WO2022257534A1 - Led驱动电源、电源电路及供电方法 - Google Patents

Led驱动电源、电源电路及供电方法 Download PDF

Info

Publication number
WO2022257534A1
WO2022257534A1 PCT/CN2022/081954 CN2022081954W WO2022257534A1 WO 2022257534 A1 WO2022257534 A1 WO 2022257534A1 CN 2022081954 W CN2022081954 W CN 2022081954W WO 2022257534 A1 WO2022257534 A1 WO 2022257534A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
power supply
switch
main switch
capacitor
Prior art date
Application number
PCT/CN2022/081954
Other languages
English (en)
French (fr)
Inventor
刘晁瑞
夏玉龙
何强志
张云
Original Assignee
华润微电子(重庆)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华润微电子(重庆)有限公司 filed Critical 华润微电子(重庆)有限公司
Priority to EP22819139.1A priority Critical patent/EP4270751A1/en
Publication of WO2022257534A1 publication Critical patent/WO2022257534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of power electronics design, in particular to an LED driving power supply, a power supply circuit and a power supply method.
  • the traditional bridge type uncontrollable rectification filter circuit is connected to the power electronic equipment of the power grid, there is a large phase difference between the input current and the input voltage, the harmonic content is high, and the power factor is low, which will cause harmonic pollution to the power grid. It will cause the power grid to resonate and interfere with the normal operation of electrical equipment. In fact, a large number of current harmonics generated by power electronic equipment have become one of the most important harmonic sources of the power grid. In order to reduce the harmonic component of the input current of the switching converter, power factor correction (Power Factor Correction, PFC) technology must be used to make it meet the harmonic standards such as IEC61000-3-2, thereby reducing the pollution to the power grid. However, it still has the following problems.
  • PFC Power Factor Correction
  • the output ripple of the single-stage PFC converter is large, which will affect the output characteristics of the system;
  • the slow dynamic response of the load will cause the output DC bus voltage to fluctuate greatly for a long time. Fluctuation will not only degrade the system control performance, but also cause the oscillation of the undervoltage protection function.
  • the object of the present invention is to provide a LED drive power supply, a power supply circuit and a power supply method, which are used to solve the problems of slow dynamic response speed and large output current ripple of the PFC converter in the prior art. .
  • the present invention provides a power supply circuit, the power supply circuit at least includes:
  • a rectifier module a first diode, a second diode, a first inductor, a first capacitor, a freewheeling module, a main switch, a third diode, a second inductor, and a second capacitor;
  • the rectification module receives an AC voltage, and rectifies the AC voltage to obtain a DC input voltage
  • the cathode of the first diode is connected to the non-phase output terminal of the rectifier module, and the anode is connected to the cathode of the second diode; the anode of the second diode is connected to the inverting output of the rectifier module end;
  • the first end of the first inductor is connected to the cathode of the first diode, and the second end is connected to the first end of the main switch;
  • the input end of the freewheeling module is connected to the second end of the first inductor, and the output end is connected to the first end of the first inductor;
  • the lower plate of the first capacitor is connected to the anode of the first diode, and the upper plate is connected to the second end of the first inductor;
  • the first end of the second inductor is connected to the second end of the main switch, and the second end is connected to the inverting output end of the rectifier module through the second capacitor;
  • the cathode of the third diode is connected to the first end of the second inductor, and the anode is connected to the inverting output end of the rectification module.
  • the freewheeling module includes a freewheeling switch and a fourth diode, and the freewheeling switch is connected in series with the fourth diode.
  • the power supply circuit further includes a main switch control module, the main switch control module includes an operational amplifier and a first comparator; the operational amplifier converts the difference between the output current of the power supply circuit and the first reference current Amplifying the output, the first comparator compares the output signal of the operational amplifier with the carrier signal, and generates a main switch control signal;
  • the inverting input terminal of the operational amplifier receives the output current of the power supply circuit, the non-inverting input terminal receives the first reference current, the non-inverting input terminal of the first comparator is connected to the output terminal of the operational amplifier, The inverting input terminal receives the carrier signal; or, the non-inverting input terminal of the operational amplifier receives the output current of the power supply circuit, the inverting input terminal receives the first reference current, and the inverting input terminal of the first comparator is connected to The output end of the operational amplifier and the non-inverting input end receive the carrier signal.
  • the power circuit further includes a freewheeling switch control module, the freewheeling switch control module includes a second comparator and an RS flip-flop; the inverting input terminal of the second comparator receives the first The current of the inductor, the positive phase input terminal receives the second reference current, compares the current of the first inductor with the second reference current and outputs the comparison result; the setting terminal of the RS flip-flop is connected to the second reference current The output terminal and the reset terminal of the second comparator are connected to the control signal of the main switch, and output the control signal of the freewheeling switch.
  • the freewheeling switch control module includes a second comparator and an RS flip-flop
  • the inverting input terminal of the second comparator receives the first The current of the inductor
  • the positive phase input terminal receives the second reference current, compares the current of the first inductor with the second reference current and outputs the comparison result
  • the setting terminal of the RS flip-flop is connected to the second reference current
  • the second reference current is a sine wave with the same phase as the AC voltage.
  • the present invention also provides an LED driving power supply, the LED driving power supply at least includes:
  • the LED load and the above power supply circuit, the LED load is connected in parallel to both ends of the second capacitor.
  • the present invention also provides a power supply method for the above power circuit, the power supply method for the power circuit at least includes:
  • the main switch When the input voltage is greater than the voltage on the first capacitor, the main switch is turned on, and the freewheel switch is turned off.
  • the input voltage and the first capacitor are equal to the second inductor and the supply power to the load; or turn off the main switch and the freewheeling switch, the first inductance charges the first capacitor, and the second inductance supplies power to the load; or turn off the main switch, leading Through the freewheeling switch, the first inductor enters a freewheeling state, and the second inductor supplies power to the load.
  • the present invention also provides a power supply method for the above power circuit, the power supply method for the power circuit at least includes:
  • the main switch When the input voltage is greater than the voltage on the first capacitor, the main switch is turned on, and the freewheel switch is turned off.
  • the input voltage and the first capacitor are equal to the second inductor and the supply power to the load; or turn off the main switch and the freewheeling switch, the first inductance charges the first capacitor, and the second inductance supplies power to the load; or turn off the main switch, leading Turn on the freewheel switch, the first inductor enters the freewheel state, the current on the second inductor drops, and the second inductor supplies power to the load; or turn off the main switch and turn on the freewheel switch, the first inductor enters a freewheeling state, the current on the second inductor is zero, and the second capacitor supplies power to the load.
  • the main switch when the value of the first reference current minus the output current is greater than the value of the carrier signal, the main switch is turned on; when the value of the first reference current minus the output current is smaller than the value of the carrier signal Turn off the main switch.
  • the carrier signal is a sawtooth wave.
  • the freewheel switch is turned on.
  • the second reference current is a sine wave with the same phase as the AC voltage.
  • the LED drive power supply, power supply circuit and power supply method of the present invention have the following beneficial effects:
  • the converter has two switches: the main switch and the freewheeling switch, that is, there are two control degrees of freedom, and it is easier to optimize the design of control parameters.
  • the LED drive power supply, power supply circuit and power supply method of the present invention have faster load dynamic response speed and smaller output current ripple.
  • FIG. 1 is a schematic structural diagram of a power supply circuit of the present invention.
  • Fig. 2 is a schematic structural diagram of the main switch control module of the present invention.
  • Fig. 3 is a schematic structural diagram of the freewheeling switch control module of the present invention.
  • FIG. 4 is a schematic structural diagram of the LED driving power supply of the present invention.
  • 5-9 are schematic diagrams showing working modes of the power supply method of the power circuit of the present invention.
  • FIG. 10 is a schematic diagram of the waveforms of each main node in the power supply method of the present invention.
  • 11-12 are schematic diagrams showing working modes of the power supply method of the power circuit of the present invention.
  • FIG. 13 is a schematic diagram of the waveforms of each main node in the power supply method of the present invention.
  • FIGS 14-19 show schematic diagrams of AC voltage, input current and output current waveforms of six PFC converters.
  • Figure 20- Figure 25 shows the load dynamic performance diagrams of CCM-DCM, DCM-DCM and PCCM-DCM power circuits.
  • this embodiment provides a power supply circuit 1, the power supply circuit 1 includes:
  • the rectifier module 11 the first diode D1, the second diode D2, the first inductor L1, the first capacitor C1, the freewheeling module 12, the main switch S, the third diode D3, the second inductor L2 and the second Second capacitor C2.
  • the rectification module 11 receives an AC voltage V ac and rectifies the AC voltage V ac to obtain a DC input voltage V in .
  • the rectification module 11 is a bridge-type uncontrollable rectification filter circuit, including two sets of diode groups connected in parallel, each diode group includes two diodes connected in series, and the AC voltage V ac is connected to each Between two diodes of the diode group, the rectification module 11 provides a DC input voltage V in , and the input voltage V in is an absolute value of a sinusoidal voltage signal.
  • any structure capable of rectifying an AC voltage into a DC voltage is applicable to the present invention, and is not limited to this embodiment.
  • the cathode of the first diode D1 is connected to the positive-phase output terminal of the rectification module 11, and the anode is connected to the cathode of the second diode D2; The anode is connected to the inverting output terminal of the rectification module 11 .
  • first diode D1 and the second diode D2 are connected in series in phase and parallel to the output end of the rectification module 11 to provide a current path.
  • the first end of the first inductor L1 is connected to the cathode of the first diode D1 , and the second end is connected to the first end of the main switch S.
  • the input end of the freewheeling module 12 is connected to the second end of the first inductor L1 , and the output end is connected to the first end of the first inductor L1 .
  • the freewheeling module 12 includes a freewheeling switch SF and a fourth diode D4, and the freewheeling switch SF is connected in series with the fourth diode D4.
  • the freewheeling switch SF is an NMOS transistor
  • the drain of the freewheeling switch SF is connected to the second end of the first inductor
  • the source is connected to the anode of the fourth diode D4
  • the gate receives Freewheeling switch control signal VSF
  • the cathode of the fourth diode D4 is connected to the first end of the first inductor L1
  • the positional relationship between the freewheeling switch SF and the fourth diode D4 is interchangeable , the two can be connected in series.
  • any optional freewheeling module is applicable to the present invention, and is not limited to this embodiment.
  • the lower plate of the first capacitor C1 is connected to the anode of the first diode D1, and the upper plate is connected to the second end of the first inductor L1.
  • the first end of the second inductor L2 is connected to the second end of the main switch S, and the second end is connected to the inverting output end of the rectification module 11 via the second capacitor C2 .
  • the main switch S is an NMOS transistor, the drain of the main switch S is connected to the second end of the first inductor L1, and the source is connected to the second end of the second inductor L2.
  • the gate is connected to the main switch control signal V S ; in actual use, the connection port can be adaptively adjusted according to the specific device type, and details will not be repeated here.
  • the two ends of the second capacitor C2 are the output voltage V o of the power supply circuit 1 .
  • the cathode of the third diode D3 is connected to the first end of the second inductor L2 , and the anode is connected to the inverting output end of the rectification module 11 .
  • the power supply circuit 1 further includes a main switch control module 13.
  • the main switch control module 13 includes an operational amplifier 131 and a first comparator device 132.
  • the inverting input terminal of the operational amplifier 131 receives the output current i o of the power supply circuit 1
  • the non-inverting input terminal receives the first reference current I ref
  • the output current i o of the power supply circuit 1 is converted to The difference amplification output with the first reference current Iref
  • the non-inverting input terminal of the first comparator 132 is connected to the output terminal of the operational amplifier 131, and the inverting input terminal is connected to the carrier signal
  • the operational amplifier The output signal of 131 is compared with the carrier signal and generates the main switch control signal V S .
  • the carrier signal is a sawtooth wave; in actual use, the waveform of the carrier can be set as required.
  • the relationship between the polarity of the input terminal of the operational amplifier 131 and the corresponding input signal can be interchanged, and the relationship between the polarity of the input terminal of the first comparator 132 and the corresponding input signal also needs to be interchanged (ie The non-inverting input terminal of the operational amplifier receives the output current of the power supply circuit, and the inverting input terminal receives the first reference current; the inverting input terminal of the first comparator is connected to the output terminal of the operational amplifier, The positive-phase input terminal receives the carrier signal), which can also realize the control of the main switch S of the present invention.
  • any circuit structure that can realize the following logic is applicable to the present invention, and is not limited to the devices and connection relationships listed in this embodiment: subtract the value of the output current i o from the first reference current I ref ( When I ref -i o ) is greater than the value of the carrier signal, the main switch S is turned on, and the value (I ref -i o ) of the first reference current I ref minus the output current i o is smaller than the carrier signal The value of the main switch S is turned off.
  • the power supply circuit 1 further includes a freewheeling switch control module 14.
  • the freewheeling switch control module 14 includes a second comparator 141 and RS flip-flop 142 .
  • the inverting input terminal of the second comparator 141 receives the current i L1 of the first inductor L1, and the non-inverting input terminal receives the second reference current i ref , and compares the current i L1 of the first inductor L1 with the The second reference current i ref is compared and a comparison result is output; as an example, the second reference current i ref is a sine wave current with the same phase as the AC voltage V ac .
  • the set end of the RS flip-flop 142 is connected to the output end of the second comparator 141 , the reset end is connected to the main switch control signal V S , and outputs the freewheel switch control signal V SF .
  • any circuit structure that can realize the following logic is applicable to the present invention, and is not limited to the devices and connection relationships listed in this embodiment: when the current i L1 of the first inductor L1 is less than the second reference current i ref , and when the main switch S is in the off state, the freewheel switch SF is turned on.
  • control logic of the main switch S and the freewheeling switch SF is not limited to the solutions listed in this embodiment, and any control logic of the main switch S and the freewheeling switch SF can be controlled based on the power supply circuit of the present invention as required.
  • the current switch SF is suitable for implementing power supply, and is not limited to this embodiment.
  • the present invention is based on the secondary Buck PFC converter of the three-state working mode, improves the load dynamic response speed, and reduces the output current ripple; in addition, according to the charge balance of the first capacitor C1, it can be obtained:
  • I L1 and I L2 are the average value of the inductor current i L1 and i L2 in each cycle respectively, d is the conduction duty cycle of the main switch, and T S is the switching cycle of the power circuit. It can be known from Formula 2 that I L1 ⁇ I L2 . Therefore, adding a freewheeling circuit to the first inductor L1 can reduce the loss during the freewheeling process, so that the power supply circuit can obtain higher efficiency.
  • this embodiment provides an LED driving power supply, which includes: an LED load and a power supply circuit 1 .
  • the power supply circuit 1 adopts the power supply circuit structure of the first embodiment, and the specific structure will not be repeated here.
  • the LED load is connected in parallel to both ends of the second capacitor C2, and the power supply circuit 1 supplies power to the LED load.
  • the load dynamic response speed of the power supply circuit 1 is fast, the output current ripple is small, and the LED load can be realized without flickering.
  • the present embodiment provides a kind of power supply method of power circuit, realizes based on the power circuit 1 of embodiment 1, wherein, described first inductance L1 works in PCCM mode (Psuedo Continuous Conduction Mode, pseudo continuous conduction mode), the second inductor L2 works in CCM mode (Continuous Conduction Mode, continuous conduction mode), the power supply method of the power supply circuit includes:
  • the main switch When the input voltage is greater than the voltage on the first capacitor, the main switch is turned on, and the freewheel switch is turned off.
  • the input voltage and the first capacitor are equal to the second inductor and the supply power to the load; or turn off the main switch and the freewheeling switch, the first inductance charges the first capacitor, and the second inductance supplies power to the load; or turn off the main switch, leading Through the freewheeling switch, the first inductor enters a freewheeling state, and the second inductor supplies power to the load.
  • stage A the working mode of the power supply circuit is divided into two stages: stage A and stage B.
  • Phase A includes two working modes: Mode I and Mode II.
  • Mode I As shown in FIG. 5, when the main switch S is turned on, no current flows through the first inductor L1, and the first diode D1 is turned off; the first capacitor C1 gives the The second inductor L2 supplies power to the load, the second diode D2 is turned on, the third diode D3 is turned off, and the current i L2 of the second inductor L2 rises linearly.
  • Mode II As shown in FIG. 6, when the main switch S is turned off, the third diode D3 is turned on to provide a discharge circuit for the second inductance L2, and the second inductance L2 supplies the load power supply, the current i L2 of the second inductor L2 decreases linearly.
  • phase B which includes three working modes: mode III, mode IV and mode V.
  • mode III the AC voltage V ac remains constant
  • Mode III as shown in FIG. 7, when the main switch S is turned on and the freewheeling switch SF is turned off, the input voltage V in and the first capacitor C1 supply power to the inductor and the load, and the The currents i L1 and i L2 on the first inductor L1 and the second inductor L2 rise linearly, the second diode D2 is turned on, and the first diode D1 and the third diode D3 Shut down due to reverse voltage.
  • Mode IV as shown in FIG. 8, when both the main switch S and the freewheeling switch SF are turned off, the second diode D2 is turned off, and the first diode D1 is turned on, A discharge circuit is provided for the first inductor L1, the first inductor L1 charges the first capacitor C1, and the current i L1 on the first inductor L1 decreases linearly; the third diode D3 conducts Through, a discharge circuit is provided for the second inductance L2, the second inductance L2 supplies power to the load, and the current i L2 on the second inductance L2 decreases linearly.
  • Mode V as shown in FIG. 9, when the main switch S is turned off and the freewheel switch SF is turned on, the fourth diode D4 is turned on, and the first inductor L1 enters a freewheel state , the current i L1 on the first inductor L1 remains unchanged; the third diode D3 is turned on to provide a discharge circuit for the second inductor L2, the second inductor L2 supplies power to the load, and the The current i L2 on the second inductor decreases linearly.
  • the control logic of the main switch S and the freewheeling switch SF is as follows: when the value of the first reference current I ref minus the output current i o is greater than the value of the carrier signal Turning on the main switch S, and turning off the main switch S when the value of the first reference current I ref minus the output current i o is less than the value of the carrier signal.
  • the carrier signal is a sawtooth wave.
  • the freewheeling switch SF is turned on.
  • the second reference current i ref is a sine wave with the same phase as the AC voltage V ac .
  • this embodiment adopts a sinusoidal current reference control strategy, using a voltage signal to control the conduction of the main switch S, and an inductor current feedback signal to control the conduction of the freewheel switch SF.
  • the output current signal i o is compared with the reference current I ref , and the error signal obtained after being amplified by the operational amplifier is used as the positive phase input of the first comparator, and is compared with the negative phase input carrier Comparison, so as to obtain the drive control signal V S for controlling the main switch S;
  • the reference value i ref of the inductor current i L1 is a sine wave with the same phase as the AC voltage V ac , compared with the inductor current, and triggered by the second comparator as RS
  • the input of the terminal S of the switch, the control signal of the main switch S is used as the input of the R terminal of the RS flip-flop, and the Q terminal outputs the driving control signal V SF of the freewheeling open SF, so as to
  • FIG. 10 is a waveform diagram of each main node in the power supply method of this embodiment. It can be seen that the first inductor L1 works in the PCCM mode, and the second inductor L2 works in the CCM mode.
  • this embodiment provides a power supply method for a power circuit, which is implemented based on the power circuit 1 of Embodiment 1, wherein the first inductor L1 works in PCCM mode, and the first The second inductor L2 works in DCM mode (Discontinuous Conduction Mode, discontinuous conduction mode), and the power supply method of the power circuit includes:
  • the main switch When the input voltage is greater than the voltage on the first capacitor, the main switch is turned on, and the freewheel switch is turned off.
  • the input voltage and the first capacitor are equal to the second inductor and the supply power to the load; or turn off the main switch and the freewheeling switch, the first inductance charges the first capacitor, and the second inductance supplies power to the load; or turn off the main switch, leading Turn on the freewheel switch, the first inductor enters the freewheel state, the current on the second inductor drops, and the second inductor supplies power to the load; or turn off the main switch and turn on the freewheel switch, the first inductor enters a freewheeling state, the current on the second inductor is zero, and the second capacitor supplies power to the load.
  • stage A the working mode of the power supply circuit is divided into two stages: stage A and stage B.
  • the power supply circuit works in stage A, and includes three working modes at this time: mode I, mode II and mode VI; wherein, mode Mode I and Mode II are the same as Mode I and Mode II in Embodiment 3, and will not be repeated here.
  • Mode VI as shown in FIG. 11, when both the main switch S and the freewheeling switch SF are turned off, the current i L2 of the second inductor L2 drops to zero, and the third diode D3 When it is off, the second capacitor C2 supplies power to the load.
  • the power supply circuit works in stage B, and includes four working modes at this time: mode III, mode IV, mode V and Mode VII; wherein, Mode III, Mode IV, and Mode V are the same as Mode III, Mode IV, and Mode V in Embodiment 3, and will not be repeated here.
  • Mode VII As shown in Figure 12, when the main switch S is turned off and the freewheeling switch SF is turned on, the first inductor L1 enters the freewheeling state, and the current i L1 of the first inductor L1 Keeping constant, i L2 drops to zero and capacitor C2 powers the load.
  • FIG. 13 is a waveform diagram of each main node in the power supply method of this embodiment. It can be seen that the first inductor L1 works in the PCCM mode, and the second inductor L2 works in the DCM mode.
  • the present invention builds six types of CCM/DCM-CCM/DCM secondary Buck PFC converters and PCCM-CCM/DCM secondary Buck PFC converters of the present invention based on PSIM simulation software
  • the simulation model of the PFC converter obtains its AC voltage V ac , input current i in and output current i o waveform diagrams; among them, Fig. 14 is the waveform diagram corresponding to the CCM-CCM working mode, and Fig.
  • Figure 15 is the corresponding CCM-DCM working mode
  • Figure 16 is a waveform diagram corresponding to the DCM-CCM working mode
  • Figure 17 is a corresponding waveform diagram in the DCM-DCM working mode
  • Figure 18 is a corresponding waveform diagram in the PCCM-CCM working mode of the present invention
  • Figure 19 is the present invention
  • the waveform diagram corresponding to the PCCM-DCM working mode of the invention; as can be seen from the above figure, the invention has smaller output ripple.
  • Figure 20- Figure 25 three power circuits of CCM-DCM, DCM-DCM and PCCM-DCM are selected to verify and analyze their load dynamic performance; among them, Figure 20 shows that the load power in CCM-DCM working mode is from 20W Response time when jumping to 10W, Figure 21 shows the response time when the load power jumps from 10W to 20W in CCM-DCM working mode, and Figure 22 shows the response time when the load power jumps from 20W in DCM-DCM working mode Response time when reaching 10W, Figure 23 shows the response time when the load power jumps from 10W to 20W under the DCM-DCM working mode, and Figure 22 shows that the load power jumps from 20W under the PCCM-DCM working mode of the present invention
  • the response time when changing to 10W Figure 23 shows the response time when the load power jumps from 10W to 20W under the PCCM-DCM working mode of the present invention; it can be seen from the above figure that the present invention has a faster load dynamic response speed .
  • the present invention provides a power supply circuit, including: a rectifier module, a first diode, a second diode, a first inductor, a first capacitor, a freewheeling module, a main switch, and a third diode , a second inductor and a second capacitor;
  • the rectifier module receives an AC voltage, and rectifies the AC voltage to obtain a DC input voltage;
  • the cathode of the first diode is connected to the positive-phase output terminal of the rectifier module,
  • the anode is connected to the cathode of the second diode;
  • the anode of the second diode is connected to the inverting output terminal of the rectifier module;
  • the first end of the first inductor is connected to the first diode
  • the input end of the freewheeling module is connected to the second end of the first inductance, and the output end is connected to the first
  • the converter has two switches: the main switch and the freewheeling switch, that is, there are two control degrees of freedom, which is easier to optimize the design of control parameters; it has faster load dynamics Response speed and smaller output current ripple. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rectifiers (AREA)

Abstract

本发明提供一种LED驱动电源、电源电路及供电方法,包括:整流模块,整流交流电压得到输入电压;第一二极管及第二二极管同向串联后并联于整流模块输出端;第一电感的第一端连接第一二极管的阴极,第二端连接主开关的第一端;续流模块并联于第一电感两端;第一电容的下极板连接第一二极管的阳极,上极板连接第一电感的第二端;第二电感的第一端连接主开关的第二端,第二端经由第二电容连接整流模块的反相输出端;第三二极管的阴极连接第二电感的第一端,阳极连接整流模块的反相输出端。本发明有两个开关,即存在两个控制自由度,更易于优化控制参数设计;且具有更快的负载动态响应速度和更小的输出电流纹波。

Description

LED驱动电源、电源电路及供电方法
相关申请的交叉引用
本申请要求于2021年6月10日提交中国专利局、申请号为202110645429.6、发明名称为“LED驱动电源、电源电路及供电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子设计领域,特别是涉及一种LED驱动电源、电源电路及供电方法。
背景技术
传统桥式不可控整流滤波电路接入电网的电力电子设备,其输入电流与输入电压之间存在较大的相位差,谐波含量较高,功率因数较低,会对电网产生谐波污染,导致电网产生谐振,干扰用电设备正常工作。事实上,电力电子设备产生的大量电流谐波已经成为电网最主要的谐波源之一。为了减小开关变换器输入电流的谐波分量,必须使用功率因数校正(Power Factor Correction,PFC)技术来使其达到IEC61000-3-2等谐波标准,从而降低对电网的污染。但是,其依然存在以下问题。
首先,单级PFC变换器的输出纹波较大,这会影响系统的输出特性;其次,在负载频繁且快速变化的应用场合,较慢的负载动态响应将导致输出直流母线电压长时间大幅度波动,不仅会使系统控制性能下降,同时会引起欠压保护功能的振荡。
因此,如何得到一种具有快速动态响应和低输出电流纹波的电源电路,已成为本领域技术人员亟待解决的问题之一。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种LED驱动电源、电源电路及供电方法,用于解决现有技术中PFC变换器动态响应速度慢、输出电流纹波大等问题。
为实现上述目的及其他相关目的,本发明提供一种电源电路,所述电源电路至少包括:
整流模块,第一二极管、第二二极管、第一电感、第一电容、续流模块、主开关、第三二极管、第二电感及第二电容;
所述整流模块接收交流电压,并基于所述交流电压整流得到直流的输入电压;
所述第一二极管的阴极连接所述整流模块的正相输出端,阳极连接所述第二二极管的阴极;所述第二二极管的阳极连接所述整流模块的反相输出端;
所述第一电感的第一端连接所述第一二极管的阴极,第二端连接所述主开关的第一端;
所述续流模块的输入端连接所述第一电感的第二端,输出端连接所述第一电感的第一端;
所述第一电容的下极板连接所述第一二极管的阳极,上极板连接所述第一电感的第二端;
所述第二电感的第一端连接所述主开关的第二端,第二端经由所述第二电容连接所述整流模块的反相输出端;
所述第三二极管的阴极连接所述第二电感的第一端,阳极连接所述整流模块的反相输出端。
可选地,所述续流模块包括续流开关及第四二极管,所述续流开关与所述第四二极管串联。
可选地,所述电源电路还包括主开关控制模块,所述主开关控制模块包括运算放大器及第一比较器;所述运算放大器将所述电源电路的输出电流与第一参考电流的差值放大输出,所述第一比较器将所述运算放大器的输出信号与载波信号进行比较,并产生主开关控制信号;
其中,所述运算放大器的反相输入端接收所述电源电路的输出电流,正相输入端接收第一参考电流,所述第一比较器的正相输入端连接所述运算放大器的输出端,反相输入端接收载波信号;或者,所述运算放大器的正相输入端接收所述电源电路的输出电流,反相输入端接收第一参考电流,所述第一比较器的反相输入端连接所述运算放大器的输出端,正相输入端接收载波信号。
更可选地,所述电源电路还包括续流开关控制模块,所述续流开关控制模块包括第二比较器及RS触发器;所述第二比较器的反相输入端接收所述第一电感的电流,正相输入端接收第二参考电流,将所述第一电感的电流与所述第二参考电流进行比较并输出比较结果;所述RS触发器的置位端连接于所述第二比较器的输出端,复位端连接所述主开关的控制信号,输出续流开关控制信号。
更可选地,所述第二参考电流为与所述交流电压同相位的正弦波。
为实现上述目的及其他相关目的,本发明还提供一种LED驱动电源,所述LED驱动电源至少包括:
LED负载及上述电源电路,所述LED负载并联于第二电容的两端。
为实现上述目的及其他相关目的,本发明还提供一种上述电源电路的供电方法,所述电源电路的供电方法至少包括:
当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感为负载供电;
当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感为负载供电。
为实现上述目的及其他相关目的,本发明还提供一种上述电源电路的供电方法,所述电源电路的供电方法至少包括:
当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流为零,第二电容为负载供电;
当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感上的电流为零,所述第二电容为负载供电。
更可选地,当第一参考电流减去输出电流的值大于载波信号的值时导通所述主开关;当所述第一参考电流减去所述输出电流的值小于载波信号的值时关断所述主开关。
更可选地,所述载波信号为锯齿波。
更可选地,当所述第一电感的电流小于第二参考电流,且所述主开关处于关断状态时,导通所述续流开关。
更可选地,所述第二参考电流为与交流电压同相位的正弦波。
如上所述,本发明的LED驱动电源、电源电路及供电方法,具有以下有益效果:
1、本发明的LED驱动电源、电源电路及供电方法中变换器有两个开关:主开关和续流开关,即存在两个控制自由度,更易于优化控制参数设计。
2、本发明的LED驱动电源、电源电路及供电方法具有更快的负载动态响应速度和更 小的输出电流纹波。
附图说明
图1显示为本发明的电源电路的结构示意图。
图2显示为本发明的主开关控制模块的结构示意图。
图3显示为本发明的续流开关控制模块的结构示意图。
图4显示为本发明的LED驱动电源的结构示意图。
图5-图9显示为本发明的电源电路的供电方法的工作模态示意图。
图10显示为本发明的供电方法中各主要节点的波形示意图。
图11-图12显示为本发明的电源电路的供电方法的工作模态示意图。
图13显示为本发明的供电方法中各主要节点的波形示意图。
图14-图19显示为六种PFC变换器的交流电压、输入电流和输出电流波形示意图。
图20-图25显示为CCM-DCM,DCM-DCM和PCCM-DCM三种电源电路的负载动态性能示意图。
元件标号说明
1                      电源电路
11                     整流模块
12                     续流模块
13                     主开关控制模块
131                    运算放大器
132                    第一比较器
14                     续流开关控制模块
141                    第二比较器
142                    RS触发器
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用。本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1-图25。需要说明的是,本实施例中所提供的图示仅以示意的方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制。实际实施时各组件的型态、数量及比例可为一种随意的改变,且组件布局型态也可能更为复杂。
实施例一
如图1所示,本实施例提供一种电源电路1,所述电源电路1包括:
整流模块11,第一二极管D1、第二二极管D2、第一电感L1、第一电容C1、续流模块12、主开关S、第三二极管D3、第二电感L2及第二电容C2。
如图1所示,所述整流模块11接收交流电压V ac,并基于所述交流电压V ac整流得到直流的输入电压V in
具体地,在本实施例中,所述整流模块11为桥式不可控整流滤波电路,包括并联的两组二极管组,各二极管组包括串联的两个二极管,所述交流电压V ac连接于各二极管组的两个二极管之间,所述整流模块11提供直流的输入电压V in,所述输入电压V in为正弦电压信号的绝对值。在实际使用中,任意能将交流电压整流为直流电压的结构均适用于本发明,不以本实施例为限。
如图1所示,所述第一二极管D1的阴极连接所述整流模块11的正相输出端,阳极连接所述第二二极管D2的阴极;所述第二二极管D2的阳极连接所述整流模块11的反相输出端。
具体地,所述第一二极管D1与所述第二二极管D2同相串联后并联于所述整流模块11的输出端,用于提供电流通路。
如图1所示,所述第一电感L1的第一端连接所述第一二极管D1的阴极,第二端连接所述主开关S的第一端。
如图1所示,所述续流模块12的输入端连接所述第一电感L1的第二端,输出端连接所述第一电感L1的第一端。
具体地,在本实施例中,所述续流模块12包括续流开关SF及第四二极管D4,所述续流开关SF与所述第四二极管D4串联。作为示例,所述续流开关SF为NMOS管,所述续流开关SF的漏极连接所述第一电感的第二端,源极连接所述第四二极管D4的阳极,栅极接收续流开关控制信号VSF;所述第四二极管D4的阴极连接所述第一电感L1的第一端;所述续流开关SF与所述第四二极管D4的位置关系可互换,两者串联即可。在实际使用中任意可选通的续流模块均适用于本发明,不以本实施例为限。
如图1所示,所述第一电容C1的下极板连接所述第一二极管D1的阳极,上极板连接 所述第一电感L1的第二端。
如图1所示,所述第二电感L2的第一端连接所述主开关S的第二端,第二端经由所述第二电容C2连接所述整流模块11的反相输出端。
具体地,在本实施例中,所述主开关S为NMOS管,则所述主开关S的漏极连接所述第一电感L1的第二端,源极连接所述第二电感L2的第一端,栅极连接主开关控制信号V S;在实际使用中根据具体器件类型适应性调整连接端口即可,在此不一一赘述。
具体地,所述第二电容C2的两端即为所述电源电路1的输出电压V o
如图1所示,所述第三二极管D3的阴极连接所述第二电感L2的第一端,阳极连接所述整流模块11的反相输出端。
如图2所示,作为本发明的另一种实现方式,所述电源电路1还包括主开关控制模块13,在本实施例中,所述主开关控制模块13包括运算放大器131及第一比较器132。作为示例,所述运算放大器131的反相输入端接收所述电源电路1的输出电流i o,正相输入端接收所述第一参考电流I ref,将所述电源电路1的输出电流i o与所述第一参考电流I ref的差值放大输出;所述第一比较器132的正相输入端连接所述运算放大器131的输出端,反相输入端连接载波信号,将所述运算放大器131的输出信号与所述载波信号进行比较,并产生主开关控制信号V S。在本实施例中,所述载波信号为锯齿波;在实际使用中可根据需要设置所述载波的波形。需要说明的是,所述运算放大器131的输入端极性与相应输入信号的关系可互换,同时所述第一比较器132的输入端极性与相应输入信号的关系也需要互换(即所述运算放大器的正相输入端接收所述电源电路的输出电流,反相输入端接收所述第一参考电流;所述第一比较器的反相输入端连接所述运算放大器的输出端,正相输入端接收所述载波信号),同样可实现本发明的主开关S的控制。进一步地,任意能实现以下逻辑的电路结构均适用于本发明,不限于本实施例所列举的器件及连接关系:在所述第一参考电流I ref减去所述输出电流i o的值(I ref-i o)大于所述载波信号的值时导通所述主开关S,所述第一参考电流I ref减去所述输出电流i o的值(I ref-i o)小于载波信号的值时关断所述主开关S。
如图3所示,作为本发明的另一种实现方式,所述电源电路1还包括续流开关控制模块14,在本实施例中,所述续流开关控制模块14包括第二比较器141及RS触发器142。所述第二比较器141的反相输入端接收所述第一电感L1的电流i L1,正相输入端接收第二参考电流i ref,将所述第一电感L1的电流i L1与所述第二参考电流i ref进行比较并输出比较结果;作为示例,所述第二参考电流i ref为与所述交流电压V ac同相位的正弦波电流。所述RS触发器142的置位端连接于所述第二比较器141的输出端,复位端连接所述主开关控制 信号V S,输出续流开关控制信号V SF。需要说明的是,任意可实现以下逻辑的电路结构均适用于本发明,不限于本实施例所列举的器件及连接关系:当所述第一电感L1的电流i L1小于所述第二参考电流i ref,且所述主开关S处于关断状态时,导通所述续流开关SF。
需要说明的是,所述主开关S及所述续流开关SF的控制逻辑不限于本实施例所列举的方案,任意能根据需要基于本发明的电源电路控制所述主开关S及所述续流开关SF以实现供电的方式均适用,不以本实施例为限。
本发明基于三态工作模式的二次型Buck PFC变换器,提高负载动态响应速度,减小输出电流纹波;此外,根据所述第一电容C1的电荷平衡可得:
(I L2-I L1)dT S=I L1(1-d)T S    式1
解式1可得:
I L1=dI L2      式2
其中,I L1、I L2分别为电感电流i L1、i L2在每个周期内的平均值,d为主开关的导通占空比,T S为电源电路开关周期。由式2可知,I L1<I L2。因此,为所述第一电感L1增加续流回路可使其在续流过程中损耗更小,从而使电源电路获得更高的效率。
实施例二
如图4所示,本实施例提供一种LED驱动电源,所述LED驱动电源包括:LED负载及电源电路1。所述电源电路1采用实施例一的电源电路结构,具体结构在此不一一赘述。所述LED负载并联于第二电容C2的两端,所述电源电路1为所述LED负载供电。
所述电源电路1的负载动态响应速度快,输出电流纹波小,可实现LED负载的无频闪。
实施例三
如图1、图5-图10所示,本实施例提供一种电源电路的供电方法,基于实施例一的电源电路1实现,其中,所述第一电感L1工作于PCCM模式(Psuedo Continuous Conduction Mode,伪连续导通模式),所述第二电感L2工作于CCM模式(Continuous Conduction Mode,连续导通模式),所述电源电路的供电方法包括:
当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感为负载供电;
当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述 续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感为负载供电。
具体地,在半个工频周期内,所述电源电路的工作模式分为两个阶段:阶段A和阶段B。
1)阶段A
当输入电压V in小于等于第一电容上的电压V C1时,所述电源电路工作于阶段A,此时所述电源电路的输入端和输出端是断开的,续流开关SF一直处于关断状态。阶段A包括两种工作模态:模态I和模态II。
模态I:如图5所示,当所述主开关S导通时,所述第一电感L1无电流流过,所述第一二极管D1关断;所述第一电容C1给所述第二电感L2和负载供电,所述第二二极管D2导通,所述第三二极管D3关断,所述第二电感L2的电流i L2线性上升。
模态II:如图6所示,当所述主开关S关断时,所述第三二极管D3导通,为所述第二电感L2提供放电回路,所述第二电感L2给负载供电,所述第二电感L2的电流i L2线性下降。
2)阶段B
当所述输入电压V in大于所述第一电容上的电压V C1时,所述电源电路工作于阶段B,此时包括三种工作模态:模态III、模态IV和模态V。在一个开关周期内,假设交流电压V ac保持不变,则:
模态III:如图7所示,当所述主开关S导通,所述续流开关SF关断时,所述输入电压V in和所述第一电容C1给电感和负载供电,所述第一电感L1和所述第二电感L2上的电流i L1和i L2线性上升,所述第二二极管D2导通,所述第一二极管D1和所述第三二极管D3因承受反向电压而关断。
模态IV:如图8所示,当所述主开关S和所述续流开关SF都关断时,所述第二二极管D2关断,所述第一二极管D1导通,为所述第一电感L1提供放电回路,所述第一电感L1给所述第一电容C1充电,所述第一电感L1上的电流i L1线性减小;所述第三二极管D3导通,为所述第二电感L2提供放电回路,所述第二电感L2为负载供电,所述第二电感L2上的电流i L2线性减小。
模态V:如图9所示,当所述主开关S关断,所述续流开关SF导通时,所述第四二极管D4导通,所述第一电感L1进入续流状态,所述第一电感L1上的电流i L1保持不变;所述第三二极管D3导通,为所述第二电感L2提供放电回路,所述第二电感L2给负载供电,所述第二电感上的电流i L2线性减小。
在本实施例中,所述主开关S及所述续流开关SF的控制逻辑如下:当所述第一参考电流I ref减去所述输出电流i o的值大于所述载波信号的值时导通所述主开关S,当所述第一参考电流I ref减去所述输出电流i o的值小于所述载波信号的值时关断所述主开关S。作为示例,所述载波信号为锯齿波。当所述第一电感L1的电流i L1小于所述第二参考电流i ref,且所述主开关S处于关断状态时,导通所述续流开关SF。作为示例,所述第二参考电流i ref为与交流电压V ac同相位的正弦波。
具体地,作为示例,本实施例采用正弦电流参考控制策略,使用电压信号来控制主开关S的导通,电感电流反馈信号来控制续流开关SF的导通。如图2及图3所示,通过输出电流信号i o与参考电流I ref进行比较,并经过运算放大器放大后得到的误差信号作为第一比较器的正相输入,与负相输入的载波进行比较,从而得到控制主开关S的驱动控制信号V S;电感电流i L1的参考值i ref是与交流电压V ac同相位的正弦波,与电感电流进行比较,通过第二比较器作为RS触发器S端的输入,主开关S的控制信号作为RS触发器R端的输入,Q端输出续流开SF的驱动控制信号V SF,从而实现一个电压外环和一个电流内环对变换器的控制。
如图10所示为本实施例的供电方法中各主要节点的波形图,可见,所述第一电感L1工作于PCCM模式,所述第二电感L2工作于CCM模式。
实施例四
如图1、图11-图13所示,本实施例提供一种电源电路的供电方法,基于实施例一的电源电路1实现,其中,所述第一电感L1工作于PCCM模式,所述第二电感L2工作于DCM模式(Discontinuous Conduction Mode,非连续导通模式),所述电源电路的供电方法包括:
当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流为零,第二电容为负载供电;
当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续 流状态,所述第二电感上的电流为零,所述第二电容为负载供电。
具体地,在半个工频周期内,所述电源电路的工作模式分为两个阶段:阶段A和阶段B。
1)阶段A
当输入电压V in小于等于第一电容上的电压V C1时,所述电源电路工作于阶段A,此时包括三种工作模态:模态I、模态II和模态VI;其中,模态I、模态II与实施例三的模态I、模态II相同,在此不一一赘述。
模态VI:如图11所示,当所述主开关S和所述续流开关SF都关断时,所述第二电感L2的电流i L2下降为零,所述第三二极管D3关断,所述第二电容C2给负载供电。
2)阶段B
当所述输入电压V in大于所述第一电容上的电压V C1时,所述电源电路工作于阶段B,此时包括四种工作模态:模态III、模态IV、模态V和模态VII;其中,模态III、模态IV、模态V与实施例三的模态III、模态IV、模态V相同,在此不一一赘述。
模态VII:如图12所示,当所述主开关S关断,所述续流开关SF导通时,所述第一电感L1进入续流状态,所述第一电感L1的电流i L1保持不变,i L2下降为零,电容C2为负载供电。
本实施例的开关控制逻辑及方法与实施例三相同,在此不一一赘述。
如图13所示为本实施例的供电方法中各主要节点的波形图,可见,所述第一电感L1工作于PCCM模式,所述第二电感L2工作于DCM模式。
如图14-图19所示,本发明基于PSIM仿真软件搭建了CCM/DCM-CCM/DCM二次型Buck PFC变换器和本发明的PCCM-CCM/DCM二次型Buck PFC变换器的六种PFC变换器的仿真模型,得到其交流电压V ac、输入电流i in和输出电流i o波形图;其中,图14为CCM-CCM工作模式对应的波形图,图15为CCM-DCM工作模式对应的波形图,图16为DCM-CCM工作模式对应的波形图,图17为DCM-DCM工作模式对应的波形图,图18为本发明的PCCM-CCM工作模式对应的波形图,图19为本发明的PCCM-DCM工作模式对应的波形图;由上图可知,本发明具有更小的输出纹波。如图20-图25所示,选取CCM-DCM,DCM-DCM和PCCM-DCM三种电源电路来验证分析其负载动态性能;其中,图20所示为CCM-DCM工作模式下负载功率从20W跳变到10W时的响应时间,图21所示为CCM-DCM工作模式下负载功率从10W跳变到20W时的响应时间,图22所示为DCM-DCM工作模式下负载功率从20W跳变到10W时的响应时间,图23所示为 DCM-DCM工作模式下负载功率从10W跳变到20W时的响应时间,图22所示为本发明的PCCM-DCM工作模式下负载功率从20W跳变到10W时的响应时间,图23所示为本发明的PCCM-DCM工作模式下负载功率从10W跳变到20W时的响应时间;由上图可知,本发明具有更快的负载动态响应速度。
综上所述,本发明提供一种电源电路,包括:整流模块,第一二极管、第二二极管、第一电感、第一电容、续流模块、主开关、第三二极管、第二电感及第二电容;所述整流模块接收交流电压,并基于所述交流电压整流得到直流的输入电压;所述第一二极管的阴极连接所述整流模块的正相输出端,阳极连接所述第二二极管的阴极;所述第二二极管的阳极连接所述整流模块的反相输出端;所述第一电感的第一端连接所述第一二极管的阴极,第二端连接所述主开关的第一端;所述续流模块的输入端连接所述第一电感的第二端,输出端连接所述第一电感的第一端;所述第一电容的下极板连接所述第一二极管的阳极,上极板连接所述第一电感的第二端;所述第二电感的第一端连接所述主开关的第二端,第二端经由所述第二电容连接所述整流模块的反相输出端;所述第三二极管的阴极连接所述第二电感的第一端,阳极连接所述整流模块的反相输出端。本发明的LED驱动电源、电源电路及供电方法中变换器有两个开关:主开关和续流开关,即存在两个控制自由度,更易于优化控制参数设计;使其具有更快的负载动态响应速度和更小的输出电流纹波。所以,本发明有效克服了现有技术中的种种缺点而具高度的产业利用价值。
上述实施例仅例示性地说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍属于本发明的权利要求所保护的范围。

Claims (15)

  1. 一种电源电路,其特征在于,所述电源电路至少包括:
    整流模块、第一二极管、第二二极管、第一电感、第一电容、续流模块、主开关、第三二极管、第二电感及第二电容;
    所述整流模块接收交流电压,并基于所述交流电压整流得到直流的输入电压;
    所述第一二极管的阴极连接所述整流模块的正相输出端,阳极连接所述第二二极管的阴极;所述第二二极管的阳极连接所述整流模块的反相输出端;
    所述第一电感的第一端连接所述第一二极管的阴极,第二端连接所述主开关的第一端;
    所述续流模块的输入端连接所述第一电感的第二端,输出端连接所述第一电感的第一端;
    所述第一电容的下极板连接所述第一二极管的阳极,上极板连接所述第一电感的第二端;
    所述第二电感的第一端连接所述主开关的第二端,第二端经由所述第二电容连接所述整流模块的反相输出端;
    所述第三二极管的阴极连接所述第二电感的第一端,阳极连接所述整流模块的反相输出端。
  2. 根据权利要求1所述的电源电路,其特征在于:所述续流模块包括续流开关及第四二极管,所述续流开关与所述第四二极管串联。
  3. 根据权利要求1所述的电源电路,其特征在于:所述整流模块为桥式不可控整流滤波电路,包括并联的两组二极管组,各二极管组包括串联的两个二极管,所述交流电压连接于各二极管组的两个二极管之间;所述整流模块提供的直流的输入电压为正弦电压信号的绝对值。
  4. 根据权利要求1所述的电源电路,其特征在于:所述电源电路还包括主开关控制模块,所述主开关控制模块包括运算放大器及第一比较器;所述运算放大器将所述电源电路的输出电流与第一参考电流的差值放大输出,所述第一比较器将所述运算放大器的输出信号与载波信号进行比较,并产生主开关控制信号;
    其中,所述运算放大器的反相输入端接收所述电源电路的输出电流,正相输入端接收第一参考电流,所述第一比较器的正相输入端连接所述运算放大器的输出端,反相输入端接收载波信号;或者,所述运算放大器的正相输入端接收所述电源电路的输出电 流,反相输入端接收第一参考电流,所述第一比较器的反相输入端连接所述运算放大器的输出端,正相输入端接收载波信号。
  5. 根据权利要求4任意一项所述的电源电路,其特征在于:所述电源电路还包括续流开关控制模块,所述续流开关控制模块包括第二比较器及RS触发器;所述第二比较器的反相输入端接收所述第一电感的电流,正相输入端接收第二参考电流,将所述第一电感的电流与所述第二参考电流进行比较并输出比较结果;所述RS触发器的置位端连接于所述第二比较器的输出端,复位端连接所述主开关的控制信号,输出续流开关控制信号。
  6. 根据权利要求5所述的电源电路,其特征在于:所述第二参考电流为与所述交流电压同相位的正弦波。
  7. 一种LED驱动电源,其特征在于,所述LED驱动电源至少包括:
    LED负载及如权利要求1-6中任意一项所述的电源电路,所述LED负载并联于第二电容的两端。
  8. 一种如权利要求1-6中任意一项所述的电源电路的供电方法,其特征在于,所述电源电路的供电方法至少包括:
    当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感为负载供电;
    当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感为负载供电。
  9. 根据权利要求8所述的电源电路的供电方法,其特征在于:所述第一电感工作于伪连续导通(PCMM)模式,所述第二电感工作于连续导通(CCM)模式。
  10. 一种如权利要求1-6中任意一项所述的电源电路的供电方法,其特征在于,所述电源电路的供电方法至少包括:
    当输入电压小于等于第一电容上的电压时,导通主开关,关断续流开关,所述第一电容为第二电感及负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关及所述续流开关,所述第二电感上的电流为零,第二电容为负载供电;
    当所述输入电压大于所述第一电容上的电压时,导通所述主开关,关断所述续流开关,所述输入电压及所述第一电容为所述第二电感及所述负载供电;或关断所述主开关及所述续流开关,所述第一电感为所述第一电容充电,所述第二电感为所述负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感上的电流下降,所述第二电感为负载供电;或关断所述主开关,导通所述续流开关,所述第一电感进入续流状态,所述第二电感上的电流为零,所述第二电容为负载供电。
  11. 根据权利要求10所述的电源电路的供电方法,其特征在于:所述第一电感工作于伪连续导通(PCMM)模式,所述第二电感工作于非连续导通(DCM)模式。
  12. 根据权利要求8-11中任一项所述的电源电路的供电方法,其特征在于:当第一参考电流减去所述电源电路的输出电流的值大于载波信号的值时导通所述主开关;当所述第一参考电流减去所述电源电路的输出电流的值小于载波信号的值时关断所述主开关。
  13. 根据权利要求12所述的电源电路的供电方法,其特征在于:所述载波信号为锯齿波。
  14. 根据权利要求12所述的电源电路的供电方法,其特征在于:当所述第一电感的电流小于第二参考电流,且所述主开关处于关断状态时,导通所述续流开关。
  15. 根据权利要求14所述的电源电路的供电方法,其特征在于:所述第二参考电流为与交流电压同相位的正弦波。
PCT/CN2022/081954 2021-06-10 2022-03-21 Led驱动电源、电源电路及供电方法 WO2022257534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22819139.1A EP4270751A1 (en) 2021-06-10 2022-03-21 Led driving power supply, power supply circuit, and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110645429.6 2021-06-10
CN202110645429.6A CN115473424A (zh) 2021-06-10 2021-06-10 Led驱动电源、电源电路及供电方法

Publications (1)

Publication Number Publication Date
WO2022257534A1 true WO2022257534A1 (zh) 2022-12-15

Family

ID=84363509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081954 WO2022257534A1 (zh) 2021-06-10 2022-03-21 Led驱动电源、电源电路及供电方法

Country Status (3)

Country Link
EP (1) EP4270751A1 (zh)
CN (1) CN115473424A (zh)
WO (1) WO2022257534A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116365900A (zh) * 2023-03-01 2023-06-30 西南交通大学 交流输入非对称式无桥降压型pfc变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647448A (zh) * 2013-12-09 2014-03-19 杭州士兰微电子股份有限公司 集成降压-反激式高功率因数恒流电路及装置
CN104753335A (zh) * 2014-07-10 2015-07-01 西南交通大学 一种二次型Buck功率因数校正变换器
CN108768192A (zh) * 2018-06-26 2018-11-06 重庆大学 一种新型单相电流源型逆变器拓扑结构与调制方法
CN110768527A (zh) * 2019-12-03 2020-02-07 哈尔滨理工大学 一种基于二次Buck变换器的大变比降压型三相PFC电路
CN112366936A (zh) * 2021-01-12 2021-02-12 四川大学 一种低输出纹波功率因数校正变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647448A (zh) * 2013-12-09 2014-03-19 杭州士兰微电子股份有限公司 集成降压-反激式高功率因数恒流电路及装置
CN104753335A (zh) * 2014-07-10 2015-07-01 西南交通大学 一种二次型Buck功率因数校正变换器
CN108768192A (zh) * 2018-06-26 2018-11-06 重庆大学 一种新型单相电流源型逆变器拓扑结构与调制方法
CN110768527A (zh) * 2019-12-03 2020-02-07 哈尔滨理工大学 一种基于二次Buck变换器的大变比降压型三相PFC电路
CN112366936A (zh) * 2021-01-12 2021-02-12 四川大学 一种低输出纹波功率因数校正变换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU CHAORUI: "Research on Tri-state Quadratic Buck PFC Converter", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 July 2021 (2021-07-15), CN , XP093014517, ISSN: 1674-0246 *
XIAOQIAN GAO: "A study of three-phase APFC based on quadratic buck converter", INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2012 IEEE, IEEE, 21 May 2012 (2012-05-21), pages 1 - 4, XP032237667, ISBN: 978-1-4673-1221-9, DOI: 10.1109/ISGT-Asia.2012.6303364 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116365900A (zh) * 2023-03-01 2023-06-30 西南交通大学 交流输入非对称式无桥降压型pfc变换器
CN116365900B (zh) * 2023-03-01 2023-11-03 西南交通大学 交流输入非对称式无桥降压型pfc变换器

Also Published As

Publication number Publication date
EP4270751A1 (en) 2023-11-01
CN115473424A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
US9997988B2 (en) Zero-crossing detection circuit
US9960684B2 (en) Electronic converter, and related lighting system and method of operating an electronic converter
CN113224942B (zh) 一种非隔离式Buck-Boost无桥PFC变换器系统
CN102523650A (zh) 一种led电流检测和控制电路
CN113489309B (zh) 宽输出电压的无桥降压式功率因数校正变换器及控制方法
US20220255439A1 (en) Controller of switching power supply and control method thereof
WO2022257534A1 (zh) Led驱动电源、电源电路及供电方法
Lin et al. A single-stage PFC by integrating quasi-bridgeless boost and LLC converter
TWI447554B (zh) 雙模式功率因數校正電路
Feizi et al. An improved phase-shifted full-bridge converter with extended zvs operation range for ev battery charger applications
CN113765359A (zh) 一种多单元并联整合降压无桥pfc变换器
US11114931B2 (en) AC-DC power converter
CN110289755B (zh) 高功率因数DCM Buck-Flyback PFC变换器
Zeng et al. A novel DC/DC ZVS converter for battery input application
WO2015192741A1 (zh) 一种驱动开关型负载的高功率因数填谷电路及开关电源
Ding et al. A High-Performance Isolated Bridgeless Resonant SEPIC PFC Converter at Medium Line Frequencies
US11205966B2 (en) AC-DC power converter
Yadav A High PFC Integrated AC-DC Circuit With Inherent Lossless LCD Snubber
CN113726147A (zh) 一种输入并联输出串联无桥降压pfc变换器
Shyni et al. Implementation of integrated SEPIC-Flyback converter for LED drive with efficient power factor
CN113595414A (zh) 一种ac/dc反激变换器
Zhang et al. A high-power-factor integrated-stage AC-DC LED driver based on flyback-class E converter
Török et al. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters
Zhang et al. A flicker-free high power factor isolated LED driver
Yadav et al. Comprehensive study for two-stage isolated LED driver PFC topologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022819139

Country of ref document: EP

Effective date: 20230726

NENP Non-entry into the national phase

Ref country code: DE