WO2013129120A1 - 液体容器、超音波霧化装置、および吸収体 - Google Patents

液体容器、超音波霧化装置、および吸収体 Download PDF

Info

Publication number
WO2013129120A1
WO2013129120A1 PCT/JP2013/053567 JP2013053567W WO2013129120A1 WO 2013129120 A1 WO2013129120 A1 WO 2013129120A1 JP 2013053567 W JP2013053567 W JP 2013053567W WO 2013129120 A1 WO2013129120 A1 WO 2013129120A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
absorber
core
diaphragm
container
Prior art date
Application number
PCT/JP2013/053567
Other languages
English (en)
French (fr)
Inventor
浩之 河野
哲男 原田
大介 高畠
一之 植田
Original Assignee
住友化学株式会社
株式会社フコク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社フコク filed Critical 住友化学株式会社
Priority to CN201380011067.9A priority Critical patent/CN104270943A/zh
Priority to EP13755837.5A priority patent/EP2820949A4/en
Priority to JP2014502124A priority patent/JP6097274B2/ja
Publication of WO2013129120A1 publication Critical patent/WO2013129120A1/ja
Priority to US14/471,225 priority patent/US20140367486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • A01M1/2044Holders or dispensers for liquid insecticide, e.g. using wicks
    • A01M1/205Holders or dispensers for liquid insecticide, e.g. using wicks using vibrations, e.g. ultrasonic or piezoelectric atomizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • B05B17/0684Wicks or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/132Piezo or ultrasonic elements for dispensing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/135Vaporisers for active components

Definitions

  • the present invention relates to a liquid container, an ultrasonic atomizer, and an absorber used in an ultrasonic atomizer that atomizes a liquid such as water or a chemical solution by ultrasonic vibration.
  • An ultrasonic atomizer is known as means for spraying a liquid such as a chemical solution containing an active ingredient into an indoor or outdoor space.
  • the ultrasonic atomizer has a piezoelectric vibrator that generates ultrasonic vibration when energized, and a vibration plate that is fixed to the piezoelectric vibrator and has a large number of micropores, supplying liquid to the micropores, The liquid is atomized by generating ultrasonic vibration in the diaphragm by the vibration of the piezoelectric vibrator.
  • the piezo-type chemical liquid spray device of Patent Document 1 includes a liquid absorption core, a chemical liquid container, and a piezo spray unit, and the liquid absorption core is divided into a first chemical liquid passage part and a second chemical liquid passage part. Yes. Further, the first chemical liquid passage part is provided on the chemical liquid container side, and the second chemical liquid passage part is provided on the apparatus main body side.
  • the piezo spraying portion and the liquid absorption core are attached to the chemical solution container, and are detachably accommodated in the spraying device main body together with the chemical solution container.
  • Japanese Patent Laid-Open No. 11-221505 released on August 17, 1999
  • Japanese Unexamined Patent Publication No. 2000-51755 published on February 22, 2000
  • the second chemical liquid passage part is provided on the apparatus main body side, and always makes a slight contact with or comes into contact with the piezo spray part. For this reason, when there is no chemical solution in the chemical solution container and the second chemical solution passage part is dried, the fibers and the like of the second chemical solution passage unit block the micropores of the diaphragm, which makes the spray amount of the chemical solution unstable.
  • the fibers and the like of the second chemical solution passage unit block the micropores of the diaphragm, which makes the spray amount of the chemical solution unstable.
  • it is necessary to replace the second chemical solution passage part or the diaphragm but it is costly to replace the diaphragm.
  • the diaphragm and the second chemical liquid passage part are brought into strong contact, or the contact between the diaphragm and the second chemical liquid passage part is insufficient. For example, problems may occur in the stable spraying of chemicals.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a liquid container, an ultrasonic atomizer, and an absorber that can reduce the burden on the user.
  • a liquid container that is detachably accommodated in an ultrasonic atomizing device having a vibration plate that vibrates by a piezoelectric vibrator to atomize and spray a liquid, and that absorbs the liquid from the liquid container And an absorbent body that supplies the liquid absorbed by the liquid absorbent core to the diaphragm, and the absorbent body is configured such that when the liquid container is attached to and detached from the ultrasonic atomizer, It is attached to and detached from the ultrasonic atomizer together with the container.
  • the ultrasonic atomizer includes the diaphragm, and the liquid container that is detachably accommodated in the ultrasonic atomizer includes the liquid absorption core and the absorber.
  • the absorber is attached to and detached from the ultrasonic atomizer together with the liquid container when the liquid container is attached to and detached from the ultrasonic atomizer.
  • the absorber is taken out together with the liquid container, and therefore does not remain on the ultrasonic atomizer side. For this reason, when there is no liquid in the liquid container and the absorbent body is dried, when the liquid container is replaced, the entire absorbent body is replaced. Therefore, the fiber derived from the absorbent body when the ultrasonic atomizer is restarted. It is possible to suppress the micropores of the diaphragm from being blocked by, for example. Therefore, the liquid container according to the present invention is less likely to cause the liquid spray amount to be unstable and to force the user to replace the vibration plate that requires high cost due to the above-described blockage.
  • the ultrasonic atomizing device since the ultrasonic atomizing device includes the piezoelectric vibrator and the diaphragm, it is not necessary to exchange the piezoelectric vibrator and the diaphragm with the replacement of the liquid container. The replacement cost of the container can be kept low.
  • the liquid container according to the present invention can reduce the burden on the user in terms of cost, and suppresses blocking of the micropores of the diaphragm, thereby suppressing the spray stability of the ultrasonic atomizer. Can be improved.
  • the liquid container according to the present invention includes a liquid absorption core that absorbs the liquid from the liquid container, and an absorber that supplies the liquid absorbed by the liquid absorption core to the diaphragm.
  • the absorber is configured to be attached to and detached from the ultrasonic atomizer together with the liquid container when the liquid container is attached to and detached from the ultrasonic atomizer.
  • FIG. 1 is a schematic diagram of an ultrasonic atomizer 1.
  • FIG. 2 is an enlarged view of the atomization unit 30 of the ultrasonic atomizer 1.
  • the ultrasonic atomizing apparatus 1 is an apparatus for atomizing a liquid such as water or a chemical liquid by ultrasonic vibration, and includes an apparatus main body 10 provided with an atomizing unit 30 and a chemical liquid detachably accommodated in the apparatus main body 10.
  • a container 20 is assumed to be water or a chemical solution such as an insecticide, a bactericide, and a fragrance.
  • the apparatus main body 10 includes the atomizing unit 30 and detachably stores the chemical solution container 20.
  • the atomizing unit 30 includes a piezoelectric vibrator 31 that generates ultrasonic vibration when energized, a vibration plate 32 that atomizes a chemical liquid by vibration of the piezoelectric vibrator 31, an upper surface of the piezoelectric vibrator 31, A pair of elastic rings 33 as annular elastic members attached to the lower surface of the vibration plate 32 and the piezoelectric vibrator 31 and the vibration plate 32 are elastically sandwiched and held via the pair of elastic rings 33.
  • a casing 34 is provided to the atomizing unit 30 and detachably stores the chemical solution container 20.
  • the atomizing unit 30 includes a piezoelectric vibrator 31 that generates ultrasonic vibration when energized, a vibration plate 32 that atomizes a chemical liquid by vibration of the piezoelectric vibrator 31, an upper surface of the piezoelectric vibrator 31, A pair of elastic rings 33 as annular elastic members attached to the lower surface of the
  • the piezoelectric vibrator 31 is made of a circular thin plate-shaped piezoelectric ceramic having an opening 35 formed at the center.
  • the piezoelectric vibrator 31 is polarized in the thickness direction, and generates ultrasonic vibrations in the radial direction by applying a high-frequency voltage to electrodes (not shown) formed on both surfaces.
  • the piezoelectric vibrator 31 may be a piezoelectric vibrator having a thickness of 0.1 to 4.0 mm, an outer diameter of 6 to 60 mm, and an oscillation frequency of 30 to 500 kHz.
  • the diaphragm 32 is made of, for example, a circular thin plate made of nickel.
  • the diaphragm 32 is bonded (fixed) concentrically to the piezoelectric vibrator 31 with respect to the lower surface of the piezoelectric vibrator 31 in FIG. 1 in a state of covering the opening 35 of the piezoelectric vibrator 31.
  • the diaphragm 32 has a thickness of 0.02 to 2.0 mm and an outer diameter of 6 to 60 mm.
  • the outer diameter of the diaphragm 32 is appropriately selected according to the size of the piezoelectric vibrator 31 so as to be larger than the inner diameter dimension of the opening 35 of the piezoelectric vibrator 31.
  • a large number of fine holes 36 penetrating in the thickness direction are formed in a portion of the diaphragm 32 facing the opening 35 of the piezoelectric vibrator 31.
  • the hole diameter of the fine hole 36 is preferably 3 ⁇ m to 150 ⁇ m.
  • the convex part 37 comprised by the curved surface is provided in the center part of the diaphragm 32 from the top part to the skirt part.
  • the convex portion 37 has a dome shape that bulges upward (in the direction of spraying the chemical). By making the central part of the diaphragm 32 into such a shape, the chemical liquid can be more easily diffused.
  • the convex portion 37 generates ultrasonic vibration in the vertical direction as the piezoelectric vibrator 31 expands and contracts (vibrates) in the radial direction.
  • a pair of elastic rings 33 are provided.
  • the pair of elastic rings 33 are elastically deformed between the casing 34 and the upper surface of the piezoelectric vibrator 31 and between the casing 34 and the lower surface of the diaphragm 32, respectively. Concentrically, it is in contact with the upper and lower surfaces.
  • the elastic ring 33 an O-ring having a wire diameter of 0.5 mm to 3 mm is preferably used.
  • the hardness of the elastic ring 33 is preferably 20 to 90 IRHD.
  • the elastic ring 33 in contact with the upper surface of the piezoelectric vibrator 31 and the elastic ring 33 in contact with the lower surface of the diaphragm 32 have an average diameter [(inner diameter + outer diameter) / 2], wire diameter, and hardness. Are preferably the same, and the average diameter is particularly preferable.
  • Examples of the material of the elastic ring 33 include nitrile rubber, fluorine rubber, ethylene propylene rubber, silicone rubber, acrylic rubber, hydrogenated nitrile rubber, and the like.
  • the elastic ring 33 may be a ring having a cross-sectional shape of an ellipse, a quadrangle, a triangle, a rhombus or the like instead of the O-ring, and may be a D-shaped, X-shaped, T-shaped ring or the like. Also good. Further, the elastic ring 33 does not have to be completely connected and continuous in the circumferential direction, and may have one cut in the circumferential direction or may have several intermittent cuts in the circumferential direction. Good.
  • the convex portion 37 of the diaphragm 32 is not limited to a dome shape whose top portion is a curved surface, but may be a truncated cone shape whose top portion is a flat surface, and its shape is arbitrary.
  • the convex diaphragm which made the convex part 37 protrude in the spraying direction was illustrated as the diaphragm 32, it is a concave diaphragm which made the convex part 37 protrude in the opposite direction to the spraying direction, and made it into a concave part. Also good. Further, the diaphragm 32 may be a flat plate diaphragm that does not have a convex portion and a concave portion at the center.
  • the circular thin plate-like diaphragm 32 completely covers the opening 35 of the piezoelectric vibrator 31
  • a rectangular thin plate-like diaphragm is used, and this diaphragm is used as the opening 35 of the piezoelectric vibrator 31. It may be spanned so that both ends of the diaphragm are fixed to one surface of the piezoelectric vibrator 31.
  • the atomization part 30 may use a well-known piezoelectric spray part other than the thing of said structure, and may be selected suitably.
  • the chemical liquid container 20 includes a container main body 21, a liquid absorption core 22, and an absorber 23, and is detachably accommodated in the apparatus main body 10.
  • the container main body 21 is comprised from the bottomed cylindrical container which has the opening part 24 in the upper part, for example.
  • a chemical solution is placed in the container body 21.
  • Examples of the material of the container body 21 include glass and synthetic resin.
  • the liquid absorbent core 22 is, for example, a cylindrical member having a diameter of 2 mm to 6 mm made of a nonwoven fabric.
  • the lower side of the liquid absorbent core 22 is immersed in the chemical liquid in the container body 21, and the chemical liquid can be supplied to the upper side of the liquid absorbent core 22 by capillary action.
  • An absorber 23 is provided on the upper side of the liquid absorbent core 22.
  • the liquid absorption core 22 may have a prismatic shape as well as a cylindrical shape, and its shape is arbitrary.
  • the thickness of the liquid absorbent core 22 may be any thickness that can be inserted into the opening 35 of the piezoelectric vibrator 31.
  • the absorber 23 is provided integrally with the liquid absorbent core 22 on the upper side of the liquid absorbent core 22. That is, the absorber 23 is attached to and detached from the ultrasonic atomizer 1 together with the chemical container 20 when the chemical container 20 is attached to and detached from the ultrasonic atomizer 1.
  • the absorber 23 is close to or in contact with the convex portion 37 of the diaphragm 32, and supplies the chemical liquid absorbed by the liquid absorbent core 22 to the convex portion 37. Thereby, a chemical
  • liquid absorbent core 22 and the absorber 23 can be realized in various forms, and some examples will be described later with reference to FIGS. 3 and 4.
  • an integrated structure of the liquid absorbent core 22 and the absorber 23 may be referred to as a “two-core integrated structure”.
  • integral is used as an expression including the same structure or a state in which they are united.
  • the liquid absorption core 22 and / or the absorber 23 are fixed to the container main body 21 and are detachably attached from the chemical liquid container 20 (or the container main body 21).
  • the porous body which has a communicating hole As a material of the liquid absorption core 22 and the absorber 23, the porous body which has a communicating hole, the resin body which has an open cell, or the aggregate
  • a resin body having open cells made of polyurethane, polyethylene, polyethylene terephthalate, polyvinyl formal, polystyrene, etc., a porous body obtained by compressing and sintering a resin fine particle such as polyethylene, polypropylene, nylon, etc.
  • Examples thereof include an aggregate of resin fibers such as non-woven fabric and the like, and a porous inorganic powder sintered body obtained by compressing and sintering an inorganic powder such as ceramic as a main component, but are not limited thereto. These may be treated with a surfactant.
  • the material of the liquid absorbent core 22 and the absorber 23 may be the same or different.
  • the chemical container 20 is accommodated in the apparatus main body 10 in such a manner that the chemical liquid container 20 is detachably accommodated in the apparatus main body 10, and the absorber 23 and the vibration plate 32 are convex in a state where the chemical liquid container 20 is accommodated in the apparatus main body 10. If it is a system which the shape part 37 adjoins or contacts, it will not specifically limit. For example, there are a method of fitting the chemical solution container 20 by shifting it horizontally from the horizontal direction, a method of fitting the chemical solution container 20 with a slight rotation angle from the horizontal direction, and the like.
  • FIGS. 3 and 4 show an embodiment of an integrated structure of the liquid absorbent core 22 and the absorber 23.
  • FIG. 3 (a) shows a cap structure
  • FIG.3 (b) shows a cotton swab structure
  • FIG.3 (c) shows an insertion structure
  • FIG.3 (d) shows a core structure
  • 4 (a) shows a two-core swab structure
  • FIG. 4 (b) shows an adhesive structure
  • FIG. 4 (c) shows a straw-type adhesive structure
  • FIG. 4 (d) shows a straw-type cotton swab structure. Show.
  • 3 and 4 show basic shapes of the embodiments, and the length, depth, width, relative size between the liquid absorbent core 22 and the absorber 23, positional relationship, and the like. Can be appropriately changed. 3 and 4, the diaphragm 32 is disposed on the upper side of the drawing, and the chemical solution container 20 is disposed on the lower side of the drawing. Therefore, the absorber 23 approaches or contacts the diaphragm 32 (not shown) on the upper side of the drawing.
  • the cap structure shown in FIG. the absorber 23a is covered with a U-shape (concave) on the liquid absorbent core 22a, and one end of the liquid absorbent core 22a is fitted into the concave portion. Thereby, the absorber 23a is provided integrally with the liquid absorbent core 22a in a state where the one end of the liquid absorbent core 22a is covered.
  • the absorber 23 in FIG. 2 uses this cap structure. In this case, the chemical solution is stably supplied to the vibration plate 32 (not shown) on the upper side of the drawing by the liquid retention force of the absorber 23.
  • the absorbent body 23b is provided integrally with the liquid absorbent core 22a, and at this time, the shape defined by the external shapes of the liquid absorbent core 22a and the absorbent body 23b is similar to the cotton swab.
  • the absorber 23b can stably supply a chemical solution to the diaphragm 32 on the upper side of the drawing by its liquid retention force, and has a shape corresponding to the convex shape of the diaphragm 32. Can be formed.
  • the absorber 23c has a T-shaped cross-sectional shape, and a rod-shaped portion forming the T-shape is inserted into the liquid absorption core 22b.
  • the absorber 23c can be structurally stably held on the liquid absorbent core 22b.
  • a cylindrical absorbent body 23d is fitted into the liquid absorbent core 22c over the axial direction of the liquid absorbent core 22c. That is, the absorber 23d is inserted from one end of the liquid absorbent core 22c to the other end, and one end is immersed in the chemical solution of the container body 21.
  • the liquid absorption core 22c and the absorber 23d absorb (liquid absorption) the chemical liquid from the container body 21.
  • the absorber 23d Since the absorber 23d is close to or in contact with the diaphragm 32 at one end on the side different from the container main body 21 side, the absorber 23d serves to supply the diaphragm 32 with the chemical liquid absorbed by the liquid absorbent core 22c. In this case, even when the absorber 23d having a low absorption rate of the chemical liquid, for example, the absorber 23d having a low porosity is used, the liquid absorption core 22c having a high liquid absorption rate, for example, the liquid absorption core having a high porosity. By using 22c, a chemical solution can be stably supplied to the diaphragm 32 (not shown).
  • the porosity described here is given by (1 ⁇ (weight of liquid absorbent core or absorber) / (volume of liquid absorbent core or absorbent body) ⁇ (density of liquid absorbent core or liquid absorbent material)) ⁇ 100. It is calculated. This is the same in the embodiments described later.
  • the two-core cotton swab structure shown in FIG. As shown in the figure, the two-core swab structure is a structure in which the swab structure shown in FIG. 3B and the two-core structure shown in FIG. 3D are combined.
  • the two-core swab structure uses a liquid absorbent core 22c, an absorber 23d, and an absorber 23e.
  • the absorber 23d and the absorber 23e may be made of the same material or different materials. In this case, even when the absorber 23d having a low liquid absorption rate, for example, the absorber 23d having a low porosity is used, the liquid absorption core 22c having a high chemical absorption rate, for example, a liquid having a high porosity.
  • the chemical liquid can be stably supplied to the diaphragm 32.
  • the absorber 23e can stably supply the chemical liquid to the diaphragm 32 by its liquid retention force, and can form a shape corresponding to the convex shape of the diaphragm 32.
  • the absorber 23f is bonded to the liquid absorbent core 22a using an adhesive member such as an adhesive.
  • the adhesive member preferably has a characteristic that does not hinder the supply of the chemical liquid from the liquid absorbent core 22a to the absorber 23f.
  • the adhesive member may be used on the entire contact surface between the liquid absorbent core 22a and the absorber 23f, or may be used only on a part of the contact surface. In this case, the material cost can be suppressed.
  • the straw-type adhesive structure shown in FIG. the liquid absorption core 22 a is fitted into the straw-like cylinder 25.
  • the absorber 23f is provided integrally with the liquid absorbent core 22a at one end (diaphragm side) of the liquid absorbent core 22a fitted into the straw-like cylinder 25.
  • the cylinder 25 is made of a material that does not absorb the chemical solution. In this case, since the chemical liquid can be sucked up only from one end on the lower side of the drawing, the influence on the liquid absorption speed due to the height of the chemical liquid surface from the bottom of the container can be eliminated, and the natural transpiration from the liquid absorption core 25 can be eliminated. Can be prevented.
  • the straw-type swab structure shown in FIG. is a structure in which the absorbent body 23f of the straw-type adhesive structure of FIG. 4C is replaced with the absorbent body 23b of the swab structure of FIG. 3B.
  • the straw-type swab structure uses a liquid absorbent core 22a, an absorbent body 23b, and a tube 25.
  • the absorbent body 23b can suck up the chemical liquid only from one end of the liquid absorbent core 22a, so that it is possible to eliminate the influence on the liquid absorption speed due to the height of the chemical liquid surface from the bottom of the container.
  • the absorbent body 23b can stably supply the chemical liquid to the diaphragm 32 by its liquid retaining force, and forms a shape corresponding to the convex shape of the diaphragm 32. Can do.
  • the absorber 23 is integrally provided with the liquid absorbent core 22 by various shapes and structures.
  • the absorber 23 may be formed in various shapes such as a convex shape, a concave shape, or a flat contact surface with the diaphragm 32.
  • the absorber 23 preferably has a shape in which the contact surface with the diaphragm 32 corresponds to the contact surface of the diaphragm 32 that contacts the absorber 23. That is, when the shape of the diaphragm 32 on the side opposite to the spray direction of the chemical liquid is concave, convex, or flat, the absorber 23 has a convex, concave, or contact surface with the diaphragm 32. It is preferably flat or the like.
  • the absorber 23 can maintain the contact state of the diaphragm 32 and the absorber 23 favorably, and the diaphragm 32 and the absorber 23 are brought into strong contact, or the diaphragm 32 and the absorber 23 are not in contact with each other.
  • causes that affect the stability of chemical spraying, such as insufficient contact, can be reduced or eliminated.
  • the liquid absorption core 22 and / or the absorber 23 may change the type of the integrated structure in accordance with the shape and characteristics of the diaphragm 32, thereby realizing an optimal chemical spray.
  • the liquid absorption core 22 and / or the absorber 23 are fixed to the container main body 21, they may be attached detachably from the chemical liquid container 20 (or the container main body 21). Thereby, for example, when a defect is recognized in the liquid absorbent core 22 and / or the absorber 23 and the chemical liquid remains in the chemical liquid container 20, only the liquid absorbent core 22 and / or the absorber 23 is replaced.
  • the ultrasonic atomizer 1 can be operated while maintaining spray stability. Thereby, it is possible to provide the user with the added value of reducing the replacement cost of parts (members) and effectively using the medicine.
  • the two-core integrated structure core used in this effect confirmation test corresponds to the cap structure shown in FIG. (1)
  • Liquid absorbent core 22 Polypropylene resin fiber and polyethylene resin fiber aggregate having an inner diameter of 4.5 mm
  • Absorber 23 Aggregate of wood pulp and synthetic fiber (Product name: AY-80 (manufactured by Oji Kinocross Co., Ltd.))
  • Integrated structure Cover the absorbent core 22 with the absorber 23 and hold it with a seal tube (two-core integrated structure core B)
  • the two-core integrated structure core used in this effect confirmation test corresponds to the cap structure shown in FIG.
  • Liquid absorbent core 22 Polypropylene resin fiber and polyethylene resin fiber aggregate having an inner diameter of 3.5 mm
  • Absorber 23 Aggregate of wood pulp and synthetic fiber
  • Integrated structure Absorbed by liquid absorbent core 22 Wrap and hold body 23 (two-core integrated core C)
  • the two-core integrated structure core used in this effect confirmation test corresponds to the cap structure shown in FIG.
  • Liquid absorption core 22 Polypropylene resin fiber and polyethylene resin fiber aggregate having an inner diameter of 3.5 mm
  • Tube 25 Polypropylene tube having an inner diameter of 3.5 mm and an outer diameter of 4.5 mm
  • Absorber 23 Wood Aggregate of pulp and synthetic fiber (Product name: Bencott M-3II (Asahi Kasei Corporation))
  • Integrated structure The absorbent core 22 is inserted into the cylinder 25, and the absorbent body 23 is wound and held (Example 1).
  • the above-described two-core integrated structure core A is sandwiched between container bodies 21 filled with a chemical solution (Exsol D110 (manufactured by ExxonMobil)) with an inner plug, and the chemical solution is sprayed for 1 second using the ultrasonic atomizer 1. .
  • a chemical solution Exsol D110 (manufactured by ExxonMobil)
  • the spray amount per spray was calculated from the weight change before and after spraying.
  • the relative standard deviation was calculated from the test results of 4 replicates. As a result, the spray amount was 13.0 mg / spray and the relative standard deviation was 0.6%.
  • Example 2 The above-described two-core integrated structure core B is sandwiched between the container main body 21 filled with a chemical solution (Exsol D110 (manufactured by Exxon Mobil Corporation)) with an inner stopper, and the chemical solution is sprayed for 1 second using the ultrasonic atomizer 1. . After spraying 10 times, the spray amount per spray was calculated from the weight change before and after spraying. Moreover, the relative standard deviation was calculated from the test results of 4 replicates. As a result, the spray amount was 11.9 mg / spray, and the relative standard deviation was 1.0%.
  • a chemical solution Exsol D110 (manufactured by Exxon Mobil Corporation)
  • Example 3 The above-described two-core integrated structure core C is held between the container main body 21 filled with a chemical solution (Exsol D110 (manufactured by Exxon Mobil Corporation)) with an inner stopper, and the chemical solution is sprayed for 1 second using the ultrasonic atomizer 1. . After spraying 10 times, the spray amount per spray was calculated from the weight change before and after spraying. Moreover, the relative standard deviation was calculated from the test results of 4 replicates. As a result, the spray amount was 9.3 mg / spray, and the relative standard deviation was 3.1%.
  • a chemical solution Exsol D110 (manufactured by Exxon Mobil Corporation)
  • the spray amount per spray was calculated from the weight change before and after spraying.
  • the relative standard deviation was calculated from the test results of 4 replicates. As a result, the spray amount was 9.3 mg / spray, and the relative standard deviation was 3.1%.
  • Example 1 uses only the liquid absorbent core 22 and does not use the absorber 23 (Comparative Example 1). It was found that the spray amount was larger than that of) and that the spray stability could be realized.
  • Example 3 uses only the liquid absorbent core 22 inserted into the cylinder 25 and does not use the absorber 23 (Comparison) It was found that the spray amount was larger than that of Example 2) and the spray stability could be realized.
  • Example 1 When comparing Example 1 and Comparative Example 3, it was found that there was no particular difference in spray amount and spray stability between the two-core integrated structure core and the two-core split structure core.
  • Example 4 The above-described two-core integrated structure core A is sandwiched between container bodies 21 filled with a chemical solution (Exsol D110 (manufactured by ExxonMobil)) with an inner plug, and the chemical solution is sprayed for 1 second using the ultrasonic atomizer 1. . After spraying 10 times, the spray amount per spray was calculated from the weight change before and after spraying. Furthermore, the container main body 21 holding the two-core integrated structure core A with the inner plug was removed from the ultrasonic atomizer 1 and left for 7 days. Seven days later, the container body 21 holding the two-core integrated structure core A with the inner plug was placed again in the ultrasonic atomizer 1 and sprayed with the chemical solution for 1 second. After spraying 10 times, the spray amount per spray was calculated from the weight change before and after spraying. As a result, the initial spray amount was 12.9 mg / spray, and the spray amount after standing for 7 days was 13.1 mg / spray.
  • a chemical solution Exsol D110 (manufactured by
  • Example 4 and Comparative Example 4 are compared, the spray amount of the two-core split structure core decreases with the drying of the absorber 23, whereas the spray amount does not decrease with the two-core integrated structure core. I understood.
  • the two-core integrated structure core of the present example is comparable to the two-core split structure core in terms of spray amount and spray stability, and the structures of Comparative Examples 1 and 2 (liquid absorption It is clear that it is superior in terms of spray amount and spray stability to the structure using only the wick, and that this is achieved by using the structure of the absorbent body integrated with the liquid wick. did.
  • the absorbent body dries and the fibers do not block the micropores of the diaphragm and make the spray amount unstable.
  • the ultrasonic atomizer which concerns on this Embodiment may be provided with the following structure. That is, in the liquid container according to the present invention, the liquid absorbent core and the absorber may be detachable from the liquid container.
  • the ultrasonic atomizing device may be configured to include the piezoelectric vibrator, the diaphragm, and the liquid container.
  • the ultrasonic atomizing device has an effect that the user is not forced to replace the diaphragm and the spray amount of the liquid can be stabilized.
  • the contact surface with the diaphragm may have a shape corresponding to the contact surface of the diaphragm in contact with the absorber.
  • the absorber may have a convex surface, a concave shape, or a flat contact surface with the diaphragm.
  • the vibration plate used in the ultrasonic atomizer has various shapes such as a concave shape, a convex shape, or a flat shape on the side opposite to the liquid spraying direction.
  • the absorber according to the present invention may have a shape in which the contact surface with the diaphragm corresponds to the contact surface of the diaphragm in contact with the absorber. That is, when the shape of the diaphragm on the side opposite to the spray direction of the liquid is concave, convex, or flat, the absorber according to the present invention has a convex, concave, or contact surface with the diaphragm. It can be flat.
  • the absorber according to the present invention can maintain a good contact state between the diaphragm and the absorber, and the diaphragm and the absorber can be brought into strong contact or contact between the diaphragm and the absorber can be prevented. Since it is sufficient, it is possible to eliminate factors that affect the spray stability of the liquid.
  • the present invention relates to a liquid container that can reduce the burden on the user, and can be suitably used particularly for an ultrasonic atomizer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Insects & Arthropods (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Special Spraying Apparatus (AREA)
  • Catching Or Destruction (AREA)

Abstract

 超音波霧化装置(1)は、薬液容器(20)から液体を吸液する吸液芯(22)と、吸液芯(22)が吸液した液体を振動板(32)に供給する吸収体(23)と、を備え、吸収体(23)は、薬液容器(20)が超音波霧化装置(1)に着脱されるときに、薬液容器(20)とともに超音波霧化装置(1)に着脱される。

Description

液体容器、超音波霧化装置、および吸収体
 本発明は、水、薬液等の液体を超音波振動によって霧化する超音波霧化装置に用いられる液体容器、超音波霧化装置、および吸収体に関する。
 有効成分を含有した薬液等の液体を室内又は屋外の空間に噴霧する手段として、超音波霧化装置が知られている。超音波霧化装置は、通電により超音波振動を生じる圧電振動子と、この圧電振動子に固着され、多数の微細孔を有する振動板とを有しており、微細孔に液体を供給し、圧電振動子の振動によって振動板に超音波振動を生じさせることで液体を霧化するように構成されている。
 ここで、特許文献1のピエゾ式薬液噴霧装置は、吸液芯、薬液容器、およびピエゾ噴霧部を備え、吸液芯は、第一の薬液通過部と第二の薬液通過部に分割されている。また、第一の薬液通過部は薬液容器側に設けられ、第二の薬液通過部は装置本体側に設けられている。
 特許文献2のピエゾ式薬液噴霧装置では、ピエゾ噴霧部及び吸液芯は、薬液容器に付設されてなり、薬液容器と共に噴霧装置本体に着脱自在に収容される。
特開平11-221505号公報(平成11年8月17日公開) 特開2000-51755号公報(平成12年2月22日公開)
 しかしながら、特許文献1、2のピエゾ式薬液噴霧装置には次のような問題がある。
 すなわち、特許文献1のピエゾ式薬液噴霧装置は、第二の薬液通過部が、装置本体側に設けられ、ピエゾ噴霧部と常に微接触または接触する。このため、薬液容器に薬液がなくなり第二の薬液通過部が乾燥すると、当該第二の薬液通過部の繊維等が振動板の微細孔を閉塞させ、このことが薬液の噴霧量を不安定にする原因となる。また、その原因を取り除くには第二の薬液通過部または振動板を交換する必要があるが、振動板を交換するとコストがかかる。また、ユーザ自身が第二の薬液通過部または振動板を交換すると、振動板と第二の薬液通過部とを強く接触させたり、振動板と第二の薬液通過部との接触が不十分になるなど、薬液の安定噴霧に問題が生じることもある。
 特許文献2のピエゾ式薬液噴霧装置では、ピエゾ噴霧部及び吸液芯が薬液容器に付設されている。そのため、薬液容器の交換にはピエゾ噴霧部の交換も伴い、高い交換コストをユーザに強いることになる。
 本発明は、上記の問題を解決するためになされたものであり、その目的は、ユーザ負担を軽減することが可能な液体容器、超音波霧化装置、および吸収体を提供することにある。
 液体を霧化噴霧するために圧電振動子によって振動する振動板を備えた超音波霧化装置に着脱自在に収容される液体容器であって、上記液体容器から上記液体を吸液する吸液芯と、上記吸液芯が吸液した上記液体を上記振動板に供給する吸収体と、を備え、上記吸収体は、上記液体容器が上記超音波霧化装置に着脱されるときに、上記液体容器とともに上記超音波霧化装置に着脱されることを特徴とする。
 上記の構成によれば、超音波霧化装置が振動板を備え、超音波霧化装置に着脱自在に収容される液体容器が、吸液芯と吸収体とを備える。そして、その吸収体は、上記液体容器が上記超音波霧化装置に着脱されるときに、上記液体容器とともに上記超音波霧化装置に着脱される。
 つまり、超音波霧化装置から液体容器を取り出すとき、吸収体は、液体容器とともに取り出されるため、超音波霧化装置側には残ることはない。このため、液体容器中に液体がなくなり吸収体が乾燥したとき、液体容器を交換する際には吸収体ごと交換されるため、超音波霧化装置を再稼動したときに吸収体に由来する繊維等によって振動板の微細孔が閉塞することを抑制できる。したがって、本発明に係る液体容器は、上記閉塞が理由で、液体の噴霧量を不安定にさせることも、また、高いコストを要する振動板の交換をユーザに強いることも少なくなる。
 加えて、本発明に係る液体容器では、超音波霧化装置が圧電振動子および振動板を備えるため、液体容器の交換に伴って圧電振動子および振動板まで交換する必要がなく、それにより液体容器の交換コストを低く抑えることができる。
 このように、本発明に係る液体容器は、コスト面においてユーザ負担を軽減することができ、また、振動板の微細孔を閉塞させることを抑制することで、超音波霧化装置の噴霧安定性を向上させることができる。
 本発明に係る液体容器は、以上のように、上記液体容器から上記液体を吸液する吸液芯と、上記吸液芯が吸液した上記液体を上記振動板に供給する吸収体と、を備え、上記吸収体は、上記液体容器が上記超音波霧化装置に着脱されるときに、上記液体容器とともに上記超音波霧化装置に着脱される構成である。
 それゆえ、ユーザ負担を軽減することが可能な液体容器を提供することができるというという効果を奏する。
本実施の形態に係る超音波霧化装置の概略図である。 本実施の形態に係る超音波霧化装置の霧化部の拡大図である。 吸液芯および吸収体の一体化構造の実施例を示し、(a)はキャップ構造を示し、(b)は綿棒構造を、(c)は差込構造を、(d)は2芯構造を示す。 吸液芯および吸収体の一体化構造の実施例を示し、(a)は2芯綿棒構造を、(b)は接着構造を、(c)はストロー型接着構造を、(d)はストロー型綿棒構造を示す。
 まず、本実施の形態に係る超音波霧化装置1、薬液容器(液体容器)20、吸収体23について図1等を参照しながら説明する。図1は、超音波霧化装置1の概略図である。図2は、超音波霧化装置1の霧化部30の拡大図である。
(超音波霧化装置1について)
 超音波霧化装置1は、水や薬液等の液体を超音波振動によって霧化する装置であって、霧化部30を備えた装置本体10と、装置本体10に着脱自在に収容される薬液容器20とを備える。ここで、以下の説明では、液体は、水または殺虫剤、殺菌剤、香料等の薬液であるものとして説明する。
 (装置本体10)
 装置本体10は、霧化部30を備えるとともに、着脱自在に薬液容器20を収容する。霧化部30は、図2に示すように、通電によって超音波振動を生じる圧電振動子31と、圧電振動子31の振動によって薬液を霧化する振動板32と、圧電振動子31の上面及び振動板32の下面にそれぞれに添わせた円環状の弾性部材としての一対の弾性リング33と、この一対の弾性リング33を介して圧電振動子31及び振動板32を弾性的に挟み込んで保持するケーシング34とを備える。
 圧電振動子31は、中央部に開口部35が形成された円形薄板状の圧電セラミックスによって構成されている。この圧電振動子31は、厚さ方向に分極されており、両面に形成された電極(図示せず)に高周波電圧を印加することにより、径方向への超音波振動を生じる。圧電振動子31は、例えば、厚さが0.1~4.0mm、外径が6~60mmであり、発振周波数が30~500kHzである圧電振動子であればよい。
 振動板32は、例えばニッケルからなる円形の薄板からなる。この振動板32は、圧電振動子31の開口部35を覆った状態で、図1において圧電振動子31の下面に対して圧電振動子31と同心に接合(固着)されている。この振動板32は、例えば、厚さが0.02~2.0mm、外径が6~60mmである。振動板32の外径は、圧電振動子31の開口部35の内径寸法より大きくなるように、圧電振動子31の大きさに応じて適宜選択される。
 振動板32における圧電振動子31の開口部35に臨む部分には、厚さ方向に貫通した多数の微細孔36が形成されている。微細孔36の孔径は、直径3μm~150μmであるのが好ましい。
 振動板32の中央部には、その頂部から裾部へかけて曲面で構成された凸状部37が設けられている。この凸状部37は、上方(薬液の噴霧方向)へ膨出したドーム状である。振動板32の中央部をかかる形状とすることによって、薬液をより拡散しやすくすることができる。この凸状部37は圧電振動子31の径方向への伸縮(振動)に伴って、上下方向の超音波振動を生じる。
 弾性リング33は一対設けられている。かかる一対の弾性リング33は、ケーシング34と圧電振動子31の上面との間、及びケーシング34と振動板32の下面との間で弾性変形した状態で、それぞれ圧電振動子31及び振動板32と同心状に、前記上面及び下面に対して接触している。
 この弾性リング33としては、線径0.5mm~3mmのOリングが好適に用いられる。また、弾性リング33の硬さは20~90IRHDであるのが好ましい。これにより、圧電振動子31及び振動板32を適度な弾力で保持して、圧電振動子31及び振動板32が過度に振動するのを効果的に抑制することができる。このため、薬液をより安定的に霧化させることができる。
 なお、圧電振動子31の上面に接触させた弾性リング33と、振動板32の下面に接触させた弾性リング33とは、平均径[(内径+外径)/2]、線径、硬さ等が同一のものが好ましく、特に平均径については同じものがよい。
 弾性リング33の素材としては、ニトリルゴム、フッ素ゴム、エチレンプロピレンゴム、シリコーンゴム、アクリルゴム、水素化ニトリルゴム等が挙げられる。
 弾性リング33は、前記Oリングに代えて、断面形状が楕円、四角形、三角形あるいは菱形等のリングであってもよく、また、D字型、X字型、T字型等のリングであってもよい。また、この弾性リング33は、周方向に完全につながって連続している必要はなく、周方向に一箇所切れ目が入っていてもよく、周方向に数箇所間欠的に切れ目が入っていてもよい。
 振動板32の凸状部37は、頂部が曲面で構成されたドーム状のみならず、この頂部が平面で構成された円錐台状であってもよく、その形状は任意である。
 さらに、振動板32として凸状部37を噴霧方向に突出させた凸型振動板を例示したが、凸状部37を噴霧方向と反対方向に突出させて凹状部とした凹型振動板であってもよい。また、振動板32は、中央部に凸状部及び凹状部を有しない平板型振動板であってもよい。
 また、円形薄板状の振動板32が圧電振動子31の開口部35を完全に覆うものを例示したが、矩形薄板状の振動板を用い、この振動板を圧電振動子31の開口部35を跨ぐように掛け渡し、振動板の両端部を圧電振動子31の一方の面に固着するようにしてもよい。
 なお、霧化部30は、上記の構造のものの他に、公知のピエゾ噴霧部を用いてもよく、適宜選択されうる。
 (薬液容器20)
 薬液容器20は、容器本体21と、吸液芯22と、吸収体23とを備え、装置本体10に着脱自在に収容される。
 容器本体21は、例えば、上部に開口部24を有する有底円筒状の容器から構成されている。容器本体21には薬液が入れられている。容器本体21の素材としては、ガラスや合成樹脂等が挙げられる。
 吸液芯22は、例えば不織布からなる直径が2mm~6mmの円柱状のものである。吸液芯22の下部側は、容器本体21内の薬液に浸漬されており、薬液を毛細管現象によって吸液芯22の上部側に供給することができる。その吸液芯22の上部側には吸収体23が設けられている。
 吸液芯22は、円柱状のみならず、角柱状であってもよく、その形状は任意である。また、吸液芯22の太さは、圧電振動子31の開口部35に挿入できる太さであればよい。
 吸収体23は、吸液芯22の上部側において吸液芯22と一体に設けられている。つまり、吸収体23は、薬液容器20が超音波霧化装置1に着脱されるときに、薬液容器20とともに超音波霧化装置1に着脱される。吸収体23は、振動板32の凸状部37に近接又は接触しており、その凸状部37に、吸液芯22が吸液した薬液を供給する。これにより振動板32から薬液を噴霧でき、また、その噴霧量の安定性を保つことができる。このことを後述の効果確認試験で詳述する。
 なお、吸液芯22と吸収体23との一体化構造は、様々な形態によって実現することができ、その幾つかの例を図3、図4を用いて後述する。また、以下の説明では、吸液芯22と吸収体23との一体化構造を「二芯一体化構造」と称する場合もある。
 また、本実施の形態では、「一体」は、同一の構造のようになっていること、あるいは、一つにまとまっている状態を含む表現として用いる。
 吸液芯22および/または吸収体23は、容器本体21に固定され、かつ、薬液容器20(または、容器本体21)から着脱可能に取り付けられる。
 なお、吸液芯22および吸収体23の材質としては、連通孔を有する多孔質体、連続気泡を有する樹脂体又は樹脂繊維の集合体が好ましいものとして例示できる。具体的には、ポリウレタン、ポリエチレン、ポリエチレンテレフタレート、ポリビニルホルマール、ポリスチレン等からなる連続気泡を有する樹脂体、ポリエチレン、ポリプロピレン、ナイロン等の樹脂微粒子を主成分として打錠焼結させた多孔質体、ポリフッ化エチレン等からなる多孔質体、ポリエステル、ポリプロピレン、ナイロン、アクリル、レーヨン、ウール等からなるフェルト部材、あるいはポリオレフィン繊維、ポリエステル繊維、ナイロン繊維、レーヨン繊維、アクリル繊維、ビニロン繊維、ポリフラール繊維、アラミド繊維等からなる不織布等の樹脂繊維の集合体、セラミック等の無機粉体を主成分として打錠焼結した多孔質の無機粉焼結体が例示できるが、何らこれらに限定されるものではない。また、これらに界面活性剤を処理したものでもよい。さらに吸液芯22および吸収体23の材質は同じであっても異なるものであってもよい。
 装置本体10への薬液容器20の収容方式は、薬液容器20が装置本体10内に着脱自在に収容され、装置本体10内に薬液容器20を収容した状態で吸収体23と振動板32の凸状部37とが近接または接触するような方式であれば特に限定されない。例えば、薬液容器20を横方向から水平に移行させて嵌合させる方式や薬液容器20を横方向からわずかな回転角度をともなって嵌合させる方式などがある。
 (吸液芯22および吸収体23の一体化構造について)
 次に、吸液芯22および吸収体23の一体化構造の実施例を図3、図4により説明する。図3および図4は、吸液芯22および吸収体23の一体化構造の実施例を示す。このうち、図3(a)はキャップ構造を示し、図3(b)は綿棒構造を示し、図3(c)は差込構造を示し、図3(d)は芯構造を示す。また、図4(a)は2芯綿棒構造を示し、図4(b)は接着構造を示し、図4(c)はストロー型接着構造を示し、図4(d)はストロー型綿棒構造を示す。
 なお、図3、図4は、各実施例の基本的な形状を示すものであって、長さ、奥行き、幅、吸液芯22と吸収体23との相対的な大きさ、位置関係などは適宜変更することができる。また、図3、図4において、図面上側に振動板32が配置され、図面下側に薬液容器20が配置される。したがって、吸収体23は、図面上側の振動板32(不図示)と近接又は接触する。
 最初に、図3(a)のキャップ構造を説明する。キャップ構造では、吸収体23aは吸液芯22aの上にコの字型(凹状)に被せられ、その凹状部に吸液芯22aの一端が嵌合される。これにより、吸収体23aは、吸液芯22aの上記一端に蓋をするような状態で、吸液芯22aと一体に設けられる。図2の吸収体23はこのキャップ構造を用いている。この場合、吸収体23の保液力により、図面上側の振動板32(不図示)に安定的に薬液が供給される。
 次に、図3(b)の綿棒構造について説明する。図示するように、綿棒構造では、吸収体23bは吸液芯22aと一体に設けられ、このとき、吸液芯22aおよび吸収体23bの外形により規定される形状が綿棒に類似する。吸収体23bは、この場合、吸収体23bは、その保液力により図面上側の振動板32に安定的に薬液を供給することができ、かつ、振動板32の凸型形状に対応する形状を形成できる。
 図3(c)の差込構造について説明する。図示するように、差込構造では、吸収体23cは、T字状の断面形状を有し、T字を形成する棒状部分が吸液芯22bに差し込まれている。この場合、吸収体23cを吸液芯22bに構造的に安定に保持することができる。
 図3(d)の2芯構造について説明する。2芯構造では、円柱状の吸収体23dが、吸液芯22cの内部に、吸液芯22cの軸方向にわたって嵌挿されている。つまり、吸収体23dは、吸液芯22cの一端から他端に至るまで嵌挿されており、一端が容器本体21の薬液に浸漬している。これにより、2芯構造では、吸液芯22cおよび吸収体23dが容器本体21から薬液を吸収(吸液)する。そして、吸収体23dは、容器本体21側とは異なる側の一端において振動板32と近接または接触するため、吸液芯22cが吸液した薬液を振動板32に供給する役割を果たす。この場合、薬液の吸収速度が遅い吸収体23d、例えば空隙率が低い吸収体23dを用いた場合であっても、薬液の吸液速度が速い吸液芯22c、例えば空隙率が高い吸液芯22cを用いることにより、振動板32(不図示)に安定的に薬液を供給することができる。
 なお、ここで述べる空隙率は、(1-(吸液芯または吸収体の重量)/(吸液芯または吸収体の体積)×(吸液芯または吸液体の材質の密度))×100により算出されるものである。このことは、後述する実施例においても同様である。
 図4(a)の2芯綿棒構造について説明する。図示するように、2芯綿棒構造は、図3(b)の綿棒構造と図3(d)の2芯構造とを組み合わせた構造である。2芯綿棒構造は、吸液芯22cと、吸収体23dと、吸収体23eとを用いる。吸収体23dおよび吸収体23eは、同じ材質であっても、異なる材質であってもよい。この場合、薬液の吸液速度が遅い吸収体23d、例えば空隙率が低い吸収体23dを用いた場合であっても、薬液の吸液速度が速い吸液芯22c、例えば空隙率が高い吸液芯22cを用いることで、振動板32に安定的に薬液を供給することができる。また、吸収体23eは、その保液力により振動板32に安定的に薬液を供給することができ、かつ、振動板32の凸型形状に対応する形状を形成できる。
 図4(b)の接着構造について説明する。接着構造では、吸収体23fは吸液芯22aに接着剤等の接着部材を用いて接着されている。接着部材は、吸液芯22aから吸収体23fへの薬液の供給を阻害しない特性を有することが好ましい。なお、接着部材は、吸液芯22aと吸収体23fの接触面の全面に用いられてもよいし、当該接触面の一部にのみ用いられてもよい。この場合、材料コストを抑えることができる。
 図4(c)のストロー型接着構造について説明する。ストロー型接着構造では、吸液芯22aがストロー様の筒25に嵌挿されている。吸収体23fは、ストロー様の筒25に嵌挿された吸液芯22aの一端(振動板側)において、吸液芯22aと一体に設けられる。筒25は、薬液を吸収しない材質からなる。この場合、薬液を図面下側の一端からのみ吸い上げることができるため、容器底面からの薬液面の高さによる吸液速度への影響をなくすことができ、かつ、吸液芯25からの自然蒸散を防ぐことができる。
 図4(d)のストロー型綿棒構造について説明する。図示するように、ストロー型綿棒構造は、図4(c)のストロー型接着構造の吸収体23fを図3(b)の綿棒構造の吸収体23bに置き換えた構造である。ストロー型綿棒構造は、吸液芯22aと、吸収体23bと、筒25とを用いる。ストロー型綿棒構造では、吸収体23bは、吸液芯22aの一端からのみ薬液を吸い上げることができるため、容器底面からの薬液面の高さによる吸液速度への影響をなくすことができる。また、筒25によって吸液芯22aからの自然蒸散が抑えられる。さらに、ストロー型綿棒構造では、吸収体23bは、その保液力により振動板32に安定的に薬液を供給することができ、かつ、振動板32の凸型形状に対応する形状を形成することができる。
 以上、図3および図4により種々の実施例を説明した。このように、吸収体23は、種々の形状、構造によって吸液芯22と一体に設けられる。
 さらに、図3および図4に示すように、吸収体23は、振動板32との接触面が、凸状、凹状、または平坦など、種々の形状で形成されてよい。ただし、吸収体23は、振動板32との接触面が、吸収体23と接触する振動板32の接触面に対応する形状であることが好ましい。つまり、薬液の噴霧方向とは反対の側の振動板32の形状が凹状、凸状、または平坦である場合に、吸収体23は、振動板32との接触面が、凸状、凹状、または平坦等であることが好ましい。
 これにより、吸収体23は、振動板32と吸収体23との接触状態を良好に保つことができ、振動板32と吸収体23とを強く接触させたり、振動板32と吸収体23との接触が不十分であるなど、薬液噴霧の安定性に影響を与える原因を軽減、排除することができる。このように、吸液芯22および/または吸収体23は、振動板32の形状や特性に応じて一体化構造の種類を変更してよく、それによって最適な薬液噴霧を実現できる。
 また、吸液芯22および/または吸収体23は、容器本体21に固定されているものの、薬液容器20(または、容器本体21)から着脱可能に付設されてよい。これにより、例えば吸液芯22および/または吸収体23に不具合が認められ、薬液容器20中に薬液が残っているような場合に、吸液芯22および/または吸収体23のみ交換することにより超音波霧化装置1を噴霧の安定性を保ちつつ運転することができる。そして、これにより、部品(部材)の交換コストの低減、および薬剤の有効利用という付加価値をユーザに提供することができる。
 (効果確認試験)
 以下、実施例によって本発明をさらに詳しく説明するが、本発明は、これらに限定されるものではない。
 (超音波霧化装置の作製)
 以下の仕様の超音波霧化装置を作製した。
(1)圧電振動子31:外径15mm、内径5mm、厚さ0.4mmの圧電セラミックス
(2)振動板32:凸型振動板
(3)印加電圧:30Vp-p
(4)圧電振動子31(超音波励振機)の周波数:110kHz
 (二芯一体化構造芯の作製)
 以下の仕様の二芯一体化構造芯を作製した。
 (二芯一体化構造芯A)
本効果確認試験で用いた二芯一体化構造芯は、図3(a)に示すキャップ構造に対応する。
(1)吸液芯22:内径4.5mmのポリプロピレン樹脂繊維及びポリエチレン樹脂繊維集合体
(2)吸収体23:木材パルプと合成繊維の集合体(製品名:AY-80(王子キノクロス社製))
(3)一体化構造:吸液芯22に吸収体23を被せ、シールチューブで挟持
 (二芯一体化構造芯B)
本効果確認試験で用いた二芯一体化構造芯は、図3(b)に示すキャップ構造に対応する。
(1)吸液芯22:内径3.5mmのポリプロピレン樹脂繊維及びポリエチレン樹脂繊維集合体
(2)吸収体23:木材パルプと合成繊維の集合体
(3)一体化構造:吸液芯22に吸収体23を巻きつけて保持
 (二芯一体化構造芯C)
本効果確認試験で用いた二芯一体化構造芯は、図4(d)に示すキャップ構造に対応する。
(1)吸液芯22:内径3.5mmのポリプロピレン樹脂繊維及びポリエチレン樹脂繊維集合体
(2)筒25:内径3.5mm、外径4.5mmのポリプロピレン製筒
(3)吸収体23:木材パルプと合成繊維の集合体(製品名:ベンコット M-3II(旭化成社製))
(4)一体化構造:吸液芯22を筒25に挿入し、吸収体23を巻きつけて保持
  (実施例1)
 薬液(エクソールD110(エクソンモービル社製))を充填した容器本体21に上記の二芯一体化構造芯Aを中栓で挟持し、超音波霧化装置1を用いて薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は13.0mg/sprayであり、相対標準偏差は0.6%であった。
  (実施例2)
 薬液(エクソールD110(エクソンモービル社製))を充填した容器本体21に上記の二芯一体化構造芯Bを中栓で挟持し、超音波霧化装置1を用いて薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は11.9mg/sprayであり、相対標準偏差は1.0%であった。
  (実施例3)
 薬液(エクソールD110(エクソンモービル社製))を充填した容器本体21に上記の二芯一体化構造芯Cを中栓で挟持し、超音波霧化装置1を用いて薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は9.3mg/sprayであり、相対標準偏差は3.1%であった。
  (比較例1)
 薬液(エクソールD110)を充填した容器本体21に吸液芯22を中栓で挟持し、超音波霧化装置を用いて薬液を1秒間で噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は8.7mg/sprayであり、相対標準偏差は5.0%であった。
  (比較例2)
 薬液(エクソールD110)を充填した容器本体21に筒25に挿入した吸液芯22を中栓で挟持し、超音波霧化装置を用いて薬液を1秒間で噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は5.1mg/sprayであり、相対標準偏差は12.4%であった。
 実施例1および2、並びに比較例1の結果を比較すると、二芯一体化構造芯(実施例1および2)は、吸液芯22のみを用い、吸収体23を用いない構造(比較例1)よりも噴霧量が多く、かつ、噴霧の安定性を実現できることが分かった。
 また、実施例3および比較例2の結果を比較すると、二芯一体化構造芯(実施例3)は、筒25に挿入した吸液芯22のみを用い、吸収体23を用いない構造(比較例2)よりも噴霧量が多く、かつ、噴霧の安定性を実現できることが分かった。
  (比較例3)
 薬液(エクソールD110)を充填した容器本体21に吸液芯22を中栓で挟持し、振動板32側に吸収体23を配置した(以下、この構造を二芯分割型構造芯と称する)。超音波霧化装置を用いて薬液を1秒間噴霧させ、10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。また、4反復の試験結果から相対標準偏差を算出した。その結果、噴霧量は13.4mg/sprayであり、相対標準偏差は0.7%であった。
 本実施例1と比較例3とを比較すると、二芯一体化構造芯と二芯分割型構造芯とでは、噴霧量及び噴霧安定性に特段の差が認められないことが分かった。
  (実施例4)
 薬液(エクソールD110(エクソンモービル社製))を充填した容器本体21に上記の二芯一体化構造芯Aを中栓で挟持し、超音波霧化装置1を用いて薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。さらに、二芯一体化構造芯Aを中栓で挟持した容器本体21を超音波霧化装置1から取り外し、7日間放置した。7日後、二芯一体化構造芯Aを中栓で挟持した容器本体21を、超音波霧化装置1に再度設置し薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。その結果、初期の噴霧量は12.9mg/sprayであり、7日間放置後の噴霧量は13.1mg/sprayであった。
  (比較例4)
 薬液(エクソールD110)を充填した容器本体21に吸液芯22を中栓で挟持し、振動板32側に吸収体23を配置した。超音波霧化装置1を用いて薬液を1秒間噴霧させ、10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。さらに、吸液芯22を中栓で挟持した容器本体21を超音波霧化装置1から取り外し、吸収体23は振動板32に配置した状態で7日間放置した。7日後、吸液芯22を中栓で挟持した容器本体21を、超音波霧化装置1に再度設置し薬液を1秒間噴霧させた。10回噴霧させた後、噴霧前後の重量変化から1回噴霧当りの噴霧量を算出した。その結果、初期の噴霧量は13.2mg/sprayであり、7日間放置後の噴霧量は9.8mg/sprayであった。
 本実施例4と比較例4とを比較すると、二芯分割型構造芯が吸収体23の乾燥に伴い、噴霧量が低下したのに対し、二芯一体化構造芯では噴霧量は低下しないことが分かった。
 以上の結果から、本実施例の二芯一体化構造芯は、二芯分割型構造芯と比べても噴霧量および噴霧の安定性において遜色がないこと、比較例1および2の構造(吸液芯のみ用いる構造)よりも噴霧量および噴霧の安定性の点で優れており、そのことを、吸液芯に一体に設けられた吸収体の構造を用いることで実現していることを明らかにした。
 また、本実施例の二芯一体化構造芯を用いる事で、吸収体が乾燥しその繊維等が振動板の微細孔を閉塞させ、噴霧量を不安定にすることがないことを明らかにした。
 以上、本実施の形態に係る薬液容器、超音波霧化装置、および吸収体の種々の形態を説明した。これらの形態は、本実施の形態の一例を示すものであって、ここで説明した形態を組み合わせることも当然に可能である。
 なお、本実施の形態に係る超音波霧化装置は、次の構成を備えるものであってよい。つまり、本発明に係る液体容器では、上記吸液芯および上記吸収体は、上記液体容器から着脱可能であってもよい。
 上記の構成によれば、例えば、吸液芯および/または吸収体に不具合が認められ、液体容器中に液体が残存しているような場合に、吸液芯および吸収体のみ交換すればよいため、交換コストの低減および薬剤の有効利用という付加価値をユーザに提供することができる。
 また、本発明に係る超音波霧化装置は、上記圧電振動子と、上記振動板と、上記液体容器とを備える構成であってもよい。
 上記の構成によれば、液体を使い切った液体容器を交換する際に、超音波霧化装置側の圧電振動子および振動板まで交換する必要がなく、そのまま圧電振動子および振動板を使用することができる。また、上記の液体容器を用いることで、吸収体に由来する繊維等によって振動板の微細孔が閉塞することが抑制される。
 それゆえ、本発明に係る超音波霧化装置は、振動板の交換をユーザに強いることがなく、また、液体の噴霧量を安定させることができるという効果を奏する。
 また、本発明に係る吸収体では、上記振動板との接触面が、上記吸収体と接触する上記振動板の接触面に対応する形状であってもよい。
 また、本発明に係る吸収体は、上記吸収体は、上記振動板との接触面が、凸状、凹状、または平坦であってもよい。
 超音波霧化装置に用いられる振動板は、液体の噴霧方向とは反対側の形状が、凹状、凸状、または平坦等といった様々な形状のものが用いられる。
 この点、本発明に係る吸収体は、振動板との接触面が、吸収体と接触する振動板の接触面に対応する形状であってもよい。つまり、液体の噴霧方向とは反対の側の振動板の形状が凹状、凸状、または平坦である場合に、本発明に係る吸収体は、振動板との接触面が凸状、凹状、または平坦等とすることもできる。
 これにより、本発明に係る吸収体は、振動板と吸収体との接触状態を良好に保つことができ、振動板と吸収体とを強く接触させたり、振動板と吸収体との接触が不十分であることから液体の噴霧安定性に影響を与える要因を排除できる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、ユーザ負担を軽減することが可能な液体容器に関し、特に超音波霧化装置に好適に用いることができる。
 1  超音波霧化装置
 10 装置本体
 20 薬液容器(液体容器)
 21 容器本体
 22 吸液芯
 23 吸収体
 30 霧化部
 31 圧電振動子
 32 振動板
 33 弾性リング
 34 ケーシング
 35 開口部
 36 微細孔
 37 凸状部

Claims (5)

  1.  液体を霧化噴霧するために圧電振動子によって振動する振動板を備えた超音波霧化装置に着脱自在に収容される液体容器であって、
     上記液体容器から上記液体を吸液する吸液芯と、
     上記吸液芯が吸液した上記液体を上記振動板に供給する吸収体と、を備え、
     上記吸収体は、上記液体容器が上記超音波霧化装置に着脱されるときに、上記液体容器とともに上記超音波霧化装置に着脱されることを特徴とする液体容器。
  2.  上記吸液芯および上記吸収体は、上記液体容器から着脱可能であることを特徴とする請求項1に記載の液体容器。
  3.  請求項1または2の液体容器と、上記圧電振動子と、上記振動板とを備えることを特徴とする超音波霧化装置。
  4.  請求項1または2に記載の液体容器に用いられる吸収体であって、
     上記振動板との接触面が、上記吸収体と接触する上記振動板の接触面に対応する形状であることを特徴とする吸収体。
  5.  上記吸収体は、上記振動板との接触面が、凸状、凹状、または平坦であることを特徴とする請求項4に記載の吸収体。
PCT/JP2013/053567 2012-02-29 2013-02-14 液体容器、超音波霧化装置、および吸収体 WO2013129120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380011067.9A CN104270943A (zh) 2012-02-29 2013-02-14 液体容器、超声波雾化装置及吸收体
EP13755837.5A EP2820949A4 (en) 2012-02-29 2013-02-14 LIQUID CONTAINER, ULTRASONIC SPRAYING DEVICE AND ABSORPTION BODY
JP2014502124A JP6097274B2 (ja) 2012-02-29 2013-02-14 液体容器、超音波霧化装置、および吸収体
US14/471,225 US20140367486A1 (en) 2012-02-29 2014-08-28 Liquid container, ultrasonic atomization device, and absorption body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-044143 2012-02-29
JP2012044143 2012-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/471,225 Continuation-In-Part US20140367486A1 (en) 2012-02-29 2014-08-28 Liquid container, ultrasonic atomization device, and absorption body

Publications (1)

Publication Number Publication Date
WO2013129120A1 true WO2013129120A1 (ja) 2013-09-06

Family

ID=49082322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053567 WO2013129120A1 (ja) 2012-02-29 2013-02-14 液体容器、超音波霧化装置、および吸収体

Country Status (7)

Country Link
US (1) US20140367486A1 (ja)
EP (1) EP2820949A4 (ja)
JP (1) JP6097274B2 (ja)
CN (1) CN104270943A (ja)
AR (1) AR090175A1 (ja)
TW (1) TWI543820B (ja)
WO (1) WO2013129120A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049676A1 (en) * 2013-10-01 2015-04-09 Scentcom Ltd. System and method for dispensing liquids
WO2015175527A3 (en) * 2014-05-12 2016-03-31 S.C. Johnson & Son, Inc. Volatile material dispenser with nebulizer and nebulizer assembly

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348803B2 (ja) * 2013-08-28 2018-06-27 住友化学株式会社 超音波霧化装置
GB201518337D0 (en) * 2015-10-16 2015-12-02 The Technology Partnership Plc Linear device
US20170128906A1 (en) * 2015-11-09 2017-05-11 EP Technologies LLC Method and system for creating large volumes of highly concentrated plasma activated liquid using cold plasma
WO2017177159A2 (en) * 2016-04-07 2017-10-12 University Of Notre Dame Apparatus and method for atomization of fluid
US20190232324A1 (en) * 2016-09-11 2019-08-01 Tsafrir Sasson Device for dispensing atomized liquids in the air
WO2018089577A1 (en) 2016-11-10 2018-05-17 EP Technologies LLC Methods and systems for generating plasma activated liquid
CN108126639A (zh) * 2017-12-20 2018-06-08 无锡其宏包装材料厂 小型超声波装置
CN111804498B (zh) * 2020-06-24 2022-05-06 沈阳芯源微电子设备股份有限公司 用于高深宽比深孔结构晶圆或薄胶喷涂晶圆的喷嘴装置和喷涂方法
US11926157B2 (en) * 2021-03-05 2024-03-12 Funai Electric Co., Ltd. Photoresist imaging and development for enhanced nozzle plate adhesion
CN112889778B (zh) * 2021-03-05 2022-07-19 内蒙古农业大学 一种野外便携式集蚤器
US20220297152A1 (en) * 2021-03-22 2022-09-22 Funai Electric Co., Ltd. Atomization device
CN115106240A (zh) * 2021-03-22 2022-09-27 船井电机株式会社 雾化装置、雾化装置组件及雾化装置的控制系统
CN114313644B (zh) * 2021-12-22 2023-05-16 赫比(上海)家用电器产品有限公司 喷雾产品替换装及具有其的喷雾产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156195A (ja) * 1997-08-20 1999-03-02 Fumakilla Ltd 有害生物防除方法
JPH11221505A (ja) 1997-12-04 1999-08-17 Fumakilla Ltd ピエゾ式薬液噴霧装置
JP2000051755A (ja) 1998-08-05 2000-02-22 Fumakilla Ltd ピエゾ式薬液噴霧装置
JP2009143868A (ja) * 2007-12-14 2009-07-02 Earth Chem Corp Ltd 匍匐害虫駆除方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657926A (en) * 1995-04-13 1997-08-19 Toda; Kohji Ultrasonic atomizing device
TW384207B (en) * 1997-08-20 2000-03-11 Fumakilla Ltd Piezoelectric chemical-liquid atomizer apparatus and method for repelling or eliminating harmful organism
US6378780B1 (en) * 1999-02-09 2002-04-30 S. C. Johnson & Son, Inc. Delivery system for dispensing volatiles
AU760096B2 (en) * 1999-03-08 2003-05-08 S.C. Johnson & Son, Inc. Improved attachment method for piezoelectric elements
CN2398014Y (zh) * 1999-11-26 2000-09-27 北京亚都科技股份有限公司 超声波雾化器
US6843430B2 (en) * 2002-05-24 2005-01-18 S. C. Johnson & Son, Inc. Low leakage liquid atomization device
US7017829B2 (en) * 2003-04-14 2006-03-28 S. C. Johnson & Son, Inc. Atomizer wicking system
US7455245B2 (en) * 2006-07-14 2008-11-25 S.C. Johnson & Son, Inc. Diffusion device
US8201752B2 (en) * 2008-03-10 2012-06-19 Vapore, Inc. Low energy vaporization of liquids: apparatus and methods
US20090242660A1 (en) * 2008-03-25 2009-10-01 Quatek Co., Ltd. Medical liquid droplet apparatus
US20110011948A1 (en) * 2009-07-15 2011-01-20 Charlie Huang Assembling structure of water conduction device for mist maker
JP4872008B2 (ja) * 2010-05-07 2012-02-08 パナソニック株式会社 照明装置及び金属蒸気放電ランプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156195A (ja) * 1997-08-20 1999-03-02 Fumakilla Ltd 有害生物防除方法
JPH11221505A (ja) 1997-12-04 1999-08-17 Fumakilla Ltd ピエゾ式薬液噴霧装置
JP2000051755A (ja) 1998-08-05 2000-02-22 Fumakilla Ltd ピエゾ式薬液噴霧装置
JP2009143868A (ja) * 2007-12-14 2009-07-02 Earth Chem Corp Ltd 匍匐害虫駆除方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049676A1 (en) * 2013-10-01 2015-04-09 Scentcom Ltd. System and method for dispensing liquids
JP2016537044A (ja) * 2013-10-01 2016-12-01 セントコム・リミテッドScentcom Ltd. 液体を分配するためのシステムおよび方法
WO2015175527A3 (en) * 2014-05-12 2016-03-31 S.C. Johnson & Son, Inc. Volatile material dispenser with nebulizer and nebulizer assembly
KR20170007295A (ko) * 2014-05-12 2017-01-18 에스.씨. 존슨 앤 선 인코포레이티드 분무기를 가진 휘발성 물질 디스펜서 및 분무기 조립체
CN106455534A (zh) * 2014-05-12 2017-02-22 约翰逊父子公司 具雾化器和雾化器组件的挥发性物质分配器
US20170056914A1 (en) * 2014-05-12 2017-03-02 S. C. Johnson & Son, Inc. Volatile material dispenser with nebulizer and nebulizer assembly
AU2015259350B2 (en) * 2014-05-12 2017-03-09 S.C. Johnson & Son, Inc. Volatile material dispenser with nebulizer and nebulizer assembly
JP2017522916A (ja) * 2014-05-12 2017-08-17 エス.シー. ジョンソン アンド サン、インコーポレイテッド ネブライザを有する揮発性物質ディスペンサ及びネブライザ組立体
US10702884B2 (en) 2014-05-12 2020-07-07 S. C. Johnson & Son, Inc. Volatile material dispenser with nebulizer and nebulizer assembly
KR102340031B1 (ko) 2014-05-12 2021-12-16 에스.씨. 존슨 앤 선 인코포레이티드 분무기를 가진 휘발성 물질 디스펜서 및 분무기 조립체

Also Published As

Publication number Publication date
JPWO2013129120A1 (ja) 2015-07-30
US20140367486A1 (en) 2014-12-18
CN104270943A (zh) 2015-01-07
TWI543820B (zh) 2016-08-01
JP6097274B2 (ja) 2017-03-15
EP2820949A4 (en) 2015-11-18
AR090175A1 (es) 2014-10-22
TW201350208A (zh) 2013-12-16
EP2820949A1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6097274B2 (ja) 液体容器、超音波霧化装置、および吸収体
WO2013161985A1 (ja) 超音波霧化装置
KR100485836B1 (ko) 액체 분무 장치
ES2759199T3 (es) Dispositivo de atomización ultrasónica
JP6014359B2 (ja) 超音波霧化装置
AU2011327131A1 (en) Ultrasonic atomizing unit
JP2014113536A (ja) 超音波霧化装置
RU2675912C1 (ru) Устройство для применения в жидкостном капельном аппарате
AU2005260607A1 (en) Improved wick to reduce liquid flooding and control release rate
TW200815107A (en) Atomizing device
JP6242216B2 (ja) 中栓、吸い上げ式液体容器
JP3930632B2 (ja) ピエゾ式薬液噴霧装置
JP5876700B2 (ja) 超音波霧化機
JP2014046302A (ja) 霧化装置
JP6348803B2 (ja) 超音波霧化装置
JP2011104221A (ja) 保湿マスク
JP5505497B2 (ja) 霧化装置
JP2011147913A (ja) 霧化装置
TWI542411B (zh) 液體噴霧裝置
JP2014073431A (ja) 霧化装置
JP6338983B2 (ja) 噴霧装置
JP2899338B2 (ja) 超音波式霧化装置
JP2005230594A (ja) 霧化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013755837

Country of ref document: EP