが小さい方が、マルチコア光ファイバの断面積を減らすことができ、マルチコア光ファイバのSSElimを向上させることができる。しかし、一般に伝送用光ファイバでは、クラッドモードの伝搬を抑える為に、被覆がクラッドよりも高い屈折率を持っているので、dcladが薄すぎると最外周のコアを伝搬する光が被覆に漏洩しやすくなり、最外周のコアの伝送損失が上昇するため、コア設計に応じた適切な大きさのdcladが必要である。コアへの光の閉じ込めが強い方が、より小さなdcladでも最外周のコアの伝送損失の上昇を抑えることができる様になるので、この点からもλccは長い方が望ましく、曲げ損失やAeffは小さい方が望ましい。ここで、最外周のコアの伝送損失の上昇を許容可能な範囲に抑制できる、最小のdcladをdclad,minと置き、同時にrom,max=rclad-dclad,minと置くこととする。
 また、dclad,minとdcoatが一定の値をとるとすると、rcladが大きい方が、マルチコア光ファイバの断面積中Acoat=πrcoat に占める「コアを配置可能な領域」の面積πrom,max の比率が上昇するので、「コアを配置可能な領域」での面積当たりのコア数がおおよそ一定であれば、マルチコア光ファイバの単位断面積当たりのコア数を向上させSSElimを向上させることができる。
 しかしながら、rcladが大きい程、ファイバを曲げた際の破断確率が上昇することが知られている。この点は、例えば、S. Matsuo et al., “Large-effective-area ten-core fiber with cladding diameter of 200um,” Opt. Lett.,vol. 36, no. 23, pp. 4626-4628 (2011).(以下、参考文献7とする)に記載されている。ファイバの曲げ半径が小さいほど破断確率は上昇し、どの曲げ半径でどれだけの破断確率を許容するかによって、許容可能な最大rcladが決定される。参考文献7によると、2rclad=125μmの汎用シングルモードファイバを曲げ半径15mmで曲げた場合と同等の破断確率を、曲げ半径を30mmまで緩和することで、2rclad≦225μmであれば実現可能であることが知られている。よって、マルチコア光ファイバの2rcladは、125μm以上且つ225μm以下であることが望ましく、150μm以上且つ225μm以下であることが更に望ましく、175μm以上且つ225μm以下であることが更に望ましく、200μm以上且つ225μm以下であることが更に好ましい。
 また、式(47)の値は、dcoat次第に応じて変化する値である。汎用シングルモード光ファイバでは、2rcoatが250μm、2rcladが125μmと考えると、dcoatは62.5μmであるが、dcoatを薄くする余地はある。例えば、2rcoatが200μm、2rcladが125μmのシングルモード光ファイバが、ケーブル細径化を目的に既に提案されていて、この場合のdcoatは37.5μmである。dcoatが薄くなることによるファイバへの悪影響は、ファイバにマイクロベンドが付与された際に、dcoatが薄い方がファイバのガラス部分(クラッドから内側)に生じるマイクロベンドが多くなり、マイクロベンドによる損失増加が発生しやすくなることである。しかしながら、クラッド径が太くなるとファイバのガラス部分に生じるマイクロベンドは少なくなることが知られている。よって、特にクラッド径が125μmより大きなマルチコア光ファイバでは、dcoatは37.5μm以下であることが望ましく、2rcoatの製造ばらつきを±10μmと考えても、dcoatは42.5μm以下であることが望ましい。以下の計算では、まず、マルチコア光ファイバのクラッドから内側の部分(裸ファイバ)の性能について議論を行う為に、dcoatは37.5μmと固定して検討を行う。
 以下では、簡単のために、数式(40)と数式(47)を用いてSElimの導出を行う。数式(40)は、三角格子状にコアを配置したものであり全てのコアについて、各々に隣接するコアが6つである場合を想定したものであるが、図4に示すマルチコア光ファイバの場合は、最外周コアに隣接するコアの数はそれぞれ3つである。したがって、厳密には数式(40)と光ファイバのコアに係る条件が異なる。しかしながら、隣接コアの数が6から3に変わるによるSElimへの影響は、図14に示すように、Aeffが80μmである場合、コア間隔Λが1μm弱短くなる方向にクロストーク起因のSElimの変化位置がシフトする程度であることが確認され、結果全体の傾向には大きな影響がないので、ここでは簡単の為に数式(40)を用いて検討を行った。
 ここでは、以下の3パターンのコア配置について、SSElimのAeff、Λ依存性を求めた。
1)三角格子1:光ファイバの中心にコアを配置し、その外周について1層ずつコアを増やしていくコア配置。図15(A)参照。
2)三角格子2:光ファイバの中心を最も内側の3つのコアの中点とし、その外周について1層ずつコアを増やすコア配置(図15(B)参照)と、「三角格子1」のコア配置の内、より多数のコアを配置できる方を選んだもの。
3)既知の範囲で最多充填:E. Specht, The best known packings of equal circles in a circle, 17 June 2010, Available: http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html[Homepage: http://www.packomania.com/ ](以下、参考文献8と記載する)に基づいて、格子形状に拘らず最大のコア数を詰め込むコア配置。
 上記1)~3)のそれぞれの場合について、rom,max/Λとコア数Ncoreとの関係を図16に示す。図16の関係について、上記の「三角格子1」の場合は、コア層数をnlayerとすると、図15(A)に基づいて中央の1コアをnlayer=1としたときに、下記数式(65)および数式(66)が成り立つ。
Figure JPOXMLDOC01-appb-M000052
 また、図15(B)に基づいて中央の3コアをnlayer=1としたときに、下記数式(67)および数式(68)が成り立つので、「三角格子2」の場合のNcoreは、数式(66)および数式(68)のうち大きい方と求めることができる。
Figure JPOXMLDOC01-appb-M000053
 また、「既知の範囲で最多充填」の場合は、参考文献8において、単位円内に等半径の円を充填した場合の、円の個数に対して充填可能な最大半径rpack,maxが“radius”という記載で示されている。rpack,maxとrom,maxとΛの間には下記数式(69)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000054
 したがって、rpack,maxとrom,max/Λとの関係は、下記の数式(70
)および数式(71)と表すことができる。
Figure JPOXMLDOC01-appb-M000055
 上記の様に、マルチコア光ファイバ断面上でコアをどう配置するかという問題は、数式(69)で表される半径rpack,maxの円を単位円の中に何個充填できるかという問題に換言できる。
 ここで、まずは、上記の3つの条件のコア配置の、2rclad=225μmのマルチコア光ファイバについて、SSElimのAeffとΛに対する依存性を求めた結果を図17~図19に示す。ここでは簡単の為に、dclad,min=35μmと仮定した。このときrom,max=77.5μmとなる。図17が「三角格子1」のコア配置での結果を示す図であり、図18が「三角格子2」のコア配置での結果を示す図であり、図19が「既知の範囲で最多充填」のコア配置での結果を示す図である。また、図20は、上記の3つの条件でのコア間隔Λとコア数との関係を求めた図である。これらの図によれば、コア配置パターンが違っていても全体的な傾向は類似していて、Aeffを小さくしてΛも小さくした場合にSSElimが大きくなることが分かった。これは、理想的にコアを配置した場合と同様である。このような傾向を示す理由は、Aeffを小さくしたほうがクロストークの影響を受けずにΛを小さくしてコアの数を増やすことができるためである。
 ただし、コア配置のパターンによって、AeffおよびΛに対する依存性は相違することが確認できた。例えば、「三角格子1」のコア配置の場合は、図20に示すように、コア間隔Λが77.5μm以下で、充填可能なコア数が1から7になり、約38.75μm以下でコア数が7から19になる。ただし、約38.75μm以下となると、計算した範囲ではクロストークの影響が大きく、コア数の増加がSSElimの上昇には繋がっていないことが図17から明らかである。一方、「三角格子2」のコア配置の場合は、コア間隔Λを変化させることで、コア数が小刻みに増加可能となり、且つ、AeffやΛを変化させることによるSSElim上昇が大きくなる。また、このような傾向は「既知の範囲で最多充填」のコア配置の場合ではより顕著であることが図19および図20より明らかとなった。
 「三角格子1」の場合より「三角格子2」の方がΛの減少量が小さくても効率的にコア数を増加させることができてSSElimの向上のために好ましく、「三角格子2」の場合より「既知の範囲で最多充填」の場合の方がΛの減少量が小さくても効率的にコア数を増加させることができてSSElimの向上のために更に好ましいことが分かった。既に述べたように、マルチコア光ファイバ断面上でコアをどう配置するかという問題は、数式(69)で表される半径rpack,maxの円を単位円の中に何個充填できるかという問題に換言できる。そうだとすると、「コア数Ncore」を「単位円の面積を半径rpack,maxの円の面積で割った比1/rpack,max 」で割った比である数式(72)を充填の効率と考えることができる。
Figure JPOXMLDOC01-appb-M000056
 まず、「三角格子1」、「三角格子2」、「既知の範囲で最多充填」それぞれのコア配置の場合についての1/rpack,max とNcoreまたはNcore・rpack,max の関係を図21および図22に示す。「既知の範囲で最多充填」の場合、広い範囲の1/rpack,max に対してNcore・rpack,max が大きな値を維持していることが分かり、また、図21と図22とを併せ見ると、Ncoreが7以上または8以上のときにNcore・rpack,max が常に約0.61以上を維持することが、マルチコア光ファイバにコアをより多く充填する上で好ましいことが分かる。
 しかしながら、実際のマルチコア光ファイバでは、rom,maxを必ずしも明確に知ることができず、そのため、rpack,maxを明確に知ることができないことも考えられる。そこで、実際のコア配置に基づくromを用いて、検討する。
 既に述べたように、理想的にコアを無限に敷き詰めた場合、1コアあたりの専有断面積(図2中の1コアを中心として破線で囲んだ領域の面積)は、コア間隔Λを用いて(31/2/2)Λと表せる。実際のファイバでのコア充填は、半径rom+Λ/2の円の中に半径Λ/2の円を充填することに置き換えられるので、半径rom+Λ/2以内の領域での1コアあたりの専有断面積をπ(rom+Λ/2)/Ncoreとすると、理想的な場合と実ファイバでの1コアあたりの専有断面積の比である有効コア充填率Rpackは、以下の数式(73)で示される。
Figure JPOXMLDOC01-appb-M000057
 このとき、「三角格子1」、「三角格子2」、「既知の範囲で最多充填」それぞれのコア配置の場合についてのNcoreとRpackの関係を図23に示す。「三角格子1」と「三角格子2」の場合は、Ncoreが離散的に増加するのに対し、「既知の範囲で最多充填」の場合はほぼ連続的にNcoreが増加する。
 数式(46)で求めた理想的にコアを無限に敷き詰めた場合のSSElimに、以下の数式(74)により定義されるコア配置可能領域比率ReffとRpackの両方を掛けることで、数式(47)の実際のファイバのSSElimに換算することができる。
Figure JPOXMLDOC01-appb-M000058
 Rpack・Reffの値自体は、約1/8以上であれば、公知のマルチコア光ファイバ(例えば参考文献6のマルチコア光ファイバ)の場合よりも高くすることができる。
 「既知の範囲で最多充填」のコア配置の場合、コア数7以上では、Rpackは最低でも0.37以上であるので、Rpack・Reffを少なくとも1/8以上にするためには、Reffが0.34以上であることが好ましい。また、コア数が26個以上のとき、Rpackは最低でも0.42以上であるので、Rpack・Reffを少なくとも1/8以上にするためには、Reffが0.30以上であることが好ましい。また、Λ/2<dclad+dcoatで、Λ、dclad、dcoatそれぞれが一定の値をとる場合、romが大きい方がReffは大きくなる。即ち、2rcladが大きい方がReffは大きくなるので好ましい。
 また、数式(63)および数式(64)を用いると、Rpack・Reff・SSElim,max,MCF/SSElim,SMF≧7を満たすためには、以下の数式(75)および数式(76)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000059
 また、数式(63)および数式(64)を用いると、Rpack・Reff・SSElim,max,MCF/SSElim,SMF≧7/0.8を満たすためには、以下の数式(77)および数式(78)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000060
 また、数式(63)および数式(64)を用いると、Rpack・Reff・SSElim,max,MCF/SSElim,SMF≧10を満たすためには、以下の数式(79)および数式(80)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000061
 また、数式(63)および数式(64)を用いると、Rpack・Reff・SSElim,max,MCF/SSElim,SMF≧16を満たすためには、以下の数式(81)および数式(82)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000062
 これらの関係は、αR7.5が0.01dB/m~100dB/mの範囲と、αR5が0.01dB/m~10dB/mの範囲で少なくとも成り立つ。ただし、αR7.5が大きいのは好ましくないことから、最大でも10dB/m以下であることが好ましい。
 次に、2rclad=125μmのマルチコア光ファイバ、2rclad=150μmのマルチコア光ファイバ、2rclad=175μmのマルチコア光ファイバ、および、2rclad=200μmのマルチコア光ファイバ、それぞれの、「既知の範囲で最多充填」のコア配置の場合における、SSElimのAeffとΛに対する依存性を求めた結果を図24~図27に示す。図19の場合同様に、dclad,min=35μmと仮定した。図24が2rclad=125μmでの結果を示す図であり、図25が2rclad=150μmでの結果を示す図であり、図26が2rclad=175μmでの結果を示す図である。また、図27が2rclad=200μmで結果を示す図である。既に述べた通り、確かに、rcladが大きい方が、SSElimが向上することが、これらの図から確認できる。
 なお、本発明に係るマルチコア光ファイバ100には、種々の構成が適用可能である。例えば、図28に示されたマルチコア光ファイバ100Aでは、クラッド10に覆われたコア部20がシングルモードのコアであり、クラッド10の外周上には被覆層40が設けられている。また、図29に示されたマルチコア光ファイバ100Bにおいて、非結合のコア部20のそれぞれは、互いに近接した複数のコア部内コア21と、コア部内コア21よりも屈折率の低いコア部内クラッド210により構成される微細構造を備える。この場合、コア部20が導波する複数のスーパーモードや、複数のコア部内コア21それぞれが導波するコアモードを用いて、それぞれのコア部20内において、空間多重を行うことができ、更にSSElimを向上させることができる。このとき、コア部20の占有する断面積当たりの空間モード数を高める為に、隣接するコア部内コア21間のパワー結合係数が10-2/km以上であることが望ましく、1/km以上であることが更に望ましい。コア部内クラッド210とクラッド10の屈折率は、等しくても等しくなくても良い。また、このマルチコア光ファイバ100Bも、クラッド10の外周には被覆層40が設けられている。
 さらに、コア部20とクラッド10の間にディプレスト層を備え、或いは、コア部20とクラッド10の間に内クラッド層とトレンチ層とを備えることは、Aeffや伝搬に用いない高次モードのカットオフの特性を維持しつつ、所望のクロストークをより短いΛで実現できる様になるので好ましい。なお、ディプレスト層は、クラッド10よりも屈折率が低い固体により構成されるか、或いは、コア部20の中心軸からみて周方向に平均的にその屈折率がクラッド10よりも低くなるように該コア部20を取り囲んだ状態でクラッド10中に配置された複数の空孔により構成されてもよい。同様に、トレンチ層も、クラッド10よりも屈折率が低い固体により構成されるか、或いは、クラッド10中に配置された複数の空孔により構成されてもよい。
 例えば、図30に示されたマルチコア光ファイバ100Cでは、コア部20それぞれが個別にディプレスト層22によって取り囲まれる構造を備え、図31に示されたマルチコア光ファイバ100Dでは、コア部20それぞれが個別に内クラッド層23およびトレンチ層24により取り囲まれる構造を備える。なお、マルチコア光ファイバ100C、100Dのいずれも、クラッド10の外周面上には被覆層40が設けられている。この場合、コア部内コア21それぞれを個別に、ディプレスト層22で、或いは、内クラッド層23とトレンチ層24で取り囲むよりも、コア部内コア21同士の間隔を狭めることができ、更にSSElimを向上させることができる。コア部内クラッド210と、ディプレスト層22或いは内クラッド層23の屈折率等しくても良く、等しくなくても良い。なお、図29~図31では、1つのコア部20内でのコア部内コア21の数は7個だが、1つのコア部20内でのコア部内コア21の数7個に限らず、3個以上が望ましい。
 また、各コア部20が、複数の伝搬モードを導波する場合、文献R. Ryf etal., “Coherent 1200-km 6 x 6 MIMO Mode-Multiplexed Transmission over 3-core  Microstructured Fiber,” ECOC2011, paper Th.13.C.1や、文献C. Koebele et al., “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb/s with low MIMO-DSP Complexity,” ECOC2011, paper Th.13.C.3に示されるような、MIMO(Multiple Input Multiple Output)の技術を用いて、前記コア部20内の複数の伝搬モード間で混ざり合った信号を復号化することを特徴とする伝送システムを用いて伝送することが好適である。
 また、図32に示されたマルチコア光ファイバ100Eは、コア部20を取り囲むクラッド10の外周付近に、全てのコア部20をひとまとめに囲む形で、クラッド10よりも屈折率の低い外周コア光漏洩防止層30を備えるのも好適である。被覆層40は、この外周コア光漏洩防止層30の更に外側に設けられる。コア部20と被覆層40との間に、クラッド10よりも屈折率の低い層を設けることで、最外周コアを伝搬する光が高屈折率の被覆層へ漏洩しにくくなることでdclad,minが小さくなるので、dcladを小さくして更にSSElimを向上させることができる。このとき、外周コア光漏洩防止層30にガイドされた、実効屈折率がクラッドの屈折率より低いモードが、十分被覆に漏洩し、使用波長帯において実質的にカットオフされるように、外周コア光漏洩防止層の厚さと屈折率が設定されていることが好ましい。なお、上述のマルチコア光ファイバ100A~100Eのいずれにおいても、クラッド10の他、該クラッド10に覆われたコア部20を含む各部はシリカガラスからなり、該コア部20を含む各部の屈折率は、屈折率調節剤の添加量を調節することにより制御可能である。例えば、コア部20やコア部内コア21に、GeO、Cl等の屈折率増加剤が添加されても良い。また、コア部20やコア部内コア21には、GeO等を添加させずにクラッド10やコア部内クラッド210等にFなどの屈折率低下剤を添加しても、各部の相対的な屈折率差を制御することが可能になる。また、マルチコア光ファイバ100A~100Eそれぞれの全体外径は、図28~図32に示されたように、2rcoatで与えられる。
 上述のような本実施形態に係るマルチコア光ファイバ100(100A~100E)は、単体で伝送システムの光伝送媒体に適用可能であり、さらに、光ケーブルにも適用可能である。図33は、本実施形態に係るマルチコア光ファイバケーブル200の一例を示す図であり、上述のマルチコア光ファイバ100を4本束ねた構造を有する。当該マルチコア光ファイバケーブル200は、4本のマルチコア光ファイバ100が収納されたケーブル外被220を備え、このケーブル外被220内において、抗張力体(tension member)210を中心にして4本のマルチコア光ファイバ100が束ねられた構造を有する。また、図34は、本実施形態に係るマルチコア光ファイバ伝送システム300の一例を示す図であり、当該マルチコア光ファイバ伝送システム300は、送信器310と、受信器320と、送信器310と受信器320の間に配置される光伝送媒体(伝送路)として、本実施形態に係るマルチコア光ファイバ100(100A~100E)や本実施形態に係るマルチコア光ファイバケーブル200を備え、更に、伝送路中には、光増幅中継器330が配置されている。光増幅中継器330は、光増幅中継器330中のコアを導波する光を増幅する。光増幅中継器330は、増幅用光ファイバ331を含むのが好適。
 なお、図34に示されたマルチコア光ファイバ伝送システムは、空間多重により信号を伝送する。特に、波長多重伝送時に、信号光の波長ごとに変調方式を最適化することにより、異なる変調方式の信号光が波長多重されてもよい。更に、マルチコア光ファイバ100またはマルチコア光ファイバケーブル200に含まれる何れかのマルチコア光ファイバ100における複数のコア部20のうち何れかのモードフィールド径と光増幅中継器330のコアのモードフィールド径との差は、1μm以下であるのが好ましい。
 既存の通信用光ファイバケーブル(汎用シングルモード光ファイバと同等以上の伝送特性を有する1コアファイバを複数本内蔵し、抗張力体を備えるもの)での断面積当たりのコア数は、たかだか2コア/mm強であり、2.5コア/mm以上の光ファイバケーブルは知られていない。ケーブル化していない汎用シングルモード光ファイバ(前述の通り本明細書中では、被覆径250μmを想定)の断面積当たりのコア数は、約20.4コア/mmであることを踏まえると、ケーブル化によって、ケーブルとして空間・周波数利用効率は、光ファイバとしての空間・周波数利用効率から1/10程度に劣化してしまうことが分かる。これは、光ファイバを保護する為の層を設けたり、一定の空間を設けたり、抗張力体を設けて光ファイバに張力が強く掛からなくしたりする必要がある為である。光ファイバケーブルの取り扱い性や、内蔵する光ファイバの光学特性などを考えると、ケーブル断面積当たりのファイバ数の大幅な増加は困難である。
 ところで、マルチコア光ファイバケーブル全体の断面積をAcable(=πrcable )とし、第kのマルチコア光ファイバにおけるコア部の数をNcore、あるコア部nのαdB、D、n、Aeffを、それぞれNcore,k、αdB,kn、Dkn、n2,kn、Aeff,knとすると、数式(54)~数式(56)を元に、以下の数式(83)~数式(85)のいずれかを満たすマルチコア光ファイバケーブルの空間・周波数利用効率は、汎用シングルモード光ファイバの空間・周波数利用効率のNtimes以上の空間・周波数利用効率を実現できることが求められる。
 そこで、従来の光ファイバケーブルの空間・周波数利用効率汎用を上回る空間・周波数利用効率汎用の光ファイバケーブルを実現する為には、従来、断面積当たりのコア数が2.5コア/mm以上の光ファイバケーブルは見られないことと、汎用シングルモード光ファイバの断面積当たりのコア数が約20.4コア/mmであることとを踏まえると、数式(83)~数式(85)のいずれかを満たすマルチコア光ファイバケーブルにおいて、Ntimesは2.5/20.4以上であることが望ましく、5/20.4以上であることが更に望ましく、7.5/20.4以上であることが更に望ましく、10/20.4以上であることが更に望ましく、12.5/20.4以上であることが更に望ましく、15/20.4以上であることが更に望ましく、17.5/20.4以上であることが更に望ましく、1以上であることが更に望ましい。
Figure JPOXMLDOC01-appb-M000063
 上記数式(83)~数式(85)は、同一マルチコア光ファイバ中の全コア部が均一で、コア部の配置が六方格子状であることを前提とした式であるので、数式(83)~数式(85)のいずれかを満たすマルチコア光ファイバケーブルは、内蔵するマルチコア光ファイバそれぞれの内で、全てのコア部が同一構造であり、シングルモード動作し、コア部の配置が六方格子状であることが好ましい。また、内蔵する全てのマルチコア光ファイバの全てのコア部が、実質的に同一の特性を持つ場合、αdB,kn、Dkn、n2,kn、Aeff,knには、あるコアでの値を代表値として用いることができ、また或いは全コアでの値の平均値を用いることができる。また、数式(55)や数式(56)の場合と同様に、数式(84)または数式(85)を満たすマルチコア光ファイバケーブル中のマルチコア光ファイバケーブルでは、少なくとも80η≦0.01であることが望ましい。
 より一般的な、コア部同士で光学特性が異なったり、コア部間クロストークが異なったりする場合を考えると、第kのマルチコア光ファイバの第nのコア部の伝送損失をαdB,kn[dB/km]、非線形屈折率をn2,kn[m/W]、実効断面積をAeff,kn[μm]、波長分散をDkn[ps/(nm・km)]、第kのマルチコア光ファイバ内での、前記第nのコア部への他の全てのコア部からのパワー結合係数の和をηkn[/km]としたとき、数式(57)~数式(59)を元に、以下の数式(86)~(88)のいずれかを満たすマルチコア光ファイバケーブルの空間・周波数利用効率は、汎用シングルモード光ファイバの空間・周波数利用効率のNtimes以上の空間・周波数利用効率を実現できることが求められる。
 従来、断面積当たりのコア数が2.5コア/mm以上の光ファイバケーブルは見られないことと、汎用シングルモード光ファイバの断面積当たりのコア数が約20.4コア/mmであることを踏まえると、以下の数式(86)~数式(88)のいずれかを満たすマルチコア光ファイバケーブルにおいて、Ntimesは2.5/20.4以上であることが望ましく、5/20.4以上であることが更に望ましく、7.5/20.4以上であることが更に望ましく、10/20.4以上であることが更に望ましく、12.5/20.4以上であることが更に望ましく、15/20.4以上であることが更に望ましく、17.5/20.4以上であることが更に望ましく、1以上であることが更に望ましい。ここで、各コア部はシングルモード動作することが好適である。
Figure JPOXMLDOC01-appb-M000064
 また、内蔵する全てのマルチコア光ファイバが、実質的に同一の構造・特性を持つ場合、αdB,kn、Dkn、n2,kn、Aeff,knには、あるマルチコア光ファイバでの値を代表値として用いることができ、また或いは全マルチコア光ファイバでの値の平均値を用いることができる。
 また、コア部それぞれが複数の空間モードを導波する場合は、同様にして、第kのマルチコア光ファイバの第nのコア部の第mの空間モードの伝送損失をαdB,knm[dB/km]、非線形屈折率をn2,knm[m/W]、実効断面積をAeff,knm[μm]、波長分散をDknm[ps/(nm・km)]、第kのマルチコア光ファイバ内での、第nのコア部への他の全てのコア部からのパワー結合係数の和(即ち、「第kのマルチコア光ファイバ内での第nのコア部の全ての空間モードそれぞれ」への「第kのマルチコア光ファイバ内での他の全てのコア部の全ての空間モード」からのパワー結合係数の和)をηkn[/km]としたときは、数式(60)~数式(62)を元に、以下の数式(89)~数式(91)のいずれかを満たすマルチコア光ファイバケーブルの空間・周波数利用効率は、汎用シングルモード光ファイバの空間・周波数利用効率のNtimes以上の空間・周波数利用効率を実現できることが求められる。
 従来、断面積当たりのコア数が2.5コア/mm以上の光ファイバケーブルは見られないことと、汎用シングルモード光ファイバの断面積当たりのコア数が約20.4コア/mmであることを踏まえると、以下の数式(89)~数式(91)を満たすマルチコア光ファイバケーブルにおいて、Ntimesは2.5/20.4以上であることが望ましく、5/20.4以上であることが更に望ましく、7.5/20.4以上であることが更に望ましく、10/20.4以上であることが更に望ましく、12.5/20.4以上であることが更に望ましく、15/20.4以上であることが更に望ましく、17.5/20.4以上であることが更に望ましく、1以上であることが更に望ましい。
Figure JPOXMLDOC01-appb-M000065
 また、内蔵する全てのマルチコア光ファイバが、実質的に同一の構造・特性を持つ場合、αdB,knm、Dknm、n2,knm、Aeff,knmには、あるマルチコア光ファイバでの値を代表値として用いることができ、また或いは全マルチコア光ファイバでの値の平均値を用いることができる。
 本発明のマルチコア光ファイバケーブルが内蔵するマルチコア光ファイバの本数は、ケーブル断面積中における外皮や抗張力体の断面積比率を減らす為に、多い方が望ましく、8本以上であることが望ましく、16本以上であることが更に望ましく、32本以上であることが更に望ましい。
 本発明のマルチコア光ファイバケーブルにおいては、内蔵するマルチコア光ファイバと外皮との間に、気体、液体、ゲル状物質のいずれかで満たされているのが好適。内蔵するマルチコア光ファイバが互いに接着されずに内蔵されているのが好適。内蔵するマルチコア光ファイバ複数本が互いに接着されたファイバリボンの状態で内蔵されているのが好適である。
 本発明中のマルチコア光ファイバのコア部およびクラッド部は、ガラスまたは樹脂であるのが好適で、シリカガラスであることが更に好適である。被覆層は、樹脂、金属、炭素のいずれかであるのが好適。また、クラッド部にフォトニック結晶構造を有し、コア部は固体または中空であるのも好適である。
 本発明のマルチコア光ファイバにおいて望ましい構成は、本発明のマルチコア光ファイバケーブルが内蔵するマルチコア光ファイバにおいても同様に望ましい。
 10…クラッド、20…コア部、21…コア部内コア、210…コア部内クラッド、22…ディプレスト層、23…内クラッド層、24…トレンチ層、30…外周コア光漏洩防止層、40…被覆層、100、100A~100E…マルチコア光ファイバ、200…マルチコア光ファイバケーブル、300…マルチコア光ファイバ伝送システム、330…光増幅中継器、331…増幅用光ファイバ。

Claims (28)

  1. 所定軸に沿ってそれぞれ伸びる複数のコア部と、前記複数のコア部それぞれを一体的に覆うクラッドと、前記クラッドの外周面上に設けられた被覆とを備えるマルチコア光ファイバであって、
    前記所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、
     第1の条件が、
     前記複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にし、
     前記複数のコア部のうち他のコア部からのクロストークが最も大きな所定のコア部nの伝送損失であって前記所定の波長における伝送損失をαdB,n[dB/km]、前記所定の波長における前記所定のコア部nの非線形屈折率をn2,n[m/W]、前記所定の波長における前記所定のコア部nの実効断面積をAeff,n[μm]、前記所定の波長における前記所定のコア部nの波長分散をD[ps/(nm・km)]、前記所定の波長において前記他のコア部全てから前記所定のコア部nへのパワー結合係数の和をη[/km]、当該マルチコア光ファイバに含まれるコア部の数をNcore、以下の数式(1):
    Figure JPOXMLDOC01-appb-M000001

    を満たすことにより規定され、
     第2の条件が、
     前記複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にし、
     前記複数のコア部のうち第nのコア部の前記所定波長における伝送損失をαdB,n[dB/km]、前記所定の波長における前記第nのコア部の非線形屈折率をn2,n[m/W]、前記所定の波長における前記第nのコア部の実効断面積をAeff,n[μm]、前記所定の波長における前記第nのコア部の波長分散をD[ps/(nm・km)]、前記所定の波長において前記複数のコア部のうち他のコア部全てから前記第nのコア部へのパワー結合係数の和をη[/km]、前記所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、以下の数式(2):
    Figure JPOXMLDOC01-appb-M000002

    を満たすことにより規定され、
     第3の条件が、
     所定の波長において伝送損失1dB/km以下で導波されない空間モードの伝送損失であって前記所定の波長における伝送損失が0.9dB/m以上であり、
     前記複数のコア部に含まれる第nのコア部における空間モードのうち前記所定の波長において伝送損失1dB/km以下で導波される第mの空間モードの伝送損失であって前記所定の波長における伝送損失をαdB,nm[dB/km]、前記第nのコア部における前記第mの空間モードの非線形屈折率であって前記所定の波長における非線形屈折率をn2,nm[m/W]、前記第nのコア部における前記第mの空間モードの実効断面積であって前記所定の波長における実効断面積をAeff,nm[μm]、前記第nのコア部における前記第mの空間モードの波長分散であって前記所定の波長における波長分散をDnm[ps/(nm・km)]、前記所定の波長において前記複数のコア部のうち他のコア部全てから前記第nのコア部へのパワー結合係数の和をη[/km]、前記所定軸に直交する断面上での当該マルチコア光ファイバ全体の断面積をAcoatとするとき、以下の数式(3):
    Figure JPOXMLDOC01-appb-M000003

    を満たすことにより規定され、
     前記第1~第3の条件のうち少なくとも何れかの条件を満たすことを特徴とするマルチコア光ファイバ。
  2.  前記複数のコア部のうち少なくとも何れかは、前記所定の波長で複数の空間モードを伝送損失1dB/km以下で伝搬し、且つ、複数のコア部内コアと、前記複数のコア部内コアそれぞれを一体的に覆う、前記複数のコア部内コアそれぞれよりも低い屈折率を有するコア部内クラッドにより構成される微細構造を備え、
     前記微細構造を構成する前記複数のコア部内コアのうち隣接するコア部内コア間のパワー結合係数が10-2[/km]以上であることを特徴とする請求項1に記載のマルチコア光ファイバ。
  3.  前記微細構造を構成する前記複数のコア部内コアのうち隣接するコア部内コア間のパワー結合係数が1[/km]以上であることを特徴とする請求項2に記載のマルチコア光ファイバ。
  4.  前記複数のコア部内コアのうち少なくとも何れかにおける基底モードの実効断面積であって前記所定の波長における実効断面積が87μm以下であることを特徴とする請求項2に記載のマルチコア光ファイバ。
  5.  前記複数のコア部のうち少なくとも何れかにおける基底モードの実効断面積であって前記所定の波長における実効断面積が87μm以下であることを特徴とする請求項1に記載のマルチコア光ファイバ。
  6.  前記複数のコア部の少なくとも何れかのコア部と前記クラッドとの間に設けられた、前記クラッドよりも低い屈折率を有するディプレスト層を備え、
     前記ディプレスト層が、前記クラッドよりも屈折率が低い固体により構成されるか、或いは、前記コア部の中心軸からみて周方向に平均的にその屈折率が前記クラッドよりも低くなるように前記コア部を取り囲んだ状態で前記クラッド中に配置された複数の空孔により構成されることを特徴とする請求項1に記載のマルチコア光ファイバ。
  7.  前記複数のコア部のうち少なくとも何れかのコア部と前記クラッドとの間に設けられた、前記クラッドよりも低い屈折率を有するトレンチ層と、
     前記コア部と前記トレンチ層との間に設けられた、前記コア部よりも低く且つ前記トレンチ層よりも高い屈折率を有する内クラッド層を備え、
     前記トレンチ層が、前記クラッドよりも屈折率が低い固体により構成されるか、或いは、前記コア部の中心軸からみて周方向に平均的にその屈折率が前記クラッドよりも低くなるように前記コア部を取り囲んだ状態で前記クラッド中に配置された複数の空孔により構成されることを特徴とする請求項1に記載のマルチコア光ファイバ。
  8.  前記所定の波長が1μm乃至2.5μmのいずれかの波長であることを特徴とする請求項1に記載のマルチコア光ファイバ。
  9.  前記所定の波長が1.26μm乃至1.65μmのいずれかの波長であり、前記複数のコア部それぞれがシリカガラスからなり、前記所定の波長における前記複数のコア部それぞれの非線形屈折率nが2×10-20乃至3×10-20[m/W]であることを特徴とする請求項1に記載のマルチコア光ファイバ。
  10.  前記複数のコア部それぞれにはGeOが添加されており、前記非線形屈折率nが約2.3×10-20[m/W]であることを特徴とする請求項9に記載のマルチコア光ファイバ。
  11.  前記複数のコア部それぞれにはGeOが添加されておらず、前記非線形屈折率nが約2.2×10-20[m/W]であることを特徴とする請求項9に記載のマルチコア光ファイバ。
  12.  前記複数のコア部のうち、その中心が最も前記マルチコア光ファイバの中心から離れているコア部の中心と、当該マルチコア光ファイバの中心との間の距離をrom、前記複数のコア部のうち2つのコア部の中心間の距離として最も短い距離をΛ、当該マルチコア光ファイバに含まれるコア部の数をNcoreとし、
    有効コア充填率Rpackを以下の式(4):
    Figure JPOXMLDOC01-appb-M000004

    で規定するとともに、
    コア配置可能領域比率Reffを以下の式(5):
    Figure JPOXMLDOC01-appb-M000005

    で規定するとき、
     第1の条件が、
     前記複数のコア部のうち何れかにおける基底モードの曲げ半径7.5mmにおける曲げ損失であって波長1550nmにおける曲げ損失αR7.5[dB/m]が10dB/m以下であり、
    前記有効コア充填率Rpackと前記コア配置可能領域比率Reffの積Rpack・ReffとαR7.5[dB/m]との関係が、以下の数式(6):
    Figure JPOXMLDOC01-appb-M000006

    を満たすことにより規定され、
     第2の条件が、
     前記複数のコア部のうち少なくとも何れかにおける基底モードの曲げ半径5mmにおける曲げ損失であって波長1550nmにおける曲げ損失αR5[dB/m]が10dB/m以下であり、
    前記有効コア充填率Rpackと前記コア配置可能領域比率Reffの積Rpack・Reffと、αR5[dB/m]との関係が、以下の数式(7):
    Figure JPOXMLDOC01-appb-M000007

    を満たすことで規定され、
     前記第1および第2の条件のうち少なくともいずれかの条件を満たすことを特徴とする請求項9に記載のマルチコア光ファイバ。
  13.  前記有効コア充填率Rpackと前記コア配置可能領域比率Reffの積Rpack・Reffが約1/8以上であることを特徴とする請求項12に記載のマルチコア光ファイバ。
  14.  前記複数のコア部それぞれにおいて実効的にカットオフせずに導波する空間モード数が1530nm乃至1550nmの波長域において一定であり、
     前記所定の波長が1550nmであり、
     前記所定の波長における前記ηが約5.3×10-9/km乃至約1.7×10-5/kmであることを特徴とする請求項1に記載のマルチコア光ファイバ。
  15.  前記複数のコア部の少なくとも何れかにおいて実効的にカットオフせずに導波する空間モード数が1530nm乃至1565nmの波長域において一定であり、
     前記所定の波長が1565nmであり、
     前記所定の波長における前記ηが約1.5×10-8/km乃至約1.7×10-5/kmであることを特徴とする請求項1にマルチコア光ファイバ。
  16.  前記複数のコア部のうち少なくとも何れかにおいてを実効的にカットオフせずに導波する空間モード数が波長1530nm乃至1625nmの波長域において一定であり、
     前記所定の波長が1625nmであり、
     前記所定の波長における前記ηが約9.7×10-8/km乃至約1.7×10-5/kmであることを特徴とする請求項1に記載のマルチコア光ファイバ。
  17.  前記クラッドの外径が約125μm以上且つ約225μm以下であり、
     前記被覆の厚さが約42.5μm以下であることを特徴とする請求項1に記載のマルチコア光ファイバ。
  18.  請求項1に記載のマルチコア光ファイバを内蔵することを特徴とするマルチコア光ファイバケーブル。
  19.  伝送路として、請求項1に記載のマルチコア光ファイバを備え、空間多重により信号を伝送するマルチコア光ファイバ伝送システム。
  20.  波長多重伝送時に、信号光の波長ごとに変調方式を最適化することにより、異なる変調方式の信号光が波長多重されている請求項19に記載のマルチコア光ファイバ伝送システム。
  21.  光増幅中継器を備え、前記マルチコア光ファイバまたは前記マルチコア光ファイバケーブル中を伝搬することにより減衰した光を、前記光増幅中継器で増幅するマルチコア光ファイバ伝送システムであって、
     前記マルチコア光ファイバまたは前記マルチコア光ファイバケーブルに含まれる何れかのマルチコア光ファイバにおける前記複数のコア部のうち何れかのモードフィールド径と前記光増幅中継器のコアのモードフィールド径との差が1μm以下であることを特徴とする請求項19に記載のマルチコア光ファイバ伝送システム。
  22.  複数のマルチコア光ファイバを内蔵するマルチコア光ファイバケーブルであって、
     内蔵される前記複数のマルチコア光ファイバを一体的に被覆する外皮と、当該マルチコア光ファイバケーブルの中心軸に沿って伸びる抗張力体と、を備え、
     前記複数のマルチコア光ファイバそれぞれは、所定軸に沿ってそれぞれ伸びる複数のコア部と、前記複数のコア部それぞれを一体的に覆うクラッドと、前記クラッドの外周面上に設けられた被覆とを備え、
     第1の条件が、
     前記複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にし、
     前記複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、
     前記複数のコア部のうち他のコアからのクロストークが最も大きな所定のコア部nの伝送損失であって前記所定の波長における伝送損失をαdB,kn[dB/km]、前記所定の波長における前記所定のコア部nの非線形屈折率をn2,kn[m/W]、前記所定の波長における前記所定のコア部nの実効断面積をAeff,kn[μm]、前記所定の波長における前記所定のコア部nの波長分散をDkn[ps/(nm・km)]、前記所定の波長において前記他のコア部全てから前記所定のコア部nへのパワー結合係数の和をη[/km]、当該第kのマルチコア光ファイバに含まれるコア部の数をNcore,kとし、
     更に、前記中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcableとするとき、以下の数式(8):
    Figure JPOXMLDOC01-appb-M000008

    を満たすことにより規定され、
     第2の条件が、
     前記複数のコア部それぞれは、所定の波長におけるシングルモード伝送を可能にし、
     前記複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、
     前記複数のコア部のうち第nのコア部の伝送損失であって前記所定の波長における伝送損失をαdB,kn[dB/km]、前記所定の波長における前記第nのコア部の非線形屈折率をn2,kn[m/W]、前記所定の波長における前記第nのコア部の実効断面積をAeff,kn[μm]、前記所定の波長における前記第nのコア部の波長分散をDkn[ps/(nm・km)]、前記所定の波長において前記複数のコア部のうち他のコア部全てから前記第nのコア部へのパワー結合係数の和をηkn[/km]とし、
     更に、前記中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcableとするとき、以下の数式(9):
    Figure JPOXMLDOC01-appb-M000009

    を満たすことにより規定され、
     第3の条件が、
     所定の波長において伝送損失1dB/km以下で導波されない空間モードの伝送損失であって前記所定の波長における伝送損失が0.9dB/m以上であり、
     前記複数のマルチコア光ファイバのうち第kのマルチコア光ファイバにおいて、
     前記複数のコア部のうち第nのコア部における空間モードのうち前記所定の波長において伝送損失1dB/km以下で導波される第mの空間モードの伝送損失であって前記所定の波長における伝送損失をαdB,knm[dB/km]、前記第nのコア部における前記第mの空間モードの非線形屈折率であって前記所定の波長における非線形屈折率をn2,knm[m/W]、前記第nのコア部における前記第mの空間モードの実効断面積であって前記所定の波長における実効断面積をAeff,knm[μm]、前記第nのコア部における前記第mの空間モードの波長分散であって前記所定の波長における波長分散をDknm[ps/(nm・km)]、前記所定の波長において前記複数のコア部のうち他のコア部全てから前記第nのコア部へのパワー結合係数の和をηkn[/km]とし、
     更に、前記中心軸に直交する当該マルチコア光ファイバケーブル全体の断面積をAcableとするとき、以下の数式(10):
    Figure JPOXMLDOC01-appb-M000010

    を満たすことにより規定され、
     前記第1~第3の条件のうち少なくとも何れかの条件を満たすことを特徴とするマルチコア光ファイバケーブル。
  23.  前記複数のマルチコア光ファイバそれぞれにおいて、
     前記所定の波長が1.26μm乃至1.65μmのいずれかの波長であり、前記複数のコア部のそれぞれがシリカガラスからなり、前記所定の波長において前記複数のコア部それぞれの非線形屈折率nが2×10-20乃至3×10-20[m/W]であることを特徴とする請求項22に記載のマルチコア光ファイバケーブル。
  24.  前記複数のマルチコア光ファイバそれぞれにおいて、
     前記複数のコア部それぞれにはGeOが添加されており、前記非線形屈折率nが約2.3×10-20[m/W]であることを特徴とする請求項23に記載のマルチコア光ファイバケーブル。
  25.  前記複数のマルチコア光ファイバそれぞれにおいて、
     前記複数のコア部それぞれにはGeOが添加されておらず、前記非線形屈折率nが約2.2×10-20[m/W]であることを特徴とする請求項23に記載のマルチコア光ファイバケーブル。
  26.  伝送路として、請求項22に記載のマルチコア光ファイバケーブルを備え、空間多重により信号を伝送するマルチコア光ファイバ伝送システム。
  27.  波長多重伝送時に、信号光の波長ごとに変調方式を最適化することにより、異なる変調方式の信号光が波長多重されている請求項26に記載のマルチコア光ファイバ伝送システム。
  28.  光増幅中継器を備え、前記マルチコア光ファイバまたは前記マルチコア光ファイバケーブル中を伝搬することにより減衰した光を、前記光増幅中継器で増幅するマルチコア光ファイバ伝送システムであって、
     前記マルチコア光ファイバまたは前記マルチコア光ファイバケーブルに含まれる何れかのマルチコア光ファイバにおける前記複数のコア部のうち何れかのモードフィールド径と前記光増幅中継器のコアのモードフィールド径との差が1μm以下であることを特徴とする請求項26に記載のマルチコア光ファイバ伝送システム。
PCT/JP2013/054360 2012-02-29 2013-02-21 マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム WO2013129234A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014502166A JP6237615B2 (ja) 2012-02-29 2013-02-21 マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム
DK13754674.3T DK2821823T3 (da) 2012-02-29 2013-02-21 Optisk multikernefiber, optisk multikernefiberkabel, og optisk multikernefiber-transmissionssystem
EP13754674.3A EP2821823B1 (en) 2012-02-29 2013-02-21 Multicore optical fiber, multicore optical fiber cable, and multicore optical fiber transmission system
CN201380011498.5A CN104145198B (zh) 2012-02-29 2013-02-21 多芯光纤、多芯光纤缆线以及多芯光纤传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012044344 2012-02-29
JP2012-044344 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129234A1 true WO2013129234A1 (ja) 2013-09-06

Family

ID=49082434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054360 WO2013129234A1 (ja) 2012-02-29 2013-02-21 マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム

Country Status (6)

Country Link
US (1) US9164228B2 (ja)
EP (1) EP2821823B1 (ja)
JP (1) JP6237615B2 (ja)
CN (1) CN104145198B (ja)
DK (1) DK2821823T3 (ja)
WO (1) WO2013129234A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051059A (ja) * 2014-08-29 2016-04-11 株式会社フジクラ 光ファイバケーブル
WO2016063800A1 (ja) * 2014-10-22 2016-04-28 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
JP2016212157A (ja) * 2015-04-30 2016-12-15 株式会社フジクラ マルチコアファイバ
US9645340B2 (en) 2015-04-01 2017-05-09 Sumitomo Electric Industries, Ltd. Optical fiber cable
US9696508B2 (en) 2015-04-01 2017-07-04 Sumitomo Electric Industries, Ltd. Optical fiber cable
CN109416438A (zh) * 2016-08-05 2019-03-01 住友电气工业株式会社 光纤评价方法和光纤评价装置
JP2020101809A (ja) * 2015-10-08 2020-07-02 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336813B1 (en) * 2008-10-03 2016-12-14 National University Corporation Yokohama National University System and method for transmission using coupled multi-core fiber and coupling mode (de)multiplexer
US9535221B2 (en) * 2010-03-16 2017-01-03 Ofs Fitel, Llc UltraHigh-density fiber distribution components
WO2013035347A1 (ja) * 2011-09-07 2013-03-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送方法
WO2014110037A1 (en) 2013-01-08 2014-07-17 Commscope, Inc. Of North Carolina Selective uv curing of epoxy adjacent to optical fibers by transmitting uv energy through the fiber cladding
WO2014121034A1 (en) 2013-02-01 2014-08-07 Commscope, Inc. Of North Carolina Transitioning multi-core fiber to plural single core fibers
WO2014123873A1 (en) 2013-02-05 2014-08-14 Commscope, Inc. Of North Carolina Methods of connectorizing multi-core fiber optic cables and related apparatus
EP3008502A1 (en) 2013-06-13 2016-04-20 CommScope, Inc. of North Carolina Connector for multiple core optical fiber
US10473872B2 (en) 2014-03-19 2019-11-12 Corning Optical Communications LLC Fiber optic cable with large-diameter optical fibers
JP5952854B2 (ja) * 2014-05-12 2016-07-13 株式会社フジクラ マルチコアファイバの接続方法及びこれを用いたマルチコアファイバ接続体
JPWO2016152507A1 (ja) * 2015-03-25 2018-01-11 住友電気工業株式会社 マルチコア光ファイバ
JP6597773B2 (ja) * 2015-03-30 2019-10-30 住友電気工業株式会社 光ファイバの漏洩損失測定方法
US10310177B2 (en) * 2015-04-14 2019-06-04 Nippon Telegraph And Telephone Corporation Photonic crystal fiber
WO2017061184A1 (ja) * 2015-10-08 2017-04-13 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム
US10094980B2 (en) * 2016-01-12 2018-10-09 King Saud University Three-dimensional space-division Y-splitter for multicore optical fibers
CN106291803B (zh) * 2016-09-30 2019-06-18 华中科技大学 一种梯度掺杂多芯的微结构包层光纤及其制备方法
JP7200932B2 (ja) * 2017-05-11 2023-01-10 住友電気工業株式会社 非線形性測定方法および非線形性測定装置
JP2020126973A (ja) * 2019-02-06 2020-08-20 日本電信電話株式会社 増幅用ファイバ及び光増幅器
JPWO2020171187A1 (ja) * 2019-02-22 2021-12-16 住友電気工業株式会社 モード依存損失測定装置およびモード依存損失測定方法
JP7326933B2 (ja) * 2019-07-03 2023-08-16 住友電気工業株式会社 マルチコア光ファイバ
JP2023518466A (ja) 2020-03-19 2023-05-01 コーニング インコーポレイテッド 外部クラッド領域を有するマルチコアファイバ
EP4189448A1 (en) * 2020-07-27 2023-06-07 Corning Incorporated Low cross-talk multicore optical fiber for single mode operation
CN112733073A (zh) * 2020-12-30 2021-04-30 中天通信技术有限公司 一种基于耦合功率理论的多芯光纤串扰检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228009A (ja) * 1990-02-02 1991-10-09 Fujikura Ltd 石英ガラス系マルチファイバスコープ
JPH09265021A (ja) * 1996-03-28 1997-10-07 Hitachi Cable Ltd マルチコアファイバ、これを用いた光増幅器、この光増幅器を用いた光増幅中継装置及び光増幅分配装置
JP2002185063A (ja) * 2000-12-14 2002-06-28 Hitachi Cable Ltd 希土類元素添加光ファイバ及びそれを用いた光デバイス
JP2007335435A (ja) * 2006-06-12 2007-12-27 Mitsubishi Cable Ind Ltd 光ファイバ
WO2010038863A1 (ja) * 2008-10-03 2010-04-08 国立大学法人 横浜国立大学 非結合系マルチコアファイバ
JP2011150133A (ja) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JP2011197667A (ja) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd 光ファイバ及びそれを含む光通信システム
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823996A (en) * 1973-04-05 1974-07-16 Bell Telephone Labor Inc Multicore, multimode optical wave transmission line
JP3006474B2 (ja) * 1996-02-22 2000-02-07 日立電線株式会社 マルチコアファイバ及びこれを用いた光増幅器ならびにこの増幅器を用いた装置
US6154594A (en) * 1998-07-15 2000-11-28 Corning Incorporated Multicore glass optical fiber and methods of manufacturing such fibers
JPWO2010082656A1 (ja) * 2009-01-19 2012-07-05 住友電気工業株式会社 マルチコア光ファイバ
WO2010119930A1 (ja) * 2009-04-16 2010-10-21 古河電気工業株式会社 マルチコア光ファイバ
WO2011071750A1 (en) * 2009-12-02 2011-06-16 Ofs Fitel Llc. A Delaware Limited Liability Company Techniques for manipulating crosstalk in multicore fibers
JP5678679B2 (ja) * 2010-01-22 2015-03-04 住友電気工業株式会社 マルチコアファイバ
US9103961B2 (en) * 2011-08-12 2015-08-11 University Of Central Florida Research Foundation, Inc. Systems and methods for optical transmission using supermodes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228009A (ja) * 1990-02-02 1991-10-09 Fujikura Ltd 石英ガラス系マルチファイバスコープ
JPH09265021A (ja) * 1996-03-28 1997-10-07 Hitachi Cable Ltd マルチコアファイバ、これを用いた光増幅器、この光増幅器を用いた光増幅中継装置及び光増幅分配装置
JP2002185063A (ja) * 2000-12-14 2002-06-28 Hitachi Cable Ltd 希土類元素添加光ファイバ及びそれを用いた光デバイス
JP2007335435A (ja) * 2006-06-12 2007-12-27 Mitsubishi Cable Ind Ltd 光ファイバ
WO2010038863A1 (ja) * 2008-10-03 2010-04-08 国立大学法人 横浜国立大学 非結合系マルチコアファイバ
JP2011150133A (ja) * 2010-01-21 2011-08-04 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JP2011197667A (ja) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd 光ファイバ及びそれを含む光通信システム
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
J. M. FINI ET AL.: "Crosstalk in multi-core optical fibres", ECOC, 2011
K. IMAMURA ET AL., ECOC, 2010, pages 09
K. TAKENAGA ET AL., ECOC, 2011
K. TAKENAGA ET AL.: "An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction", IEICE TRANS. COMMUN., vol. E94-B, no. 2, 2011, pages 409 - 416, XP001560896, DOI: doi:10.1587/transcom.E94.B.409
KATSUHIRO TAKENAGA ET AL.: "A Large Effective Area Multi-Core Fibre", PROCEEDINGS OF THE SOCIETY CONFERENCE OF IEICE, 30 August 2011 (2011-08-30), XP055162912 *
PIERLUIGI POGGIOLINI ET AL.: "Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links", PHOTON. TECHNOL. LETT., vol. 23, no. 11, 2011, pages 742 - 744, XP011322711, DOI: doi:10.1109/LPT.2011.2131125
R. -J. ESSIAMBRE ET AL.: "Capacity limits of optical fiber networks", JOURNAL OF LIGHTWAVE TECHNOL., vol. 28, no. 4, 2010, pages 662 - 701, XP011290062, DOI: doi:10.1109/JLT.2009.2039464
S. MATSUO ET AL.: "Large-effective-area ten-core fiber with cladding diameter of 200 µm", OPT. LETT, vol. 36, no. 23, 2011, pages 4626 - 4628, XP001571344, DOI: doi:10.1364/OL.36.004626
TETSUYA HAYASHI ET AL.: "Ultra- low-crosstalk multi-core fiber feasible to ultra-long-haul transmission", OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION (OFC/ NFOEC), 2011 AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, OSA/OFC/NFOEC 2011, 6 March 2011 (2011-03-06), pages 1 - 3, XP031946755 *
TETSUYA HAYASHI ET AL.: "Ultra-low- crosstalk Multi-core Fiber", PROCEEDINGS OF THE SOCIETY CONFERENCE OF IEICE, vol. BI-7-2, 30 August 2011 (2011-08-30), pages 55 - 56, XP031946755 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051059A (ja) * 2014-08-29 2016-04-11 株式会社フジクラ 光ファイバケーブル
JPWO2016063800A1 (ja) * 2014-10-22 2017-08-03 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
CN106575013A (zh) * 2014-10-22 2017-04-19 住友电气工业株式会社 多芯光纤、光缆及光连接器
WO2016063800A1 (ja) * 2014-10-22 2016-04-28 住友電気工業株式会社 マルチコア光ファイバ、光ケーブル、及び光コネクタ
US9726816B2 (en) 2014-10-22 2017-08-08 Sumitomo Electric Industries, Ltd. Multi-core optical fiber, optical cable, and optical connector
CN106575013B (zh) * 2014-10-22 2019-07-09 住友电气工业株式会社 多芯光纤、光缆及光连接器
CN110161622A (zh) * 2014-10-22 2019-08-23 住友电气工业株式会社 多芯光纤、光缆及光连接器
CN110161622B (zh) * 2014-10-22 2020-11-06 住友电气工业株式会社 多芯光纤、光缆及光连接器
US9645340B2 (en) 2015-04-01 2017-05-09 Sumitomo Electric Industries, Ltd. Optical fiber cable
US9696508B2 (en) 2015-04-01 2017-07-04 Sumitomo Electric Industries, Ltd. Optical fiber cable
JP2016212157A (ja) * 2015-04-30 2016-12-15 株式会社フジクラ マルチコアファイバ
JP2020101809A (ja) * 2015-10-08 2020-07-02 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム
CN109416438A (zh) * 2016-08-05 2019-03-01 住友电气工业株式会社 光纤评价方法和光纤评价装置
CN109416438B (zh) * 2016-08-05 2020-10-09 住友电气工业株式会社 光纤评价方法和光纤评价装置

Also Published As

Publication number Publication date
CN104145198B (zh) 2018-06-15
EP2821823B1 (en) 2020-03-25
US20130251320A1 (en) 2013-09-26
EP2821823A4 (en) 2015-09-30
DK2821823T3 (da) 2020-04-20
CN104145198A (zh) 2014-11-12
JPWO2013129234A1 (ja) 2015-07-30
US9164228B2 (en) 2015-10-20
JP6237615B2 (ja) 2017-12-06
EP2821823A1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6237615B2 (ja) マルチコア光ファイバ、マルチコア光ファイバケーブル、およびマルチコア光ファイバ伝送システム
US8094985B2 (en) Multi-core holey fiber and optical transmission system
US9088364B1 (en) Optical transmission system and multi-core optical fiber
JP3720063B2 (ja) 波長分割多重のための光ファイバ
AU711776B2 (en) Optical fiber having low-dispersion slope in the erbium amplifier region
EP2706387B1 (en) Multiple LP-mode fiber designs for mode-division multiplexing
US7450807B2 (en) Low bend loss optical fiber with deep depressed ring
KR20090049612A (ko) 로우 밴드 손실 단일 모드 광섬유
Tamura et al. Low-loss uncoupled two-core fiber for power efficient practical submarine transmission
US20130243381A1 (en) Multi-core optical fiber
WO2000060389A1 (fr) Fibre optique multimode a fonction de suppression du mode d'ordre superieur
WO2006068914A2 (en) Sbs suppressed nonlinear optical fiber
Hayashi et al. Multi-core optical fibers
EP2765443B1 (en) Optical fiber and optical transmission system
EP3088930B1 (en) Optical fiber cable
Takenaga et al. High-density multicore fibers
WO2005062092A1 (en) High stimulated brillouin scattering threshold non zero dispersion shifted optical fiber
US9645340B2 (en) Optical fiber cable
Sasaki et al. Optical fiber and cables
US20170031088A1 (en) Optical fiber cable
Hayashi Multi-core fiber for high-capacity spatiallymultiplexed transmission
Ohashi et al. Optical Fibers for Space-Division Multiplexing
Mori et al. Applicability of Standard Cladding Diameter Multi-Core Fiber Cables for Terrestrial Field
KR100488625B1 (ko) 파장분할다중화시스템에사용하기적합한광파이버로구성된제품
Goel et al. Dispersion-compensating fiber based on LP01 mode for WDM systems: propagation solution by the finite element method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754674

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014502166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013754674

Country of ref document: EP