CN108768192A - 一种新型单相电流源型逆变器拓扑结构与调制方法 - Google Patents

一种新型单相电流源型逆变器拓扑结构与调制方法 Download PDF

Info

Publication number
CN108768192A
CN108768192A CN201810666199.XA CN201810666199A CN108768192A CN 108768192 A CN108768192 A CN 108768192A CN 201810666199 A CN201810666199 A CN 201810666199A CN 108768192 A CN108768192 A CN 108768192A
Authority
CN
China
Prior art keywords
switching tube
shutdown
topological structure
current
new single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810666199.XA
Other languages
English (en)
Inventor
刘和平
苗轶如
刘庆
涂郁潇颖
黄鹏
黄远胜
董治平
杨生博
游逍遥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810666199.XA priority Critical patent/CN108768192A/zh
Publication of CN108768192A publication Critical patent/CN108768192A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种新型单相电流源型逆变器拓扑结构与调制方法。拓扑结构主要包括逆变器、电流传感器、电压传感器、低通滤波器和数字信号处理器。调制方法为:1)搭建新型单相电流源型逆变器拓扑结构。2)在每个载波周期内,对电感Ldc的电流进行实时采样,将采样值idc和指令值进行比较。3)确定每个开关管信号的驱动逻辑。4)对指令值进行优化,从而保证电感Ldc的实时电流采样值idc最优,即对电感Ldc的实时电流采样值idc进行优化控制。本发明在不增加开关次数与开关损耗的前提下,实现了直流侧电感电流的优化控制。

Description

一种新型单相电流源型逆变器拓扑结构与调制方法
技术领域
本发明涉及光伏系统领域,具体是一种新型单相电流源型逆变器拓扑结构与调制方法。
背景技术
电流源型逆变器与电压源型逆变器相比,具有输出电压波形质量高,无需加入死区,输入电流脉动小等优势,对于光伏电池逆变并网系统等单极升压场合,电流源型逆变器更为适用。然而电流源型逆变器也存在一些缺陷限制其推广与应用,比如直流侧的电压源与串联的大电感被视为恒流源对待,然而在调制过程中,逆变器的工作模式会引起直流侧电感电流变化,无法维持其稳态运行,甚至持续增加以至损坏功率器件。
因此,需要在不影响交流侧电流正常输出的前提下实现对直流侧电感电流的控制,现有技术在直流电压源与电感之间增加一级变换装置,但会增加损耗,降低电流源型逆变器的工作效率。
发明内容
本发明的目的是解决现有技术中存在的问题。
为实现本发明目的而采用的技术方案是这样的,一种新型单相电流源型逆变器拓扑结构,主要包括逆变器、电流传感器、电压传感器、低通滤波器和数字信号处理器。
所述逆变器电路结构如下所示:
记直流可调电源Udc的正极所在一端为A端,负极所在一端为B端。
A端依次串联电感Ldc和二极管VD1的阳极。二极管VD1的阴极串联开关管S1的集电极。开关管S1的基极悬空。开关管S1的发射极串联开关管S2的集电极。开关管S2的基极悬空。开关管S2的发射极串联二极管VD2的阳极。二极管VD2的阴极串联B端。
开关管S1的发射极依次串联电容C和开关管S4的集电极。开关管S4的基极悬空。开关管S4的发射极串联二极管VD4的阳极。二极管VD4的阴极串联B端。
开关管S1的发射极依次串联负载R和开关管S4的集电极。
A端串联开关管S5的发射极。开关管S5的基极悬空。开关管S5的集电极串联二极管VD5的阴极。二极管VD5的阳极串联二极管VD1的阳极。
A端依次串联电感Ldc和二极管VD3的阳极。二极管VD3的阴极串联开关管S3的集电极。开关管S3的基极悬空。开关管S3的发射极串联开关管S4的集电极。
所述电流传感器测量逆变器中电感Ldc的实时电流采样值idc
所述电压传感器测量逆变器输出电压u0
所述低通滤波器对实时电流采样值idc和输出电压u0进行滤波,并将滤波后的实时电流采样值idc和输出电压u0传递给所述数字信号处理器。
所述数字信号处理器对所述滤波后的实时电流采样值idc和输出电压u0进行模数转换和处理,从而产生开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5,并将开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5传递给逆变器,从而控制逆变器中开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断。
进一步,新型单相电流源型逆变器拓扑结构还包括示波器。
所述示波器接收滤波后的实时电流采样值idc和输出电压u0,并显示输出电压u0和实时电流idc的波形。
根据开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断情况,新型单相电流源型逆变器拓扑结构分为四个工作模式,分别是充磁模式、馈能模式I、馈能模式II和续流模式。
当新型单相电流源型逆变器拓扑结构处于充磁模式时,开关管S1导通,开关管S2导通,开关管S3关断,开关管S4关断,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于馈能模式I时,开关管S1导通,开关管S2关断,开关管S3关断,开关管S4导通,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于馈能模式II时,开关管S1关断,开关管S2导通,开关管S3导通,开关管S4关断,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于续流模式时,开关管S1关断,开关管S2关断,开关管S3关断,开关管S4关断,开关管S5导通。
一种新型单相电流源型逆变器拓扑结构的调制方法,主要包括以下步骤:
1)搭建新型单相电流源型逆变器拓扑结构。其中,开关管S5导通时,记为续流模式。确定电感Ldc的指令值
2)在每个载波周期内,利用电流传感器对电感Ldc的电流进行实时采样,并记为采样值idc。将采样值idc和指令值进行比较,根据比较结果确定当期开关周期是否采用续流模式代替给Ldc充电的充磁模式。
3)确定每个开关管信号的驱动逻辑:
式中,ps1、ps2、ps3、ps4和ps5分别为开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的开关信号。ps1、ps2、ps3、ps4和ps5的取值均为0、1。当开关信号为0时,开关管关断。当开关信号为1时,开关管导通。
p1为调制信号和载波信号的比较逻辑,当调制信号大于载波信号时,p1=1;当调制信号小于载波信号时,p1=0。
p2为逆变器输出电流的极性是否为正,当输出电流正向流入负载时,p2=1;当输出电流反向流入负载时,p2=0。
p3为采样值idc和指令值的大小关系,当时,p3=1;当时,p3=0。
4)对指令值进行优化,从而保证电感Ldc的实时电流采样值idc最优,即对电感Ldc的实时电流采样值idc进行优化控制。最优指令值如下所示:
式中,udc为直流可调电源Udc的电压。ω为基波角频率。c表示滤波电容大小。r表示负载大小。Uo为输出电压幅值。
本发明的技术效果是毋庸置疑的。本发明的改进调制策略均可以通过软件实现,无需增加额外的逻辑转换电路,降低了成本。同时在不增加开关次数与开关损耗的前提下,实现了直流侧电感电流的优化控制。
附图说明
图1为不同开关模式选取方法示意图;
图2为开关管驱动信号产生逻辑图;
图3为新型单相电流源型逆变器拓扑结构图;
图4为直流侧电感电流与输出电压的动态波形图;
图5为逆变器电路图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
参见图1至图5,一种新型单相电流源型逆变器拓扑结构,主要包括逆变器、电流传感器、电压传感器、低通滤波器和数字信号处理器。
所述逆变器电路结构如下所示:
记直流可调电源Udc的正极所在一端为A端,负极所在一端为B端。
A端依次串联电感Ldc和二极管VD1的阳极。二极管VD1的阴极串联开关管S1的集电极。开关管S1的基极悬空。开关管S1的发射极串联开关管S2的集电极。开关管S2的基极悬空。开关管S2的发射极串联二极管VD2的阳极。二极管VD2的阴极串联B端。
开关管S1的发射极依次串联电容C和开关管S4的集电极。开关管S4的基极悬空。开关管S4的发射极串联二极管VD4的阳极。二极管VD4的阴极串联B端。
开关管S1的发射极依次串联负载R和开关管S4的集电极。
A端串联开关管S5的发射极。开关管S5的基极悬空。开关管S5的集电极串联二极管VD5的阴极。二极管VD5的阳极串联二极管VD1的阳极。
A端依次串联电感Ldc和二极管VD3的阳极。二极管VD3的阴极串联开关管S3的集电极。开关管S3的基极悬空。开关管S3的发射极串联开关管S4的集电极。
所述电流传感器测量逆变器中电感Ldc的实时电流采样值idc
所述电压传感器测量逆变器输出电压u0
所述低通滤波器对实时电流采样值idc和输出电压u0进行滤波,并将滤波后的实时电流采样值idc和输出电压u0传递给所述数字信号处理器。
所述数字信号处理器对所述滤波后的实时电流采样值idc和输出电压u0进行模数转换和处理,将转换后的12位数字量换算成电流值,从而产生开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5,并将开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5传递给逆变器,从而控制逆变器中开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断。
数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
进一步,新型单相电流源型逆变器拓扑结构还包括示波器。
所述示波器接收滤波后的实时电流采样值idc和输出电压u0,并显示输出电压u0和实时电流idc的波形。
根据开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断情况,新型单相电流源型逆变器拓扑结构分为四个工作模式,分别是充磁模式、馈能模式I、馈能模式II和续流模式,如表1所示。
当新型单相电流源型逆变器拓扑结构处于充磁模式时,开关管S1导通,开关管S2导通,开关管S3关断,开关管S4关断,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于馈能模式I时,开关管S1导通,开关管S2关断,开关管S3关断,开关管S4导通,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于馈能模式II时,开关管S1关断,开关管S2导通,开关管S3导通,开关管S4关断,开关管S5关断。
当新型单相电流源型逆变器拓扑结构处于续流模式时,开关管S1关断,开关管S2关断,开关管S3关断,开关管S4关断,开关管S5导通。
表1四种开关模式下开关管通断情况
开关模式 S1 S2 S3 S4 S5
充磁模式 导通 导通 关断 关断 关断
馈能模式I 导通 关断 关断 导通 关断
馈能模式II 关断 导通 导通 关断 关断
续流模式 关断 关断 关断 关断 导通
实施例2:
一种新型单相电流源型逆变器拓扑结构的调制方法,主要包括以下步骤:
1)搭建新型单相电流源型逆变器拓扑结构。其中,开关管S5导通时,记为续流模式。确定电感Ldc的指令值
2)在每个载波周期内,利用电流传感器对电感Ldc的电流进行实时采样,并记为采样值idc。将采样值idc和指令值进行比较,根据比较结果确定当期开关周期是否采用续流模式代替给Ldc充电的充磁模式。载波选用三角载波,基波选用正弦信号,幅值与频率根据具体情况设定。
3)确定每个开关管信号的驱动逻辑:
式中,ps1、ps2、ps3、ps4和ps5分别为开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的开关信号。ps1、ps2、ps3、ps4和ps5的取值均为0、1。当开关信号为0时,对应的开关管关断。当开关信号为1时,对应的开关管导通。例如,当ps1为0时,开关管S1关断。当ps1为1时,开关管S1导通。
p1为调制信号和载波信号的比较逻辑,当调制信号大于载波信号时,p1=1;当调制信号小于载波信号时,p1=0。
p2为逆变器输出电流的极性是否为正,当输出电流正向流入负载时,p2=1;当输出电流反向流入负载时,p2=0。
p3为采样值idc和指令值的大小关系,当时,p3=1;当时,p3=0。
4)对指令值进行优化,从而保证电感Ldc的实时电流采样值idc最优,即对电感Ldc的实时电流采样值idc进行优化控制。最优指令值如下所示:
式中,udc为直流可调电源Udc的电压。ω为基波角频率。c表示滤波电容大小。r表示负载大小。Uo为输出电压幅值。
5)根据公式2,设定输出电压幅值为20V,计算得到此时直流侧电感电流的理论最优给定值为4.21A,由于实验中存在一定损耗与管压降,因此需要留有一定的裕量,在DSC中给定为4.5A,实验结果参见附图4,此时idc维持在4.5A到5A范围内,输出电压幅值为20.02V,谐波畸变率1.04%。
6)在步骤5所述工况稳定运行的情况下,改变输出电压幅值为15V,同时调整idc=2.7A,实验结果参见附图4,直流侧电感电流与输出电压均能够立即跟随给定,此时idc维持在2.7A到3.1A范围内,输出电压幅值为15.01V,谐波畸变率为0.99%。
本发明公开一种新型单相电流源型逆变器拓扑结构及其调制方法是正确可行的,能够实现对直流侧电感电流的优化控制,同时有效提高输出电压的波形质量。

Claims (4)

1.一种新型单相电流源型逆变器拓扑结构,其特征在于:主要包括逆变器、电流传感器、电压传感器和低通滤波器和数字信号处理器。
所述逆变器电路结构如下所示:
记直流可调电源Udc的正极所在一端为A端,负极所在一端为B端;
A端依次串联电感Ldc和二极管VD1的阳极;二极管VD1的阴极串联开关管S1的集电极;开关管S1的基极悬空;开关管S1的发射极串联开关管S2的集电极;开关管S2的基极悬空;开关管S2的发射极串联二极管VD2的阳极;二极管VD2的阴极串联B端;
开关管S1的发射极依次串联电容C和开关管S4的集电极;开关管S4的基极悬空;开关管S4的发射极串联二极管VD4的阳极;二极管VD4的阴极串联B端;
开关管S1的发射极依次串联负载R和开关管S4的集电极;
A端串联开关管S5的发射极;开关管S5的基极悬空;开关管S5的集电极串联二极管VD5的阴极;二极管VD5的阳极串联二极管VD1的阳极;
A端依次串联电感Ldc和二极管VD3的阳极;二极管VD3的阴极串联开关管S3的集电极;开关管S3的基极悬空;开关管S3的发射极串联开关管S4的集电极;
所述电流传感器测量逆变器中电感Ldc的实时电流采样值idc
所述电压传感器测量逆变器输出电压u0
所述低通滤波器对实时电流采样值idc和输出电压u0进行滤波,并将滤波后的实时电流采样值idc和输出电压u0传递给所述数字信号处理器;
所述数字信号处理器对所述滤波后的实时电流采样值idc和输出电压u0进行模数转换和处理,从而产生开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5,并将开关管驱动信号ps1、开关管驱动信号ps2、开关管驱动信号ps3、开关管驱动信号ps4和开关管驱动信号ps5传递给逆变器,从而控制逆变器中开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断。
2.一种新型单相电流源型逆变器拓扑结构,其特征在于:还包括示波器;
所述示波器接收滤波后的实时电流采样值idc和输出电压u0,并显示输出电压u0和实时电流idc的波形。
3.一种新型单相电流源型逆变器拓扑结构,其特征在于:根据开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的通断情况,新型单相电流源型逆变器拓扑结构分为四个工作模式,分别是充磁模式、馈能模式I、馈能模式II和续流模式;
当新型单相电流源型逆变器拓扑结构处于充磁模式时,开关管S1导通,开关管S2导通,开关管S3关断,开关管S4关断,开关管S5关断;
当新型单相电流源型逆变器拓扑结构处于馈能模式I时,开关管S1导通,开关管S2关断,开关管S3关断,开关管S4导通,开关管S5关断;
当新型单相电流源型逆变器拓扑结构处于馈能模式II时,开关管S1关断,开关管S2导通,开关管S3导通,开关管S4关断,开关管S5关断;
当新型单相电流源型逆变器拓扑结构处于续流模式时,开关管S1关断,开关管S2关断,开关管S3关断,开关管S4关断,开关管S5导通。
4.一种权利要求1至3所述新型单相电流源型逆变器拓扑结构的调制方法,其特征在于,主要包括以下步骤:
1)搭建新型单相电流源型逆变器拓扑结构;其中,开关管S5导通时,记为续流模式;确定电感Ldc的指令值
2)在每个载波周期内,利用电流传感器对电感Ldc的电流进行实时采样,并记为采样值idc;将采样值idc和指令值进行比较,根据比较结果确定当期开关周期是否采用续流模式代替给Ldc充电的充磁模式;
3)确定每个开关管信号的驱动逻辑:
式中,ps1、ps2、ps3、ps4和ps5分别为开关管S1、开关管S2、开关管S3、开关管S4和开关管S5的开关信号;ps1、ps2、ps3、ps4和ps5的取值均为0、1;当开关信号为0时,开关管关断;当开关信号为1时,开关管导通;
p1为调制信号和载波信号的比较逻辑,当调制信号大于载波信号时,p1=1;当调制信号小于载波信号时,p1=0;
p2为逆变器输出电流的极性是否为正,当输出电流正向流入负载时,p2=1;当输出电流反向流入负载时,p2=0;
p3为采样值idc和指令值的大小关系,当时,p3=1;当时,p3=0;
4)对指令值进行优化,从而保证电感Ldc的实时电流采样值idc最优,即对电感Ldc的实时电流采样值idc进行优化控制;最优指令值如下所示:
式中,udc为直流可调电源Udc的电压;ω为基波角频率;c表示滤波电容大小;r表示负载大小;Uo为输出电压幅值。
CN201810666199.XA 2018-06-26 2018-06-26 一种新型单相电流源型逆变器拓扑结构与调制方法 Pending CN108768192A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810666199.XA CN108768192A (zh) 2018-06-26 2018-06-26 一种新型单相电流源型逆变器拓扑结构与调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810666199.XA CN108768192A (zh) 2018-06-26 2018-06-26 一种新型单相电流源型逆变器拓扑结构与调制方法

Publications (1)

Publication Number Publication Date
CN108768192A true CN108768192A (zh) 2018-11-06

Family

ID=63977635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810666199.XA Pending CN108768192A (zh) 2018-06-26 2018-06-26 一种新型单相电流源型逆变器拓扑结构与调制方法

Country Status (1)

Country Link
CN (1) CN108768192A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768562A (zh) * 2019-11-06 2020-02-07 南方电网科学研究院有限责任公司 单相逆变器的拓扑结构及调制方法、装置、存储介质
WO2022257534A1 (zh) * 2021-06-10 2022-12-15 华润微电子(重庆)有限公司 Led驱动电源、电源电路及供电方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947620A (zh) * 2017-12-14 2018-04-20 合肥工业大学 三态高增益电流源型逆变器运行控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947620A (zh) * 2017-12-14 2018-04-20 合肥工业大学 三态高增益电流源型逆变器运行控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苗轶如 等: "单相电流源型逆变器储能电感电流优化调制及控制策略", 《电工技术学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768562A (zh) * 2019-11-06 2020-02-07 南方电网科学研究院有限责任公司 单相逆变器的拓扑结构及调制方法、装置、存储介质
CN110768562B (zh) * 2019-11-06 2021-08-03 南方电网科学研究院有限责任公司 单相逆变器的拓扑结构及调制方法、装置、存储介质
WO2022257534A1 (zh) * 2021-06-10 2022-12-15 华润微电子(重庆)有限公司 Led驱动电源、电源电路及供电方法

Similar Documents

Publication Publication Date Title
CN113224942B (zh) 一种非隔离式Buck-Boost无桥PFC变换器系统
CN103178739B (zh) 一种零电压转换全桥型非隔离光伏并网逆变器
CN108616224B (zh) 一种升压型单相七电平逆变器
CN112332652B (zh) 一种基于谐振开关电容变换器的无桥功率因数校正电路
CN104377982A (zh) 一种零电压开关Heric型非隔离光伏并网逆变器
CN104617794A (zh) 开关电源及整流电路
CN108768192A (zh) 一种新型单相电流源型逆变器拓扑结构与调制方法
CN106712558B (zh) 高可靠性五电平三相双输入逆变器
CN105262361A (zh) 一种两级式非隔离光伏并网逆变器及其控制方法
CN109873559A (zh) 模块化双buck-boost升降压输出反并联组合型逆变器
CN111900894B (zh) 可全功率因数运行零电压转换非隔离并网逆变器的开关控制方法
CN206226317U (zh) 磁集成三电平双降压式半桥逆变器
CN204948016U (zh) 一种采用零电压开关辅助谐振的光伏发电装置
CN104901404A (zh) 一种充电电路及输出控制方法
CN204947919U (zh) 一种新型并联谐振零电压光伏发电装置
CN110048628B (zh) 高可靠性双输入七电平静止变流器
CN105006965B (zh) 单管高增益直流升压变换电路
CN206894507U (zh) 基于原边反馈的恒流式反激式变换器
CN205355946U (zh) 一种不间断电源
CN204928612U (zh) 一种带有辅助谐振电路的光伏发电装置
CN210518137U (zh) 一种开关电容型高频功率脉冲发生电路
CN106849731A (zh) 一种升降压并网逆变器的控制方法
CN106849177A (zh) 一种升降压并网逆变器
CN114172385A (zh) 一种三桥臂拓扑电路的调制方法
CN206807284U (zh) 一种无桥pfc电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication