WO2020171187A1 - モード依存損失測定装置およびモード依存損失測定方法 - Google Patents

モード依存損失測定装置およびモード依存損失測定方法 Download PDF

Info

Publication number
WO2020171187A1
WO2020171187A1 PCT/JP2020/006927 JP2020006927W WO2020171187A1 WO 2020171187 A1 WO2020171187 A1 WO 2020171187A1 JP 2020006927 W JP2020006927 W JP 2020006927W WO 2020171187 A1 WO2020171187 A1 WO 2020171187A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
mode
coupling state
excitation
dependent loss
Prior art date
Application number
PCT/JP2020/006927
Other languages
English (en)
French (fr)
Inventor
長谷川 健美
林 哲也
雄揮 川口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021502158A priority Critical patent/JPWO2020171187A1/ja
Priority to CN202080013318.7A priority patent/CN113424038B/zh
Publication of WO2020171187A1 publication Critical patent/WO2020171187A1/ja
Priority to US17/445,241 priority patent/US11754466B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the present disclosure relates to a mode-dependent loss measuring device and a mode-dependent loss measuring method.
  • This application claims the priority of Japanese Patent Application No. 2019-030210 filed on Feb. 22, 2019, and is dependent on the content thereof and incorporated herein by reference in its entirety.
  • Multi-core optical fiber (hereinafter referred to as "MCF") having multiple cores surrounded by a common cladding can increase the spatial density of information transmission amount. Therefore, the MCF is expected as a transmission medium that can efficiently utilize the limited cross-sectional area of communication paths such as underground pipes and submarine cables.
  • MCFs a coupled multi-core optical fiber (hereinafter, referred to as “CMCF”) in which guided modes are coupled between a plurality of cores has a short distance between two adjacent cores. Therefore, it is possible to have more cores in one optical fiber. Therefore, the CMCF can further increase the spatial density of the information transmission amount and has high productivity.
  • CMCF coupled multi-core optical fiber
  • the light input to any one of the plurality of cores at the input end of the CMCF is dispersed and guided to the plurality of cores by mode coupling while being guided. Therefore, the light input to any one of the cores is output from the plurality of cores at the output end.
  • Digitally coherently receive the optical signals output from each of the plurality of cores at the output end of the CMCF, and process the received signals in a multi-input multi-output (hereinafter referred to as "MIMO") process.
  • MIMO multi-input multi-output
  • MDL mode-dependent loss
  • Patent Document 1 discloses an apparatus and method for measuring the MDL of CMCF.
  • light is input to the kth spatial mode at the input end of a CMCF having N spatial modes, and the power of the light output from the mth spatial mode is measured at the output end of the CMCF.
  • the transmittance T(k,m) is obtained as the ratio of the output light power to the input light power on the linear scale.
  • the transmittance T(k,m) is obtained by setting each of k and m to a value in the range of 1 or more and N or less to determine the transmittance T(k,m) as an element in the kth row and the mth column.
  • a matrix with N rows and N columns is obtained.
  • the MDL on the linear scale is obtained as the ratio of the maximum value and the minimum value of the N eigenvalues or singular values of this matrix.
  • a mode-dependent loss measuring device is a device for measuring a mode-dependent loss of an optical fiber to be measured, wherein the optical fiber to be measured has a plurality of cores extending along a fiber axis and a plurality of cores.
  • a CMCF coupling type multi-core optical fiber having a common cladding that surrounds is applied.
  • the mode-dependent loss measurement apparatus includes, as one aspect thereof, a light source, a light receiver, a mode coupling state changing means, and an analysis section.
  • the light source is optically coupled to the input end of the exciting optical fiber and allows light to be input to the input end of the exciting optical fiber.
  • a CMCF coupled multi-core optical fiber having a plurality of cores extending along the fiber axis and a clad surrounding the plurality of cores is applied to the excitation optical fiber.
  • the optical receiver is optically coupled to the output end of the optical fiber under test. Further, in the light receiver, the light from the light source is input to the input end of the excitation optical fiber in a state where the output end of the excitation optical fiber and the input end of the measured optical fiber are optically coupled to each other. During the period, the sum of the powers of the output lights from the plurality of core end faces located on the output end of the measured optical fiber is detected.
  • the mode-coupling state changing means changes the mode-coupling state of the excitation optical fiber.
  • the analysis unit analyzes the fluctuation of the optical power detected by the photodetector during the period when the mode coupling state of the excitation optical fiber is changing. Further, the analysis unit is based on the magnitude of the fluctuation of the insertion loss (hereinafter simply referred to as “insertion loss”) from the input end of the excitation optical fiber to the photodetector, which is obtained from the fluctuation of the detected optical power. , The mode dependent loss of the optical fiber under test is obtained.
  • insertion loss the magnitude of the fluctuation of the insertion loss
  • FIG. 1 is a diagram showing an example of the structure of a CMCF.
  • FIG. 2 is a diagram for explaining mode coupling in CMCF.
  • FIG. 3 is a diagram showing the configuration of the mode-dependent loss measurement apparatus 30 of the first embodiment together with the excitation optical fiber and the measured optical fiber.
  • FIG. 4 is a flowchart of the mode-dependent loss measurement method of the first embodiment.
  • FIG. 5 is a diagram showing the configuration of the mode-dependent loss measuring device 35 of the second embodiment together with the excitation optical fiber and the measured optical fiber.
  • FIG. 6 is a diagram showing the configuration of the mode-dependent loss measuring device 37 of the third embodiment, together with the excitation optical fiber and the measured optical fiber.
  • a mode-dependent loss measuring device is a device for measuring a mode-dependent loss of an optical fiber under measurement, and includes, as the optical fiber under measurement, a plurality of cores extending along a fiber axis, A CMCF (coupled multi-core optical fiber) having a common clad surrounding a plurality of cores is applied.
  • the mode-dependent loss measurement apparatus includes, as one aspect thereof, a light source, a light receiver, a mode coupling state changing means, and an analysis section.
  • the light source is optically coupled to the input end of the exciting optical fiber and allows light to be input to the input end of the exciting optical fiber.
  • a CMCF coupled multi-core optical fiber having a plurality of cores extending along the fiber axis and a clad surrounding the plurality of cores is applied to the excitation optical fiber.
  • the optical receiver is optically coupled to the output end of the optical fiber under test. Further, in the light receiver, the light from the light source is input to the input end of the excitation optical fiber in a state where the output end of the excitation optical fiber and the input end of the measured optical fiber are optically coupled to each other. During the period, the sum of the powers of the output lights from the plurality of core end faces located on the output end of the measured optical fiber is detected.
  • the mode-coupling state changing means changes the mode-coupling state of the excitation optical fiber.
  • the analysis unit analyzes the fluctuation of the optical power detected by the photodetector during the period when the mode coupling state of the excitation optical fiber is changing. Further, the analyzing unit obtains the mode-dependent loss of the optical fiber under measurement from the fluctuation of the detected optical power.
  • the CMCFs forming the excitation optical fiber and the measured optical fiber may be individually prepared, or a part of the CMCFs forming the measured optical fiber may be applied to the excitation optical fiber. Good.
  • the length of the optical fiber for excitation is compared with the length of the optical fiber to be measured. It is necessary to set the length short enough. Specifically, the ratio of the length of the measured optical fiber to the length of the excitation optical fiber is, for example, 10 or more, preferably 100 or more.
  • CMCF coupled multi-core optical fiber
  • the mode coupling state changing means may include a disturbance applying unit that changes the mode coupling state of the excitation optical fiber by applying a disturbance.
  • the mode coupling state changing unit may include a wavelength changing unit that changes the wavelength of light output from the light source.
  • the mode coupling state changing means may include a phase modulating means for changing one or more phases of light propagating through the plurality of cores in the excitation optical fiber.
  • the mode coupling state changing means may include at least two elements of the first element, the second element, and the third element.
  • the first element corresponds to a disturbance applying unit that changes the mode coupling state of the excitation optical fiber by applying the disturbance.
  • the second element corresponds to a wavelength changing unit that changes the wavelength of the light output from the light source.
  • the third element corresponds to a phase modulator that changes one or more phases of the light propagating through the plurality of cores in the excitation optical fiber.
  • the analysis unit synchronizes with the change in the mode coupling state due to the operation of at least one of the elements included in the mode coupling state changing unit in order to analyze the fluctuation of the detected optical power.
  • the frequency component of the detected fluctuation of the optical power is selectively extracted based on the frequency.
  • the mode-dependent loss measurement method is a mode-dependent loss of a measured optical fiber made of a CMCF having a plurality of cores extending along the fiber axis and a common clad surrounding the plurality of cores.
  • the mode-dependent loss measurement method includes, as one aspect thereof, a light input step, a light detection step, a mode coupling state changing step, and an analysis step.
  • the light input step the light from the light source optically coupled to the input end of the excitation optical fiber made of the CMCF having the above structure is input to the input end of the excitation optical fiber.
  • the light detection step during the period when the light from the light source is input to the input end of the excitation optical fiber in a state where the output end of the excitation optical fiber and the input end of the measured optical fiber are optically coupled to each other.
  • a photodetector optically coupled to the output end of the measured optical fiber detects the sum of the powers of the output lights from the plurality of core end faces located on the output end of the measured optical fiber.
  • the mode coupling state changing step the mode coupling state of the exciting optical fiber can be changed.
  • the analysis step the fluctuation of the optical power detected by the photodetector during the period in which the mode coupling state of the excitation optical fiber is changing is analyzed.
  • the mode-dependent loss of the optical fiber under test is obtained from the fluctuation of the detected optical power.
  • the CMCFs forming the excitation optical fiber and the measured optical fiber may be individually prepared, or a part of the CMCFs forming the measured optical fiber may be applied to the excitation optical fiber. Good.
  • the mode coupling state changing step may include a disturbance applying step of changing the mode coupling state of the excitation optical fiber by applying a disturbance.
  • the mode coupling state changing step may include a wavelength changing step of changing the wavelength of light output from the light source.
  • the mode-coupling state changing step may include a phase modulation step of changing one or more phases of light propagating through the plurality of cores of the excitation optical fiber.
  • the mode coupling state changing step may include at least two sub steps of the first sub step, the second sub step, and the third sub step.
  • the first sub-step corresponds to the disturbance applying step of changing the mode coupling state of the excitation optical fiber by applying the disturbance.
  • the second sub-step corresponds to the wavelength changing step of changing the wavelength of the light output from the light source.
  • the third sub-step corresponds to a phase modulation step of changing one or more phases of light propagating through the plurality of cores in the excitation optical fiber.
  • the analysis step since the fluctuation of the detected optical power is analyzed, the change in the mode coupling state caused by the operation of at least one sub step among the sub steps included in the mode coupling state changing step is detected.
  • the frequency component of the detected fluctuation of the optical power is selectively extracted based on the synchronized frequency.
  • the length of the measured optical fiber is 10 times or more the length of the excitation optical fiber.
  • one end of the excitation optical fiber may be optically coupled to a branching device (fan-out device).
  • the branching device is an optical component for optically coupling the plurality of cores in the excitation optical fiber to the plurality of single-core optical fibers. Also with such a configuration, the light source and the excitation optical fiber are optically coupled via the single core optical fiber.
  • each aspect listed in the [Description of Embodiment of the Present Disclosure] is applicable to each of all the remaining aspects, or to all combinations of these remaining aspects. ..
  • Patent Document 1 the device and method disclosed in Patent Document 1 have a problem in that the MDL at the time of branching a mode becomes an error factor because it is necessary to measure the transmittance for each spatial mode. Further, since the number of measurements increases in proportion to the square of the number N of spatial modes (N 2 ), there is a problem that the cost of the measuring device is high. According to the present disclosure, it is possible to suppress the error due to the MDL due to the mode branching and measure the MDL of the CMCF at low cost.
  • FIG. 1 is a diagram showing an example of the structure of a CMCF (coupled multi-core optical fiber).
  • FIG. 1 shows a horizontal section and a vertical section of the CMCF 1.
  • the CMCF 1 includes a plurality of (four in FIG.
  • each core 10 extending along a fiber axis (corresponding to a central axis of the CMCF 1 extending in the longitudinal direction) and a common clad 11 surrounding the plurality of cores 10.
  • the refractive index of each core 10 is higher than that of the common cladding 11.
  • the CMCF 1 has a light guide mode.
  • Each core 10 and common clad 11 are typically made of silica glass, and the refractive index is adjusted by adding additives such as Ge, F, Cl, and P.
  • the common clad 11 is protected from external damage by being covered with a resin (not shown).
  • each core 10 is significantly coupled with the guided modes of the other adjacent cores 10 (which causes a significantly large mode coupling).
  • the mode coupling coefficient is 0.1 [1/m] or more.
  • each core 10 preferably has substantially the same composition and substantially equal propagation constants. Since the cores 10 have substantially the same propagation constant, it is preferable that the cores 10 are arranged at a wide interval such that a super mode is not generated between the adjacent cores 10.
  • FIG. 2 is a diagram for explaining mode coupling in CMCF. In addition to the longitudinal cross section of the CMCF 1, FIG. An optical power distribution 22 of the plurality of cores 10 in a region indicated by a broken line) is shown.
  • the optical power distributions 21 and 22 show the magnitude of the optical power by shading.
  • the optical power distribution 21 at the input end 1a is localized in any one of the cores 10
  • the optical power distribution 22 at the output end 1b is dispersed in the plurality of cores 10.
  • the position and frequency of mode coupling in the CMCF depend not only on the structure of the CMCF, but also on the bending of the CMCF, the twist of the CMCF, and the refractive index fluctuation due to the temperature or strain of the CMCF. Therefore, the position and frequency of mode coupling in the CMCF randomly change. Further, the ratio of the optical power coupled from one core to another core also randomly changes.
  • the expected value of the reciprocal of the frequency of mode coupling per unit length of CMCF is called the mode coupling length. In a typical CMCF, the mode coupling length is 10 m or less. Therefore, in a CMCF having a length of 100 m or more, mode coupling is cumulatively generated a sufficiently large number of times during propagation, and thus the powers of light output from the plurality of cores that cause mode coupling are substantially equal.
  • the effect of mode coupling is the exchange of optical power between modes, without MDL, the sum of optical power is preserved even if mode coupling occurs randomly. That is, if there is no MDL, the sum of the powers of the lights output from all the cores 10 at the output end 1b does not change. However, in the case of MDL, the position or frequency of mode coupling randomly changes, so that the sum of the powers of the lights output from all the cores 10 at the output end 1b also randomly changes.
  • the present inventors have found that the MDL of CMCF can be measured by sufficiently causing random fluctuation of mode coupling and measuring the fluctuation of CMCF loss at that time.
  • the MDL measuring device 30 includes a light source 31, a light receiver 32, a disturbance applying unit 33 as a mode coupling state changing unit, and an analyzing unit 34.
  • the coupling optical fiber 2, the excitation optical fiber 3, and the measured optical fiber 4 are arranged in this order from the light source 31 to the light receiver 32.
  • the coupling optical fiber 2 may not be provided.
  • the light source 31 is optically coupled to the input end 2a of the coupling optical fiber 2 and causes the output light to enter the core of the coupling optical fiber 2 at the input end 2a.
  • the coupling optical fiber 2 may be a single core optical fiber.
  • the excitation optical fiber 3 is CMCF.
  • the input end 3a of the excitation optical fiber 3 is optically coupled to the output end 2b of the coupling optical fiber 2.
  • the light output from the core of the coupling optical fiber 2 at the output end 2b is input to one or more cores of the excitation optical fiber 3 at the input end 3a.
  • the optical fiber 4 to be measured is a CMCF as a target for measuring MDL by the MDL measuring device 30.
  • the input end 4a of the measured optical fiber 4 is optically coupled to the output end 3b of the excitation optical fiber 3.
  • the light output from the core of the excitation optical fiber 3 at the output end 3b is input to the core of the measured optical fiber 4 at the input end 4a.
  • the excitation optical fiber 3 and the measured optical fiber 4 may be the input end side portion of the CMCF of a series length and the portion following the input end side portion.
  • the excitation optical fiber 3 and the measured optical fiber 4 may be the same in terms of the arrangement of the cores in the cross section and the refractive index profile, or may be different in any of these points. If the light output from any one or more cores of the excitation optical fiber 3 at the output end 3b is input to any one or more cores of the measured optical fiber 4 at the input end 4a. Good.
  • the light receiver 32 is optically coupled to the output end 4b of the measured optical fiber 4, and detects the power of the light output from all the cores of the measured optical fiber 4 located on the output end 4b. ..
  • the light output from the light source 31 propagates through the coupling optical fiber 2 and is then input to the core of the excitation optical fiber 3 at the input end 3a.
  • the coupling optical fiber 2 has a section bent with a predetermined diameter, so that the higher-order mode excited at the input end 2a is attenuated. As a result, the instability of the insertion loss due to the coupling of the higher-order mode of the coupling optical fiber 2 with the excitation optical fiber 3 can be suppressed.
  • optical power distribution when coupling from the output end 2b of the coupling optical fiber 2 to the input end 3a of the excitation optical fiber 3 from the output end 3b of the excitation optical fiber 3 to the input end 4a of the measured optical fiber 4.
  • the optical power distribution when the optical coupling is made different depending on the mode coupling in the excitation optical fiber 3.
  • the optical power output from the output end 4b of the measured optical fiber 4 is The distribution becomes different depending on the mode coupling in the optical fiber 4 to be measured.
  • the light output from all the core end faces located on the output end 4b of the optical fiber 4 to be measured is received by the photodetector 32, and the photodetector 32 detects the sum of the optical powers thereof.
  • the mode coupling state in the excitation optical fiber 3 changes due to disturbance.
  • Disturbances applied to the excitation optical fiber 3 to change the mode coupling state are temperature, strain, bending and twisting. This disturbance may be naturally applied or intentionally applied by the disturbance applying unit 33.
  • the disturbance applying unit 33 is, for example, a "heater” or a "piezoelectric element”.
  • the fluctuation of the mode coupling state in the excitation optical fiber 3 causes a random fluctuation in the optical power distribution when coupling from the output end 3b of the excitation optical fiber 3 to the input end 4a of the measured optical fiber 4.
  • the optical power detected by the photodetector 32 also randomly changes.
  • the analysis unit 34 includes, for example, a CPU and a memory in which an analysis program is stored.
  • the analysis unit 34 analyzes the fluctuation of the optical power detected by the photodetector 32 during the period in which the mode coupling state in the excitation optical fiber 3 is changed due to the disturbance application, and the insertion loss ( The MDL of the optical fiber 4 to be measured is determined based on the magnitude of fluctuation of the loss from the input end of the excitation optical fiber 3 to the light receiver 32. Specifically, it is as follows.
  • the photodetector 32 repeatedly detects the optical power P, for example, at regular time intervals, and thereby obtains respective detection values P 1 , P 2 ,..., P M (M is an integer of 2 or more).
  • the analysis unit 34 causes the detection values P 1 , P 2 ,.
  • the maximum value P max and the minimum value P min of P M can be obtained, and the ratio (P max /P min ) between these maximum values and the minimum value can be obtained as the MDL of the optical fiber 4 to be measured.
  • the MDL obtained here is not exactly the MDL of the measured optical fiber 4 alone, but the MDL of each of the measured optical fiber 4 and the excitation optical fiber 3. Therefore, in order to obtain the MDL of the measured optical fiber 4, it is necessary to make the length L4 of the measured optical fiber 4 sufficiently larger than the length L3 of the excitation optical fiber 3.
  • L4/L3 is preferably 10 or more, more preferably 100 or more.
  • the length L3 of the excitation optical fiber 3 is preferably 10 times or more, and more preferably 100 times or more, the mode coupling length of the excitation optical fiber 3. Since the mode coupling length is usually 10 m or less, the length L3 of the excitation optical fiber 3 is preferably 100 m or more, more preferably 1 km or more.
  • the length L4 of the optical fiber 4 to be measured is preferably 1 km or more, more preferably 100 km or more.
  • the mode coupling length of the excitation optical fiber 3 is often unknown in advance.
  • the mode distribution of the light output from the excitation optical fiber 3 is photographed with a camera or the cores of the excitation optical fiber are selectively received by the optical receiver. It is desirable to confirm that the optical power is output from the respective cores at substantially equal ratios by measuring the average value of the optical power detected by being optically coupled to or the ratio of the average value to the variation width. At this time, if the optical powers output from the respective cores are not equal, it is desirable to lengthen the excitation optical fiber 3 or increase the intensity of disturbance applied to the excitation optical fiber 3.
  • FIG. 4 is a flowchart of the mode-dependent loss measuring method (MDL measuring method) of the first embodiment.
  • step S1 an optical fiber for excitation and an optical fiber for coupling are prepared in addition to the optical fiber to be measured, and these are connected.
  • the coupling optical fiber may not be connected.
  • the excitation optical fiber may be connected to the measured optical fiber, or the input end side portion of the measured optical fiber may be used as the excitation optical fiber.
  • step S2 the light having the predetermined wavelength and the predetermined power output from the light source is input to the excitation optical fiber via the coupling optical fiber.
  • the light output after propagating in the excitation optical fiber is coupled to the measured optical fiber. That is, the output light from the excitation optical fiber is output from the output end after propagating in the measured optical fiber. At this time, disturbance is applied to the excitation optical fiber.
  • step S3 the sum P m of the powers of the light output from the optical fiber under measurement is measured by the light receiver.
  • the insertion loss A m is obtained from the input optical power P 0 and the output optical power P m . Insertion loss is determined as a function of time, in step S5, the maximum value A max and the ratio of the minimum value A min variation in sequence of the insertion loss A m from the start of measurement until the time (A max / A min) By determining, the MDL is obtained.
  • step S6 the convergence of the MDL calculated value is determined from the series of MDL calculated values up to that point. In many cases, it is sufficient to converge with a precision of three significant figures. If the convergence has not been realized yet, the wavelength of light or the disturbance to the excitation optical fiber is changed in step S7, and step S3 and subsequent steps are repeated. When the convergence is achieved, the MDL measurement value is confirmed. Since the wavelength of light and the power distribution of the exciting optical fiber are a closed set, it is possible to reach convergence within a finite time.
  • FIG. 5 is a diagram showing the configuration of the mode-dependent loss measuring device (MDL measuring device) 35 of the second embodiment, together with the excitation optical fiber and the measured optical fiber.
  • the MDL measuring device 35 includes a light source 31, a light receiver 32, a wavelength changing unit 36 as a mode coupling state changing unit, and an analyzing unit 34.
  • the coupling optical fiber 2, the excitation optical fiber 3, and the measured optical fiber 4 are arranged in this order from the light source 31 to the light receiver 32.
  • the functions and operations of the light source 31, the light receiver 32, and the analysis unit 34 are the same as in the first embodiment.
  • the mode coupling state of the excitation optical fiber 3 varies depending on the wavelength of the propagating light.
  • the wavelength of the light output from the light source 31 can be changed by changing the driving condition of the light source 31 by the wavelength changing unit 36 in order to change the mode coupling state in step S2 of FIG.
  • the configuration of the measuring device is simple. Therefore, the MDL of the CMCF can be inexpensively measured by suppressing the error due to the MDL due to the mode branch.
  • FIG. 6 is a diagram showing the configuration of the mode-dependent loss measurement device (MDL measurement device) 37 of the third embodiment, together with the excitation optical fiber and the measured optical fiber.
  • the MDL measuring device 37 includes a light source 31, a light receiver 32, optical phase changing units 39a and 39b (phase modulating unit) as a mode coupling state changing unit, and an analyzing unit 34.
  • An optical branching device 38, optical phase changing units 39a and 39b, a multi-core fan-out device 40, an exciting optical fiber 3 and an optical fiber 4 to be measured are arranged in this order from the light source 31 to the light receiver 32.
  • the functions and operations of the light source 31, the light receiver 32, and the analysis unit 34 are the same as in the first embodiment.
  • the light output from the light source 31 is branched into two or more optical paths by the optical branching device 38, the optical phase is changed in the two optical phase changing units 39a and 39b, and then the multi-core fan-out device 40 is used.
  • a plurality of optical paths are respectively coupled to a plurality of cores of the exciting optical fiber 3.
  • the mode coupling state in the excitation optical fiber 3 varies depending on the phase difference of light propagating through the plurality of cores. Therefore, changing the phases of the two lights by the optical phase changing units 39a and 39b corresponds to changing the mode coupling state in step S2 of FIG. 4 (phase modulation step).
  • the optical phase changing units 39a and 39b give a periodic phase change of a predetermined frequency, and the photodetector 32 detects the optical power changing at the predetermined frequency. Further, the two optical phase changing units 39a and 39b give periodic phase changes of predetermined different frequencies, and the photodetector 32 detects the optical power changing at the frequency of the difference between the two predetermined frequencies. Is more preferable.
  • frequency-selective detection for example, error due to optical power change due to causes other than mode-dependent loss such as power fluctuation of light source, error due to optical power change parasitically generated in the phase change part, and mode-dependent loss It is possible to discriminate the resulting optical power change by frequency and suppress the error.
  • the first, second, and third embodiments differ in mode coupling state changing means, but the mode coupling state changing means may be used by combining a plurality of the mode coupling state changing means of these embodiments. .. At that time, even if at least one mode coupling state is periodically changed at a predetermined frequency as described above, and the optical power changing at the predetermined frequency or the frequency of the difference between the two predetermined frequencies is detected. Well, it is possible to suppress the error.
  • CMCF coupled type multi-core optical fiber
  • 2 coupling optical fiber
  • 3 excitation optical fiber
  • 4 measured optical fiber
  • 10 core
  • 11 common cladding
  • 30, 35 37
  • mode dependent loss Measuring device MDL measuring device
  • 31 Light source
  • 32 Photoreceiver
  • 33 Disturbance applying section
  • 34 ... Analyzing section
  • 36 Wavelength changing section
  • 38 Optical branching device
  • 39a, 39b ... Optical phase changing section, 40 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本開示の一実施形態に係るモード依存損失測定装置は、結合型MCFからなる被測定光ファイバのモード依存損失を測定する。当該装置は、光源と、受光器と、モード結合状態変化手段と、解析部と、を備える。光源は、別の結合型MCFからなる励振用光ファイバの入力端に光を入力させる。受光器は、被測定光ファイバの出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する。モード結合状態変化手段は、励振用光ファイバのモード結合状態を変化させる。解析部は、受光器により検出された光パワーの変動から、被測定光ファイバのモード依存損失を求める。

Description

モード依存損失測定装置およびモード依存損失測定方法
 本開示は、モード依存損失測定装置およびモード依存損失測定方法に関するものである。
  本願は、2019年2月22日に出願された日本特許出願第2019-030210号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
 共通のクラッドにより包囲された複数のコアを有するマルチコア光ファイバ(Multi-core optical fiber:以下、「MCF」と記す)は、情報伝送量の空間密度を高めることができる。そのため、MCFは、地中管路および海底ケーブル等の通信路の限られた断面積を効率よく利用できる伝送媒体として期待されている。MCFの中でも、複数のコアの間で導波モードが結合する結合型マルチコア光ファイバ(Coupled multi-core optical fiber:以下、「CMCF」と記す)は、隣り合う二つのコアの間の距離が短いので、一本の光ファイバ中により多くのコアを有することができる。したがって、CMCFは、情報伝送量の空間密度を更に高めることができ、生産性が高い。
 CMCFの入力端において複数のコアのうちのいずれか一つのコアに入力された光は、導波する間にモード結合により複数のコアに分散して導波するようになる。そのため、いずれか一つのコアに入力された光は、出力端において複数のコアから出力される。CMCFの出力端において複数のコアそれぞれから出力される光信号をデジタルコヒーレント受信し、この受信された信号に対して多入力多出力(Multi-Input Multi-Output:以下、「MIMO」と記す)処理を行なうことで、元の入射信号に相当する出射信号を復元することができる。
 しかしながら、MIMO処理の有効性は、CMCFの伝搬モード間の損失差(対数スケールにおける差)であるモード依存損失(Mode-dependent loss:以下、「MDL」と記す)が大きくなるほど低下し、信号の復元が困難となる。したがって、CMCFを用いた伝送路を構築する際には、伝送路を構成するCMCFのMDLを測定し、伝送路全体でのMDLを低く管理することが必要である。
 特許文献1には、CMCFのMDLを測定する装置および方法が開示されている。この装置および方法では、N個の空間モードを有するCMCFの入力端において第kの空間モードに光が入力され、そのCMCFの出力端において第mの空間モードから出力される光のパワーが測定され、入力光パワーに対する出力光パワーのリニアスケールでの比として透過率T(k,m)が求められる。kおよびmそれぞれを1以上N以下の範囲の各値に設定して透過率T(k,m)を求めることで、透過率T(k,m)を第k行第m列の要素とするN行N列の行列が求められる。そして、この行列が持つN個の固有値または特異値の最大値と最小値との比として、リニアスケールにおけるMDLが得られる。
国際公開第2017/149910号
 本開示に係るモード依存損失測定装置は、被測定光ファイバのモード依存損失を測定する装置であって、該被測定光ファイバとして、ファイバ軸に沿って延在する複数のコアと、複数のコアを包囲する共通クラッドと、を有するCMCF(結合型マルチコア光ファイバ)が適用される。当該モード依存損失測定装置は、その一態様として、光源と、受光器と、モード結合状態変化手段と、解析部と、を備える。光源は、励振用光ファイバの入力端と光学的に結合され、該励振用光ファイバの入力端に光を入力させる。励振用光ファイバには、ファイバ軸に沿って延在する複数のコアと、複数のコアを包囲するクラッドと、を有するCMCF(結合型マルチコア光ファイバ)が適用される。受光器は、被測定光ファイバの出力端と光学的に結合される。また、受光器は、励振用光ファイバの出力端と被測定光ファイバの入力端とが互いに光学的に結合された状態で該励振用光ファイバの入力端に光源からの光が入力されている期間中、被測定光ファイバの出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する。モード結合状態変化手段は、励振用光ファイバのモード結合状態を変化させる。解析部は、励振用光ファイバのモード結合状態が変化している期間中に受光器により検出された光パワーの変動を解析する。さらに、解析部は、検出された光パワーの変動から得られる、励振用光ファイバの入力端から受光器までの挿入損失(以下、単に「挿入損失」と記す)の変動の大きさに基づいて、被測定光ファイバの前記モード依存損失を求める。
図1は、CMCFの構造の例を示す図である。 図2は、CMCFにおけるモード結合を説明するための図である。 図3は、第一実施形態のモード依存損失測定装置30の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。 図4は、第一実施形態のモード依存損失測定方法のフローチャートである。 図5は、第二実施形態のモード依存損失測定装置35の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。 図6は、第三実施形態のモード依存損失測定装置37の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。
 [本願発明の実施形態の説明]
  最初に本開示の実施形態の内容をそれぞれ個別に列挙して説明する。
 (1) 本開示に係るモード依存損失測定装置は、被測定光ファイバのモード依存損失を測定する装置であって、該被測定光ファイバとして、ファイバ軸に沿って延在する複数のコアと、複数のコアを包囲する共通クラッドと、を有するCMCF(結合型マルチコア光ファイバ)が適用される。当該モード依存損失測定装置は、その一態様として、光源と、受光器と、モード結合状態変化手段と、解析部と、を備える。光源は、励振用光ファイバの入力端と光学的に結合され、該励振用光ファイバの入力端に光を入力させる。励振用光ファイバには、ファイバ軸に沿って延在する複数のコアと、複数のコアを包囲するクラッドと、を有するCMCF(結合型マルチコア光ファイバ)が適用される。受光器は、被測定光ファイバの出力端と光学的に結合される。また、受光器は、励振用光ファイバの出力端と被測定光ファイバの入力端とが互いに光学的に結合された状態で該励振用光ファイバの入力端に光源からの光が入力されている期間中、被測定光ファイバの出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する。モード結合状態変化手段は、励振用光ファイバのモード結合状態を変化させる。解析部は、励振用光ファイバのモード結合状態が変化している期間中に受光器により検出された光パワーの変動を解析する。さらに、解析部は、検出された光パワーの変動から、被測定光ファイバの前記モード依存損失を求める。なお、励振用光ファイバおよび被測定光ファイバを構成するCMCFは、それぞれが個別に用意されてもよく、また、被測定光ファイバを構成するCMCFの一部が励振用光ファイバに適用されてもよい。
 なお、励振用光ファイバの入力端から受光器までの挿入損失の変動値を利用して被測定光ファイバのMDLを測定する場合、被測定光ファイバの長さに対して励振用光ファイバの長さを十分短く設定しておく必要がある。具体的に、励振用光ファイバの長さに対する被測定光ファイバの長さの比は、例えば10以上、好ましくは、100以上であるのが好ましい。本開示において「CMCF(結合型マルチコア光ファイバ)」とは、一端において1つのコアに入射されて他端まで伝搬した光パワーが、他端における2つ以上のコアから出射し、どのコアから出射するパワーも他端から出射する全パワーの67%を超えない光ファイバである。
 (2) 本開示の一態様として、モード結合状態変化手段は、外乱の付与により励振用光ファイバの前記モード結合状態を変化させる外乱付与部を含んでもよい。本開示の一態様として、モード結合状態変化手段は、光源が出力する光の波長を変化させる波長変化部を含んでもよい。さらに、モード結合状態変化手段は、励振用光ファイバにおける複数のコアを伝搬する光の位相のうちの1つ以上の位相を変化させる位相変調手段を含んでもよい。
 (3) 本開示の一態様として、モード結合状態変化手段は、第1要素、第2要素、および第3要素のうち少なくとも2つの要素を含んでもよい。なお、第1要素は、外乱の付与により励振用光ファイバのモード結合状態を変化させる外乱付与部に相当する。第2要素は、光源が出力する光の波長を変化させる波長変化部に相当する。第3要素は、励振用光ファイバにおける複数のコアを伝搬する光の位相のうちの1つ以上の位相を変化させる位相変調手段に相当する。このような構成において、解析部は、検出された光パワーの変動を解析するため、モード結合状態変化手段に含まれる要素のうち少なくとも1つの要素の動作に起因したモード結合状態の変化と同期した周波数に基づいて、検出された光パワーの変動の周波数成分を選択的に抽出する。
 (4) 本開示に係るモード依存損失測定方法は、ファイバ軸に沿って延在する複数のコアと、複数のコアを包囲する共通クラッドと、を有するCMCFからなる被測定光ファイバのモード依存損失を測定する。当該モード依存損失測定方法は、その一態様として、光入力工程と、光検出工程と、モード結合状態変化工程と、解析工程と、を備える。光入力工程では、上述の構造を備えたCMCFからなる励振用光ファイバの入力端と光学的に結合された光源からの光が、該励振用光ファイバの入力端に入力される。光検出工程では、励振用光ファイバの出力端と被測定光ファイバの入力端とが互いに光学的に結合された状態で励振用光ファイバの入力端に光源からの光が入力されている期間中、被測定光ファイバの出力端と光学的に結合された受光器が、被測定光ファイバの出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する。モード結合状態変化工程では、励振用光ファイバのモード結合状態を変化させられる。解析工程では、励振用光ファイバのモード結合状態が変化している期間中に受光器により検出された光パワーの変動が解析される。さらに、検出された光パワーの変動から、被測定光ファイバのモード依存損失が求められる。なお、励振用光ファイバおよび被測定光ファイバを構成するCMCFは、それぞれが個別に用意されてもよく、また、被測定光ファイバを構成するCMCFの一部が励振用光ファイバに適用されてもよい。
 (5) 本開示の一態様として、モード結合状態変化工程は、外乱の付与により励振用光ファイバのモード結合状態を変化させる外乱付与工程を含んでもよい。本開示の一態様として、モード結合状態変化工程は、光源が出力する光の波長を変化させる波長変化工程を含んでもよい。さらに、本開示の一態様として、モード結合状態変化工程は、励振用光ファイバの複数のコアを伝搬する光の位相うちの1つ以上の位相を変化させる位相変調工程を含んでもよい。
 (6) 本開示の一態様として、モード結合状態変化工程は、第1サブ工程、第2サブ工程、および第3サブ工程のうち少なくとも2つのサブ工程を含んでもよい。なお、第1サブ工程は、外乱の付与により励振用光ファイバのモード結合状態を変化させる外乱付与工程に相当する。第2サブ工程は、光源が出力する光の波長を変化させる波長変化工程に相当する。第3サブ工程は、励振用光ファイバにおける複数のコアを伝搬する光の位相のうちの1つ以上の位相を変化させる位相変調工程に相当する。このような構成において、解析工程では、検出された光パワーの変動を解析するため、モード結合状態変化工程に含まれるサブ工程のうち少なくとも1つのサブ工程の動作に起因したモード結合状態の変化と同期した周波数に基づいて、検出された光パワーの変動の周波数成分が選択的に抽出される。
 (7) 本開示の一態様として、被測定光ファイバの長さは、励振用光ファイバの長さの10倍以上であるのが好ましい。また、本開示の一態様として、励振用光ファイバの一端は、分岐器(ファンアウトデバイス)に光学的に結合されてもよい。なお、分岐器は、励振用光ファイバにおける複数のコアを複数の単一コア光ファイバにそれぞれ光学的に結合させるための光学部品である。このような構成によっても、単一コア光ファイバを介して光源と励振用光ファイバが光学的に結合される。
 以上、この[本開示の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 なお、上記特許文献1に開示された装置および方法では、空間モード毎に透過率を測定する必要があることから、モードを分岐するときのMDLが誤差要因となる課題があった。また、空間モード数Nの2乗(N)に比例して測定数が増大するので、測定装置のコストが高いという課題もあった。本開示によれば、モード分岐に伴うMDLによる誤差を抑制して安価にCMCFのMDLを測定することが可能になる。
 [本開示の実施形態の詳細]
  以下、本開示の実施形態に係るモード依存損失測定装置およびモード依存損失測定方法の具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、CMCF(結合型マルチコア光ファイバ)の構造の例を示す図である。図1は、CMCF1の横断面および縦断面を示す。CMCF1は、ファイバ軸(長手方向に沿って延びたCMCF1の中心軸に相当)に沿って延在する複数(図1では4本)のコア10と、これら複数のコア10を包囲する共通クラッド11とを備える。各コア10の屈折率は、共通クラッド11の屈折率より高い。これにより、CMCF1は光の導波モードを有する。各コア10および共通クラッド11は、典型的にはシリカガラスからなり、Ge、F、Cl、Pなどの添加物が添加されることで屈折率が調整されている。共通クラッド11は、樹脂(不図示)により被覆されることで外傷から保護される。
 各コア10の導波モードは、隣り合う他のコア10の導波モードとの間で有意に結合する(有意に大きなモード結合が生じさせる)。例えばモード結合係数は、0.1[1/m]以上である。そのような有意に大きなモード結合を実現するため、各コア10は、実質的に同じ組成を有し、実質的に等しい伝搬定数を有していることが好ましい。各コア10は、実質的に等しい伝搬定数を有するために、隣り合う他のコア10との間でスーパーモードを生じない程度に広い間隔で配置されることが好ましい。
 図2は、CMCFにおけるモード結合を説明する図である。図2は、CMCF1の縦断面に加えて、CMCF1の入力端1a(図中、破線で示された領域)における複数のコア10の光パワー分布21、および、CMCF1の出力端1b(図中、破線で示された領域)における複数のコア10の光パワー分布22、を示す。光パワー分布21、22は、光パワーの大小を濃淡により示されている。CMCF1の入力端1aに位置する複数のコア10のうちのいずれか1つのコア10に光が入力されると、そのコア10を導波する光は、伝搬中に生じるモード結合20により他のコア10に結合する。その結果、入力端1aにおける光パワー分布21はいずれか1つのコア10に局在していたのに対して、出力端1bにおける光パワー分布22は複数のコア10に分散することになる。
 CMCFにおいてモード結合が生じる位置および頻度は、CMCFの構造だけでなく、CMCFの曲がり、CMCFの捻れ、および、CMCFの温度または歪みに起因した屈折率変動に依存する。したがって、CMCFにおいてモード結合が生じる位置および頻度はランダムに変動する。また、或るコアから他のコアへ結合する光パワーの比率もランダムに変動する。CMCFの単位長さ当たりにモード結合が生じる頻度の逆数の期待値は、モード結合長と呼ばれる。典型的なCMCFでは、モード結合長は10m以下である。したがって、100m以上の長さを有するCMCFでは、伝搬中にモード結合が十分に大きな回数累積的に生じることから、モード結合を生じる複数のコアからそれぞれ出力される光のパワーは略等しくなる。
 モード結合の作用はモード間での光パワーの交換であるから、MDLが無ければ、ランダムにモード結合が生じても光パワーの和は保存される。すなわち、MDLが無ければ、出力端1bにおいて全てのコア10から出力される光のパワーの和は変動しない。しかしながら、MDLがある場合、モード結合の位置または頻度がランダムに変化することにより、出力端1bにおいて全てのコア10から出力される光のパワーの和もランダムに変動する。本発明者らは、モード結合のランダムな変動を十分に生じさせ、そのときのCMCFの損失の変動を測定することでCMCFのMDLを測定できることを見出した。
 図3は、第一実施形態のモード依存損失測定装置(MDL測定装置)30の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。MDL測定装置30は、光源31、受光器32、モード結合状態変化手段としての外乱付与部33、および解析部34を備える。光源31から受光器32へ向けて順に結合用光ファイバ2、励振用光ファイバ3および被測定光ファイバ4が配置されている。結合用光ファイバ2は設けられなくてもよい。
 光源31は、結合用光ファイバ2の入力端2aと光学的に結合されており、出力光を入力端2aにおいて結合用光ファイバ2のコアに入力させる。結合用光ファイバ2は、単一コアの光ファイバであってよい。
 励振用光ファイバ3はCMCFである。励振用光ファイバ3の入力端3aは、結合用光ファイバ2の出力端2bと光学的に結合されている。出力端2bにおいて結合用光ファイバ2のコアから出力された光は、入力端3aにおいて励振用光ファイバ3の1または2以上のコアに入力される。
 被測定光ファイバ4は、MDL測定装置30によりMDLを測定する対象としてのCMCFである。被測定光ファイバ4の入力端4aは、励振用光ファイバ3の出力端3bと光学的に結合されている。出力端3bにおいて励振用光ファイバ3のコアから出力された光は、入力端4aにおいて被測定光ファイバ4のコアに入力される。
 励振用光ファイバ3および被測定光ファイバ4は、一連長のCMCFの入力端側部分とこの入力端側部分に続く部分であってもよい。励振用光ファイバ3および被測定光ファイバ4は、横断面におけるコアの配置および屈折率プロファイルの点で互いに同一であってもよいし、これらのうちいずれかの点で互いに異なっていてもよい。出力端3bにおいて励振用光ファイバ3のいずれかの1または2以上のコアから出力された光が、入力端4aにおいて被測定光ファイバ4のいずれかの1または2以上のコアへ入力されればよい。
 受光器32は、被測定光ファイバ4の出力端4bと光学的に結合されており、出力端4b上に位置する、被測定光ファイバ4の全てのコアから出力される光のパワーを検出する。
 光源31から出力された光は、結合用光ファイバ2を伝搬した後、入力端3aにおいて励振用光ファイバ3のコアに入力される。このとき、結合用光ファイバ2は所定の直径で曲げられた区間を有し、それにより入力端2aで励振された高次モードが減衰されることが望ましい。結果、結合用光ファイバ2の高次モードが励振用光ファイバ3に結合されることに因る挿入損失の不安定性を抑制され得る。
 結合用光ファイバ2の出力端2bから励振用光ファイバ3の入力端3aへ結合されるときの光パワー分布に対し、励振用光ファイバ3の出力端3bから被測定光ファイバ4の入力端4aへ結合されるときの光パワー分布は、励振用光ファイバ3におけるモード結合に依存して異なったものとなる。また、励振用光ファイバ3の出力端3bから被測定光ファイバ4の入力端4aへ結合されるときの光パワー分布に対し、被測定光ファイバ4の出力端4bから出力されるときの光パワー分布は、被測定光ファイバ4におけるモード結合に依存して異なったものとなる。
 被測定光ファイバ4の出力端4b上に位置する全てのコア端面から出力される光は受光器32により受光され、この受光器32により、その光パワーの和が検出される。
 励振用光ファイバ3におけるモード結合状態は外乱により変動する。モード結合状態を変化させるために励振用光ファイバ3に付与される外乱は、温度、歪み、曲がりおよび捻れ等である。この外乱は、自然に付与されるものであってもよいし、外乱付与部33により意図的に付与されるものであってもよい。外乱付与部33は、例えば「ヒーター」や「圧電素子」である。
 励振用光ファイバ3におけるモード結合状態が変動することにより、励振用光ファイバ3の出力端3bから被測定光ファイバ4の入力端4aへ結合されるときの光パワー分布がランダム変動する。そして、被測定光ファイバ4がMDLを有する場合、受光器32により検出される光パワーもランダムに変動する。
 解析部34は、一例としてCPUと解析プログラムが記憶されたメモリとを含む。解析部34は、外乱付与により励振用光ファイバ3におけるモード結合状態が変化している期間中に受光器32により検出された光パワーの変動を解析し、その光パワー変動から得られる挿入損失(励振用光ファイバ3の入力端から受光器32までの損失)の変動の大きさに基づいて被測定光ファイバ4のMDLを求める。具体的には次のとおりである。
 受光器32は、光パワーPを例えば一定時間間隔で繰り返し検出することで、それぞれの検出値P,P,・・・,P(Mは、2以上の整数)を得る。解析部34は、各検出値P(mは、1以上M以下の整数)と入力光パワーPとの比をとることで挿入損失A(=P/P)を求める。さらに、解析部34は、挿入損失A,A,・・・,Aのうちの最大値Amaxおよび最小値Amin を特定し、これら最大値と最小値との比(Amax/Amin)を被測定光ファイバ4のMDLとして求める。なお、入力光パワーPが一定であれば(光源31の出力パワーや結合用光ファイバ2の損失の変動が小さい場合)、解析部34は、検出値P,P,・・・,Pのうちの最大値Pmaxおよび最小値Pmin を求め、これら最大値と最小値との比(Pmax/Pmin)を被測定光ファイバ4のMDLとして求めることができる。
 ここで得られるMDLは、正確には、被測定光ファイバ4のみのMDLでなく、被測定光ファイバ4および励振用光ファイバ3それぞれのMDLの合成である。したがって、被測定光ファイバ4のMDLを得るためには、被測定光ファイバ4の長さL4を励振用光ファイバ3の長さL3より十分大きくすることが必要である。具体的には、L4/L3は、好ましくは10以上であり、より好ましくは100以上である。
 励振用光ファイバ3では十分なモード結合を生じさせて全ての結合したコアにパワーを分散させることが必要である。そのために、励振用光ファイバ3の長さL3は、励振用光ファイバ3のモード結合長の10倍以上であることが好ましく、100倍以上であることがより好ましい。モード結合長は通常は10m以下であることから、励振用光ファイバ3の長さL3は、好ましくは100m以上であり、より好ましくは1km以上である。また、被測定光ファイバ4の長さL4は、好ましくは1km以上であり、より好ましくは100km以上である。
 励振用光ファイバ3のモード結合長は事前には不明であることが多い。そのような場合には、MDL測定の前または後で、励振用光ファイバ3から出力される光のモード分布をカメラなどで撮影することや、励振用光ファイバのコアそれぞれを選択的に受光器に光学的に結合して検出される光パワーの平均値または平均値とバラツキ幅の比を測定することにより、コアそれぞれから略等しい比率で光パワーが出力されることを確認することが望ましい。このとき、コアそれぞれから出力される光パワーが等しくない場合は、励振用光ファイバ3を長くしたり、励振用光ファイバ3に加える外乱の強さを増したりすることが望ましい。
 図4は、第一実施形態のモード依存損失測定方法(MDL測定方法)のフローチャートである。
 ステップS1では、被測定光ファイバに加えて励振用光ファイバおよび結合用光ファイバが準備され、これらが接続される。結合用光ファイバは接続されなくてもよい。励振用光ファイバを被測定光ファイバに接続してもよく、被測定光ファイバの入力端側部分が励振用光ファイバとして利用されてもよい。
 ステップS2では、光源から出力された所定波長および所定パワーを有する光が、結合用光ファイバを介して励振用光ファイバに入力される。励振用光ファイバ内を伝搬した後に出力された光は、被測定光ファイバに結合される。すなわち、励振用光ファイバからの出力光は、被測定光ファイバ内を伝搬した後に出力端から出力される。このとき、励振用光ファイバに対して外乱が付与される。
 ステップS3では、被測定光ファイバから出力される光のパワーの和Pが受光器により測定される。ステップS4では、入力光パワーPと出力光パワーPとから挿入損失Aが求められる。挿入損失は、時間関数として求められ、ステップS5では、測定開始時点から当該時点までの挿入損失Aの変動の系列の最大値Amaxおよび最小値Amin から比(Amax/Amin)を求めることにより、MDLが得られる。
 ステップS6では、当該時点までのMDL計算値の系列から、MDL計算値の収束が判定される。多くの場合、有効数字3桁の精度で収束すれば十分である。収束が未だ実現していない場合には、ステップS7で光の波長または励振用光ファイバへの外乱を変化させ、ステップS3以降が繰り返される。収束が実現した場合にはMDLの測定値が確定する。光の波長および励振用光ファイバのパワー分布は閉じた集合であるので、有限の時間内で収束に到達することが可能である。
 図5は、第二実施形態のモード依存損失測定装置(MDL測定装置)35の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。MDL測定装置35は、光源31、受光器32、モード結合状態変化手段としての波長変化部36、および解析部34を備える。光源31から受光器32へ向けて順に結合用光ファイバ2、励振用光ファイバ3および被測定光ファイバ4が配置されている。光源31、受光器32、解析部34の機能および動作は、第一実施形態と同じである。
 励振用光ファイバ3のモード結合状態は伝搬する光の波長により変動する。図4のステップS2でモード結合状態を変化させるために、波長変化部36により光源31の駆動条件を変えすることで、光源31から出力される光の波長は変化し得る。
 第一実施形態および第二実施形態では、空間モード毎に透過率を測定する必要はないので、モードを分岐するときのMDLが誤差要因となる問題を解消することができる。また、測定装置の構成が簡易である。したがって、モード分岐に伴うMDLによる誤差を抑制して安価にCMCFのMDLを測定することができる。
 図6は、第三実施形態のモード依存損失測定装置(MDL測定装置)37の構成を、励振用光ファイバおよび被測定光ファイバと合わせて示す図である。MDL測定装置37は、光源31、受光器32、モード結合状態変化手段としての光位相変化部39a、39b(位相変調手段)、および解析部34を備える。光源31から受光器32へ向けて順に光分岐器38、光位相変化部39a、39b、マルチコアファンアウト器40、励振用光ファイバ3および被測定光ファイバ4が配置されている。光源31、受光器32、解析部34の機能および動作は、第一実施形態と同じである。
 光源31から出力された光は、光分岐器38により2つ以上の複数の光路に分岐された後、2つの光位相変化部39a、39bにおいて光位相が変化され、その後マルチコアファンアウト器40により複数の光路が励振用光ファイバ3の複数のコアに各々結合される。 励振用光ファイバ3におけるモード結合状態はその複数のコアを伝搬する光の位相差により変動する。したがって、光位相変化部39aおよび39bで2つの光の位相を変えることが、図4のステップS2でモード結合状態を変化させることに相当する(位相変調工程)。
 光位相変化部39a、39bでは、所定の周波数の周期的な位相変化を与え、受光器32では、前記の所定の周波数で変化する光パワーを検出することが好ましい。また、2つの光位相変化部39aと39bで、所定の異なる周波数の周期的な位相変化を与え、受光器32で、前記の2つの所定の周波数の差の周波数で変化する光パワーを検出することがさらに好ましい。これらの周波数選択的な検出により、例えば光源のパワー変動などのモード依存損失以外の原因による光パワー変化による誤差や、位相変化部で寄生的に発生する光パワー変化による誤差と、モード依存損失に起因する光パワー変化を周波数で区別し、誤差を抑制することができる。
 第一、第二、および第三の実施形態はモード結合状態変化手段が異なるが、モード結合状態変化手段は、これら実施形態のモード結合状態変化手段のうちから複数を組み合わせて用いられてもよい。またその際、上述のように所定の周波数で少なくとも1つのモード結合状態を周期的に変化させ、その所定の周波数、または2つの所定の周波数の差の周波数で変化する光パワーを検出してもよく、それにより誤差を抑制することができる。
 1…CMCF(結合型マルチコア光ファイバ)、2…結合用光ファイバ、3…励振用光ファイバ、4…被測定光ファイバ、10…コア、11…共通クラッド、30、35、37…モード依存損失測定装置(MDL測定装置)、31…光源、32…受光器、33…外乱付与部、34…解析部、36…波長変化部、38…光分岐器、39a、39b…光位相変化部、40…マルチコアファンアウト器。

Claims (13)

  1.  ファイバ軸に沿って延在する複数のコアと、前記複数のコアを包囲する共通クラッドと、を有する結合型マルチコア光ファイバからなる被測定光ファイバのモード依存損失を測定するモード依存損失測定装置であって、
     ファイバ軸に沿って延在する複数のコアと、前記複数のコアを包囲するクラッドと、を有する結合型マルチコア光ファイバからなる励振用光ファイバの入力端と光学的に結合された光源であって、前記励振用光ファイバの前記入力端に光を入力させる光源と、
     前記被測定光ファイバの出力端と光学的に結合された受光器であって、前記励振用光ファイバの出力端と前記被測定光ファイバの入力端とが互いに光学的に結合された状態で前記励振用光ファイバの前記入力端に前記光源からの前記光が入力されている期間中、前記被測定光ファイバの前記出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する受光器と、
     前記励振用光ファイバのモード結合状態を変化させるモード結合状態変化手段と、
     前記励振用光ファイバの前記モード結合状態が変化している期間中に前記受光器により検出された光パワーの変動を解析し、前記検出された光パワーの変動から、前記被測定光ファイバの前記モード依存損失を求める解析部と、
     を備えるモード依存損失測定装置。
  2.  前記モード結合状態変化手段は、外乱の付与により前記励振用光ファイバの前記モード結合状態を変化させる外乱付与部を含む、
     請求項1に記載のモード依存損失測定装置。
  3.  前記モード結合状態変化手段は、前記光源が出力する前記光の波長を変化させる波長変化部を含む、
     請求項1に記載のモード依存損失測定装置。
  4.  前記モード結合状態変化手段は、前記励振用光ファイバにおける前記複数のコアを伝搬する光の位相のうちの1つ以上の位相を変化させる位相変調手段を含む、
     請求項1に記載のモード依存損失測定装置。
  5.  前記モード結合状態変化手段は、外乱の付与により前記励振用光ファイバの前記モード結合状態を変化させる第1要素、前記光源が出力する前記光の波長を変化させる第2要素、および、前記励振用光ファイバにおける前記複数のコアを伝搬する光の位相うちの1つ以上の位相を変化させる第3要素のうち少なくとも2つの要素を含み、
     前記解析部は、前記検出された光パワーの変動を解析するため、前記モード結合状態変化手段に含まれる要素のうち少なくとも1つの要素の動作に起因したモード結合状態の変化と同期した周波数に基づいて、検出された前記光パワーの変動の周波数成分を選択的に抽出する、
     請求項1に記載のモード依存損失測定装置。
  6.  励振用光ファイバは、前記被測定光ファイバである前記結合型マルチコア光ファイバの一部からなる、
     請求項1から請求項5のいずれか一項に記載のモード依存損失測定装置。
  7.  ファイバ軸に沿って延在する複数のコアと、前記複数のコアを包囲する共通クラッドと、を有する結合型マルチコア光ファイバからなる被測定光ファイバのモード依存損失を測定するモード依存損失測定方法であって、
     ファイバ軸に沿って延在する複数のコアと、前記複数のコアを包囲する共通クラッドとを有する結合型マルチコア光ファイバからなる励振用光ファイバの入力端と光学的に結合された光源からの光を、前記励振用光ファイバの前記入力端に入力させる光入力工程と、
     前記励振用光ファイバの出力端と前記被測定光ファイバの入力端とが互いに光学的に結合された状態で前記励振用光ファイバの前記入力端に前記光源からの前記光が入力されている期間中、前記被測定光ファイバの前記出力端と光学的に結合された受光器により、前記被測定光ファイバの前記出力端上に位置する複数のコア端面からの出力光のパワーの和を検出する光検出工程と、
     前記励振用光ファイバのモード結合状態を変化させるモード結合状態変化工程と、
     前記励振用光ファイバの前記モード結合状態が変化している期間中に前記受光器により検出された光パワーの変動を解析し、前記検出された光パワーの変動から、前記被測定光ファイバのモード依存損失を求める解析工程と、
     を備えるモード依存損失測定方法。
  8.  前記モード結合状態変化工程は、外乱の付与により前記励振用光ファイバの前記モード結合状態を変化させる外乱付与工程を含む、
     請求項7に記載のモード依存損失測定方法。
  9.  前記モード結合状態変化工程は、前記光源が出力する前記光の波長を変化させる波長変化工程を含む、
     請求項7に記載のモード依存損失測定方法。
  10.  前記モード結合状態変化工程は、前記励振用光ファイバの前記複数のコアを伝搬する光の位相うちの1つ以上の位相を変化させる位相変調工程を含む、
     請求項7記載のモード依存損失測定方法。
  11.  前記モード結合状態変化工程は、外乱の付与により前記励振用光ファイバの前記モード結合状態を変化させる第1サブ工程、前記光源が出力する前記光の波長を変化させる第2サブ工程、および、前記励振用光ファイバにおける前記複数のコアを伝搬する光の位相うちの1つ以上の位相を変化させる第3サブ工程のうち少なくとも2つのサブ工程を含み、
     前記解析工程は、前記検出された光パワーの変動を解析するため、前記モード結合状態変化工程に含まれるサブ工程のうち少なくとも1つのサブ工程の動作に起因したモード結合状態の変化と同期した周波数に基づいて、前記検出された光パワーの変動の周波数成分を選択的に抽出する、
     請求項7に記載のモード依存損失測定方法。
  12.  励振用光ファイバは、前記被測定光ファイバである前記結合型マルチコア光ファイバの一部からなる、
     請求項7から請求項11のいずれか一項に記載のモード依存損失測定方法。
  13.  前記被測定光ファイバの長さは、前記励振用光ファイバの長さの10倍以上である、
     請求項7から請求項12のいずれか一項に記載のモード依存損失測定方法。
PCT/JP2020/006927 2019-02-22 2020-02-20 モード依存損失測定装置およびモード依存損失測定方法 WO2020171187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021502158A JPWO2020171187A1 (ja) 2019-02-22 2020-02-20 モード依存損失測定装置およびモード依存損失測定方法
CN202080013318.7A CN113424038B (zh) 2019-02-22 2020-02-20 模式依赖损耗测定装置及模式依赖损耗测定方法
US17/445,241 US11754466B2 (en) 2019-02-22 2021-08-17 Mode-dependent loss measurement device and mode-dependent loss measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030210 2019-02-22
JP2019-030210 2019-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/445,241 Continuation US11754466B2 (en) 2019-02-22 2021-08-17 Mode-dependent loss measurement device and mode-dependent loss measuring method

Publications (1)

Publication Number Publication Date
WO2020171187A1 true WO2020171187A1 (ja) 2020-08-27

Family

ID=72143572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006927 WO2020171187A1 (ja) 2019-02-22 2020-02-20 モード依存損失測定装置およびモード依存損失測定方法

Country Status (4)

Country Link
US (1) US11754466B2 (ja)
JP (1) JPWO2020171187A1 (ja)
CN (1) CN113424038B (ja)
WO (1) WO2020171187A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206517A (ja) * 2013-04-16 2014-10-30 日本電信電話株式会社 多コア光ファイバのクロストーク特性の評価方法及びそのシステム
WO2016152507A1 (ja) * 2015-03-25 2016-09-29 住友電気工業株式会社 マルチコア光ファイバ
WO2017149910A1 (ja) * 2016-03-04 2017-09-08 住友電気工業株式会社 モード依存損失測定方法および測定装置
JP2019015584A (ja) * 2017-07-06 2019-01-31 住友電気工業株式会社 光ファイバ出射ビームプロファイル測定方法および装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145198B (zh) * 2012-02-29 2018-06-15 住友电气工业株式会社 多芯光纤、多芯光纤缆线以及多芯光纤传输系统
US9442005B2 (en) * 2014-07-30 2016-09-13 Corning Optical Communications LLC Non-contact methods of measuring insertion loss in optical fiber connectors
WO2017061184A1 (ja) * 2015-10-08 2017-04-13 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム
CN105204119B (zh) * 2015-10-22 2018-03-09 华中科技大学 一种基于微孔加工的多芯光纤耦合器制备方法
CN105572793B (zh) * 2016-01-15 2019-04-19 中国科学院上海光学精密机械研究所 带损耗伴芯的大模场光纤
JP6862712B2 (ja) * 2016-08-05 2021-04-21 住友電気工業株式会社 光ファイバ評価方法及び光ファイバ評価装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206517A (ja) * 2013-04-16 2014-10-30 日本電信電話株式会社 多コア光ファイバのクロストーク特性の評価方法及びそのシステム
WO2016152507A1 (ja) * 2015-03-25 2016-09-29 住友電気工業株式会社 マルチコア光ファイバ
WO2017149910A1 (ja) * 2016-03-04 2017-09-08 住友電気工業株式会社 モード依存損失測定方法および測定装置
JP2019015584A (ja) * 2017-07-06 2019-01-31 住友電気工業株式会社 光ファイバ出射ビームプロファイル測定方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, TETSUYA ET AL.: "Verification of input-power dependence of free-space coupling multi-core fiber devices", IEICE TECHNICAL REPORT, vol. 119, no. 186, 22 August 2019 (2019-08-22), pages 1 - 5 *
SAKAMOTO, TAIJI ET AL.: "Characteristics of mode-dependent loss at the connecting point of coupled multicore fiber", LECTURE PROCEEDINGS OF THE 2017 COMMUNICATION SOCIETY CONFERENCE OF IEICE, vol. B-10-8, 29 August 2017 (2017-08-29), pages 124 *

Also Published As

Publication number Publication date
US11754466B2 (en) 2023-09-12
CN113424038B (zh) 2024-05-03
CN113424038A (zh) 2021-09-21
JPWO2020171187A1 (ja) 2021-12-16
US20210372882A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CN107923816B (zh) 模式相关损耗测量方法和测量装置
Sakamoto et al. Randomly-coupled single-mode 12-core fiber with highest core density
US20220302665A1 (en) Methods and devices for laser beam parameters sensing and control with fiber-tip integrated systems
Tekippe Passive fiber-optic components made by the fused biconical taper process
Rademacher et al. Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber
US11156529B2 (en) Nonlinearity measuring method and nonlinearity measuring device
Bigot-Astruc et al. Weakly-coupled 6-LP-mode fiber with low differential mode attenuation
van der Heide et al. Low-loss low-mdl core multiplexer for 3-core coupled-core multi-core fiber
US11280965B2 (en) Multi-clad optical fiber with taper portion, and optical fiber device having same
Rademacher et al. Time-dependent inter-core crosstalk between multiple cores of a homogeneous multi-core fiber
Sharma et al. Analysis of silica based single-mode fiber doped with germanium at different transmission window
WO2020171187A1 (ja) モード依存損失測定装置およびモード依存損失測定方法
Nazarov et al. Crosstalk Statistical Distributions in Multicore Fibers Under Different Deployment Conditions
Aozasa et al. Bending radius dependence of spatial mode dispersion in randomly coupled multi-core fiber
Sakamoto et al. Coupled single-mode multi-core fiber design for long-haul MIMO transmission system
EP2618192A1 (en) Method for manufacturing a coupling arrangement, coupling arrangement and amplifier
Griffin et al. Asymmetric multimode couplers
Sakamoto et al. Fibre twisting and bending induced mode conversion characteristics in coupled multi-core fibre
WO2020036218A1 (ja) ラマン利得効率分布試験方法およびラマン利得効率分布試験装置
Grüner-Nielsen et al. Direct measurement of polarization dependency of mode conversion in a long period grating
Ohashi et al. Optical Fibers for Space-Division Multiplexing
Ishida et al. Longitudinal power decay of a weakly-coupled multi-core fiber
Mathew et al. Polarization dependence of mode-group selective air-clad photonic lantern
Spenner et al. Mode Group Resolved Analysis of Effects Induced by Macro Bending in a 50 µm Graded Index Multi Mode Fiber
US20020178756A1 (en) Method for manufacturing optical gratings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758829

Country of ref document: EP

Kind code of ref document: A1