WO2013127230A1 - 一种无桥逆变电路与太阳能无桥逆变器 - Google Patents

一种无桥逆变电路与太阳能无桥逆变器 Download PDF

Info

Publication number
WO2013127230A1
WO2013127230A1 PCT/CN2012/086686 CN2012086686W WO2013127230A1 WO 2013127230 A1 WO2013127230 A1 WO 2013127230A1 CN 2012086686 W CN2012086686 W CN 2012086686W WO 2013127230 A1 WO2013127230 A1 WO 2013127230A1
Authority
WO
WIPO (PCT)
Prior art keywords
quasi
parallel
converter
bridgeless
power
Prior art date
Application number
PCT/CN2012/086686
Other languages
English (en)
French (fr)
Inventor
郑崇峰
邱齐
梁志刚
Original Assignee
无锡联动太阳能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡联动太阳能科技有限公司 filed Critical 无锡联动太阳能科技有限公司
Publication of WO2013127230A1 publication Critical patent/WO2013127230A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an electronic device, and in particular to a bridgeless inverter circuit and a solar bridgeless inverter.
  • the electric energy collecting device is a blade-driven generator for wind energy, and for solar energy, it is a solar panel assembly, and they mainly convert green energy into electric energy.
  • the DC/DC converter in Fig. 1 first converts the electric energy collected by the electric energy collecting device into a stable DC output electric power, and then inverts the direct current electric power into AC alternating current through a DC/AC inverter, and finally connects to the network.
  • the grid which supplies energy to the load in the grid.
  • the high-frequency carrier distributed power generation system shown in FIG. 2 is widely used in a high-power distributed power generation system, and mainly uses a relatively high-power DC/DC converter to convert the energy of the power collecting device into
  • the stable DC power is converted into AC power by the high frequency switching DC/AC inverter, and the frequency of the high frequency switching includes a basic carrier frequency of the grid, and then the high frequency ripple is filtered by simple filtering. Filtered out, you can get a clean grid power frequency AC, and then connected to the grid to generate electricity.
  • the advantage of this method is that a high-power converter is used to uniformly process energy, using fewer discrete components, and the power generation cost per unit power is relatively low, and the high-frequency carrier inverter can be realized by using a high-power crystal module. It is only necessary to do some drive control circuits. However, this method cannot optimize the energy output of the energy collecting device. In short, in order to obtain high-power output, most power collecting devices select series to increase the voltage and connect in parallel to increase the current. To increase the output power.
  • the distributed power generation system of the DC/DC converter of the quasi-DC/DC converter shown in FIG. 3 is being widely used in a power generation device based on medium and small power.
  • the DC/DC converter in this system is a quasi-DC/DC converter that uses sinusoidal pulse width modulation to convert the electrical energy obtained from the energy harvesting device into a quasi-sinusoidal output of twice the power frequency of the grid, and then connected to it.
  • the quasi-sine wave of the double power grid power frequency is switched to the power frequency sine wave and then merged into the power grid.
  • the advantage of this method is that the entire power generation system is divided into multiple power generation small units, each of which has an independent inverter connected to the grid.
  • the above-mentioned distributed power generation system shown in FIG. 2 and FIG. 3 includes a DC/AC inverter, which is mainly composed of a crystal switch of a full bridge structure, as shown in FIG. Inverter bridge.
  • the switch j3 ⁇ 4 [0008] FIG 4, Q 2, fi ⁇ and Fij may be a MOSFET (metal - oxide - semiconductor - field effect transistor), may be SCR (silicon controlled rectifier), may be IGBT ( Insulated gate bipolar transistor)
  • MOSFET metal - oxide - semiconductor - field effect transistor
  • SCR silicon controlled rectifier
  • IGBT Insulated gate bipolar transistor
  • the control or semi-controlled silicon crystal component its main function is to switch according to the rules of Figure 2 or Figure 3, convert the DC or quasi-sine wave into a standard sine wave, and then send it to the grid.
  • the back end of the basic inverter bridge in Figure 4 should also include the filter circuit in principle. Only the principle description will be given here, and will not be described in detail.
  • FIG. 8 is a circuit diagram of a typical Active Clamp Flyback (using an active clamp flyback) circuit combined with a conventional inverter bridge to realize grid-connected power generation of inverter solar cells.
  • it is the input filter capacitor, which is the active switch of Active Clamp Flyback, which is a clamp switch.
  • Dg ⁇ are two active parasitic diodes or two additional parallel diodes
  • C a is a clamp capacitor
  • J is an output rectifier diode
  • is an output filter capacitor
  • Qs, Qs switch can be MOSFET (metal-oxide-semiconductor-field effect transistor), SCR (SCR rectifier), or IGBT (Insulated Gate Bipolar Transistor) or other controlled or semi-controlled silicon
  • MOSFET metal-oxide-semiconductor-field effect transistor
  • SCR SCR rectifier
  • IGBT Insulated Gate Bipolar Transistor
  • the typical inverter connected by the structure diagram shown in Fig. 8 can be modulated according to the PWM modulation principle shown in Fig. 9 to realize the power frequency sine wave of the inverter output grid.
  • An object of the present invention is to provide a bridgeless inverter circuit in order to achieve the advantages of low loss, high energy utilization, low heat treatment components, small equipment weight, and low transportation cost.
  • a bridgeless inverter circuit comprising an electric energy collecting device, a power grid, a DSP (digital signal processor), and an input end respectively connected to an output end of the electric energy collecting device,
  • the control terminals are respectively connected to the DSP, and the output terminals are respectively connected to the multi-phase parallel or multi-phase interleaved parallel quasi-DC/DC converters at the output end of the grid, wherein:
  • the DSP is configured to send a control signal to a plurality of quasi-DC/DC converters that are multi-phase parallel or multi-phase interleaved in parallel, so that multiple quasi-DC/DC converters of multi-phase parallel or multi-phase interleaved parallel are preset Time-division work in a power frequency cycle, and splicing the positive half quasi-sinusoidal voltage and the negative half quasi-sinusoidal voltage obtained by the time-sharing work to obtain a standard sine wave voltage;
  • the plurality of quasi-DC/DC converters of the multi-phase parallel or multi-phase interleaved parallel are used to respectively convert the electric energy of the electric energy collecting device into a semi-quasi-sine wave output; and, for the DSP-based control signal Working in a time-sharing period in a preset power frequency cycle, alternately providing half of the quasi-sinusoidal voltage to the grid to obtain the standard sine wave voltage obtained by the grid.
  • the plurality of quasi-DC/DC converters of the multi-phase parallel or multi-phase interleaved parallel comprise a first quasi DC/DC converter and a second quasi DC/DC converter connected in parallel;
  • the first quasi-DC/DC converter and the second quasi-DC/DC converter are used to respectively time-division work in one power frequency cycle, and the electric energy of the electric energy collecting device is converted into a semi-standard Sinusoidal output; and, during the entire power frequency cycle, splicing the resulting half quasi-sine waves to obtain a grid consisting of a positive half quasi-sine wave and a negative half quasi-sine wave, and is used to supply the load.
  • the second quasi DC/DC converter stops working; when the second quasi DC/DC converter is in operation, the first quasi DC/DC converter stop working.
  • a solar bridgeless inverter comprising a DC input power source and a parallel connection at the output end of the DC input power source;
  • An electric energy collecting device composed of an input filter capacitor, the grid ⁇ 3 ⁇ 4 ⁇ and the grid side load ⁇ ⁇ , DSP , and the input end are respectively connected to the DC input power output end, the control end is respectively connected to the DSP, and the output end is respectively connected to the multi-phase of the FflE output end of the power grid or Multiple quasi-DC/DC converters with multiphase interleaved parallel, where:
  • the DSP is configured to send a control signal to a plurality of quasi-DC/DC converters that are multi-phase parallel or multi-phase interleaved in parallel, so that multiple quasi-DC/DC converters of multi-phase parallel or multi-phase interleaved parallel are preset Time-division work in a power frequency cycle, and splicing the positive half quasi-sinusoidal voltage and the negative half quasi-sinusoidal voltage obtained by the time-sharing work to obtain a standard sine wave voltage;
  • the plurality of quasi-DC/DC converters of the multi-phase parallel or multi-phase interleaved parallel are used to respectively convert the electric energy of the electric energy collecting device into a semi-quasi-sine wave output; and, for the DSP-based control signal Working in a time-sharing period in a preset power frequency cycle, alternately providing half of the quasi-sinusoidal voltage to the grid to obtain the standard sine wave voltage obtained by the grid.
  • the multi-phase parallel or multi-phase interleaved parallel multiple quasi-DC/DC converters include a first quasi-DC/DC converter and a second quasi-DC/DC converter connected in parallel; Under the control of the DSP, the first quasi-DC/DC converter and the second quasi-DC/DC converter are used to respectively time-division work in one power frequency cycle, and the electric energy of the electric energy collecting device is converted into a semi-standard Sinusoidal output; and, during the entire power frequency cycle, splicing the resulting half quasi-sine waves to obtain a grid consisting of a positive half quasi-sine wave and a negative half quasi-sine wave, and is used to supply the load. Standard sine wave voltage;
  • the second quasi DC/DC converter stops working; when the second quasi DC/DC converter is in operation, the first quasi DC/DC converter stop working.
  • each quasi-DC/DC converter includes an SPWM-modulated DC/DC conversion circuit, and SPWM (sinusoidal pulse width modulation) modulated DC/DC converter circuit connected to the control switch ⁇ ;
  • the control switch 3 ⁇ 4 ⁇ 2 is used for controlling the SPWM-modulated DC/DC conversion circuit to operate or stop working based on a DSP-based control signal
  • & ⁇ n is a natural number.
  • the SPWM-modulated DC/DC conversion circuit includes an active flyback conversion circuit, a buck conversion Buck circuit, a boost boost circuit, a buck or boost buck-boost circuit, and a single/ At least one of a two-switch forward type forward DC conversion circuit.
  • the active clamp flyback converter circuit comprises a capacitance C ⁇ , transformer ⁇ ⁇ , the power semiconductor switch! 6; and ⁇ ., ⁇ and ⁇ body diodes or additional parallel diodes with .3 ⁇ 4 owned ⁇ , output filter capacitor G a , and transformer: ⁇ secondary rectifier diode a ; where: the positive input of the DC input power Connected to the beginning of the transformer ⁇ ⁇ primary coil; after the clamp capacitor, the drain of the power semiconductor switch g ⁇ , and the body diode or the cathode of the additional parallel diode %HI; the negative pole of the DC input power supply, Connected to the source of the power semiconductor switch ⁇ , and to the body diode or the anode of the additional parallel diode;
  • a gate of the power semiconductor switch ⁇ for inputting a pulse signal with a duty ratio of J5; a gate of the power semiconductor switch ⁇ for inputting a pulse signal with a duty ratio of 1 ->; control switch : fi
  • the control terminal of ⁇ 3 is connected to the DSP.
  • control switch 3 is connected in parallel at both ends of the output filter capacitor.
  • control switch is connected in parallel to the transformer ⁇ ⁇ secondary rectifier diode! ) 3 ⁇ 4 at both ends.
  • the DC input power source is an energy storage device or a wind power generation device or a solar thermal power generation device including at least a solar panel PV or a battery;
  • the Buck circuit includes a buck converter power semiconductor switches, a body diode or an additional parallel diode ⁇ 3 ⁇ 4, the output terminal of the filter capacitor C a, rectifying diode ⁇ ⁇ , and a resonant inductor wherein: said direct current The anode of the input power source is connected to the drain of the power semiconductor switch, and the body diode or the cathode of the additional parallel diode 1; the cathode of the DC input power source is connected to the anode of the rectifier diode u a and the reference ground; The source of the power semiconductor switching power semiconductor switch, the body diode of the fi ⁇ or the anode of the additional parallel diode 3 ⁇ 4, and the cathode of the rectifier diode iJ ⁇ are connected to the ground via the resonant inductor and the output filter capacitor C a , and grounded after the control switch 0 ⁇ 2 ;
  • the gate of the power semiconductor switch is used to input a pulse signal with a duty ratio of D; the control terminal of the control switch 0> personally5 is connected to the DSP.
  • the bridgeless inverter circuit and the solar bridgeless inverter of the embodiments of the present invention because the bridgeless inverter circuit includes an electric energy collecting device, the power grid, the DSP, and the input end are respectively connected to the output end of the power collecting device, and the control The terminals are respectively connected to the DSP, and the output terminals are respectively connected to the multi-phase parallel or multi-phase interleaved parallel quasi-DC/DC converters at the output end of the grid. Under the control of the DSP, the plurality of quasi-DC/DC converters are preset.
  • Time-division operation in a power frequency cycle and splicing the obtained positive half quasi-sine wave voltage with the negative half quasi-sinusoidal voltage to obtain a standard sine wave voltage; the original DC/DC can be added to DC/AC
  • the scheme is simplified to one level, and the SPWM modulation and DSP are directly used to realize the AC current output, thereby improving the efficiency, reducing the number of components, and reducing the cost; thereby overcoming the loss in the prior art, the energy utilization is low, the heat treatment components are large, and the equipment is The advantages of large weight and high transportation cost, in order to achieve small loss, high energy utilization, less heat treatment components, small equipment weight and low transportation cost.
  • Figure 1 is a schematic diagram of the electrical principle of a typical distributed generation system
  • FIG. 2 is a schematic diagram showing the electrical principle of a distributed power generation system of a high frequency carrier
  • FIG. 3 is a schematic diagram showing the electrical principle of a distributed power generation system of a DC/AC inverter for processing a frequency switching DC/DC converter;
  • Figure 4 is a schematic diagram of the electrical principle of the basic inverter bridge
  • FIG. 5 is a schematic diagram of an electrical principle of a bridgeless inverter circuit of the present invention.
  • FIG. 6 is a schematic diagram of key waveforms of the bridgeless inverter circuit shown in FIG. 5;
  • FIG. 7 is a schematic diagram showing the electrical principle of a multi-phase parallel or multi-phase interleaved parallel bridgeless inverter circuit according to the present invention.
  • Figure 8 is a schematic diagram showing the electrical principle of a typical Active Clamp Flyback inverter with an inverter bridge
  • Figure 9 is a schematic diagram of the waveform of the Active Clamp Flyback using the SPWM modulation plus the inverter bridge to achieve inverter modulation;
  • FIG. 10 is a schematic diagram showing the electrical principle of a typical bridgeless inverter circuit 1;
  • FIG. 11 is a schematic diagram of driving waveforms for implementing a bridgeless inverter function by a control method corresponding to FIG. 10;
  • FIG. 12 is a schematic diagram showing the electrical principle of a typical bridgeless inverter circuit 2;
  • FIG. 13 is a schematic diagram of a typical driving waveform of the corresponding circuit of FIG. 12 using synchronous rectification control;
  • Figure 14 is a schematic diagram showing the electrical principle of a plurality of parallel or staggered parallels forming a quasi-DC/DC;
  • Figure 15 is a schematic diagram showing the electrical principle of using a Buck circuit to form a bridgeless inverter circuit.
  • a bridgeless inverter circuit As shown in FIG. 5 and FIG. 6, the embodiment includes an electric energy collecting device, a power grid, a DSP, and an input end respectively connected to an output end of the electric energy collecting device, the control end is respectively connected to the DSP, and the output end is respectively connected to the output end of the power grid in parallel.
  • the DSP is configured to send a control signal to the first quasi-DC/DC converter and the second quasi-DC/DC converter connected in parallel with two phases, so that the first quasi-DC/DC converter and the second quasi-DC/ in parallel with two phases
  • the DC converter works in a predetermined power frequency cycle, and splicing the forward half quasi-sine wave voltage and the negative half quasi-sinusoidal voltage obtained by the time division work to obtain a standard sine wave voltage;
  • the first quasi-DC/DC converter and the second quasi-DC/DC converter are used to respectively time-division work in one power frequency cycle, and convert the electric energy of the electric energy collecting device into a semi-quasi-sine wave Output; and, during the entire power frequency cycle, splicing the resulting half quasi-sine waves to obtain a standard sine consisting of a positive half quasi-sine wave and a negative half quasi-sine wave and used to supply the load Wave voltage
  • the second quasi DC/DC converter stops working; when the second quasi DC/DC converter operates, the first quasi DC/DC converter stops working. .
  • the bridgeless inverter circuit of FIG. 5 includes two quasi-DC/DC converters, which respectively convert the electric energy of the electric energy collecting device into a semi-quasi-sine wave output, and then output the first half of the quasi-sine wave.
  • the second quasi-DC/DC converter below stops working, letting the output be zero volts, so that the grid obtains a positive half-wave, and to the next half of the quasi-sine wave output, the first quasi-DC/DC conversion above
  • the device stops working, let the output i ⁇ oom be zero volts, so that the grid obtains a negative half wave, and the two phases are connected to form a complete sinusoidal waveform.
  • Fig. 6 Several typical waveforms in Fig. 5 are shown in Fig. 6.
  • first quasi-DC/DC converter or the second quasi-DC/DC converter they only have half of the power frequency cycle, and no loss occurs in the half-duty cycle of the stop operation, and the output side
  • the bridge inverter structure is no longer used, and the loss on the inverter bridge is reduced, so the scheme can effectively improve the efficiency of the inverter.
  • a bridgeless inverter circuit As shown in FIG. 7, the embodiment includes an electric energy collecting device, a power grid, a DSP, and an input end connected to the output end of the electric energy collecting device, the control end is respectively connected to the DSP, and the output end is respectively connected to the output end of the power grid in parallel or multiphase interleaving.
  • the DSP is configured to send a control signal to a plurality of quasi-DC/DC converters in a multi-phase parallel or multi-phase interleaved parallel manner, so that a plurality of quasi-DC/DC converters of multi-phase parallel or multi-phase interleaved parallel are in a preset one Time-division work in the power frequency cycle, and splicing the positive half quasi-sinusoidal voltage and the negative half quasi-sinusoidal voltage obtained by the time-sharing work to obtain a standard sine wave voltage;
  • Multi-phase parallel or multi-phase interleaved multiple quasi-DC/DC converters for converting the electrical energy of the electrical energy collecting device into half quasi-sinusoidal output; and, for DSP-based control signals, at preset Time-division work in one power frequency cycle, alternating to provide half of the quasi-sinusoidal voltage to the grid, so that the grid obtains the standard sine wave voltage.
  • each of the plurality of quasi-DC/DC converters of the multi-phase parallel or multi-phase interleaved parallel can be referred to the relevant diagrams of FIG. 5 and FIG. Description, no longer repeat here.
  • the core of the embodiment shown in FIG. 5, FIG. 6 and FIG. 7 is to realize the time-division work of two quasi-DC/DC converters by using the control of the DSP, and then assembling the quasi-sinusoidal half-waves of the output.
  • the standard sine wave output is finally realized.
  • the first quasi DC/DC converter and the second quasi DC/DC converter of Fig. 5 may also be quasi DC/DC converters operating in multiphase parallel or multiphase interleaved operation as in Fig. 7.
  • FIG. 5, FIG. 6, and FIG. 7 is a new inverter structure proposed on the basis of the inverters shown in FIG. 1 to FIG. 4, that is, a bridgeless inverter circuit;
  • the inverter circuit simplifies the original DC/DC plus DC/AC scheme to one stage, directly uses SPWM (sine wave pulse width modulation) modulation and DSP (digital signal processor) to achieve AC current output, improving efficiency and reducing the number of elements.
  • SPWM sine wave pulse width modulation
  • DSP digital signal processor
  • FIG. 5, FIG. 6 and FIG. 7 above show that the energy saving effect is more obvious in some countries where the AC voltage is 120 ⁇ 3 ⁇ 4 ⁇ , and the low AC voltage represents high AC current due to the same output power, and the inverter bridge switch The loss increases and the efficiency decreases further. If a bridgeless inverter structure is used, the efficiency of the inverter will be greatly improved and more energy will be saved.
  • a solar bridgeless inverter As shown in FIG. 10 and FIG. 11, the embodiment includes an electric energy collecting device comprising a DC input power source and an input filter capacitor connected in parallel to the output end of the DC input power source, and the power grid is connected to the grid side load ff, the DSP, and the input terminal respectively.
  • the first quasi-DC/DC converter and the second quasi-DC/DC converter which are connected to the power output end and the control end respectively connected to the DSP and connected to the output end of the FflC output end of the power grid, respectively, and the second quasi DC/DC converter, the DC input power source, at least including the solar energy An energy storage device for a PV panel or a battery or a wind power generation device or a solar thermal power generation device.
  • the DSP is configured to send a control signal to the first quasi-DC/DC converter and the second quasi-DC/DC converter connected in parallel to make the first quasi-DC/DC converter with two phases connected in parallel
  • the second quasi-DC/DC converter works in a predetermined time cycle of a power frequency cycle, and splicing the forward half quasi-sine wave voltage and the negative half quasi-sinusoidal voltage obtained by the time division work to obtain a standard sine Wave voltage
  • the first quasi-DC/DC converter and the second quasi-DC/DC converter are used to respectively time-division work in one power frequency cycle, and convert the electric energy of the electric energy collecting device into a semi-quasi-sine wave Output; and, during the entire power frequency cycle, splicing the resulting half quasi-sine waves to obtain a standard sine consisting of a positive half quasi-sine wave and a negative half quasi-sine wave and used to supply the load Wave voltage
  • the second quasi DC/DC converter stops working; when the second quasi DC/DC converter operates, the first quasi DC/DC converter stops working. .
  • each quasi-DC/DC converter includes an SPWM-modulated DC/DC conversion circuit, and an SPWM modulation Control switch connected to DC/DC converter circuit ; control switch! 0 ⁇ 3 , control signal for DSP based control, control switch for controlling SPWM modulation DC/DC converter circuit or stop operation 3 ⁇ 4 selfish_ 2 ; n is a natural number.
  • the SPWM-modulated DC/DC conversion circuit includes a basic flyback converter and various derivative flyback converters, such as a typical active flyback converter circuit and a quasi-resonant counterattack circuit; At least one of a voltage conversion Buck circuit, a boost boost circuit, a buck or boost buck-boost circuit, and a single/dual switch forward forward DC conversion circuit.
  • the SPWM-modulated DC/DC conversion circuit is an active flyback conversion circuit.
  • Active flyback converter circuit including clamp capacitor, transformer
  • MOSFET metal oxide field effect transistor MOSFET
  • IGBT insulated gate bipolar transistor
  • the end of the transformer r a primary winding, the source of the power semiconductor switch, the body diode or the additional parallel diode of the anode, the drain of the power semiconductor switch fi, and the body diode or additional parallel diode 1 ? ⁇ : cathode connection;
  • the gate of the power semiconductor switch & is used to input the pulse signal with the duty ratio of ?; the gate of the power semiconductor switch ⁇ »» ⁇ is used to input the pulse signal with the duty ratio of 1TMU; the control switch 0 grasp ⁇
  • the control terminal is connected to the DSP.
  • the above Active Clamp Flyback uses SPWM modulation to operate half a power frequency cycle, at this half of the power frequency. During the cycle, the following circuit stops working. To ensure that the output is zero, ⁇ 3 ⁇ 4 is always on. After half a power cycle, the above Active clamp Flyback circuit is turned off. To ensure that the output is zero, use the output to short it, and below. The Active clamp Flyback circuit then uses SPWM modulation to operate half a duty cycle, whereby the outputs of the two Active clamp Flybacks are half quasi-sinusoidal, superimposed into a standard sine wave on the load or on the grid, Figure 10 The corresponding main drive and output waveforms are shown in Figure 11.
  • the sum switch in Figure 10 can be a MOSFET (metal-oxide-semiconductor-field effect transistor), an SCR (Silicon Controlled Silicon Rectifier), or an IGBT (Insulated Gate Bipolar Transistor) or the like.
  • MOSFET metal-oxide-semiconductor-field effect transistor
  • SCR Silicon Controlled Silicon Rectifier
  • IGBT Insulated Gate Bipolar Transistor
  • the two Active clamp Flyback circuits in Figure 10 use and short the outputs when they are not in operation to achieve zero output voltage.
  • Figure 12 is another embodiment.
  • the 3 ⁇ 4 and 05 in Figure 10 are placed in parallel with D1 and D2.
  • the control method still uses the method shown in Figure 11.
  • Flyback! 3 ⁇ 4 maintains conduction
  • the load current flows through ⁇ 3 ⁇ 4, and passes through the following Flyback main transformer.
  • the following Flyback main transformer is the output filter inductor for the above Flyback, and the above Flyback output capacitor constitutes CL. Filter structure.
  • the next half of the power cycle! 3 ⁇ 4 maintains conduction.
  • the Flyback transformer above is embodied as a filter inductor, which forms a CL filter structure in the negative half of the output.
  • D1 and D2 in parallel with 3 ⁇ 43 ⁇ 4 can be realized by using their own parasitic diodes, and when they work half a power frequency cycle, synchronous rectification control can be realized to further improve efficiency, and the corresponding control drive is as follows.
  • Figure 13 shows.
  • control switch is connected in parallel across the transformer ⁇ ⁇ secondary side rectifier diode iJ a .
  • the DC/DC topology of the PWM modulation such as Buck, Boost, Forward, Buck-boost, etc.
  • the DC/DC topology of the PWM modulation such as Buck, Boost, Forward, Buck-boost, etc.
  • the DC/DC topology of the PWM modulation can also realize the bridgeless inverter structure as shown in FIG. 5, as long as they are allowed to work in half a quasi-quasi
  • the sine wave output is then superimposed with two identical converters to achieve a sinusoidal output.
  • the advantage of this solution is that it reduces the number of conventional inverter bridges, reduces loss reduction, improves efficiency, reduces heat handling of originals, reduces equipment weight, and reduces transportation costs.
  • a solar bridgeless inverter As shown in FIG. 14, the embodiment includes an electric energy collecting device composed of a DC input power source and an input filter capacitor connected in parallel to the output end of the DC input power source, and the grid and the grid side load ⁇ ⁇ , DSP , and the input terminal are respectively connected to the DC input.
  • the power output end and the control end are respectively connected to the DSP, and the output ends are respectively connected to the multi-phase parallel or multi-phase interleaved parallel quasi-DC/DC converters at the output end of the grid 13 ⁇ 4C, wherein:
  • a DSP for transmitting control signals to a plurality of quasi-DC/DC converters in a multi-phase parallel or multi-phase interleaved parallel manner, so that a plurality of quasi-DC/DC converters of multi-phase parallel or multi-phase interleaved parallel are in a predetermined work Time-division work in the frequency cycle, and splicing the positive half quasi-sinusoidal voltage and the negative half quasi-sinusoidal voltage obtained by the time-sharing work to obtain a standard sine wave voltage;
  • Multi-phase parallel or multi-phase interleaved multiple quasi-DC/DC converters for converting the electrical energy of the electrical energy collecting device into half quasi-sinusoidal output; and, for DSP-based control signals, at preset Time-division work in one power frequency cycle, alternating to provide half of the quasi-sinusoidal voltage to the grid, so that the grid obtains the standard sine wave voltage.
  • FIG. 14 the specific structure and performance of each of the plurality of quasi-DC/DC converters of multi-phase parallel or multi-phase interleaved parallel can be seen in FIG. 10 for each quasi-DC. The related description of the /DC converter will not be repeated here.
  • FIG. 14 it is based on FIG. 10 to add n identical quasi-DC/DC converters, so that multiple identical quasi-DC/DCs are connected in parallel or in parallel, and then half of the quasi-DC DC/DC works with half of the power frequency cycle, the other half of the power frequency cycle stops working, and the other half of the quasi-DC/DC works in the next half of the power frequency cycle, then the two half waves are combined on the load or grid side.
  • the standard power frequency cycle not only can the ripple be reduced, but also the loss can be reduced.
  • the size of the converter needs to be reasonably designed.
  • a plurality of quasi-DC/DCs may be used in parallel or interleaved parallel for the structure shown in FIG. 12, and then a sine wave of half a power frequency cycle may be output, which will not be described in detail herein.
  • the SPWM-modulated DC/DC conversion circuit is an active flyback conversion circuit.
  • the buck converter Buck circuit includes a power semiconductor switch, a body diode or an additional parallel diode ⁇ %, an output filter capacitor C a , a rectifier diode ) ft , and a resonant inductor
  • the anode of the DC input power source is connected to the cathode of the power semiconductor switch &, and the body diode or the cathode of the additional parallel diode; the cathode of the DC input power source is connected to the anode of the rectifier diode J a and the reference ground ;
  • the source of the power semiconductor switching power semiconductor switch, the body diode of the & or the parallel anode of the diode, and the rectifier diode! a cathode connection, via the resonant inductor and the output filter capacitor, followed by the reference ground, and grounded after the control switch fi ⁇ ;
  • the gate of the power semiconductor switch is used to input a pulse signal with a duty cycle of D; the control terminal of the control switch is connected to the DSP.
  • FIG. 15 can also share the power in combination with multi-phase parallel or multi-phase staggered parallel connection in Figure 7, which not only reduces ripple, but also further improves efficiency and achieves efficient bridgeless inverter.
  • the implementation diagram is similar to Figure 14.
  • boost circuit buck-boost circuit
  • forward circuit buck-boost circuit
  • other PWM-modulated DC/DC circuits can also be connected according to the structure shown in Figure 5 and implemented in accordance with SPWM modulation to realize the structure of the bridgeless inverter, which will not be described in detail here.
  • the bridgeless inverter circuit and the solar bridgeless inverter of the embodiments of the present invention have a bridgeless inverter structure, that is, two quasi-DC/DC converters are used in the power frequency.
  • the positive half cycle and the negative half cycle work, and then the half of the output quasi-sine wave is superimposed to obtain the final power frequency sine wave to realize the non-inverter bridge structure (shown in Figure 4);
  • the two quasi-DC/DC converters can For any DC/DC converter circuit topology, it is not limited to the circuit structures mentioned in the present application; the use of a bridgeless structure reduces the switching crystal element through which the output current flows, reduces losses, improves efficiency, and reduces The number of switching components reduces the cost of the inverter, which will greatly facilitate the optimization of the inverter design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种无桥逆变电路与太阳能无桥逆变器,其中的无桥逆变电路包括电能收集装置,电网,DSP以及输入端、控制端和输出端分别与电能收集装置输出端、DSP和电网输出端连接的多相并联或者多相交错并联的多个准DC/DC变换器。在DSP的控制下,该多个准DC/DC变换器在预设的一个工频周期内分时工作,并将所得到的正向半个准正弦波电压与负向半个准正弦波电压进行拼接,得到标准正弦波电压。该无桥逆变电路与太阳能无桥逆变器具有损耗小、能量利用率高、热处理元件少、设备重量小与运输成本低的优点。

Description

一种无桥逆变电路与太阳能无桥逆变器 技术
[0001] 本发明涉及电子器件, 具体地, 涉及一种无桥逆变电路与太阳能无桥逆变器。
背景
[0002] 随着能源的进一步紧张, 绿色能源得到越来越多国家的关注, 典型的风能和太阳能这类可再生能源发电系统也更多 的被大范围的应用, 为了能够提高能源的利用效率, 通常这类能源的转换都会使用 DC/AC 逆变器, 将收集到的绿色能源 回馈给电网, 做分布式发电用。 其典型的发电系统结构如图 1所示。
[0003] 在图 1 所示的分布式发电系统中, 电能收集装置对于风能来说是叶片带动的发电机, 而对于太阳能来说, 就是太阳 能电池板组件, 他们主要是将绿色能源转换为电能, 但是该电能还需要提供给电网或者给家电使用, 因此需要能量转换。 图 1中的 DC/DC变换器, 首先将电能收集装置收集到的电能转换为一个稳定的直流输出电, 再通过 DC/AC逆变器, 将该 直流电逆变为 AC 交流电, 最后并网到电网, 为电网中的负载提供能量。 对于现代的风力发电装置, 一般还带有一个 AC/DC 整流级, 放置在 DC/DC变换器前面。 由于电网是低频的工频交流电, 以上典型的分布式发电系统的结构, 又可以 分化为如图 2和图 3所示的两种结构。
[0004] 图 2 所示的高频载波的分布式发电系统, 被广泛应用于大功率的分布式发电系统中, 主要采用一个较大功率的 DC/DC变换器将电能收集装置的能量转换为稳定的直流电, 再通过高频切换的 DC/AC逆变器将直流电转化为交流电, 而 该高频切换的频率中包含有一个基本载波是电网工作频率, 之后通过简单滤波, 将高频纹波滤除, 就可以获得较干净的电 网工频交流电, 再并网发电。 该方法的优点是用一个大功率的变换器来统一处理能量, 使用的分立元件少, 单位功率的发 电成本相对较低, 而高频载波的逆变器可以使用大功率的晶体模块来实现, 仅仅需要做一些驱动控制电路即可, 然而该方 法不能优化电能收集装置的能量输出, 简单来说, 为了获得大功率的输出, 多数电能收集装置会选择串联以提高电压, 并 联以提高电流的方式来增加输出功率。
[0005] 但是无论串联还是并联, 一旦级联在一起的能量收集模块有一个工作不正常或无法输出额定功率, 就会同步影响其 他模块, 一起降低输出功率, 从而降低总的发电量, 从能量的利用角度来说, 该方法的能量利用效率不高。 为了尽量减小 这种影响, 在实际当中, 对大型太阳能发电站的选址有苛刻要求, 安装中要尽可能保证系统中的每块太阳能电板工作状态 一致。 这非但在实际中很难实现, 也额外增加了系统的建设成本。
[0006] 图 3所示的准 DC/DC变换器加工频切换 DC/AC逆变器的分布式发电系统, 正被广泛的应用于基于中小功率的发电 装置中。 该系统中的 DC/DC变换器是一个准 DC/DC变换器, 它使用正弦波脉宽调制将从电能收集装置获得的电能转化为 两倍电网工频的准正弦波输出, 然后连接到的 DC/AC 逆变器只要按照工频切换, 将该两倍电网工频的准正弦波切换为工 频正弦波再并入电网即可。 这种方法的优点是整个发电系统被分为了多个发电小单元, 每个小单元有独立的逆变器并网。 这样, 每个小单元的工作状态在实际中可以独立调节, 从而得到优化。 一个单元的故障不会影响系统中的其他部分。 而该 方案的缺点是由于每个单元中逆变器处理的功率较小, 分布式发电需要较多的变换器设备, 成本相对图 2 所示的集中处理 方法较高。
[0007] 上述无论图 2还是图 3所示的分布式发电系统中, 都包含了 DC/AC的逆变器, 其主要是用全桥结构的晶体开关所 组成, 如图 4所示的基本逆变桥。
[0008] 图 4中的开关 j¾、 Q2 , fi^与 fij , 可以是 MOSFET (金属-氧化层 -半导体-场效晶体管), 也可以是 SCR (可控 硅整流器), 还可以是 IGBT (绝缘栅双极型晶体管) 等可控或半控硅晶体元件, 其主要的作用就是按照图 2或者图 3 的规 则做切换, 将直流或者准正弦波变换成标准正弦波, 然后送入电网。 图 4 中的基本逆变桥的后端, 原则上还应该包含滤波 电路, 这里只做原理说明, 就不再详细介绍。
[0009] 另外, 图 8是一个典型的 Active Clamp Flyback (使用有源箝位反激) 电路结合传统逆变桥实现逆变太阳能电池能量 并网发电的电路图。 在图 8中, 是输入滤波电容, 是 Active Clamp Flyback的主动开关, 是箝位开关, 和 Dg^分别是两颗主动 寄生体二极管也可以是额外并联的二极管, Ca是箝位电容, J 是输出整流二极管, < 是输出滤波电容, 、
Figure imgf000004_0001
Qs , Qs开关可以是 MOSFET (金属-氧化层 -半导体-场效晶体管), 也可以是 SCR (可控 硅整流器), 还可以是 IGBT (绝缘栅双极型晶体管) 等可控或半控硅晶体元件, Ασ是电网侧的负载。 该电路就是按照图
3所示结构图连接的典型逆变器, 将图 8按照图 9中所示 PWM调制原则调制即可实现逆变器输出电网工频正弦波。
[0010] 如前所述, 由于逆变桥的存在, 负载或者并网输出电流会流过逆变桥, 随即产生损耗, 降低逆变器的效率, 而且逆 变器的晶体开关由于损耗的存在还会产生热, 这样逆变器还需要额外的考虑散热。 不仅增加电路成本, 还会增大体积。
[0011] 在实现本发明的过程中, 发明人发现现有技术中至少存在损耗大、 能量利用率低、 热处理元件多、 设备重量大与运 输成本高等缺陷。
发明内容
[0012] 本发明的目的在于, 针对上述问题, 提出一种无桥逆变电路, 以实现损耗小、 能量利用率高、 热处理元件少、 设备 重量小与运输成本低的优点。
[0013] 为实现上述目的, 本发明采用的技术方案是: 一种无桥逆变电路, 包括电能收集装置, 电网, DSP (数字信号处理 器), 以及输入端分别接电能收集装置输出端、 控制端分别接 DSP、 且输出端分别接电网输出端的多相并联或者多相交错 并联的多个准 DC/DC变换器, 其中:
所述 DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC 变换器发送控制信号, 使多相并联或者多相交错并联的多 个准 DC/DC 变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压与负向半个准正弦波电 压进行拼接, 得到标准正弦波电压;
所述多相并联或者多相交错并联的多个准 DC/DC 变换器, 用于分别将所述电能收集装置的电能, 转换为半个准正弦波输 出; 以及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提供半个准正弦波电压, 使电网 获得的标准正弦波电压。
[0014] 进一步地, 所述多相并联或者多相交错并联的多个准 DC/DC变换器, 包括两相并联的第一准 DC/DC变换器与第二 准 DC/DC变换器;
在所述 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集 装置的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼接, 使电网获得由正向半个 准正弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压;
在整个工频周期内, 所述第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换器工作时, 第一准 DC/DC变换器停止工作。
[0015] 同时, 基于以上所述的无桥逆变电路, 本发明采用的另一技术方案是: 一种太阳能无桥逆变器, 包括由直流输入电 源与并联在所述直流输入电源输出端的输入滤波电容 构成的电能收集装置, 电网 ΐ¾Κ与电网侧负载 Ασ, DSP, 以 及输入端分别接直流输入电源输出端、 控制端分别接 DSP、 且输出端分别接电网 FflE输出端的多相并联或者多相交错并 联的多个准 DC/DC变换器, 其中:
所述 DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC 变换器发送控制信号, 使多相并联或者多相交错并联的多 个准 DC/DC 变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压与负向半个准正弦波电 压进行拼接, 得到标准正弦波电压;
所述多相并联或者多相交错并联的多个准 DC/DC 变换器, 用于分别将所述电能收集装置的电能, 转换为半个准正弦波输 出; 以及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提供半个准正弦波电压, 使电网 获得的标准正弦波电压。
[0016] 进一步地, 所述多相并联或者多相交错并联的多个准 DC/DC变换器, 包括两相并联的第一准 DC/DC变换器与第二 准 DC/DC变换器; 在所述 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集 装置的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼接, 使电网获得由正向半个 准正弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压;
在整个工频周期内, 所述第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换器工作时, 第一准 DC/DC变换器停止工作。
[0017] 进一步地, 在所述多相并联或者多相交错并联的多个准 DC/DC变换器中, 每个准 DC/DC变换器包括 SPWM调制 的 DC/DC变换电路, 以及与所述 SPWM (正弦波脉宽调制) 调制的 DC/DC变换电路连接的控制开关 β^^ ;
所述控制开关 ¾^2, 用于基于 DSP 的控制信号, 控制 SPWM 调制的 DC/DC 变换电路工作或停止工作的控制开关
& ^ n为自然数。
[0018] 进一步地, 所述 SPWM调制的 DC/DC变换电路, 包括有源反激变换电路、 降压式变换 Buck 电路、 boost升压电 路, 降压或升压 buck-boost电路、 以及单 /双开关正激式 Forward直流变换电路中的至少一种。
[0019] 进一步地, 所述有源反激变换电路包括箝位电容 C^ , 变压器 Γβ, 功率半导体开关! 6;与^., ^与^^的 体二极管或额外的并联二极管 与. ¾„ι, 输出端滤波电容 Ga, 以及变压器: ^副边整流二极管 a ; 其中: 所述直流输入电源的正极, 与变压器 Γβ原边线圈的始端连接; 经箝位电容 后, 功率半导体开关 g ^的漏极、 以及 的体二极管或额外的并联二极管 %HI的阴极连接; 所述直流输入电源的负极, 与功率半导体开关 ίβ 的源极、 以 及 的体二极管或额外的并联二极管 的阳极连接;
所述变压器 原边线圈的末端, 与功率半导体开关 β^!的源极、 的体二极管或额外的并联二极管 ^的阳极、 功率半导体开关 的漏极、 以及 fi^的体二极管或额外的并联二极管 的阴极连接;
所述变压器 ¾副边线圈的末端, 与变压器 Γβ副边整流二极管 的阳极连接; 变压器?" ¾副边整流二极管 )a的阴极为输 出端, 经输出端滤波电容 Ca后, 接变压器 Γβ副边线圈的始端及参考地;
所述功率半导体开关 ^的栅极, 用于输入占空比为 J5的脉冲信号; 功率半导体开关 β^ι的栅极, 用于输入占空比为 1— >的脉冲信号; 控制开关 :fi^3的控制端与 DSP连接。
[0020] 进一步地, 所述控制开关 3并联在输出端滤波电容 的两端。
[0021] 进一步地, 所述控制开关 并联在变压器 Γβ副边整流二极管!) ¾的两端。
[0022] 进一步地, 所述直流输入电源, 为至少包括太阳能电池板 PV 或蓄电池的储能设备或风能发电设备或光热发电装 置;
所述功率半导体开关 与 , 至少包括金属氧化物场效应晶体管 MOSFET、 绝缘栅极双极型晶体管 IGBT与二极管中 的至少一种。
[0023] 进一步地, 所述降压式变换 Buck 电路包括功率半导体开关 , 的体二极管或额外的并联二极管 ·¾, 输出 端滤波电容 Ca, 整流二极管 ΙΪΛ, 以及谐振电感 其中: 所述直流输入电源的正极, 与功率半导体开关 的漏极、 以及 的体二极管或额外的并联二极管1 的阴极连接; 所 述直流输入电源的负极, 与整流二极管 ua的阳极及参考地连接; 所述功率半导体开关功率半导体开关 的的源极、 fi^的体二极管或额外的并联二极管 ¾的阳极、 以及整流二极管 iJ^的阴极连接, 经谐振电感 与输出端滤波电容 Ca后接参考地, 并经控制开关 0^2后接地;
所述功率半导体开关 的栅极, 用于输入占空比为 D的脉冲信号; 控制开关0>„5的控制端与 DSP连接。
[0024] 本发明各实施例的无桥逆变电路与太阳能无桥逆变器, 由于该无桥逆变电路包括电能收集装置, 电网, DSP, 以及 输入端分别接电能收集装置输出端、 控制端分别接 DSP、 且输出端分别接电网输出端的多相并联或者多相交错并联的多个 准 DC/DC变换器, 在 DSP的控制下, 该多个准 DC/DC变换器在预设的一个工频周期内分时工作, 并将所得正向半个准正 弦波电压与负向半个准正弦波电压进行拼接, 得到标准正弦波电压; 可以将原来的 DC/DC加 DC/AC的方案简化为一级, 直接使用 SPWM调制和 DSP实现交流电流输出, 提高效率, 减少元器件的数量, 同时降低成本; 从而可以克服现有技术 中损耗大、 能量利用率低、 热处理元件多、 设备重量大与运输成本高的缺陷, 以实现损耗小、 能量利用率高、 热处理元件 少、 设备重量小与运输成本低的优点。
[0025] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中变得显而易见, 或者通过实施本发明 而了解。 本发明的目的和其他优点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实现和获得。
[0026] 下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。
附图说明
[0027] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的实施例一起用于解释本发明, 并不构 成对本发明的限制。 在附图中:
图 1为典型分布式发电系统的电气原理示意图;
图 2为高频载波的分布式发电系统的电气原理示意图;
图 3为准 DC/DC变换器加工频切换 DC/AC逆变器的分布式发电系统的电气原理示意图;
图 4为基本逆变桥的电气原理示意图;
图 5为本发明无桥逆变电路的电气原理示意图;
图 6为图 5所示无桥逆变电路的关键波形示意图;
图 7为本发明多相并联或多相交错并联的无桥逆变电路的电气原理示意图;
图 8为典型 Active Clamp Flyback (有源反激变换器) 加逆变桥的逆变器的电气原理示意图;
图 9为 Active Clamp Flyback使用 SPWM调制加逆变桥实现逆变器调制的波形示意图;
图 10为典型无桥逆变电路一的电气原理示意图;
图 11为通过与图 10对应的控制方法实现无桥逆变功能的驱动波形示意图;
图 12为典型无桥逆变电路二的电气原理示意图;
图 13为图 12对应电路使用同步整流控制的典型驱动波形示意图;
图 14为用多个并联或者交错并联组成准 DC/DC的电气原理示意图;
图 15为使用 Buck电路构成无桥逆变电路的电气原理示意图。
具体鎌方式
[0028] 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实施例仅用于说明和解释本发明, 并 不用于限定本发明。
[0029] 无桥逆变电路实施例
实施例一
根据本发明实施例, 提供了一种无桥逆变电路。 如图 5和图 6所示, 本实施例包括电能收集装置, 电网, DSP, 以及输入 端分别接电能收集装置输出端、 控制端分别接 DSP、 且输出端分别接电网输出端的两相并联的第一准 DC/DC变换器与第 二准 DC/DC变换器, 其中: 上述 DSP, 用于向两相并联的第一准 DC/DC变换器与第二准 DC/DC变换器发送控制信号, 使两相并联的第一准 DC/DC 变换器与第二准 DC/DC 变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压与负向半个 准正弦波电压进行拼接, 得到标准正弦波电压;
在 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集装置 的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼接, 使电网获得由正向半个准正 弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压;
在整个工频周期内, 第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换器工作时, 第一 准 DC/DC变换器停止工作。
[0030] 图 5 中无桥逆变电路包含两个准 DC/DC变换器, 他们分别将电能收集装置的电转换为半个准正弦波输出, 然后在 上半个准正弦波输出的时候, 下面的第二准 DC/DC 变换器停止工作, 让输出 为零伏, 这样电网获得的是正向的半 波, 而到下半个准正弦波输出时, 将上面的第一准 DC/DC 变换器停止工作, 让输出 i^oom为零伏, 这样电网获得负向的 半波, 两相并接, 则形成一个完整的正弦波形, 图 5中几个典型的波形如图 6所示。
[0031] 对于第一准 DC/DC变换器或者第二准 DC/DC变换器, 他们都只有半个工频周期工作, 而停止工作的半个工频周期 中并不产生损耗, 而输出侧不再使用桥式逆变结构, 减少了逆变桥上的损耗, 因此该方案可以有效提高逆变器的效率。
[0032] 实施例二
根据本发明实施例, 提供了一种无桥逆变电路。 如图 7 所示, 本实施例包括电能收集装置, 电网, DSP, 以及输入端分别 接电能收集装置输出端、 控制端分别接 DSP、 且输出端分别接电网输出端的多相并联或者多相交错并联的多个准 DC/DC 变换器, 其中:
上述 DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC 变换器发送控制信号, 使多相并联或者多相交错并联的多 个准 DC/DC 变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压与负向半个准正弦波电 压进行拼接, 得到标准正弦波电压;
多相并联或者多相交错并联的多个准 DC/DC 变换器, 用于分别将电能收集装置的电能, 转换为半个准正弦波输出; 以 及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提供半个准正弦波电压, 使电网获得的 标准正弦波电压。
[0033] 在上述实施例中, 多相并联或者多相交错并联的多个准 DC/DC变换器中的每个准 DC/DC变换器的结构及性能, 可 参见图 5和图 6的相关说明, 在此不再赘述。
[0034] 上述图 5、 图 6和图 7所示的实施例的核心, 就是利用 DSP的控制, 实现两个准 DC/DC变换器分时工作, 然后将 输出的准正弦半波做拼装, 最终实现标准正弦波输出。 图 5中的第一准 DC/DC变换器和第二准 DC/DC变换器, 也可以是 如图 7中的多相并联或者多相交错并联工作的准 DC/DC变换器。
[0035] 上述图 5、 图 6和图 7所示的实施例, 是在图 1-图 4所示逆变器的基础上提出的新逆变结构, 即无桥逆变电路; 该 无桥逆变电路, 将原来的 DC/DC加 DC/AC的方案简化为一级, 直接使用 SPWM (正弦波脉宽调制) 调制和 DSP (数字信 号处理器) 实现交流电流输出, 提高效率, 减少元器件的数量, 同时降低成本。 这样高效率的要求, 不仅可以降低损耗, 提高能量的利用率, 减少处理热的元件与运输成本, 以及降低设备的重量等。
[0036] 上述图 5、 图 6和图 7所示的实施例, 在一些 AC电压是 120Ϊ¾Ε的国家节能效果更加明显, 由于同样输出功率情 况下, 低 AC 电压表征高 AC 电流, 逆变桥开关上的损耗增加, 效率进一步下降, 如果使用无桥逆变结构, 将极大的提高 逆变器的效率, 节约更多能量。
[0037] 太阳能无桥逆变器实施例
基于上述无桥逆变电路的核心思想, 以典型太阳能逆变器为例, 下面介绍几个典型的实施例。 由上述无桥逆变电路, 结合 图 8, 使用两个 Active Clamp Flyback电路做交替工作, 分别输出工频正弦波的上半波和下半波, 在负载或者电网侧再做叠 加, 实现最后的标准工频正弦输出。 [0038] 实施例一
根据本发明实施例, 提供了一种太阳能无桥逆变器。 如图 10和图 11 所示, 本实施例包括由直流输入电源与并联在直流输 入电源输出端的输入滤波电容 构成的电能收集装置, 电网 Ϊ¾Ε与电网侧负载 ff, DSP, 以及输入端分别接直流输 入电源输出端、 控制端分别接 DSP、 且输出端分别接电网 FflC输出端的两相并联的第一准 DC/DC变换器与第二准 DC/DC 变换器, 直流输入电源, 为至少包括太阳能电池板 PV或蓄电池的储能设备或风能发电设备或光热发电装置。
[0039] 其中, 上述 DSP, 用于向两相并联的第一准 DC/DC变换器与第二准 DC/DC变换器发送控制信号, 使两相并联的第 一准 DC/DC变换器与第二准 DC/DC变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压 与负向半个准正弦波电压进行拼接, 得到标准正弦波电压;
在 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集装置 的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼接, 使电网获得由正向半个准正 弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压;
在整个工频周期内, 第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换器工作时, 第一 准 DC/DC变换器停止工作。
[0040] 在上述两相并联的第一准 DC/DC 变换器与第二准 DC/DC 变换器中, 每个准 DC/DC 变换器包括 SPWM 调制的 DC/DC变换电路, 以及与 SPWM调制的 DC/DC变换电路连接的控制开关 ¾^2 ; 控制开关 !0^3, 用于基于 DSP的控制 信号, 控制 SPWM调制的 DC/DC变换电路工作或停止工作的控制开关 ¾„_2; n为自然数。
[0041] 在上述实施例中, SPWM调制的 DC/DC变换电路, 包括基本反激变换器以及衍生的各种反激变换器, 比如典型的 有源反激变换电路和准谐振反击电路; 降压式变换 Buck电路、 boost升压电路, 降压或升压 buck-boost电路、 以及单 /双开 关正激式 Forward直流变换电路中的至少一种。
[0042] 在图 10中, SPWM调制的 DC/DC变换电路为有源反激变换电路。 有源反激变换电路包括箝位电容 , 变压器
ΤΛ , 功率半导体开关 ^与^^, &与0«1的体二极管或额外的并联二极管 ¾与 0„t, 输出端滤波电容 ca, 以及变压器 ^副边整流二极管 β, 功率半导体开关 ^与^, 至少包括金属氧化物场效应晶体管 MOSFET、 绝缘栅 极双极型晶体管 IGBT与二极管中的至少一种。
[0043] 其中, 上述直流输入电源的正极, 与变压器 Γ¾原边线圈的始端连接; 经箝位电容 C ^后, 功率半导体开关 0^: 的漏极、 以及 β»^的体二极管或额外的并联二极管 的阴极连接; 直流输入电源的负极, 与功率半导体开关 的 源极、 以及 的体二极管或额外的并联二极管 的阳极连接;
变压器 ra原边线圈的末端, 与功率半导体开关 的源极、 的体二极管或额外的并联二极管 iJ^^^的阳极、 功率 半导体开关 fi 的漏极、 以及 的体二极管或额外的并联二极管 1?^:的阴极连接;
变压器 ΓΛ副边线圈的末端, 与变压器 副边整流二极管 £>β的阳极连接; 变压器 Γβ副边整流二极管 Da的阴极为输出 端, 经输出端滤波电容 Ca后, 接变压器1"„副边线圈的始端及参考地; 控制开关 ·β„^ ^并联在输出端滤波电容 Ca的两 端;
功率半导体开关 &的栅极, 用于输入占空比为 ?的脉冲信号; 功率半导体开关 β»»^的栅极, 用于输入占空比为 1™U 的脉冲信号; 控制开关0„ ^的控制端与 DSP连接。
[0044] 图 10中, 上面一个 Active clamp Flyback (有源反激变换电路) 使用 SPWM调制工作半个工频周期, 在这半个工频 周期内, 下面的电路停止工作, 为保证输出是零, 将 ί¾始终接通, 半个工频周期之后关闭上面的 Active clamp Flyback电 路, 为保证输出是零, 使用 将其输出短接, 而下面的 Active clamp Flyback电路接着使用 SPWM调制工作半个工频周 期, 由此, 两个 Active clamp Flyback的输出都是半个准正弦波, 在负载上或者电网上, 它们叠加成标准正弦波, 图 10对 应的主要驱动和输出波形如图 11。 图 10中的 和 开关, 可以是 MOSFET (金属-氧化层 -半导体-场效晶体管), 也可 以是 SCR (可控硅整流器), 还可以是 IGBT (绝缘栅双极型晶体管) 等可控或半控硅晶体元件, σ是电网侧的负载。
[0045] 图 10中的两个 Active clamp Flyback电路在各自不工作的时候使用了 和 将输出短接, 以达到输出电压为零的 目的。 下面图 12是另外一种实施例, 将图 10中的! ¾和05分别放到 D1和 D2相并列的位置, 控制方式仍然采用图 11所 示方法, 当上面的 Flyback工作的时候, 将下面 Flyback 的! ¾维持导通, 此时负载电流流过 ί¾, 并通过下面的 Flyback 的主变压器, 此时下面 Flyback的主变压器对于上面的 Flyback体现为输出滤波电感, 同上面的 Flyback输出电容构成 CL 滤波结构。 接下来的半个工频周期! ¾维持导通, 上面 Flyback的变压器体现为滤波电感, 在输出的负半周组成 CL滤波结 构。
[0046] 和¾¾并联的 D1和 D2, 可以利用 和 自身的寄生二极管来实现, 而在自己半个工频周期工作的时候, 还 能实现同步整流控制, 进一步提高效率, 其对应的控制驱动如图 13所示。
[0047] 实施例二
与上述实施例二不同的是, 在本实施例中, 如图 12和图 13所示, 控制开关 并联在变压器 Γβ副边整流二极管 iJa 两端。
[0048] 除了 Active clamp Flyback以外, Buck、 Boost, Forward, Buck-boost等 PWM调制的 DC/DC拓扑, 也可以实现如 图 5 所示的无桥逆变结构, 只要让他们工作于半个准正弦波的输出情况, 然后用两个同样的变换器再做叠加, 即可实现正 弦输出。 这种方案的好处是, 减少了一级传统的逆变桥, 降低损耗减, 提高效率, 减少处理热的原件, 降低设备的重量, 减少运输成本等。
[0049] 实施例三
根据本发明实施例, 提供了一种太阳能无桥逆变器。 如图 14所示, 本实施例包括由直流输入电源与并联在直流输入电源输 出端的输入滤波电容¾ ^构成的电能收集装置, 电网 与电网侧负载 Ασ, DSP, 以及输入端分别接直流输入电源输 出端、 控制端分别接 DSP、 且输出端分别接电网 1¾C输出端的多相并联或者多相交错并联的多个准 DC/DC 变换器, 其 中:
DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC 变换器发送控制信号, 使多相并联或者多相交错并联的多个准 DC/DC变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波电压与负向半个准正弦波电压进行 拼接, 得到标准正弦波电压;
多相并联或者多相交错并联的多个准 DC/DC 变换器, 用于分别将电能收集装置的电能, 转换为半个准正弦波输出; 以 及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提供半个准正弦波电压, 使电网获得的 标准正弦波电压。
[0050] 在图 14中, 多相并联或者多相交错并联的多个准 DC/DC变换器中的每个准 DC/DC变换器的具体结构及性能, 可 参见图 10关于每个准 DC/DC变换器的相关说明, 在此不再赘述。
[0051] 如图 14所示, 它是在图 10的基础上再加入 n个同样的准 DC/DC变换器, 让多个同样的准 DC/DC并联或者交错并 联使用, 然后让一半的准 DC/DC工作与半个工频周期, 另外半个工频周期停止工作, 而另一半的准 DC/DC工作在接下来 的半个工频周期, 然后两个半波在负载或者电网侧组合成标准工频周期, 这样做, 不仅可以降低纹波, 还能降低损耗, 唯 一需要注意的是变换器的体积需要合理设计。 同样的, 可以针对图 12所示结构用多个准 DC/DC做并联或者交错并联, 然 后输出半个工频周期的正弦波, 这里不再详细说明。
[0052] 实施例四
与上述实施例不同的是, 如图 15所示, SPWM调制的 DC/DC变换电路为有源反激变换电路。 降压式变换 Buck电路包括 功率半导体开关 , 的体二极管或额外的并联二极管■%, 输出端滤波电容 Ca, 整流二极管 )ft, 以及谐振电感
[0053] 其中, 上述直流输入电源的正极, 与功率半导体开关 &的漏极、 以及 的体二极管或额外的并联二极管 的 阴极连接; 直流输入电源的负极, 与整流二极管 Ja 阳极及参考地连接;
功率半导体开关功率半导体开关 的的源极、 &的体二极管或额外的并联二极管 的阳极、 以及整流二极管!) a的 阴极连接, 经谐振电感 与输出端滤波电容 £^后接参考地, 并经控制开关 fi^后接地;
功率半导体开关 的栅极, 用于输入占空比为 D的脉冲信号; 控制开关 的控制端与 DSP连接。
[0054] 同样的, 如果将图 15中的 1¾与1^换成开关, 去掉 ¾和 , 使用类似图 12的控制方法也是可以实现带同步整 流的无桥逆变器, 能进一步提高效率。 对于大功率的应用场合, 图 15还可以结合图 7中多相并联或者多相交错并联的方式 来分担功率, 不仅可以降低纹波, 还能够进一步提高效率, 实现高效无桥逆变, 其具体的实现图类似图 14 所示。 相应的 boost电路, buck-boost电路, forward电路等 PWM调制的 DC/DC电路,也可以按照图 5所示结构连接并按照 SPWM调制 以实现无桥逆变器结构, 这里不再详细说明。
[0055] 综上所述, 本发明各实施例的无桥逆变电路与太阳能无桥逆变器, 核心是无桥逆变器结构, 即使用两个准 DC/DC 变换器分别在工频的正半周和负半周工作, 然后通过输出的半个准正弦波叠加以获得最后的工频正弦波, 实现无逆变桥结 构 (图 4所示); 这两个准 DC/DC变换器可以为任意的 DC/DC变换器电路拓扑, 并不局限于本申请中提到的这些电路结 构; 使用无桥结构, 减少了输出电流流过的开关晶体原件, 减少了损耗, 提高效率, 同时降低开关元器件的数量, 降低逆 变器的成本, 这将极大的有利于优化逆变器的设计。
[0056] 最后应说明的是: 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 尽管参照前述实施例对本发明进 行了详细的说明, 对于本领域的技术人员来说, 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分 技术特征进行等同替换。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种无桥逆变电路, 其特征在于, 包括电能收集装置, 电网, DSP, 以及输入端分别接电能收集装置输 出端、 控制端分别接 DSP、 且输出端分别接电网输出端的多相并联或者多相交错并联的多个准 DC/DC变换 器, 其中:
所述 DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC变换器发送控制信号, 使多相并联或者多相 交错并联的多个准 DC/DC变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波 电压与负向半个准正弦波电压进行拼接, 得到标准正弦波电压;
所述多相并联或者多相交错并联的多个准 DC/DC变换器, 用于分别将所述电能收集装置的电能, 转换为半 个准正弦波输出; 以及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提 供半个准正弦波电压, 使电网获得的标准正弦波电压。
2. 根据权利要求 1所述的无桥逆变电路, 其特征在于, 所述多相并联或者多相交错并联的多个准 DC/DC变 换器, 包括两相并联的第一准 DC/DC变换器与第二准 DC/DC变换器;
在所述 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集装置的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼 接, 使电网获得由正向半个准正弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压; 在整个工频周期内, 所述第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换 器工作时, 第一准 DC/DC变换器停止工作。
3. 一种太阳能无桥逆变器, 其特征在于, 包括由直流输入电源与并联在所述直流输入电源输出端的输入滤 波电容 ^构成的电能收集装置, 电网*^与电网侧负载 Λσ, DSP, 以及输入端分别接直流输入电源输 出端、 控制端分别接 DSP、 且输出端分别接电网 FiK输出端的多相并联或者多相交错并联的多个准 DC/DC 变换器, 其中:
所述 DSP, 用于向多相并联或者多相交错并联的多个准 DC/DC变换器发送控制信号, 使多相并联或者多相 交错并联的多个准 DC/DC变换器在预设的一个工频周期内分时工作, 并将分时工作所得正向半个准正弦波 电压与负向半个准正弦波电压进行拼接, 得到标准正弦波电压;
所述多相并联或者多相交错并联的多个准 DC/DC变换器, 用于分别将所述电能收集装置的电能, 转换为半 个准正弦波输出; 以及, 用于基于 DSP的控制信号, 在预设的一个工频周期内分时工作, 交替式向电网提 供半个准正弦波电压, 使电网获得的标准正弦波电压。
4. 根据权利要求 3所述的太阳能无桥逆变器,其特征在于,所述多相并联或者多相交错并联的多个准 DC/DC 变换器, 包括两相并联的第一准 DC/DC变换器与第二准 DC/DC变换器; 在所述 DSP的控制下, 第一准 DC/DC变换器与第二准 DC/DC变换器, 用于分别在一个工频周期内分时工作, 将电能收集装置的电能转换为半个准正弦波输出; 以及, 在整个工频周期内, 将所得半个准正弦波进行拼 接, 使电网获得由正向半个准正弦波与负向半个准正弦波构成、 且用于供给负载的标准正弦波电压; 在整个工频周期内, 所述第一准 DC/DC变换器工作时, 第二准 DC/DC变换器停止工作; 第二准 DC/DC变换 器工作时, 第一准 DC/DC变换器停止工作。
5. 根据权利要求 3或 4所述的太阳能无桥逆变器, 其特征在于, 在所述多相并联或者多相交错并联的多个 准 DC/DC变换器中,每个准 DC/DC变换器包括 SPWM调制的 DC/DC变换电路, 以及与所述 SPWM调制的 DC/DC 变换电路连接的控制开关 0"*3; 所述控制开关 ^**5, 用于基于 DSP的控制信号, 控制 SP丽调制的 DC/DC变换电路工作或停止工作的控制 开关 0^2; n为自然数。
6. 根据权利要求 5所述的太阳能无桥逆变器, 其特征在于, 所述 调制的 DC/DC变换电路, 包括有源 反激变换电路、 降压式变换 Buck电路、 boost升压电路, 降压或升压 buck-boost电路、 以及单 /双开关正 激式 Forward直流变换电路中的至少一种。
7. 根据权利要求 6所述的太阳能无桥逆变器, 其特征在于, 所述有源反激变换电路包括箝位电容 变压器 ^, 功率半导体开关^1与 Q™1 , 与 的体二极管或额外的并联二极管1 ^ 与^0"1, 输出端滤波电容 ^, 以及变压器1 副边整流二极管 其中: 所述直流输入电源的正极, 与变压器" 原边线圈的始端连接;经箝位电容 后,功率半导体开关 的漏极、 以及 的体二极管或额外的并联二极管 ^®"1的阴极连接; 所述直流输入电源的负极, 与功 率半导体开关 的源极、 以及^ 1的体二极管或额外的并联二极管 1101的阳极连接; 所述变压器1 "β原边线圈的末端, 与功率半导体开关 的源极、 的体二极管或额外的并联二极管 ^0®"1的阳极、 功率半导体开关 的漏极、 以及^ 1的体二极管或额外的并联二极管 ^01的阴极连接; 所述变压器1 副边线圈的末端, 与变压器1" 11副边整流二极管"011的阳极连接; 变压器 1 ""副边整流二极管 的阴极为输出端, 经输出端滤波电容 ^后, 接变压器1" 11副边线圈的始端及参考地; 所述功率半导体开关 的栅极, 用于输入占空比为"的脉冲信号; 功率半导体开关 ""*的栅极, 用于 输入占空比为1B的脉冲信号; 控制开关 ^™"3的控制端与 DSP连接。
8. 根据权利要求 Ί所述的太阳能无桥逆变器,其特征在于,所述控制开关 并联在输出端滤波电容*^ 的两端。
9. 根据权利要求 7所述的太阳能无桥逆变器, 其特征在于, 所述控制开关 并联在变压器 ^副边整 流二极管1111的两端。
10. 根据权利要求 7所述的太阳能无桥逆变器, 其特征在于, 所述直流输入电源, 为至少包括太阳能电池 板 PV或蓄电池的储能设备或风能发电设备或光热发电装置; 所述功率半导体开关 与 ,至少包括金属氧化物场效应晶体管 M0SFET、绝缘栅极双极型晶体管 IGBT 与二极管中的至少一种。
11. 根据权利要求 6所述的太阳能无桥逆变器, 其特征在于, 所述降压式变换 Buck电路包括功率半导体开 关 &, 的体二极管或额外的并联二极管 ^ , 输出端滤波电容 , 整流二极管 ^11, 以及谐振电 感 ; 其中: 所述直流输入电源的正极, 与功率半导体开关^ 1的漏极、 以及^ 1的体二极管或额外的并联二极管 ΰβι 的阴极连接; 所述直流输入电源的负极, 与整流二极管 ^*11的阳极及参考地连接; 所述功率半导体开关功率半导体开关^1的的源极、 的体二极管或额外的并联二极管 1101的阳极、 以 及整流二极管 的阴极连接, 经谐振电感1 ^与输出端滤波电容 ΐ ^后接参考地, 并经控制开关 *-2后 接地; 所述功率半导体开关 的栅极, 用于输入占空比为 11的脉冲信号;控制开关 的控制端与 DSP连接。
PCT/CN2012/086686 2012-02-27 2012-12-14 一种无桥逆变电路与太阳能无桥逆变器 WO2013127230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100464261A CN103023362A (zh) 2012-02-27 2012-02-27 一种无桥逆变电路与太阳能无桥逆变器
CN201210046426.1 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013127230A1 true WO2013127230A1 (zh) 2013-09-06

Family

ID=47971571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086686 WO2013127230A1 (zh) 2012-02-27 2012-12-14 一种无桥逆变电路与太阳能无桥逆变器

Country Status (2)

Country Link
CN (1) CN103023362A (zh)
WO (1) WO2013127230A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188349A1 (en) * 2015-12-31 2017-07-05 Revolt LLC Systems and methods for connecting energy sources to power distribution network
CN113555896A (zh) * 2021-06-25 2021-10-26 国网上海市电力公司 一种基于光储一体化的能源微网系统
CN113922691A (zh) * 2021-10-20 2022-01-11 张家口安智科为新能源有限公司 一种kvcs交直流转换储能变流器
CN115622378A (zh) * 2022-12-06 2023-01-17 眉山博雅新材料股份有限公司 一种高频电源及应用于高频电源的直流稳压器件
CN115995986A (zh) * 2023-03-24 2023-04-21 安徽微伏特电源科技有限公司 一种三角结构的串并联反激升压电路拓扑
CN116365900A (zh) * 2023-03-01 2023-06-30 西南交通大学 交流输入非对称式无桥降压型pfc变换器
CN117293784A (zh) * 2023-08-04 2023-12-26 青岛大学 多新能源分时储能分时释能电流型直流变换器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201312621D0 (en) * 2013-07-15 2013-08-28 Univ Plymouth Control arrangement
CN104578856A (zh) * 2014-12-23 2015-04-29 燕山大学 单级非隔离无电解电容双Zeta逆变器
CN104682750A (zh) * 2015-03-20 2015-06-03 南京工业大学 一款高效率高可靠性光伏并网微型逆变电源
CN106526306A (zh) * 2016-12-20 2017-03-22 广州擎天实业有限公司 快速响应的三相整流桥输出电压变送器及其控制方法
CN106787653B (zh) * 2017-03-31 2019-07-12 华为技术有限公司 一种驱动控制方法及电源电路
CN107147316B (zh) * 2017-05-17 2019-06-11 华南师范大学 一种交流电源电路及其控制方法
CN109352161B (zh) * 2018-11-27 2024-02-02 保定市卓思恒畅电器有限公司 一种由开关电源控制的固态高频焊接一体机装置
CN112491254B (zh) * 2020-11-19 2023-07-07 深圳市中科源电子有限公司 一种降低输入工频纹波的方法
CN116565980B (zh) * 2023-07-11 2023-09-19 麦田能源股份有限公司 具有无功支撑的逆变系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350186A (ja) * 2000-06-09 2001-12-21 Canon Inc ストロボ装置およびストロボ装置を有するカメラ
JP2005028450A (ja) * 2003-07-11 2005-02-03 Lincoln Global Inc 飽和可能リアクトルを備えた電気アーク溶接機の電源
CN201072438Y (zh) * 2007-05-15 2008-06-11 北京索英电气技术有限公司 多输入通道模块化高频隔离单相电能回馈型电子负载
JP2008295216A (ja) * 2007-05-24 2008-12-04 Oki Electric Ind Co Ltd アクティブフィルタを備える電源装置
CN101409517A (zh) * 2008-07-22 2009-04-15 南京航空航天大学 三电平半桥单级逆变器及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349920B2 (ja) * 2008-03-05 2013-11-20 株式会社小糸製作所 放電灯点灯回路
CN202444440U (zh) * 2012-02-27 2012-09-19 无锡联动太阳能科技有限公司 一种无桥逆变电路与太阳能无桥逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350186A (ja) * 2000-06-09 2001-12-21 Canon Inc ストロボ装置およびストロボ装置を有するカメラ
JP2005028450A (ja) * 2003-07-11 2005-02-03 Lincoln Global Inc 飽和可能リアクトルを備えた電気アーク溶接機の電源
CN201072438Y (zh) * 2007-05-15 2008-06-11 北京索英电气技术有限公司 多输入通道模块化高频隔离单相电能回馈型电子负载
JP2008295216A (ja) * 2007-05-24 2008-12-04 Oki Electric Ind Co Ltd アクティブフィルタを備える電源装置
CN101409517A (zh) * 2008-07-22 2009-04-15 南京航空航天大学 三电平半桥单级逆变器及控制方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188349A1 (en) * 2015-12-31 2017-07-05 Revolt LLC Systems and methods for connecting energy sources to power distribution network
US11611220B2 (en) 2015-12-31 2023-03-21 Present Power Systems, Llc Systems and methods for connecting energy sources to power distribution network
CN113555896A (zh) * 2021-06-25 2021-10-26 国网上海市电力公司 一种基于光储一体化的能源微网系统
CN113922691A (zh) * 2021-10-20 2022-01-11 张家口安智科为新能源有限公司 一种kvcs交直流转换储能变流器
CN115622378A (zh) * 2022-12-06 2023-01-17 眉山博雅新材料股份有限公司 一种高频电源及应用于高频电源的直流稳压器件
CN116365900A (zh) * 2023-03-01 2023-06-30 西南交通大学 交流输入非对称式无桥降压型pfc变换器
CN116365900B (zh) * 2023-03-01 2023-11-03 西南交通大学 交流输入非对称式无桥降压型pfc变换器
CN115995986A (zh) * 2023-03-24 2023-04-21 安徽微伏特电源科技有限公司 一种三角结构的串并联反激升压电路拓扑
CN117293784A (zh) * 2023-08-04 2023-12-26 青岛大学 多新能源分时储能分时释能电流型直流变换器
CN117293784B (zh) * 2023-08-04 2024-04-12 青岛大学 多新能源分时储能分时释能电流型直流变换器

Also Published As

Publication number Publication date
CN103023362A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2013127230A1 (zh) 一种无桥逆变电路与太阳能无桥逆变器
Alluhaybi et al. Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters
Tang et al. Hybrid switched-inductor converters for high step-up conversion
CN202444440U (zh) 一种无桥逆变电路与太阳能无桥逆变器
JP4322250B2 (ja) トランスレス型系統連係電力変換回路
Mazumder et al. A universal grid-connected fuel-cell inverter for residential application
US10707775B2 (en) Method and apparatus for multi phase shift power converter control
KR20120041791A (ko) Dc-ac 인버터 장치, 특히 태양전지 인버터
KR20120063513A (ko) 전기 에너지 변환 회로 디바이스
CN103001525A (zh) 用于转换功率的方法和系统
Hu et al. Ultrahigh step-up DC–DC converter for distributed generation by three degrees of freedom (3DoF) approach
CN101350569A (zh) 太阳能光伏逆变器拓扑结构
CN203423631U (zh) 一种包括高升压电路的太阳能无桥逆变器
JP2013526827A (ja) 電気エネルギー転換装置
Arab Ansari et al. Analysis and implementation of a new zero current switching flyback inverter
CN105048490A (zh) 低电流应力的光伏微逆变器及其数字控制装置
Alassi et al. Assessment of isolated and non-isolated DC-DC converters for medium-voltage PV applications
US8885375B2 (en) Inverter for preventing leak current
CN213043596U (zh) 一种交错并联反激式微型光伏逆变器
Kosenko et al. Full-soft-switching high step-up bidirectional isolated current-fed push-pull DC-DC converter for battery energy storage applications
Umuhoza et al. Interleaved Flyback based micro-inverter for residential photovoltaic application in remote areas
Chub et al. Switched-capacitor current-fed quasi-Z-source inverter
CN102437743B (zh) 升压变换电路与太阳能逆变器及其控制方法
WO2013134904A1 (zh) 无共模干扰单相逆变器拓扑
CN111245263A (zh) 高变比宽输入范围电力电子变换拓扑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT ON 06.02.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12870218

Country of ref document: EP

Kind code of ref document: A1