CN116365900B - 交流输入非对称式无桥降压型pfc变换器 - Google Patents

交流输入非对称式无桥降压型pfc变换器 Download PDF

Info

Publication number
CN116365900B
CN116365900B CN202310183029.7A CN202310183029A CN116365900B CN 116365900 B CN116365900 B CN 116365900B CN 202310183029 A CN202310183029 A CN 202310183029A CN 116365900 B CN116365900 B CN 116365900B
Authority
CN
China
Prior art keywords
diode
output
current
buck
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310183029.7A
Other languages
English (en)
Other versions
CN116365900A (zh
Inventor
陈正格
漆谨
许建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202310183029.7A priority Critical patent/CN116365900B/zh
Publication of CN116365900A publication Critical patent/CN116365900A/zh
Application granted granted Critical
Publication of CN116365900B publication Critical patent/CN116365900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公开了交流输入非对称式无桥降压型PFC变换器,包括开关管S1、开关管S2、输出二极管D1、输出二极管D2、限流二极管D3、限流二极管D4、限流二极管D5、输出电容Co、输出电感L1、输出电感L2、续流二极管D1、续流二极管D2,所述开关管S1、输出电感L1、二极管D1为Buck变换单元,与输出电容Co、限流二极管D4,实现交流输入正半周期内的电能变换;所述开关管S2、电感L2、二极管D2为Buck‑boost变换单元,与输出电容CO、限流二极管D3与限流二极管D5,实现交流输入负半周期内的电能变换,具有固有的电流校正能力,可以通过单电压环控制实现PFC功能与输出电压调节,并且可以用相同的驱动信号控制两个开关管。

Description

交流输入非对称式无桥降压型PFC变换器
技术领域
本发明涉及变换器领域,尤其涉及交流输入非对称式无桥降压型PFC变换器。
背景技术
功率因数校正(power factor correction,PFC)技术可以将畸变电流校正为正弦电流以降低电流的总谐波含量(total harmonic distortion of current,THDi);并使电网电流与电压同相位,从而使功率因数(PF)接近于1。
当前升压型(Boost)PFC变换器因其简单的电路拓扑、简单的控制方法和固有的输入电流校正能力被广泛使用,但由于其升压特性,不适用LED、低压电池充电等负载低电压的要求,此时还需在后级增加降压电路。在开关电源小型化、轻量化、高效率和高功率密度的发展趋势下,Boost PFC变换器与其后级降压变换器所组成的两级AC-DC变换结构降低了系统整体效率,同时元器件数量较多,不利于系统成本的进一步降低。相对应的,降压(Buck)型PFC变换器具有低电压输出特性,其后级降压变换器的器件耐压要求低、成本更低,具有明显的低开关管导通优势,特别适用于低压输出应用领域,如LED驱动电源、48V或20V电池组充电器、笔记本电脑适配器等应用场合。因此研究降压型PFC变换器具有重要意义。
传统Buck PFC拓扑如图1所示。交流输入vin经二极管整流桥整流成馒头波Vg,再通过可控开关管S的通断,实现输入电流iin与输入电压vin的相位一致,实现PFC,同时输出Vo的直流电压供负载使用。
图2给出了传统Buck PFC变换器在交流输入半个工频周期内的输入电流死区现象。这是因为Buck变换单元只能工作在电压降压阶段,当整流后输出电压Vg高于输出电压Vo时,开关管S才有电流通过;当整流后电压Vg低于输出电压Vo时,尽管开关管S导通,但是无输入电流通过开关管。这种输入电流死区现象使得Buck PFC变换器必须限制其最大输出电压为80V左右,以获得较低的THDi和较高的PF值。但是较低的输出电压Vo导致Buck型PFC变换器不能工作于大功率场合(注:相同输出功率下,低Vo导致高输出电流Io,高输出电流Io导致高导通损耗)。而且,传统的Buck PFC变换器在工作过程中的整流桥二极管总需要保持导通状态,导致系统整体效率不高。
发明内容
本发明的目的在于提供交流输入非对称式无桥降压型PFC变换器,以解决上述技术问题。
本发明为解决上述技术问题,采用以下技术方案来实现:
交流输入非对称式无桥降压型PFC变换器,包括开关管S1、开关管S2、输出二极管D1、输出二极管D2、限流二极管D3、限流二极管D4、限流二极管D5、输出电容Co、输出电感L1、输出电感L2、续流二极管D1、续流二极管D2,所述开关管S1、输出电感L1、续流二极管D1为Buck变换单元,与输出电容Co、限流二极管D4实现交流输入正半周期内的电能变换;
所述开关管S2、电感L2、二极管D2为Buck-boost变换单元,与输出电容CO、限流二极管D3与限流二极管D5实现交流输入负半周期内的电能变换。
优选的,所述交流输入侧的一端与开关管S1的源极、限流二极管D3的阴极连接,所述交流输入侧的另一端与限流二极管D4的阴极、限流二极管D5的阳极相连。
优选的,所述开关管S1、输出电感L1和续流二极管D1组成第一个Buck单元;开关管S2、输出电感L2和续流二极管D2组成Buck-boost变换单元。
优选的,所述开关管S1的漏极分别与续流二极管D1的阴极、输出电感L1的一端连接,开关管S2的源极分别与续流二极管D2的阴极连接、输出电感L2的一端连接。
优选的,所述输出电感L1和输出电感L2的另一端与输出电容Co的正极、负载的一端相连,续流二极管D2的阳极、限流二极管D4的阳极与输出电容Co的负极、负载的另一端相连。
本发明的有益效果是:
1、本发明具有固有的电流校正能力,可以通过单电压环控制实现PFC功能与输出电压调节,并且可以用相同的驱动信号控制两个开关管。
2、本发明所提出的变换器拓扑缓解了Buck型PFC变换器中的输入电流死区,使变换器在相对更高的输出电压下(如160V,而不是传统Buck PFC的80V限制),仍然具有高PF和低THDi。
3、本发明所提出的拓扑减少了整流二极管损耗,降低了变换器导通损耗,提高了变换器效率,从波形图可得知:在交流输入峰值311V、频率50Hz的情况下,无桥降压型变换器实现了160V的稳压输出;且开关管S1、S2分别在输入电压vin的正负半周期交替工作,实现了无整流桥时的AC-DC变换运行;而且,各器件仿真波形稳定,表明了变换器能稳定运行工作,各器件的仿真波形与图10所示的理论波形相一致。
附图说明
图1为传统Buck PFC变换器拓扑图;
图2为传统Buck PFC变换器在交流输入半个工频周期内的输入电压、电流波形图;
图3(a)、图3(b)为非对称式无桥Buck型PFC变换器拓扑;
图4(a)、图4(b)、图4(c)为AC-DC无桥降压型变换器在交流输入正半周期的工作模态1、模态2等效电路;
图5(a)、图5(b)、图5(c)为AC-DC无桥降压型变换器在交流输入负半周期的工作模态1、模态2等效电路;
图6为非对称式无桥降压型变换器在交流输入正半周期的一个开关周期内的关键器件波形图;
图7为非对称式无桥降压型变换器在交流输入负半周期的一个开关周期内的关键器件波形图;
图8为非对称式无桥Buck型PFC变换器的控制实现原理图;
图9为非对称式无桥Buck型PFC变换器的驱动信号图;
图10为非对称式无桥Buck型PFC变换器的PSIM仿真波形图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和附图,进一步阐述本发明,但下述实施例仅仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例,都属于本发明的保护范围。
下面结合附图描述本发明的具体实施例。
实施例:
如图3-10所示,交流输入非对称式无桥降压型PFC变换器,包括开关管S1、开关管S2、输出二极管D1、输出二极管D2、限流二极管D3、限流二极管D4、限流二极管D5、输出电容Co、输出电感L1、输出电感L2,由于buck变换单元与buck-boost变换单元均只能处理单极性的输入,因此为实现双极性交流电能变换为单极性直流电输出,必须分别配置两路变换单元实现正、负双极性的交流输入,单极性直流输出;
开关管S1、电感L1、二极管D1为Buck变换单元,与输出电容Co、限流二极管D4,实现交流输入正半周期内的电能变换,由于交流输入正半周期仍然使用了Buck变换单元,因此当输入电压vin小于输出电压Vo时,Buck变换单元无法实现降压变换,导致该阶段输入电流仍然存在死区;
开关管S2、电感L2、二极管D2为Buck-boost变换单元,与输出电容CO、限流二极管D3与限流二极管D5,实现交流输入负半周期内的电能变换,由于该阶段使用了Buck-boost变换单元,因此输入电流不再由于输入电压与输出电压的大小关系而存在死区;
交流输入侧的一端与开关管S1的源极、限流二极管D3的阴极连接,交流输入侧的另一端与限流二极管D4的阴极、限流二极管D5的阳极相连;
开关管S1、输出电感L1和续流二极管D1组成第一个Buck单元;开关管S2、输出电感L2和续流二极管D2组成Buck-boost变换单元;
开关管S1的漏极分别与续流二极管D1的阴极、输出电感L1的一端连接。开关管S2的源极分别与续流二极管D2的阴极连接、输出电感L2的一端连接;
输出电感L1和L2的另一端与输出电容Co的正极、负载的一端相连,续流二极管D2的阳极、限流二极管D4的阳极与输出电容Co的负极、负载的另一端相连;
通过图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图5(c)、图6、图7说明本发明非对称式AC-DC无桥Buck型变换器在电感电流工作于断续导通模式(discontinue conductionmode,DCM)时的工作原理:
工作模态1[0,dTS]:该阶段,开关管S1和S2处于导通状态,输入端经过开关管S1、输出电容Co、二极管D4向电感L1充能,电感电流iL1线性上升,开关管S1的电流与iL1的幅值相同,方向相同;二极管D4提供通路。
工作模态2[dTS,(d+db)TS]:开关管S1和S2关断,续流二极管D1导通,存储于电感L1的能量向负载端供能,电感电流iL1线性下降。
工作模态3[(d+db)TS,TS]:开关管S1和S2、续流二极管D1均保持关断,电感电流iL1为零,输出电容Co为负载供能。
工作模态4[0,dTS]:开关管S1和S2处于导通状态,输入端经过二极管D5、开关管S2、二极管D3向电感L2充能,电感电流iL2线性上升,开关管S2、二极管D5的电流与iL2的幅值相同,方向相同。输出电容Co为负载供能。
工作模态5[dTS,(d+dbb)TS]:开关管S1和S2关断,续流二极管D2导通,存储于电感L2的能量经过二极管D2向负载端供能,电感电流iL2线性下降。
工作模态6[(d+dbb)TS,TS]:开关管S1和S2、续流二极管D2均保持关断,电感电流iL1为零,输出电容Co为负载供能。
由图8、图9可知,由于本发明的无桥降压型变换器拓扑中限流二极管的存在,输入电压不会因两个开关管同时导通而短路,两个开关管可用同一驱动信号实现控制,简化了电路的控制。具体控制方法如下:输出电压Vo采样信号与输出参考电压Vo,ref比较,再经过PI参数调节得到误差反馈信号,误差反馈信号与三角波比较产生比较器的输出信号,该输出信号可用于直接驱动两个开关管S1、S2
换器仿真结果:
为验证本发明专利的AC-DC电能变换电路可行性,采用了PSIM仿真软件对该电路进行了仿真验证;
具体参数:交流输入采用正弦信号拟合,交流电压峰值为311V,频率为50Hz,输出电感L1为100uH,输出电感L2为206uH,输出电容Co为1980uF,输出电压为160V,负载为256Ω,功率为100W,开关频率为50k,PI参数中P为0.9,I为0.004;另外,为保证输入电流为连续量,需要和传统Buck PFC变换器一样,在输入侧加入电磁滤波电感Lf与输入电容Cf,分别设置为Lf=2.2mH、Cf=0.1uF;
由图10可知,在交流输入峰值311V、频率50Hz的情况下,无桥降压型变换器实现了160V的稳压输出;
且开关管S1、S2分别在输入电压vin的正负半周期交替工作,实现了无整流桥时的AC-DC变换运行。而且,各器件仿真波形稳定,表明了变换器能稳定运行工作,各器件的仿真波形与图10所示的理论波形相一致。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.交流输入非对称式无桥降压型PFC变换器,包括开关管S1、开关管S2、输出二极管D1、输出二极管D2、限流二极管D3、限流二极管D4、限流二极管D5、输出电容Co、输出电感L1、输出电感L2、续流二极管D1、续流二极管D2,其特征在于:所述开关管S1、输出电感L1、续流二极管D1为Buck变换单元,与输出电容Co、限流二极管D4实现交流输入正半周期内的电能变换;
所述开关管S2、电感L2、二极管D2为Buck-boost变换单元,与输出电容CO、限流二极管D3与限流二极管D5实现交流输入负半周期内的电能变换。
2.根据权利要求1所述的交流输入非对称式无桥降压型PFC变换器,其特征在于:所述交流输入侧的一端与开关管S1的源极、限流二极管D3的阴极连接,所述交流输入侧的另一端与限流二极管D4的阴极、限流二极管D5的阳极相连。
3.根据权利要求1所述的交流输入非对称式无桥降压型PFC变换器,其特征在于:所述开关管S1、输出电感L1和续流二极管D1组成第一个Buck单元;开关管S2、输出电感L2和续流二极管D2组成Buck-boost变换单元。
4.根据权利要求1所述的交流输入非对称式无桥降压型PFC变换器,其特征在于:所述开关管S1的漏极分别与续流二极管D1的阴极、输出电感L1的一端连接,开关管S2的源极分别与续流二极管D2的阴极连接、输出电感L2的一端连接。
5.根据权利要求1所述的交流输入非对称式无桥降压型PFC变换器,其特征在于:所述输出电感L1和输出电感L2的另一端与输出电容Co的正极、负载的一端相连,续流二极管D2的阳极、限流二极管D4的阳极与输出电容Co的负极、负载的另一端相连。
CN202310183029.7A 2023-03-01 2023-03-01 交流输入非对称式无桥降压型pfc变换器 Active CN116365900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310183029.7A CN116365900B (zh) 2023-03-01 2023-03-01 交流输入非对称式无桥降压型pfc变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310183029.7A CN116365900B (zh) 2023-03-01 2023-03-01 交流输入非对称式无桥降压型pfc变换器

Publications (2)

Publication Number Publication Date
CN116365900A CN116365900A (zh) 2023-06-30
CN116365900B true CN116365900B (zh) 2023-11-03

Family

ID=86905993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310183029.7A Active CN116365900B (zh) 2023-03-01 2023-03-01 交流输入非对称式无桥降压型pfc变换器

Country Status (1)

Country Link
CN (1) CN116365900B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127230A1 (zh) * 2012-02-27 2013-09-06 无锡联动太阳能科技有限公司 一种无桥逆变电路与太阳能无桥逆变器
WO2015106643A1 (zh) * 2014-01-16 2015-07-23 深圳市金宏威技术股份有限公司 无桥降压apfc电路
WO2018122116A1 (de) * 2016-12-28 2018-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stromrichterschaltung und verfahren zur steuerung derselben
CN111416532A (zh) * 2020-04-27 2020-07-14 亚瑞源科技(深圳)有限公司 一种无桥升降压式交流对直流转换器
JP2020162261A (ja) * 2019-03-26 2020-10-01 ローム株式会社 電力変換装置
CN112737308A (zh) * 2021-01-13 2021-04-30 茂硕电源科技股份有限公司 宽电压混合式pfc变换器及开关电源
CN113224942A (zh) * 2021-06-16 2021-08-06 广东工业大学 一种非隔离式Buck-Boost无桥PFC变换器系统
CN113489309A (zh) * 2021-07-15 2021-10-08 西南交通大学 宽输出电压的无桥降压式功率因数校正变换器及控制方法
CN113489308A (zh) * 2021-07-15 2021-10-08 西南交通大学 无输入电流死区的降压功率因数校正变换器及控制方法
CN113765359A (zh) * 2021-09-01 2021-12-07 西南交通大学 一种多单元并联整合降压无桥pfc变换器
WO2022257534A1 (zh) * 2021-06-10 2022-12-15 华润微电子(重庆)有限公司 Led驱动电源、电源电路及供电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312750B2 (en) * 2014-01-22 2016-04-12 The University Of Hong Kong Electronic apparatus and control method for high frequency AC to DC conversion
US10707747B2 (en) * 2015-07-21 2020-07-07 Christopher Donovan Davidson Single stage isolated AC/DC power factor corrected converter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127230A1 (zh) * 2012-02-27 2013-09-06 无锡联动太阳能科技有限公司 一种无桥逆变电路与太阳能无桥逆变器
WO2015106643A1 (zh) * 2014-01-16 2015-07-23 深圳市金宏威技术股份有限公司 无桥降压apfc电路
WO2018122116A1 (de) * 2016-12-28 2018-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stromrichterschaltung und verfahren zur steuerung derselben
JP2020162261A (ja) * 2019-03-26 2020-10-01 ローム株式会社 電力変換装置
CN111416532A (zh) * 2020-04-27 2020-07-14 亚瑞源科技(深圳)有限公司 一种无桥升降压式交流对直流转换器
CN112737308A (zh) * 2021-01-13 2021-04-30 茂硕电源科技股份有限公司 宽电压混合式pfc变换器及开关电源
WO2022257534A1 (zh) * 2021-06-10 2022-12-15 华润微电子(重庆)有限公司 Led驱动电源、电源电路及供电方法
CN113224942A (zh) * 2021-06-16 2021-08-06 广东工业大学 一种非隔离式Buck-Boost无桥PFC变换器系统
CN113489309A (zh) * 2021-07-15 2021-10-08 西南交通大学 宽输出电压的无桥降压式功率因数校正变换器及控制方法
CN113489308A (zh) * 2021-07-15 2021-10-08 西南交通大学 无输入电流死区的降压功率因数校正变换器及控制方法
CN113765359A (zh) * 2021-09-01 2021-12-07 西南交通大学 一种多单元并联整合降压无桥pfc变换器

Also Published As

Publication number Publication date
CN116365900A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
Cheng et al. A novel single-stage high-power-factor AC/DC converter featuring high circuit efficiency
Wu et al. A single-stage fast regulator with PFC based on an asymmetrical half-bridge topology
CN102497711B (zh) Led驱动电路及包含该驱动电路的开关电源
Liu et al. Buck-type single-switch integrated PFC converter with low total harmonic distortion
CN113489309B (zh) 宽输出电压的无桥降压式功率因数校正变换器及控制方法
CN204928734U (zh) 一种采用大升压比Boost直流变换器的光伏发电装置
CN110518818B (zh) 定频控制的crm降压-反激pfc变换器
CN113489308B (zh) 无输入电流死区的降压功率因数校正变换器及控制方法
CN110289755B (zh) 高功率因数DCM Buck-Flyback PFC变换器
CN110932576B (zh) 定开关周期利用率的dcm降压-升降压pfc变换器
CN111865115B (zh) 最优频率控制的双定频crm降压-升降压pfc变换器
CN115811241A (zh) 单级无桥交错并联Boost-LLC AC-DC变换器混合控制方法
CN116365900B (zh) 交流输入非对称式无桥降压型pfc变换器
CN103269160B (zh) 一种三态直/直变换器及其控制方法
CN113726147B (zh) 一种输入并联输出串联无桥降压pfc变换器
CN108023479A (zh) 一种电力变换器电路
CN113765359A (zh) 一种多单元并联整合降压无桥pfc变换器
CN116191862B (zh) 基于降压与反激变换单元的无桥降压型pfc变换器
CN207743866U (zh) 一种电力变换器
CN117411306B (zh) 三开关管升降压变换单元并联输出无桥升降压pfc变换器
CN116961400A (zh) 无输入二极管的高效无桥降压型pfc变换器
CN219247707U (zh) 一种连续模式控制整合式pfc变换器装置
CN219779988U (zh) 一种新型Buck功率因数校正变换器
CN116722734A (zh) 基于降压与升降压变换单元的无桥降压型pfc变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant