WO2013125723A1 - 照明方法および顕微観察装置 - Google Patents

照明方法および顕微観察装置 Download PDF

Info

Publication number
WO2013125723A1
WO2013125723A1 PCT/JP2013/054821 JP2013054821W WO2013125723A1 WO 2013125723 A1 WO2013125723 A1 WO 2013125723A1 JP 2013054821 W JP2013054821 W JP 2013054821W WO 2013125723 A1 WO2013125723 A1 WO 2013125723A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
sample surface
phase
light
plane wave
Prior art date
Application number
PCT/JP2013/054821
Other languages
English (en)
French (fr)
Inventor
高橋 哲
潔 高増
良太 工藤
深 臼杵
Original Assignee
国立大学法人東京大学
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立大学法人静岡大学 filed Critical 国立大学法人東京大学
Priority to JP2014500972A priority Critical patent/JP6183915B2/ja
Priority to US14/380,785 priority patent/US9297991B2/en
Priority to EP13751843.7A priority patent/EP2818906A4/en
Publication of WO2013125723A1 publication Critical patent/WO2013125723A1/ja
Priority to IL234127A priority patent/IL234127A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/60Systems using moiré fringes

Definitions

  • the present invention relates to an illumination method and a microscope observation apparatus, and more particularly, to an illumination method used in a microscope observation apparatus that resolves a sample surface based on an intensity distribution of light from the sample surface to be microscopically observed of the sample, and such illumination.
  • the present invention relates to a microscopic observation apparatus using the method.
  • a high-resolution detection device constituted by a microscopic observation apparatus (such as an optical microscope) using this type of illumination method and a computer
  • a light source that emits laser light and a light beam from the light source are divided and reflected 2
  • a projection optical system consisting of a lens, beam splitter, multiple reflectors, piezoelectric elements, prisms, etc., that performs standing wave illumination by interfering the light beam on the sample surface, and a lens such as an objective lens for the light beam from the sample surface
  • An observation optical system that transmits light and receives light by a light receiving unit such as a CCD, and a single reflecting mirror driven by a piezoelectric element shifts the standing wave illumination several times in nano-order and inputs the amount of light received measured by the light receiving unit.
  • a computer including a computer that performs super-resolution by analysis has been proposed (for example, see Patent Document 1).
  • n ⁇ m simultaneous equations obtained by shifting standing wave illumination m times with respect to the amount of light received by n CCDs or the like are used for super-resolution.
  • resolution exceeding the Rayleigh limit is performed by post-processing nano-order light scattering changes by a computer.
  • a microscopic observation apparatus such as an optical microscope is controlled by a physical diffraction limit, and therefore, it is difficult to observe a structure having a wavelength of about half a wavelength or less.
  • microscopic observation devices such as optical microscopes have superior characteristics that other microscopic observation devices such as electron microscopes and atomic force microscopes do not require a vacuum environment and have low invasiveness and high speed.
  • a device that performs super-resolution using structural illumination by standing waves such as the high-resolution detection device described above, is useful in that it can exceed the diffraction limit with a relatively simple configuration. Met.
  • incoherent imaging is possible even if the target of super-resolution processing uses a coherent light source.
  • it is limited to special samples such as simple fluorescent samples, and there is a problem that the super-resolution processing cannot be applied to a general sample. That is, in the super-resolution technique as described above, it is desirable to use a coherent light source such as a laser beam because it is necessary to form brighter and more sensitive structural illumination in order to obtain the highest possible resolution.
  • image reconstruction generally requires computer reconstruction, it was a technique that could be applied effectively only to incoherent imaging where the image formation is not a destructive interference but a sum of intensities. .
  • the main object of the illumination method and microscope observation apparatus of the present invention is to expand the application range of super-resolution processing using light wave information from the sample surface.
  • the illumination method and the microscopic observation apparatus of the present invention employ the following means in order to achieve the above-described main object.
  • the lighting method includes: An illumination method used in a microscopic observation apparatus for resolving a sample surface based on an intensity distribution of light from a sample surface to be microscopically observed of the sample, A two-beam standing wave obtained by irradiating a plane wave of two light waves generated from light from the light source unit so as to face each other in an oblique direction is irradiated from the light from the light source unit while irradiating the sample surface. Irradiating the sample surface with a three-beam standing wave by irradiating a bias plane wave obtained by adjusting the amplitude and phase of the plane wave of the single light wave from the normal direction to the sample surface; It is characterized by that.
  • a two-beam standing wave obtained by irradiating a plane wave of two light waves generated from light from a light source unit so as to face each other in an oblique direction is irradiated on a sample surface while being irradiated from a light source unit.
  • a sample plane is irradiated with a three-beam standing wave by irradiating the sample plane with a bias plane wave obtained by adjusting the amplitude and phase of the plane wave of one light wave generated from this light from the normal direction.
  • the bias plane wave raises the electric field displacement consisting of other light wave groups existing on the sample surface due to its amplitude to the positive side or the negative side, so the three-beam standing wave consisting of the two-beam standing wave and the bias plane wave is sampled.
  • this irradiation increases the electric field displacement of the reflected light and scattered light from the sample surface to the positive side and the negative side. This suppresses cancellation of light wave information from the sample surface, and super-resolution using light wave information from the sample surface, such as applying super-resolution processing to general samples without being limited to fluorescent samples.
  • the application range of processing can be expanded.
  • “super-resolution” means that a clear image is obtained up to the details of the object through the optical system, which can be paraphrased as high resolution, and more specifically, observation optics. It can also be said that the resolution exceeds the diffraction limit of the system.
  • the bias plane wave has a reference time that is predetermined as a time when the phase of the electric field displacement of the two-beam standing wave becomes a value of 0 at each position on the sample surface.
  • the electric field displacement is adjusted so that the electric field displacement alternately alternates between the positive side and the negative side with the same displacement regardless of the position on the sample surface, and the electric field displacement is composed of other light wave groups existing on the sample surface. Is a plane wave that is adjusted so as to be raised only to the positive side or to the negative side only.
  • the electric field distribution over the sample surface periodically appears in a standing wave shape on the sample surface, but by applying illumination with a bias plane wave on the sample surface.
  • the electric field distribution that is raised to the extent that only the positive side or only the negative side is raised can be made to appear periodically.
  • the “reference time” is defined as a time when the electric field displacement of the standing wave becomes a value 0 or approximately 0 at each position on the sample surface, or the electric field of the standing wave and the sample surface
  • the electric field displacement which is the sum of the reflected light waves (all reflected light waves) and the electric field, can be determined in advance as a time when the electric field displacement becomes 0 or substantially 0 at each position on the sample surface.
  • the bias plane wave is adjusted so that the amplitude is the same as the amplitude of the two-beam standing wave, and the phase is synchronized with the two-beam standing wave. It can also be characterized by being adjusted. In this way, the electric field distribution on the sample surface irradiated with the three-beam standing wave can be raised to such an extent that it is just on the positive side or only on the negative side.
  • the sample surface is illuminated by shifting the phase of the bias plane wave by a predetermined amount until reaching 2 ⁇ with illumination of the sample surface by the two-beam standing wave.
  • a process for obtaining a light distribution for each shift which is an intensity distribution of light reflected or scattered from the sample surface, and a Fourier transform image obtained by Fourier transforming the light distribution for each shift to the two-beam standing wave
  • a process of increasing the amplitude of the bias plane wave when not, while decreasing the amplitude of the bias plane wave when the number of images for determination is equal to or greater than a threshold value is repeated until the number of the determination images is less than the threshold, and the amplitude when the number of the determination images is less than the threshold is set as the initial amplitude of the bias plane wave and the number of the determination images It is also possible to illuminate a three-beam standing wave adjusted with the phase corresponding to the image for determination when is less than the threshold as the initial phase of the bias plane wave. In this way, the electric field distribution on the sample surface irradiated with the three-beam standing wave can be easily and automatically raised to just the positive side or the negative side.
  • a reference sample is used for adjusting the three-beam standing wave.
  • the reference sample has a periodic structure that generates moire fringes between the standing wave and a line-and-space pattern in which the line pitch is known. Then, the three-beam standing wave is incident on the reference sample, and adjustment is performed by using the generated moire fringe pattern.
  • the phase of the three-beam standing wave is sequentially shifted by sequentially shifting the phase of the two-beam standing wave and the phase of the bias plane wave in synchronization. It can also be done.
  • the phase of the three-beam standing wave is sequentially shifted by sequentially shifting the phase of one plane wave of the two-beam standing wave by a predetermined phase and sequentially shifting the phase of the bias plane wave by half of the predetermined phase. It can also be shifted.
  • the phase may be sequentially shifted.
  • phase of the three-beam standing wave can be sequentially shifted while maintaining the phase synchronization of the three-beam standing wave composed of the two-beam standing wave and the bias plane wave.
  • shifting the phase means moving the position of the node of the two-beam standing wave or the three-beam standing wave.
  • the microscopic observation apparatus of the present invention is A microscopic observation apparatus that resolves the sample surface based on the intensity distribution of light from the sample surface to be microscopically observed of the sample, A light source unit; A two-beam standing wave irradiating means for irradiating the sample surface with a two-beam standing wave obtained by irradiating a plane wave of two light waves generated from the light from the light source unit so as to face each other in an oblique direction; and A bias plane wave irradiation unit that irradiates a bias plane wave obtained by adjusting the amplitude and phase of a plane wave of one light wave generated from light from the light source unit from the normal direction to the sample surface, and An illumination device for irradiating the sample surface with a three-beam standing wave by a beam standing wave and the bias plane wave; A light distribution acquisition unit that acquires, as a light distribution, an intensity distribution of light from the sample surface that is reflected and / or scattered by irradiation of the three
  • the illumination device irradiates the sample surface with a two-beam standing wave obtained by irradiating a plane wave of two light waves generated from the light from the light source unit so as to face each other in an oblique direction.
  • a two-beam standing wave and a bias plane wave are generated by irradiating a bias plane wave obtained by adjusting the amplitude and phase of a plane wave of one light wave generated from the light from the light source unit from the normal direction to the sample surface.
  • the sample surface is irradiated with a three-beam standing wave.
  • the phase of the three-beam standing wave is sequentially shifted to obtain a light distribution that is the intensity distribution of light reflected or scattered from the sample surface for each shift, and super-resolution processing is performed on the obtained light distribution for each shift.
  • the bias plane wave raises the electric field displacement consisting of other light wave groups existing on the sample surface due to its amplitude to the positive side or the negative side, so the three-beam standing wave consisting of the two-beam standing wave and the bias plane wave is sampled. By irradiating the surface, this irradiation increases the electric field displacement of the reflected light and scattered light from the sample surface to the positive side and the negative side.
  • the phase shifts means that the position of the node of the three-beam standing wave moves.
  • super-resolution means that a clear image is obtained up to the details of the object through the optical system, and can also be referred to as high resolution. More specifically, the observation optical system It can also be said that the resolution exceeds the diffraction limit.
  • the bias plane wave irradiation unit preliminarily sets the phase of the bias plane wave as a time when the electric field displacement of the two-beam standing wave becomes a value of 0 at each position on the sample surface.
  • the electric field displacement is adjusted so that the electric field displacement alternately alternates between the positive side and the negative side with the same displacement regardless of the position on the sample surface at a predetermined reference time, and the amplitude of the bias plane wave is adjusted to the sample surface.
  • It can also be an irradiating unit that adjusts the electric field displacement made up of other light wave groups present above to the extent that only the positive side or only the negative side is raised.
  • the electric field distribution over the sample surface periodically appears in a standing wave shape on the sample surface, but by applying illumination with a bias plane wave on the sample surface.
  • the electric field distribution that is raised to the extent that only the positive side or only the negative side is raised can be made to appear periodically.
  • the “reference time” is defined as a time when the electric field displacement of the standing wave becomes a value 0 or approximately 0 at each position on the sample surface, or the electric field of the standing wave and the sample surface
  • the electric field displacement which is the sum of the reflected light waves (all reflected light waves) and the electric field, can be determined in advance as a time when the electric field displacement becomes 0 or substantially 0 at each position on the sample surface.
  • each electric field of the plane wave of the two light waves is E1, E2, an electric field of the bias plane wave is E3, and each amplitude of the plane wave of the two light waves is A
  • the amplitude of the bias plane wave is equal to that of the two-beam standing wave
  • each wave number of the plane wave of the two light waves and the bias plane wave is k
  • the incident angle of the plane wave of the two light waves with respect to the sample surface is ⁇
  • the two-beam standing wave illumination where x is the position in the direction of the intersection between the plane wave incident surface and the sample surface, y is the position in the normal direction relative to the sample surface, ⁇ is the angular frequency, and t is the time.
  • the unit is an illumination unit that performs illumination using the plane wave of the two light waves having the relationship of the following formulas (1) and (2), and the bias plane wave illumination unit has the relationship of the following formula (3):
  • Use bias plane waves to illuminate It can also be a lighting unit to be performed. In this way, the illumination with the bias plane wave can more reliably generate an electric field that is raised so that the positive and negative electric field distribution on the sample surface based on the illumination with the two-beam standing wave is not exactly positive or negative. .
  • the illumination is performed using the plane wave of the two light waves having the relationship of the expressions (1) and (2) and the illumination is performed using the bias plane wave having the relationship of the expression (3)
  • the electric field of each reflected light wave due to reflection of the plane wave of the two light waves on the sample surface is E1r, E2r, the reflectivity of the plane wave of the two light waves on the sample surface is r1, r2, and the sample surface of the plane wave of the two light waves.
  • the phase difference of each reflected light wave due to reflection with respect to the plane wave of the two light waves is ⁇ 1, ⁇ 2, the electric field of the reflected light wave due to reflection of the bias plane wave on the sample surface is E3r, and the bias plane wave of the sample surface is The reflectance is r3, the phase difference of the reflected light wave with respect to the bias plane wave due to reflection of the bias plane wave on the sample surface is ⁇ 3, and the amplitude is equal to the standing wave.
  • the corrected amplitude when correcting the amplitude of the bias plane wave is P
  • the phase correction amount when correcting the phase of the bias plane wave is ⁇ D
  • the bias plane wave illuminating unit is expressed by the following equations (4) to (6).
  • the bias plane wave illumination unit is based on an electric field displacement of each reflected light wave on the sample surface between the plane wave of the two light waves and the bias plane wave. Illumination may be performed using the reference time and amplitude. In this way, the illumination by the bias plane wave with corrected phase and amplitude, the illumination by the standing wave, the reflected light wave of the two-wave plane wave to generate this standing wave, and the reflected light wave of the bias plane wave It is possible to generate an electric field obtained by raising the electric field distribution over the positive and negative on the sample surface to the extent that the electric field distribution does not extend over the positive and negative.
  • the bias plane wave illuminator adjusts the amplitude to be the same as the amplitude of the two-beam standing wave and adjusts the phase to synchronize with the two-beam standing wave.
  • it may be an irradiation unit that irradiates the bias plane wave. In this way, the electric field distribution on the sample surface irradiated with the three-beam standing wave can be raised to such an extent that it is just on the positive side or only on the negative side.
  • illumination with the bias plane wave is performed by shifting the phase of the bias plane wave by a predetermined amount until reaching 2 ⁇ with illumination by the two-beam standing wave by the two-beam standing wave illumination unit.
  • Bias plane wave phase shift control for controlling the illumination device to perform, and a light distribution for each shift for controlling the light distribution acquisition unit to acquire a light distribution for each shift every time the phase of the bias plane wave is shifted by the predetermined amount
  • the three-beam constant having a period twice as long as the period of the peak derived from the moire fringes based on the two-beam standing wave from the Fourier transform image obtained by performing Fourier transform on the light distribution for each shift.
  • the control of the image for determination includes three controls including amplitude adjustment control for controlling the illumination device to decrease the amplitude of the bias plane wave. It is repeatedly executed until the number becomes less than the threshold, and the amplitude when the number of images for determination is less than the threshold is set as the initial amplitude of the bias plane wave and the number of images for determination is less than the threshold
  • An initial value setting unit that sets a phase corresponding to the determination image as an initial phase of the bias plane wave may be provided. In this way, the electric field distribution on the sample surface irradiated with the three-beam standing wave can be easily and automatically raised to just the positive side or the negative side.
  • the shift control unit controls the illuminating device so as to sequentially shift the phase of the two-beam standing wave and the phase of the bias plane wave in synchronization, thereby maintaining the three-beam standing. It can also be a controller that sequentially shifts the wave phase.
  • the shift control unit controls the illumination device so as to sequentially shift the phase of one plane wave of the two-beam standing wave by a predetermined phase and sequentially shift the phase of the bias plane wave by half of the predetermined phase.
  • the control unit can sequentially shift the phase of the three-beam standing wave.
  • the shift control unit sequentially changes the optical path length of one plane wave of the two-beam standing wave by a predetermined distance, and sequentially changes the optical path length of the bias plane wave by half of the predetermined distance. It may be a control unit that sequentially shifts the phase of the three-beam standing wave by controlling the apparatus. In this way, the phase of the three-beam standing wave can be sequentially shifted while maintaining the phase synchronization of the three-beam standing wave composed of the two-beam standing wave and the bias plane wave. As a result, it is possible to obtain optical information such as reflected light and scattered light from the sample surface while shifting the phase of the three-beam standing wave.
  • the microscope observation apparatus further includes a rotation stage for placing the sample and rotating the sample about the normal direction of the sample surface as a rotation axis, and the shift control unit rotates the sample surface by 90 degrees.
  • the lighting device is controlled so that the phase of the three-beam standing wave is sequentially shifted before and after the sample surface is rotated by 90 degrees, and the phase of the three-beam standing wave is It may be a control unit that controls the light distribution acquisition unit so as to acquire the light distribution every time the shift is performed. By doing this, it is possible to easily irradiate the three-beam standing wave in two directions orthogonal to the sample surface without adjusting the three-beam standing wave and sequentially shift the phase to obtain the light distribution.
  • FIG. 1 It is a block diagram which shows the outline of a structure of the microscope observation system 10 containing the illuminating device 20 as one Example of this invention. It is explanatory drawing which shows typically the mode of the illumination by the plane waves 41 and 51 for standing wave generation with which the sample surface 23 is irradiated by the illuminating device 20, and the illumination by the bias plane wave 61. FIG. It is explanatory drawing which shows an example of the relationship between the sample surface 23 and x-axis, y-axis, and z-axis direction. It is explanatory drawing which shows typically the mode of the prior art example which performs the illumination by only the plane waves 41 and 51 for standing wave generation with respect to the sample surface 23. FIG.
  • FIG. 12 is a flowchart illustrating an example of a super-resolution processing program executed by a computer 170. It is explanatory drawing which shows typically the process by the super-resolution process program in FIG. It is a flowchart which shows an example of an initial adjustment program.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a microscopic observation system 10 including an illumination device 20 as an embodiment of the present invention.
  • FIG. 2 shows one surface of a sample 22 (hereinafter referred to as a sample surface) by the illumination device 20. It is explanatory drawing which shows typically the mode of the illumination by the two plane waves 41 and 51 for standing wave generation
  • FIG. Examples of the sample 22 include semiconductor wafers, micro industrial products such as MEMS (Micro Electro Mechanical Systems), Micro-TAS (Micro Total Analysis Systems), and living cells as non-stained observation targets.
  • MEMS Micro Electro Mechanical Systems
  • Micro-TAS Micro Total Analysis Systems
  • the microscope observation system 10 includes a lighting device 20 that irradiates a sample surface 23 with three lights (three light waves and three light beams), and a plurality of lenses including, for example, an objective lens. From the sample surface 23 using a lens mechanism 14 as an observation optical system that transmits light from the surface 23 and a plurality of light receiving elements such as a CCD (charge coupled semiconductor device) or a CMOS (complementary metal oxide semiconductor device).
  • a CCD charge coupled semiconductor device
  • CMOS complementary metal oxide semiconductor device
  • the light receiving unit 16 that receives the light as measurement light through the lens mechanism 14, the general-purpose computer 70 that drives various adjustment mechanisms of the illumination device 20 (hereinafter referred to as adjustment PC), and the amount of light received by the light receiving unit 16
  • a general-purpose computer 80 (hereinafter referred to as “analysis PC”) that performs super-resolution by analyzing the amount of received light received as a signal.
  • a microscope observation device 12 for example, an optical microscope
  • the illumination device 20 the lens mechanism 14, and the light receiving unit 16, and the microscope observation system 12, the adjustment PC 70, and the analysis PC 80 are used. 10 is configured.
  • the illuminating device 20 of the embodiment is arranged at a position facing the light source unit 30 that divides and emits coherent light such as laser light into three parts and the sample surface 23 as the center, and causes the sample surface 23 to interfere with each other.
  • a plane wave (hereinafter referred to as a bias plane wave) 61 that is arranged vertically above the sample surface 23 and that raises (adds bias to) the electric field displacement of the standing wave when it interferes with the standing wave on the sample surface 23 (see FIG. 2).
  • a bias plane wave illuminating unit 60 for illuminating the sample surface 23. Since the illumination by the bias plane wave 61 is performed on the sample surface 23 from vertically above the sample surface 23, it functions as epi-illumination.
  • the light source unit 30 is divided by a light source device 32 as a coherent light source, a beam splitter 34 that divides the light from the light source device 32 into two and makes one of them incident on the bias plane wave illumination unit 60, and the beam splitter 34.
  • a beam splitter 36 that makes the other light incident, splits the light into two, and makes one of them enter the standing wave plane wave illumination unit 40 and the other enter the standing wave plane wave illumination unit 50.
  • Each of the standing wave plane wave illumination units 40 and 50 is configured by a polarizer, a wavelength plate, or the like, and makes incident light from the beam splitter 36 S-polarized light whose polarization plane (direction of electric field) is parallel to the sample plane 23.
  • the relative phase difference adjusting mechanisms 46 and 56 for adjusting the phases of the plane waves 41 and 51 and mirrors and piezos.
  • Incidence angle fine adjustment mechanisms 48 and 58 configured by actuators and the like to finely adjust the incident angles of the plane waves 41 and 51 with respect to the sample surface 23.
  • the incident angle of the plane waves 41 and 51 with respect to the sample surface 23 depends on the relative positional relationship between the sample 22 and the standing wave plane wave illumination units 40 and 50, and the plane waves 41 and 51 interfere with the sample surface 23.
  • the bias plane wave illumination unit 60 includes a polarizer, a wave plate, and the like, and adjusts the incident light from the beam splitter 34 so that the plane of polarization (the direction of the electric field) matches the plane of polarization of the plane waves 41 and 51 for generating standing waves.
  • a polarization adjustment mechanism 62 that adjusts the amplitude of the bias plane wave 61, which is configured by a polarizer, a wavelength plate, and the like, and a phase of the bias plane wave 61 that is configured by a wavelength plate, a phase modulation element, a piezoelectric actuator, and the like.
  • an incident angle fine adjustment mechanism 68 that is configured by a mirror, a piezo actuator, or the like and finely adjusts so that the bias plane wave 61 is perpendicularly incident on the sample surface 23.
  • the incident angle of the bias plane wave 61 with respect to the sample surface 23 depends on the relative positional relationship between the sample 22 and the bias plane wave illumination unit 60, and the illumination with the bias plane wave 61 is ideally reflected on the sample surface 23 as much as possible. Although it has been adjusted in advance so as to provide illumination, fine adjustment by the incident angle fine adjustment mechanism 68 is possible.
  • the adjustment PC 70 has a CPU, ROM, RAM, HDD, input / output port, etc. (not shown), is connected to an input device such as a keyboard and a mouse, and is connected to an output device such as a display.
  • By outputting a drive signal through the output port so that the above is performed various adjustment mechanisms of the lighting device 20 are driven.
  • the analysis PC 80 has a CPU, ROM, RAM, HDD, input / output port, etc. (not shown), is connected to an input device such as a keyboard and a mouse, and is connected to an output device such as a display.
  • the received light amount is input as a signal through the input port, and the received light amount is applied to and analyzed by a predetermined algorithm adopted by a program stored in the ROM in advance to perform super-resolution.
  • the predetermined algorithm is a super-resolution process in which super-resolution is performed by shifting illumination by a standing wave generated on the sample surface 23 due to interference of the plane waves 41 and 51 (hereinafter also referred to as standing wave illumination) a plurality of times. (Super-resolution method) is realized, and in the embodiment, the following algorithm is used.
  • ) is acquired in advance. Then, by adjusting the phase of at least one of the plane waves 41 and 51 for generating the standing wave, the position of the standing wave illumination on the sample surface 23 is shifted m times (for the standing wave illumination).
  • n received light amounts Xi by the light receiving unit 16 are input. Further, n received light quantity Xi, illumination light quantity Ij, and diffraction contribution ratio D (
  • such imaging is performed by shifting the standing wave illumination in the direction of the line of intersection between the incident surface of the plane waves 41 and 51 for generating the standing wave 41 and the sample surface 23 (hereinafter referred to as the x-axis direction). It was performed by shifting the standing wave illumination in the direction perpendicular to the x-axis direction (hereinafter referred to as the z-axis direction) on the sample surface 23. Thereby, a clearer image can be acquired. Since this algorithm does not form the core of the present invention, further detailed description is omitted.
  • FIG. 3 shows an example of the relationship between the sample surface 23 and the x-axis, y-axis, and z-axis directions.
  • the y-axis direction is a normal direction to the sample surface 23.
  • the incident surface that defines the x-axis is also shown for reference.
  • the state of the electric field on the sample surface 23 will be described below using each of the x-axis, y-axis, and z-axis directions as necessary.
  • “super-resolution” means to acquire a clear image up to details of an object through an optical system such as a lens, for example, and can be paraphrased as high resolution. Specifically, it can be said that the resolution exceeds the diffraction limit of the observation optical system.
  • “shifting the standing wave illumination (standing wave illumination)” means that the position of the node of the standing wave forming the standing wave illumination (standing wave illumination) is set in a predetermined direction. It means to move.
  • FIG. 4 is an explanatory diagram schematically showing a state of a conventional example in which illumination with only the plane waves 41 and 51 for generating the standing wave is performed on the sample surface 23, and FIG. 5 is a plane wave for generating the standing wave.
  • FIG. 6 is an explanatory view schematically showing an embodiment in which illumination by 41 and 51 and illumination by a bias plane wave 61 are performed on the sample surface 23, and FIG. 6 shows standing wave illumination and bias plane waves by plane waves 41 and 51. It is explanatory drawing which shows an example of the mode of the time change of the electric field on the sample surface 23 when the illumination by 61 is made to interfere on the sample surface 23.
  • FIG. 4 is an explanatory diagram schematically showing a state of a conventional example in which illumination with only the plane waves 41 and 51 for generating the standing wave is performed on the sample surface 23, and FIG. 5 is a plane wave for generating the standing wave.
  • FIG. 6 is an explanatory view schematically showing an embodiment in which illumination by 41 and 51 and illumination by a bias plane wave
  • indicates an incident angle (scalar amount in the embodiment) of the plane waves 41 and 51 with respect to the sample surface 23, and the waveform on the sample surface 23 indicates the waveform of each illumination on the sample surface 23.
  • the waveform of the electric field is originally a waveform in which the electric field displacement changes with time in the z-axis direction on the sample surface 23, but for convenience of illustration, it is shown as a waveform that vibrates in the vertical direction on the paper surface, which is the y-axis direction. ing.
  • the alternate long and short dash line indicates the electric field distribution (distribution of electric field displacement) of only the standing wave due to the interference of the plane waves 41 and 51
  • the broken line indicates the electric field distribution of only the bias plane wave 61
  • the solid line indicates the plane waves 41 and 51 and the bias.
  • the electric field distribution of the sum on the sample surface 23 of each illumination by interference with the plane wave 61 is shown.
  • the electric field distribution repeats the states (a) to (h) in order.
  • the states shown in FIGS. 6A and 6E are preliminarily tested as times when the electric field displacement of the standing wave becomes zero at each position on the sample surface 23 (each position on the xz plane). And shows the state of electric field distribution at the “reference time” determined by analysis.
  • the electric fields of the plane waves 41 and 51 of the two light waves for generating standing waves are E1, E2, the amplitudes of the plane waves 41 and 51 are A, the wave numbers of the plane waves 41 and 51 are k, and the plane waves 41 and 51 are
  • the incident angle with respect to the sample surface 23 is ⁇ (described above)
  • the position of the plane waves 41 and 51 in the intersecting direction between the incident surface and the sample surface 23 is x (described above)
  • the normal direction position relative to the sample surface 23 is y (described above).
  • be the angular frequency
  • t be the time.
  • the amplitude A and the incident angle ⁇ are target values to be adjusted, and the electric fields E1 and E2 are target values to be finally obtained (the waveforms of the plane waves 41 and 51).
  • the wave number k and the angular frequency ⁇ are values determined in advance based on the characteristics of the light source unit 30.
  • the standing wave plane wave illuminating units 40 and 50 illuminate the sample surface 23 with the two-wave plane waves 41 and 51 having the relationship of the following expressions (1) and (2).
  • the adjustment PC 70 drives the polarization adjustment mechanisms 42 and 52 so that the incident light from the beam splitter 36 is adjusted to S-polarized light whose polarization plane is parallel to the sample surface 23, and the plane waves 41 and 52 are driven.
  • the amplitude adjustment mechanisms 44 and 54 are driven so that each amplitude of 51 is adjusted to the amplitude A as a target value, and the standing wave generated on the sample surface 23 due to the interference of the plane waves 41 and 51 is determined as described above.
  • the relative phase difference adjusting mechanisms 42 and 52 are driven so that the phases of the plane waves 41 and 51 are adjusted when the shift is performed in the nano-order according to the algorithm, and the incident angles of the plane waves 41 and 51 with respect to the sample surface 23 are set to the target values.
  • the incident angle fine adjustment mechanisms 48 and 58 are driven so that the fine adjustment to the incident angle ⁇ is performed.
  • FIG. 6 As shown in the waveform 4 and the waveform of the one-dot chain line in FIG. 6, a positive and negative electric field distribution periodically appears in a standing wave shape on the sample surface 23. That is, in the electric field distribution on the sample surface 23, a distribution is formed in which adjacent peaks span (strand).
  • the electric field of the bias plane wave 61 is E3, the amplitude of the bias plane wave 61 (hereinafter referred to as bias amplitude) is equal to the standing wave generated by the interference of the plane waves 41 and 51 (that is, twice the amplitude A). ),
  • the wave number of the bias plane wave 61 is k, the position in the normal direction with respect to the sample surface 23 is y (described above), the angular frequency is ⁇ , and the time is t.
  • the bias amplitude is a target value to be adjusted, and the electric field E3 is a target value (waveform of the bias plane wave 61) to be finally obtained.
  • the wave number k and the angular frequency ⁇ are values determined in advance based on the characteristics of the light source unit 30.
  • the bias plane wave illumination unit 60 performs illumination on the sample surface 23 with the bias plane wave 61 having the relationship of the following expression (3).
  • the adjustment PC 70 drives the polarization adjustment mechanism 62 so that the polarization plane of the incident light from the beam splitter 34 is adjusted to the polarization planes of the plane waves 41 and 51 for generating standing waves, and the bias is applied.
  • the amplitude adjustment mechanism 64 is driven so that the bias amplitude of the plane wave 61 is adjusted to a target value (twice the amplitude A), and the phase of the electric field E3 in the equation (3) (y is independent of the position in the x-axis direction).
  • the phase difference adjusting mechanism 62 is driven so as to obtain an initial phase corresponding to the position in the axial direction, and the incident angle fine adjusting mechanism 68 is adjusted so that fine adjustment is performed so that the bias plane wave 61 is incident perpendicularly to the sample surface 23. To drive.
  • the bias plane wave illumination unit 60 When the bias plane wave illumination unit 60 is thus driven and illumination with the bias plane wave 61 having the relationship of the expression (3) is performed (assuming that only the illumination with the bias plane wave 61 is performed), the bias plane wave 61 is represented by a broken line in FIG. As shown in the waveform of, the sample is sampled on the basis of a “reference time” that is predetermined as a time when the electric field displacement of the standing wave becomes zero at each position on the sample surface 23 (each position on the xz plane). Synchronized with the standing wave (see the dashed line in FIG.
  • the amplitude for bias is equal to the amplitude of the standing wave, that is, a value (value 2A) that is twice the amplitude A of the plane waves 41 and 51 for generating the standing wave.
  • the electric field displacement of the standing wave on the sample surface 23 is just the positive side or the negative side only. The amplitude is raised.
  • the electric field distribution over the sample surface 23 by standing wave illumination is raised so that it is just on the positive side or only on the negative side.
  • the electric field distribution (that is, raised so as not to be exactly positive or negative) can appear periodically. That is, it is possible to form a distribution in which adjacent peaks are not positive or negative in the waveform of the electric field distribution on the sample surface 23.
  • FIG. 7 is an explanatory diagram for explaining an example of the state of resolving two resolution targets on the sample surface 23 of the conventional example of FIG. 4, and FIG. 8 is a sample of the embodiment of FIG.
  • FIG. 9 is an explanatory diagram for explaining an example of the state of resolving two resolution targets on the surface 23.
  • FIG. 9 shows a sample of standing wave illumination by plane waves 41 and 51 and illumination by a bias plane wave 61. It is explanatory drawing which shows an example of the mode of the time change of the illumination intensity (square value of an electric field) on the sample surface 23 when making it interfere on the surface 23.
  • the thin solid line indicates the electric field distribution of the sum of the illumination on the sample surface 23 due to the interference between the plane waves 41 and 51 and the bias plane wave 61, and the thick solid line after the interference between the plane waves 41 and 51 and the bias plane wave 61.
  • the illumination intensity on the sample surface 23 is shown.
  • four states corresponding to the states of FIGS. 6B, 6C, 6F, and 6G are shown.
  • the super-resolution processing (super-resolution technique) using structural illumination uses a sample response to illumination having a fine periodic illumination intensity distribution.
  • FIG. 7 in the case of conventional standing wave illumination only, adjacent peaks in the electric field distribution (electric field displacement distribution) on the sample surface 23 are positive and negative. The light wave information between them cancel each other.
  • the application of super-resolution processing is limited only to special samples such as fluorescent samples that can be incoherently imaged using a coherent light source, and super-resolution processing should be applied to a wide range of general samples. I could not.
  • FIG. 7 shows that shows that can be incoherently imaged using a coherent light source.
  • the adjacent peak in the electric field distribution on the sample surface 23 does not extend in the positive and negative directions. Since it is possible to generate a fine periodic illumination intensity distribution (see FIG. 9), there is no cancellation of light wave information between adjacent peaks from the sample surface 23, and an image is obtained by adding the light wave information. Formation can be performed.
  • the super-resolution processing can be applied to a general sample regardless of the presence or absence of coherence of measurement light including scattered light emitted from the sample.
  • the bias plane wave 61 is synchronized with the standing wave and vibrates with the same amplitude as the standing wave, so that the positive and negative on the sample surface 23 by the standing wave illumination is obtained.
  • the electric field distribution over the sample surface 23 is raised by standing wave illumination because the electric field distribution over the area is raised so that it is just on the positive side or only on the negative side (that is, it is raised so as not to be over just the positive side). Can be more reliably prevented from canceling out the light wave information between adjacent peaks from the sample surface 23, compared to the amount of increase that is smaller than the amount of increase that is just the positive side or only the negative side.
  • the image formation with a clearer shadow is formed as compared with the case where the electric field distribution over the positive and negative on the sample surface 23 is increased only by the positive side or the negative side only by the standing wave illumination. Can be performed.
  • FIG. 10 shows computer simulation conditions when applying the super-resolution processing
  • FIG. 11 shows an example of an illumination intensity distribution obtained by a general optical microscope
  • FIG. FIG. 13 shows an example of an illumination intensity distribution as a computer simulation result when super-resolution processing is performed under the conditions shown in FIG. 10 by irradiating only standing wave illumination.
  • FIG. 13 shows standing wave illumination for a fluorescent sample.
  • FIG. 14 shows an example of an illumination intensity distribution as a computer simulation result when super-resolution processing is performed under the conditions shown in FIG.
  • FIG. 10 shows computer simulation conditions when applying the super-resolution processing
  • FIG. 11 shows an example of an illumination intensity distribution obtained by a general optical microscope
  • FIG. 13 shows an example of an illumination intensity distribution as a computer simulation result when super-resolution processing is performed under the conditions shown in FIG. 10 by irradiating only standing wave illumination.
  • FIG. 13 shows standing wave illumination for a fluorescent sample.
  • FIG. 14 shows an example of an illumination intensity distribution as a computer simulation result when super-resolution
  • the simulation condition shown in FIG. 10 is that the wavelength of light from the light source is 488 nm, the standing wave pitch (length between nodes) is 270 nm, and standing wave illumination in a predetermined direction in the super-resolution processing.
  • the number of shifts is 10, the shift step size (shift amount) for one time is 25 nm, the optical system NA (lens numerical aperture of the lens mechanism 14 of the embodiment) is 0.95, the Rayleigh limit is 313 nm, and the resolution is two points.
  • the condition is that the target samples are at positions (positions on the sample surface 23) that are 50 nm apart from each other. As shown in FIG. 11, in the case of a general optical microscope, the image of the sample to be resolved is blurred and cannot be seen at all.
  • the plane waves 41 and 51 of the two light waves are generated by using the light from the light source unit 30 by the plane wave illumination units 40 and 50 for standing waves.
  • the sample surface 23 is illuminated with standing waves generated by causing the generated plane waves 41 and 51 of the two light waves to interfere on the sample surface 23.
  • the bias plane wave illumination unit 60 causes the electric field displacement to be positioned on the sample surface 23 at a reference time that is predetermined as a time when the electric field displacement of the standing wave becomes zero at each position on the sample surface 23.
  • a bias plane wave 61 that is a plane wave that vibrates with a predetermined bias amplitude (amplitude of 2A equal to a standing wave) is generated using the light from the light source unit 30 and illumination with the generated bias plane wave 61 Is performed on the sample surface 23. Therefore, in the case of only the illumination by the standing wave, the electric field distribution over the sample surface periodically appears in the form of a standing wave, whereas by applying the illumination by the bias plane wave 61, it is positive or negative on the sample surface 23.
  • the electric field distribution that has been raised until it becomes just the positive side or only the negative side (that is, raised until it just does not become positive or negative) can appear periodically.
  • the application range of the resolution processing can be expanded.
  • the bias plane wave 61 is oscillated at the same amplitude as the standing wave in synchronization with the standing wave.
  • the electric field distribution over the positive and negative sides is raised so that it is just on the positive side or only on the negative side (that is, it is raised so that it is not just over the positive and negative sides).
  • the electric field distribution over the sample surface 23 is made to be slightly higher than the amount of increase in the electric field distribution just on the positive side or only on the negative side, or over the sample surface 23 by standing wave illumination.
  • the electric field distribution may be slightly higher than the amount of increase that is just the positive side or only the negative side (twice the value A).
  • the slightly raised amount can be achieved by setting the bias amplitude of the bias plane wave 61 to 1.9 times the value A, for example. Further, a slightly large raising amount can be achieved by setting the bias amplitude of the bias plane wave 61 to 2.1 times the value A, for example.
  • the bias plane wave 61 is a time when the electric field displacement of the standing wave generated by the interference of the plane waves 41 and 51 becomes a value 0 at each position on the sample surface 23. It is assumed that the reference wave is synchronized with the standing wave so as to swing alternately on the positive side and the negative side with the same displacement regardless of the position on the sample surface 23 at the predetermined “reference time”. As the “time”, for example, the time immediately before the electric field displacement of the standing wave becomes 0 at each position on the sample surface 23, the time immediately after, or the like may be used.
  • illumination by the bias plane wave 61 is performed as epi-illumination, that is, an epi-illumination type is used, but a transmission type may be used.
  • a transmission type may be used.
  • evanescent illumination may be used, and the microscopic observation device 12 including the illumination device 20 may be a dark-field device using a polarizer, or a bright-field device. It may be a mold type device.
  • the super-resolution processing is performed using the above-described predetermined algorithm, but a super-resolution processing different from this may be performed.
  • a plurality of acquired images may be combined in the frequency space domain, and the process (method) for obtaining a super-resolution observation image in the real space domain may be performed by performing inverse Fourier transform after extending the band. It is also possible to perform a process (method) for obtaining a super-resolution observation image by sequentially repeating the calculation from the acquired images.
  • the reflected light wave due to the reflection of each light wave on the sample surface 23 is not particularly considered, but this is used when the influence of the reflected light wave is relatively large. It may be considered.
  • the operation of the bias plane wave illumination unit 60 of the illumination device 20 is performed as follows.
  • the operation of the standing wave plane wave illumination units 40 and 50 of the illumination device 20 is the same as in the embodiment.
  • the electric field of each reflected light wave due to the reflection of the plane waves 41 and 51 for generating standing waves on the sample surface 23 is E1r and E2r
  • the reflectivity of each of the plane waves 41 and 51 on the sample surface 23 is r1, r2, and so on.
  • the phase differences of the reflected light waves from the plane waves 41 and 51 due to the reflection of the plane waves 41 and 51 on the sample surface 23 are denoted by ⁇ 1 and ⁇ 2.
  • the amplitude A, wave number k, incident angle ⁇ , position x, position y, angular frequency ⁇ , and time t are the same as in the embodiment.
  • the corrected electric field obtained by correcting the electric field E3 using the amplitude P and the phase correction amount ⁇ D is defined as E3a.
  • the relationship of the formula (6) is established for the reflected light wave of the bias plane wave 61.
  • the bias plane wave 61 has the relationship of the formula (7).
  • the corrected amplitude P and the phase correction amount ⁇ D are target values as adjustment targets
  • the corrected electric field E3a is a target value (waveform of the bias plane wave 61) to be finally obtained.
  • the wave number k and the angular frequency ⁇ are values determined in advance based on the characteristics of the light source unit 30. On the sample surface 23, a sum electric field of the electric fields E1, E1r, E2, E2r, E3a, E3r appears.
  • the corrected amplitude P is the sum of the standing wave on the sample surface 23 and all the reflected light waves (that is, the reflected light waves of the plane waves 41 and 51 and the reflected light wave of the bias plane wave 61 itself).
  • an amplitude that raises the electric field displacement that is, the electric field displacement of the sum of electric fields E1, E1r, E2, E2r, and E3r
  • E1, E1r, E2, E2r, and E3r just the positive side or only to the negative side (that is, until the electric field displacement does not cross positive or negative). Or those determined by analysis.
  • phase correction ⁇ D is the sum of the electric field displacement of the standing wave and the electric field of all the reflected light waves on the sample surface 23 (that is, the electric field displacement of the sum of the electric fields E1, E1r, E2, E2r, and E3r).
  • the electric field displacement (that is, the electric field displacement of the electric field E3a) due to the bias plane wave 61 only at the timing of the “reference time” that is predetermined as the time when the value becomes zero or substantially zero at each position on the sample surface 23 is the sample surface. 23, a value determined in advance by experiment or analysis so that the value becomes 0 regardless of the position.
  • the correction of the amplitude by the corrected amplitude P can be referred to as the correction of the bias amplitude based on the electric field displacement of all the reflected light waves on the sample surface 23, and the correction of the phase by the phase correction component ⁇ D is all the reflection. It can be said that the “reference time” is corrected based on the electric field displacement on the sample surface 23 of the light wave.
  • the bias plane wave illumination unit 60 performs illumination with the bias plane wave 61 having the relationship of Expression (7) on the sample surface 23.
  • the adjustment PC 70 drives the polarization adjustment mechanism 62 so that the polarization plane of the incident light from the beam splitter 34 is adjusted to the polarization planes of the plane waves 41 and 51 for generating standing waves, and the bias is applied.
  • the amplitude adjustment mechanism 64 is driven so that the amplitude of the plane wave 61 is adjusted to the corrected amplitude P, and the phase of the electric field E3a of the equation (7) including the phase correction ⁇ D (the y axis regardless of the position in the x axis direction).
  • the phase difference adjusting mechanism 62 is driven so as to obtain an initial phase according to the position in the direction, and the incident angle fine adjusting mechanism 68 is driven so that fine adjustment is performed so that the bias plane wave 61 is incident perpendicularly to the sample surface 23.
  • the bias plane wave illuminating unit 60 is based on the relationship of the equations (4) to (6) (in consideration of each reflected light wave), and the electric field of the sum of the standing wave on the sample surface 23 and all the reflected light waves.
  • the corrected amplitude P for raising the displacement (that is, the electric field displacement made up of another light wave group existing on the sample surface 23) just to be no longer positive or negative, and the bias plane wave 61 only at the timing of the above-mentioned “reference time”.
  • a phase correction ⁇ D that sets the electric field displacement to 0 regardless of the position on the sample surface 23 is determined in advance, and the electric field E3 is corrected using the corrected amplitude P and the phase correction ⁇ D thus determined. Illumination is performed by the bias plane wave 61 having the relationship of the expression (7) of the electric field E3a.
  • the electric field distribution over the positive and negative on the sample surface 23 is increased to just the positive side or only to the negative side (that is, just the negative side).
  • the electric field distribution can be made to appear periodically (increased until it is not positive or negative). This suppresses cancellation of the light wave information from the sample surface 23, and is not limited to the fluorescent sample, and super-resolution processing is applied to a general sample.
  • the application range of the resolution processing can be expanded.
  • Example 1 in FIG. 15 the amplitude A is 1.0, the reflectances r1 and r2 are 0.4, and the reflectance r3 is 0.2.
  • the analysis shows that the corrected amplitude P may be set to the value 1.5 and the phase correction ⁇ D may be set to the value 0.
  • the amplitude A is 1.0, the reflectances r1 and r2 are 0.75, the reflectance r3 is 0.55, and the phase differences ⁇ 1, ⁇ 2, and ⁇ 3 are 3 .14, the analysis shows that the corrected amplitude P is 1.1 and the phase correction ⁇ D is 0. Further, as shown as Example 3 in FIG. 15, the amplitude A is 1.0, the reflectances r1 and r2 are 0.3, the reflectance r3 is 0.2, and the phase differences ⁇ 1 and ⁇ 2 are 1.57. In the case where the phase difference ⁇ 3 is 3.14, the analysis shows that the corrected amplitude P should be 2.6 and the phase correction ⁇ D should be 0.28.
  • FIG. 16 is a configuration diagram showing an outline of the configuration of the microscopic observation system 110 of the second embodiment.
  • the microscopic observation apparatus 110 according to the second embodiment arbitrarily changes the polarization direction of the linearly polarized light from the sample stage 121 as a rotating stage on which the sample 122 is placed, the laser light source 132, and the laser light source 132.
  • in-plane polarization polarized light perpendicular to the paper surface of FIG.
  • vertical polarization a polarization beam splitter 136 that divides the reflection component, a mirror 140 that changes the direction of the vertical polarization component reflected by the polarization beam splitter 136, and a vertical polarization component from the mirror 140
  • a beam splitter 142 that divides the beam into two luminous fluxes, and one of the vertically polarized components from the beam splitter 142 is irradiated onto the sample surface 123 of the sample 122
  • a drive mirror 144 including a mirror 148, a mirror 144a that changes the other direction of the vertical polarization component from the beam splitter 142, and a piezo actuator 144b that drives the mirror 144a to change the phase by changing the optical path length;
  • a mirror 146 that irradiates the sample surface 123 of the sample 122 with the vertically polarized component
  • a driving mirror 154 including a mirror 154 a that changes the direction of the in-plane polarization component in which the light amount is adjusted, and a piezo actuator 154 b that drives the mirror 154 a to change the phase by changing the optical path length.
  • a cross-spander 156 That expands the beam diameter of the in-plane polarization component of A cross-spander 156, a lens 158 for making the in-plane polarized component whose beam diameter is enlarged finally become parallel light, and a polarization beam splitter that divides the in-plane polarized light transmission component and the vertically polarized light reflection component 160, a wave plate 162 that polarizes the in-plane polarization component from the polarization beam splitter 162 into a vertical polarization component, an objective lens 164 that irradiates the sample surface 123 with the vertical polarization component from the wave plate 162, and the sample surface 123.
  • an imaging lens 166 that forms an image of the scattered light of the in-plane polarization component reflected by the polarization beam splitter 160, and a cooling that detects the distribution (light distribution data) of the amount of light imaged by the imaging lens 166.
  • CCD charge-coupled device
  • camera 168 sample stage 121, wave plates 134 and 150, polarizing plate 152, drive mirrors 145 and 155, It comprises a computer 170 which enter the light distribution data detected performing super-resolution processing by the cooled CCD camera 168 to drive controls the retirement CCD camera 168, a.
  • Laser light source 132 CW blue laser manufactured by Coherent Inc. (output power: 150 mW, wavelength: 488 nm, polarization: linear vertical (> 100: 1), beam diameter: 0.70 ⁇ 0.05 mm)
  • Wave plates 134, 150, 162 Mounted Zero Order 1/2 Waveplate manufactured by Thorlabs (model number: WPH10M-488, material: Crystal Quarts, diameter: 24.0mm)
  • Polarizing beam splitter 136 Solarizing Polarizing Beamsplitter Cubes (model number: PBS101, material: SF2, Tp: Ts: 1000: 1, size: 10mm x 10mm x 10mm)
  • Polarizing beam splitter 160 Solarizing Polarizing Beamsplitter Cubes (model number: PBS251, material: SF2, Tp: Ts: 1000: 1, size: 25.4mm x 25.4mm x 25.4mm)
  • Mirrors 140 CW blue laser manufactured by Coherent Inc. (output power: 150 mW, wavelength: 488 n
  • the polarization direction of the laser light (linearly polarized light) from the laser light source 132 is determined by the wave plate 134 and is divided into the in-plane polarization component and the vertical polarization component by the polarization beam splitter 136. Is done.
  • the vertically polarized component is incident on the beam splitter 142 by the mirror 140 and split, and the incident angle of one of the lights is adjusted by the mirror 148 to irradiate the sample surface 123 of the sample 122 from the outside of the objective lens 164 (right side in the figure).
  • the other light is adjusted to the same incident angle from the opposite direction (left side in the figure) with respect to one light from the mirror 148 by the drive mirror 144 and the mirror 146, and the sample surface of the sample 122 from the outside of the objective lens 164 123 is irradiated. Since the two light fluxes of the light from the mirror 146 and the light from the mirror 148 are irradiated to the sample surface 123 from the opposite direction at the same incident angle with the same vertical polarization, the sample surface 123 is irradiated as a two-beam interference standing wave. Will be. The phase of this two-beam interference standing wave can be adjusted by changing the optical path length of the other light by the drive mirror 144.
  • the amount of light (intensity and amplitude) of the in-plane polarization component transmitted through the polarizing beam splitter 136 is adjusted by the wave plate 150 and the polarizing plate 152, reflected by the drive mirror 155, and incident on the beam expander 156.
  • the in-plane polarization component whose beam diameter has been enlarged by about 20 times by the beam expander 156 is adjusted by the lens 158 so as to be finally irradiated on the sample surface 123 as parallel light, and is incident on the polarization beam splitter 160. Because of the in-plane polarization component, all the light is transmitted through the polarization beam splitter 160 without being reflected.
  • the in-plane polarization component that has passed through the polarization beam splitter 160 is polarized into a vertical polarization component by the wave plate 162, passes through the objective lens 164, and becomes parallel light and is irradiated onto the sample surface 123.
  • Such epi-illumination has high coherence with the two-beam interference standing wave because the two-beam interference standing wave from the mirrors 146 and 148 is a vertical polarization component similar to the vertical polarization component as described above. That is, a three-beam interference standing wave is obtained, which is similar to the three-light wave illumination by the illumination by the plane waves 41 and 51 for generating the standing wave and the illumination by the bias plane wave 61 described in the microscopic observation system 10 of the first embodiment. Become.
  • the reflected light and scattered light from the sample surface 123 due to the irradiation with the three-beam interference standing wave is not obtained by the objective lens 164 because the one derived from the two-beam interference standing wave is oblique illumination, but is reflected by the epi-illumination. What comes from the illumination passes through the objective lens 164 and is changed to an in-plane polarization component by the wave plate 162. For this reason, it is reflected by the polarization beam splitter 160, enters the imaging lens 166, and forms an image on the CCD in the cooled CCD camera 168.
  • the two-beam interference standing wave is shifted on the nanometer scale by changing the optical path length by the drive mirror 144, and the phase change caused by the shift of the two-beam interference standing wave is caused.
  • the phase of the three-beam interference standing wave can be shifted on the nanometer scale. Therefore, if the phase of the three-beam interference standing wave is sequentially shifted to the one wavelength (2 ⁇ ) by the shift amount on the nanometer scale, and the light distribution data is acquired by the cooling CCD camera 168 for each shift, the sample surface 123 is obtained.
  • Light distribution data in which the phase of the three-beam interference standing wave is shifted by the shift amount over the entire observation range can be obtained.
  • the sample 122 can be rotated by the sample stage 121, the sample 122 is placed at the center of rotation of the sample stage 121, and the phase of the three-beam interference standing wave is set to one wavelength by a shift amount on the nanometer scale.
  • the cooling CCD camera 168 detects the light distribution data for each shift, and then rotates the sample 122 by 90 degrees, and again changes the phase of the three-beam interference standing wave by one nanometer scale shift amount.
  • the obtained light distribution data is irradiated with a three-beam interference standing wave in a direction orthogonal to the sample surface 123. Then, the phase of the three-beam interference standing wave is sequentially shifted.
  • FIG. 17 is an explanatory diagram for explaining the relationship between the phase difference ⁇ 1 and the optical path length l.
  • the optical path difference l1 is expressed by the following equation (9), assuming that the incident angle to the mirror 144a is ⁇ 1.
  • the phase difference ⁇ 1 at this time is expressed by the equation (10) when the wavelength is ⁇
  • the moving distance d1 is expressed by the equation (11).
  • the driving mirror 144 is driven to shift the phase of the other light of the two-beam interference standing wave by ⁇ 1
  • the phase of the two-beam standing wave is shifted by ⁇ 1 / 2. If shifted, the phase of the three-beam interference standing wave can be shifted by ⁇ 1 / 2.
  • the moving distance d1 ⁇ 172.5 ⁇ ⁇ 1 / ⁇ [nm] and d2 d1 / 2.
  • the phase difference ⁇ 1 2 ⁇ / n
  • the movement distance d1 345 / n [nm]
  • the movement distance d1 5.75 nm.
  • the microscopic observation system 110 of the second embodiment first, light distribution data acquisition control for acquiring light distribution data for each shift by irradiating the sample surface 123 with a three-beam interference standing wave whose phase is sequentially shifted is executed.
  • super-resolution processing is performed to analyze the obtained light distribution data for each shift by inverse problem analysis.
  • 18 is a flowchart showing an example of a light distribution data acquisition control program executed by the computer 170
  • FIG. 19 is a flowchart showing an example of a super-resolution processing program executed by the computer 170
  • the light distribution data acquisition control will be described, and then the super-resolution processing will be described.
  • an initial position is set so that the center of the observation range of the sample surface 123 of the sample 122 is the rotation center of the sample stage 121 (step S100), and the three-beam interference standing wave is detected.
  • the initial value is adjusted (step S110).
  • the initial value of the three-beam interference standing wave can be adjusted by adjusting the intensity (amplitude) and phase of the epi-illumination. Specifically, such initial adjustment is performed by executing an initial adjustment program illustrated in FIG. 21 in a state where a two-beam interference standing wave is irradiated using a reference sample.
  • the reference sample is preferably a line and space pattern having a periodic structure that generates moire fringes with a standing wave and a known line pitch.
  • the drive mirror 154 is driven to change the phase of the epi-illumination by the phase change amount ⁇ 2 (step S300), and a light intensity image is acquired by the cooled CCD camera 168 (step S310). ), The Fourier transform image is obtained by Fourier transforming the obtained light intensity image (step S320), the total phase change amount ⁇ 2 is compared with 2 ⁇ (step S330), and step S300 is performed until the total phase change amount ⁇ 2 reaches 2 ⁇ . Repeat the process of S330.
  • the process of repeating steps S300 to S330 is a process of acquiring a Fourier transform image of the light intensity image for each phase when the phase of the epi-illumination is changed by the phase change amount ⁇ 2.
  • the peak when used as a reference sample, the peak is derived from a moire fringe based on a two-beam interference standing wave having a constant period, or a moire fringe based on a three-beam interference standing wave having a period twice that of the peak. Peaks can be observed.
  • the total phase change amount ⁇ 2 reaches 2 ⁇ , an image in which only a peak derived from moire fringes based on a three-beam interference standing wave is observed among the acquired Fourier transform images is retrieved as a determination image (step S340). It is determined whether or not a determination image exists (step S350).
  • step S370 If there is no determination image, all acquired Fourier transform images are discarded (step S370), and the wave plate 150 and the polarizing plate 152 are determined in advance.
  • the incident light intensity (amplitude) is increased by a predetermined amount (step S380), and the process returns to step S300.
  • the predetermined amount 1/10, 1/20, 1/30, or the like of the amplitude of the two-beam interference standing wave can be used.
  • step S350 it is determined whether or not the number of detected determination images is less than the threshold (step S380), and the detected number of determination images is equal to or greater than the threshold.
  • step S400 the process returns to step S300.
  • value 2 or value 3 can be used as the threshold value.
  • the amplitude of the epi-illumination can be adjusted to twice the amplitude of the two-beam interference standing wave, and the phase of the epi-illumination is changed to the phase of the two-beam interference standing wave. Can be synchronized. That is, it is possible to obtain a three-beam interference standing wave that is effective within the allowable range for microscopic observation.
  • the scattered light intensity (light quantity) distribution (light distribution data) formed on the cooled CCD camera 168 is input (step S120), and the three-beam interference standing wave is input.
  • the phase is shifted by the shift amount ⁇ (step S130), it is determined whether the total shift amount ⁇ has reached 2 ⁇ (step S140), and the processing of steps S120 to S140 is repeated until the total shift amount ⁇ reaches 2 ⁇ .
  • the shift amount ⁇ for example, when n is expressed by 2 ⁇ / n, n, 10, 20, or 30, can be used.
  • This is a process of moving the mirror 154a of 154 by the moving distance d2 d1 / 2 [nm]. This is because, when one phase of the two light beams of the two light beam interference standing wave (oblique illumination) forming the synchronized three light beam interference standing wave is shifted by the shift amount ⁇ , the phase of the two light beam interference standing wave is changed.
  • the phase should be shifted by ⁇ / 2 in order to synchronize the bias plane wave (epi-illumination) of the third light beam with the two-beam interference standing wave whose phase is shifted.
  • the electric field component E1 + E2 is a standing wave expressed by the equation (16).
  • the electric field component E3 of the bias plane wave is expressed by the equation (17)
  • the electric field component E1 + E2 + E3 is expressed by the equation (18).
  • phase of the epi-illumination is shifted by ⁇ / 2
  • D in the equation (26) is shifted by ⁇ / 2
  • the standing wave shift is realized while maintaining the equal sign in the equation (27). Therefore, even if the interference of the reflected light wave as well as the interference of the incident light wave is taken into consideration, the phase of one plane wave of the oblique illumination of the three-beam interference standing wave (two-beam interference standing wave) is shifted. It is understood that the phase of the three-beam interference standing wave can be shifted while maintaining the synchronization by shifting the phase by ⁇ and shifting the phase of the epi-illumination (bias plane wave) by synchronizing with the shift amount ⁇ / 2. .
  • step S150 the rotated flag F is checked (step S150).
  • the rotated flag F is set to 0 as an initial value, and when the sample stage 121 is rotated 90 degrees by repeating the processes in steps S120 to S140, the value 1 is set in step S180 described later. is there.
  • the rotated flag F is 0, the three-beam interference standing wave is adjusted to the initial value using the initial value adjusted in step S110 (step S160), and the sample stage 121 is rotated by 90 degrees (step S170). ), 1 is set in the rotated flag F (step S180), and the process returns to step S120.
  • the process of rotating the sample stage 121 by 90 degrees and returning to step S120 performs a process of rotating the three-beam interference standing wave irradiated on the sample surface 123 by 90 degrees and shifting the phase by the shift amount ⁇ again. Because. Thereby, the three-beam interference standing wave is irradiated in two directions orthogonal to the sample surface 123, and the light distribution can be acquired by sequentially shifting the phase of the three-beam interference standing wave.
  • step S150 When the sample stage 121 is rotated 90 degrees and the phase of the three-beam interference standing wave is shifted by the shift amount ⁇ to acquire the light distribution data and the total shift amount ⁇ reaches 2 ⁇ , a negative determination is made in step S150. This routine is completed.
  • step S200 a process of calculating light distribution data for each shift of the estimated sample having a known structure is performed.
  • Any estimated sample may be used as long as it is known. For example, an ideal structure according to the design value of the sample surface 123 is used, or uniform if the structure of the sample surface 123 is not known at all. (That is, a flat one) can be used.
  • the light distribution data for each shift of the estimated sample is calculated using the shift amount ⁇ used in the light distribution data acquisition control program.
  • an error between the light distribution data for each shift of the sample surface 123 and the light distribution data for each shift of the estimated sample is obtained (step S210), and the estimated sample is corrected in a direction to cancel this error, thereby creating an approximate sample. Then, it is determined whether or not the error has converged (step S230).
  • the correction amount when correcting the estimated sample can be a predetermined minute amount or can be a value obtained by multiplying the magnitude of the error by a gain.
  • the error is compared with a predetermined threshold value as a value that can be determined that the error has converged.
  • a method for determining that the process has converged when the processes of steps S200 to S230 are repeated a predetermined number of times for example, 100 times, 1000 times, or 10,000 times. Can do. If it is determined that the error has not converged, the approximate sample is replaced with the estimated sample (step S240), and the process returns to step S200 for calculating light distribution data for each shift of the replaced estimated sample. By repeating the processes in steps S200 to S230, the approximate sample approximates the sample surface 123. If it is determined in step S230 that it has converged, the approximate sample obtained at that time is output as a solution (that is, the resolution of the sample surface 123) (step S250), and this program is terminated.
  • a solution that is, the resolution of the sample surface 123
  • the two-beam interference is obtained by changing the optical path length of the other light that generates the two-beam interference standing wave by the drive mirror 144 by an amount corresponding to the movement distance d1.
  • the phase of the three-beam interference standing wave irradiating the sample surface 123 is shifted by the shift amount ⁇ and the light distribution data can be detected.
  • the sample stage 121 is driven to rotate the sample 122 by 90 degrees, and the phase of the three-beam interference standing wave irradiated to the sample surface 123 is shifted by the shift amount ⁇ .
  • the sample stage 121 is driven to rotate the sample 122 by 90 degrees, and the phase of the three-beam interference standing wave irradiated to the sample surface 123 is shifted by the shift amount ⁇ .
  • the light intensity image is acquired by the cooled CCD camera 168 by changing the phase change amount ⁇ 2 until the phase of the epi-illumination reaches 2 ⁇ , and the acquired light intensity image is Fourier transformed.
  • An image in which only a peak derived from moire fringes based on a three-beam interference standing wave is observed is searched as a determination image from the Fourier transform image obtained as described above, and when there is no determination image, the wave plate 150 and the polarizing plate 152 are searched.
  • the wave plate 150 and the polarizing plate 152 are driven to increase the intensity (amplitude) of the epi-illumination by a predetermined amount.
  • the process of reducing is repeated until the number of images for determination reaches less than the threshold, and the amplitude when the number of images for determination reaches less than the threshold is used as the initial amplitude of epi-illumination, and the image for determination is less than the threshold.
  • the phase of the epi-illumination can be adjusted to twice the amplitude of the two-beam interference standing wave and the phase of the epi-illumination can be adjusted. It can be synchronized with the phase of the two-beam interference standing wave. That is, it is possible to obtain a three-beam interference standing wave that is effective within the allowable range for microscopic observation.
  • a CW blue laser manufactured by Coherent Inc. is used as the laser light source 132
  • a mounted Zero Order 1/2 Waveplate manufactured by Sorabo is used as the wave plates 134, 150, 162
  • a Sorlab is manufactured as the polarizing beam splitter 136.
  • Polarizing Beamsplitter Cubes Polarizing Beamsplitter Cubes, Polarizing Beamsplitter Cubes made by Thorlabs as a polarizing beam splitter 160, 45 ° incident multi-layered plane mirror made by Sigma Koki as mirrors 140, 144a and 154a, and aluminum plane mirror made by Sigma Koki as mirrors 146 and 148
  • a non-polarization cube half mirror made by Sigma Kogyo as the beam splitter 142, a laser beam expander made by Sigma Kogyo as the beam expander 156, an objective lens made by Edmund Optics as the objective lens 164, and piezo actuators 144b and 154b.
  • Physik Instrumente PZT and Physik Instrumente PZT controller cooled CCD camera 168 as a cooled CCD camera from BTTRAN, and sample stage 121 as a rotating stage made by Sigma Kogyo Co., Ltd.
  • the present invention is not limited, and any device or the like may be used as long as it has the same performance or higher performance.
  • the present invention can be used in the manufacturing industry of lighting devices and microscopic observation devices.

Abstract

定在波用平面波照明部40,50によって、光源部30からの光を用いて二光波の平面波41,51を生成し、生成した二光波の平面波41,51を試料面23上で干渉させて生成される定在波による照明を試料面23に対して行なう。さらに、バイアス平面波照明部60によって、定在波の電場変位が試料面23上の各位置で値0になる基準時期を境にして電場変位が試料面23上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるよう定在波に同期し、且つ、試料面23上での定在波の電場変位を丁度正側のみまたは負側のみとなるまで嵩上げする振幅として予め定められたバイアス用振幅(定常波と等しい値2Aの振幅)で振動するバイアス平面波61を、光源部30からの光を用いて生成し、生成したバイアス平面波61による照明を試料面23に対して行なう。

Description

照明方法および顕微観察装置
 本発明は、照明方法および顕微観察装置に関し、詳しくは、試料の顕微観察される試料面からの光の強度分布に基づいて該試料面を解像する顕微観察装置に用いられる照明方法およびこうした照明方法を用いた顕微観察装置に関する。
 従来、この種の照明方法を用いる顕微観察装置(光学顕微鏡など)とコンピュータとにより構成された高解像検出装置として、レーザ光を放射する光源と、光源からの光束を分割して反射した2光束を試料面上で干渉させて定在波照明を行なうレンズやビームスプリッタ,複数の反射鏡,圧電素子,プリズム等からなる投光光学系と、試料面からの光束を対物レンズ等のレンズを透過させてCCD等の受光部により受光する観察光学系と、圧電素子による1つの反射鏡の駆動により定在波照明をナノオーダで複数回シフトさせると共に受光部により測定された受光量を入力して解析することによって超解像を行なうコンピュータと、を備えるものが提案されている(例えば、特許文献1参照)。
 この高解像検出装置では、コンピュータによる超解像処理として、n個のCCD等の受光量に関して定在波照明をm回シフトさせて得られるn×m通りの連立方程式を超解像のための基本方程式として作成し、この方程式に対して試料面上の位置Aj(j=1~n)における照明光の強度(照明光量)Ijと回折寄与率D(|i-j|))とを与えることにより方程式を解いて散乱効率αjを求めるといったアルゴリズムを採用している。この装置では、こうしてコンピュータによりナノオーダの光散乱変化を後処理することによってレイリー限界を超えた解像を行なうものとしている。
特開2007-225563号公報
 一般に、光学顕微鏡などの顕微観察装置は、物理的な回折限界に支配されるため、光の半波長程度以下の構造の観察が困難である。一方で、光学顕微鏡などの顕微観察装置は、真空環境が不要で低侵襲性や高速性等を有するなど、電子顕微鏡や原子力間顕微鏡などの他の顕微観察装置にはない優れた特性を有するため、回折限界を超越できるようにすることが強く要請されている。こうした要請に対し、上述した高解像検出装置のように定在波による構造照明を利用して超解像を行なう装置では、比較的簡易な構成で回折限界を超越することができる点で有用であった。
 しかしながら、上述した高解像検出装置のように定在波による構造照明を利用して超解像を行なう装置では、超解像処理の対象が、コヒーレント光源を用いてもインコヒーレント結像が可能な蛍光サンプルといった特殊な試料のみに限定され、超解像処理を広く一般的な試料に適用することができないという課題があった。即ち、上述したような超解像の手法は、できるだけ高い分解能を得るためには明るくより鋭敏な構造照明を形成する必要があることから、レーザ光などのコヒーレント光源を用いることが望ましいのに対し、像形成のためには一般にコンピュータによる再構成演算が必要であることから、像形成が破壊的干渉ではなく強度和でなされるインコヒーレント結像に対してのみ有効適用が可能な手法であった。
 本発明の照明方法および顕微観察装置は、試料面からの光波情報を用いた超解像処理の適用範囲の拡大を図ることを主目的とする。
 本発明の照明方法および顕微観察装置は、上述の主目的を達成するために以下の手段を採った。
 本発明の照明方法は、
 試料の顕微観察される試料面からの光の強度分布に基づいて該試料面を解像する顕微観察装置に用いられる照明方法であって、
 光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を前記試料面に照射する一方で前記光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を前記試料面に対して法線方向から照射することによって三光束定在波を前記試料面への照射する、
 ことを特徴とする。
 本発明の照明方法では、光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を試料面に照射する一方で光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を試料面に対して法線方向から照射することによって三光束定在波を試料面に照射する。バイアス平面波は、その振幅により試料面上に存在する他の光波群からなる電場変位を正側や負側に嵩上げするから、二光束定在波とバイアス平面波とからなる三光束定在波を試料面に照射することにより、この照射により試料面からの反射光や散乱光の電場変位を正側や負側に嵩上げする。これにより、試料面からの光波情報が打ち消し合うのを抑制し、蛍光試料に限定されずに一般的な試料に超解像処理を適用するなど、試料面からの光波情報を用いた超解像処理の適用範囲の拡大を図ることができる。ここで、「超解像」とは、光学系を通して対象物の細部まで明瞭な像を取得することを意味するものとし、高解像と言い換えることもできるし、より具体的には、観察光学系の回折限界を超える解像などということもできる。
 こうした本発明の照明方法において、前記バイアス平面波は、位相が前記二光束定在波の電場変位が前記試料面上の各位置で値0になる程度の時期として予め定められた基準時期を境にして電場変位が前記試料面上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるように調整されており、振幅が前記試料面上に存在する他の光波群からなる電場変位を正側のみまたは負側のみとなる程度まで嵩上げするよう調整されている平面波である、ことを特徴とするものとすることもできる。こうすれば、二光束定在波による照明のみの場合には試料面上で正負に亘る電場分布が定在波状に周期的に現れるのに対し、バイアス平面波による照明を加えることによって試料面上での正負に亘る電場分布を正側のみまたは負側のみとなる程度まで嵩上げした(即ち、正負に亘らない程度まで嵩上げした)電場分布が周期的に現れるようにすることができる。ここで、「基準時期」は、定在波の電場変位が試料面上の各位置で値0若しくは略値0になる時期として予め定められたものや、定在波の電場と試料面での反射光波(全ての反射光波)の電場との和の電場変位が試料面上の各位置で値0若しくは略値0になる時期として予め定められたものなどとすることができる。
 また、本発明の照明方法において、前記バイアス平面波は、振幅については前記二光束定在波の振幅と同一になるように調整されていると共に位相については前記二光束定在波に同期するように調整されている、ことを特徴とするものとすることもできる。こうすれば、三光束定在波が照射された試料面上での電場分布を丁度正側のみまたは負側のみとなる程度まで嵩上げすることができる。
 さらに、本発明の照明方法において、前記二光束定在波による前記試料面への照明を伴って前記バイアス平面波の位相を2πに至るまで所定量ずつシフトさせて前記試料面を照明することにより前記試料面から反射または散乱する光の強度分布であるシフト毎の光分布を取得する処理と、前記シフト毎の光分布に対してフーリエ変換して得られるフーリエ変換画像から前記二光束定在波に基づくモアレ縞に由来するピークの周期の2倍の周期となる前記三光束定在波に基づくモアレ縞に由来するピークだけが観察される判定用画像を検索する処理と、前記判定用画像が存在しないときには前記バイアス平面波の振幅を大きくする一方で前記判定用画像の数が閾値以上のときには前記バイアス平面波の振幅を小さくする処理と、からなる一連の処理を、前記判定用画像の数が前記閾値未満になるまで繰り返し実行し、前記判定用画像の数が前記閾値未満のときの振幅を前記バイアス平面波の初期振幅とすると共に前記判定用画像の数が前記閾値未満のときの該判定用画像に対応する位相を前記バイアス平面波の初期位相として調整された三光束定在波を照明する、ことを特徴とするものとすることもできる。こうすれば、容易に、自動的に、三光束定在波が照射された試料面上での電場分布を丁度正側のみまたは負側のみとなる程度まで嵩上げすることができる。なお、三光束定在波の調整のために基準試料を用いる。基準試料は、定在波との間にモアレ縞を生成する周期構造とし、ラインピッチが既知であるようなラインアンドスペースパターンが望ましい。そして、基準試料に対し三光束定在波を入射し、生成するモアレ縞のパターンを利用することで調整を行なうのである。
 あるいは、本発明の照明方法において、前記二光束定在波の位相と前記バイアス平面波の位相とを同期して順次シフトすることにより前記三光束定在波の位相を順次シフトする、ことを特徴とするものとすることもできる。この場合、前記二光束定在波の一方の平面波の位相を所定位相ずつ順次シフトすると共に前記バイアス平面波の位相を前記所定位相の半分ずつ順次シフトすることにより前記三光束定在波の位相を順次シフトする、ものとすることもできる。さらにこの場合、前記二光束定在波の一方の平面波の光路長を所定距離ずつ順次変更すると共に前記バイアス平面波の光路長を前記所定距離の半分ずつ順次変更することにより前記三光束定在波の位相を順次シフトする、ものとすることもできる。こうすれば、二光束定在波とバイアス平面波とからなる三光束定在波の位相の同期を保持したまま三光束定在波の位相を順次シフトさせることができる。この結果、三光束定在波の位相をシフトさせながら試料面からの反射光や散乱光などの光情報を得ることができる。ここで、「位相をシフトさせる」とは、二光束定在波や三光束定在波の節の位置を移動させることを意味する。
 本発明の顕微観察装置は、
 試料の顕微観察される試料面からの光の強度分布に基づいて該試料面を解像する顕微観察装置であって、
 光源部と、
 前記光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を前記試料面に照射する二光束定在波照射手段と、前記光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を前記試料面に対して法線方向から照射するバイアス平面波照射部と、を有し、前記二光束定在波と前記バイアス平面波とによる三光束定在波を前記試料面に照射する照明装置と、
 前記三光束定在波の照射によって反射および/または散乱する前記試料面からの光の強度分布を光分布として取得する光分布取得部と、
 前記三光束定在波の位相を順次シフトするように前記照明装置を制御すると共に前記三光束定在波の位相がシフトする毎に前記光分布を取得するように前記光分布取得部を制御するシフト制御部と、
 前記三光束定在波の位相がシフトする毎に取得したシフト毎の光分布に対して超解像処理を施して前記試料面を解像する解像部と、
 を備えることを要旨とする。
 この本発明の顕微観察装置では、照明装置は、光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を試料面に照射する一方で光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を試料面に対して法線方向から照射することによって二光束定在波とバイアス平面波とによる三光束定在波を試料面に照射する。そして、三光束定在波の位相を順次シフトさせてシフト毎に試料面から反射や散乱する光の強度分布である光分布を取得し、取得したシフト毎の光分布に対して超解像処理を施して試料面を解像する。バイアス平面波は、その振幅により試料面上に存在する他の光波群からなる電場変位を正側や負側に嵩上げするから、二光束定在波とバイアス平面波とからなる三光束定在波を試料面に照射することにより、この照射により試料面からの反射光や散乱光の電場変位を正側や負側に嵩上げする。これにより、試料面からの光波情報が打ち消し合うのを抑制し、蛍光試料に限定されずに一般的な試料でも有効なシフト毎の光分布を取得して超解像処理を適用することができる。ここで、「位相がシフトする」とは、三光束定在波の節の位置が移動することを意味する。また、「超解像」とは、光学系を通して対象物の細部まで明瞭な像を取得することを意味するものとし、高解像と言い換えることもできるし、より具体的には、観察光学系の回折限界を超える解像などということもできる。
 こうした本発明の顕微観察装置において、前記バイアス平面波照射部は、前記バイアス平面波の位相を、前記二光束定在波の電場変位が前記試料面上の各位置で値0になる程度の時期として予め定められた基準時期を境にして電場変位が前記試料面上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるように調整すると共に、前記バイアス平面波の振幅を、前記試料面上に存在する他の光波群からなる電場変位を正側のみまたは負側のみとなる程度まで嵩上げするよう調整する照射部である、ものとすることもできる。こうすれば、二光束定在波による照明のみの場合には試料面上で正負に亘る電場分布が定在波状に周期的に現れるのに対し、バイアス平面波による照明を加えることによって試料面上での正負に亘る電場分布を正側のみまたは負側のみとなる程度まで嵩上げした(即ち、正負に亘らない程度まで嵩上げした)電場分布が周期的に現れるようにすることができる。ここで、「基準時期」は、定在波の電場変位が試料面上の各位置で値0若しくは略値0になる時期として予め定められたものや、定在波の電場と試料面での反射光波(全ての反射光波)の電場との和の電場変位が試料面上の各位置で値0若しくは略値0になる時期として予め定められたものなどとすることができる。
 この基準時期を用いて調整する態様の本発明の顕微観察装置において、前記二光波の平面波の各電場をE1,E2,前記バイアス平面波の電場をE3,前記二光波の平面波の各振幅をA,前記バイアス平面波の振幅を前記二光束定在波と等しい振幅,前記二光波の平面波および前記バイアス平面波の各波数をk,前記二光波の平面波の前記試料面に対する入射角をθ,前記二光波の平面波の入射面と前記試料面との交線方向の位置をx,前記試料面に対する法線方向の位置をy,角周波数をω,時間をtとしたときに、前記二光束定在波照明部は、次式(1)および式(2)の関係を有する前記二光波の平面波を用いて照明を行なう照明部であり、前記バイアス平面波照明部は、次式(3)の関係を有する前記バイアス平面波を用いて照明を行なう照明部である、ものとすることもできる。こうすれば、バイアス平面波による照明によって、二光束定在波による照明に基づく試料面上での正負に亘る電場分布を丁度正負に亘らないように嵩上げした電場をより確実に生成することができる。
Figure JPOXMLDOC01-appb-M000003
 この式(1)および式(2)の関係を有する二光波の平面波を用いて照明を行なうと共に式(3)の関係を有するバイアス平面波を用いて照明を行なう態様の本発明の照明装置において、前記二光波の平面波の前記試料面での反射による各反射光波の電場をE1r,E2r,前記試料面における前記二光波の平面波の各反射率をr1,r2,前記二光波の平面波の前記試料面での反射による各反射光波の前記二光波の平面波に対する位相差をδ1,δ2とすると共に、前記バイアス平面波の前記試料面での反射による反射光波の電場をE3r,前記試料面における前記バイアス平面波の反射率をr3,前記バイアス平面波の前記試料面での反射による反射光波の前記バイアス平面波に対する位相差をδ3,前記定在波と等しい振幅として前記バイアス平面波の振幅を補正したときの補正後振幅をP,前記バイアス平面波の位相を補正したときの位相補正分をΔDとしたときに、前記バイアス平面波照明部は、次式(4)ないし(6)の関係に基づく前記補正後振幅Pと前記位相補正分ΔDとを用いて前記電場E3を補正した補正後電場E3aの式(7)の関係を有する前記バイアス平面波を用いて照明を行なう照明部である、ものとすることもできる。こうすれば、振幅と位相とを補正したバイアス平面波による照明によって、定在波による照明と、この定在波を生成するための二光波の平面波の各反射光波と、バイアス平面波の反射光波とに基づく試料面上での正負に亘る電場分布を丁度正負に亘らないように嵩上げした電場をより確実に生成することができる。
Figure JPOXMLDOC01-appb-M000004
 また、基準時期を用いて調整する態様の本発明の顕微観察装置において、前記バイアス平面波照明部は、前記二光波の平面波と前記バイアス平面波との前記試料面での各反射光波の電場変位に基づく前記基準時期および振幅を用いて照明を行なう、ものとすることもできる。こうすれば、位相と振幅とを補正したバイアス平面波による照明によって、定在波による照明と、この定在波を生成するための二光波の平面波の各反射光波と、バイアス平面波の反射光波とに基づく試料面上での正負に亘る電場分布を正負に亘らない程度に嵩上げした電場を生成することができる。
 本発明の顕微観察装置において、前記バイアス平面波照明部は、振幅については前記二光束定在波の振幅と同一になるように調整すると共に位相については前記二光束定在波に同期するように調整して前記バイアス平面波を照射する照射部である、ものとすることもできる。こうすれば、三光束定在波が照射された試料面上での電場分布を丁度正側のみまたは負側のみとなる程度まで嵩上げすることができる。
 本発明の顕微観察装置において、前記二光束定在波照明部による前記二光束定在波による照明を伴って前記バイアス平面波の位相を2πに至るまで所定量ずつシフトさせて前記バイアス平面波による照明を行なうよう前記照明装置を制御するバイアス平面波位相シフト制御と、前記バイアス平面波の位相を前記所定量ずつシフトさせる毎にシフト毎の光分布を取得するよう前記光分布取得部を制御するシフト毎光分布取得制御と、前記シフト毎の光分布に対してフーリエ変換して得られるフーリエ変換画像から前記二光束定在波に基づくモアレ縞に由来するピークの周期の2倍の周期となる前記三光束定在波に基づくモアレ縞に由来するピークだけが観察される判定用画像を検索すると共に前記判定用画像が存在しないときには前記バイアス平面波の振幅を大きくする一方で前記判定用画像の数が閾値以上のときには前記バイアス平面波の振幅を小さくするよう前記照明装置を制御する振幅調整制御と、からなる3つの制御を前記判定用画像の数が前記閾値未満になるまで繰り返し実行し、前記判定用画像の数が前記閾値未満のときの振幅を前記バイアス平面波の初期振幅として設定すると共に前記判定用画像の数が前記閾値未満のときの該判定用画像に対応する位相を前記バイアス平面波の初期位相として設定する初期値設定部、を備えるものとすることもできる。こうすれば、容易に、自動的に、三光束定在波が照射された試料面上での電場分布を丁度正側のみまたは負側のみとなる程度まで嵩上げすることができる。
 本発明の顕微観察装置において、前記シフト制御部は、前記二光束定在波の位相と前記バイアス平面波の位相とを同期して順次シフトするよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部であるものとすることもできる。この場合、前記シフト制御部は、前記二光束定在波の一方の平面波の位相を所定位相ずつ順次シフトすると共に前記バイアス平面波の位相を前記所定位相の半分ずつ順次シフトするよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部であるものとすることもできる。更にこの場合、前記シフト制御部は、前記二光束定在波の一方の平面波の光路長を所定距離ずつ順次変更すると共に前記バイアス平面波の光路長を前記所定距離の半分ずつ順次変更するよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部であるものとすることもできる。こうすれば、二光束定在波とバイアス平面波とからなる三光束定在波の位相の同期を保持したまま三光束定在波の位相を順次シフトさせることができる。この結果、三光束定在波の位相をシフトさせながら試料面からの反射光や散乱光などの光情報を得ることができる。
 本発明の顕微観察装置において、前記試料を載置すると共に前記試料面の法線方向を回転軸として前記試料を回転させる回転ステージを備え、前記シフト制御部は、前記試料面が90度回転するよう前記回転ステージを制御すると共に、前記試料面の90度の回転の前後で前記三光束定在波の位相を順次シフトするように前記照明装置を制御すると共に前記三光束定在波の位相がシフトする毎に前記光分布を取得するように前記光分布取得部を制御する制御部である、ものとすることもできる。こうすれば、三光束定在波を調整することなく、容易に試料面に直交する2方向に三光束定在波を照射し、位相を順次シフトさせて光分布を取得することができる。
本発明の一実施例としての照明装置20を含む顕微観察システム10の構成の概略を示す構成図である。 照明装置20により試料面23に照射される定在波生成用の平面波41,51による照明とバイアス平面波61による照明との様子を模式的に示す説明図である。 試料面23とx軸,y軸,z軸方向との関係の一例を示す説明図である。 定在波生成用の平面波41,51のみによる照明を試料面23に対して行なう従来例の様子を模式的に示す説明図である。 定在波生成用の平面波41,51による照明とバイアス平面波61による照明とを試料面23に対して行なう実施例の様子を模式的に示す説明図である。 平面波41,51による定在波照明とバイアス平面波61による照明とを干渉させたときの試料面23上の電場の時間変化の様子の一例を示す説明図である。 図4の従来例の試料面23上の2点の解像対象の解像を行なう様子の一例を説明するための説明図である。 図5の実施例の試料面23上の2点の解像対象の解像を行なう様子の一例を説明するための説明図である。 平面波41,51による定在波照明とバイアス平面波61による照明とを干渉させたときの試料面23上の照明強度の時間変化の様子の一例を示す説明図である。 超解像処理を適用する際の計算機シミュレーション条件を示す説明図である。 一般的な光学顕微鏡により得られる照明強度分布の一例を示す説明図である。 一般的な試料に対して定在波照明のみを照射して超解像処理を行なった場合の計算機シミュレーション結果としての照明強度分布の一例を示す説明図である。 蛍光サンプルに対して定在波照明のみを照射して超解像処理を行なった場合の計算機シミュレーション結果としての照明強度分布の一例を示す説明図である。 一般的な試料に対して照明装置20を用いて超解像処理を行なった場合の計算機シミュレーション結果としての照明強度分布の一例を示す説明図である。 変形例における式(4)ないし(7)に用いられる各データの例を示す説明図である。 第2実施例の顕微観察システム110の構成の概略を示す構成図である。 位相差δ1と光路長lとの関係を説明する説明図である。 コンピュータ170により実行される光分布データ取得制御プログラムの一例を示すフローチャートである。 コンピュータ170により実行される超解像処理プログラムの一例を示すフローチャートである。 図19における超解像処理プログラムによる処理を模式的に示す説明図である。 初期調整プログラムの一例を示すフローチャートである。
 次に、本発明を実施するための形態を実施例を用いて説明する。
 図1は、本発明の一実施例としての照明装置20を含む顕微観察システム10の構成の概略を示す構成図であり、図2は、照明装置20により試料22の一表面(以下、試料面という)23に照射される定在波生成用の2つの平面波41,51による照明とバイアス平面波61による照明との様子を模式的に示す説明図である。試料22としては、例えば、半導体ウェハやMEMS(Micro Electro Mechanical Systems),Micro-TAS(Micro Total Analysis Systems)等の微細工業製品、非染色観察対象としての生体細胞などがある。
 実施例の顕微観察システム10は、図1に示すように、試料面23に3つの光(3光波,3光束)を照射する照明装置20と、例えば対物レンズを含む複数のレンズにより構成され試料面23からの光を透過する観察光学系としてのレンズ機構14と、例えばCCD(電荷結合半導体素子)又はCMOS(相補性金属酸化膜半導体素子)などの複数の受光素子を用いて試料面23からの光を測定光としてレンズ機構14を介して受光する受光部16と、照明装置20の各種調整機構を駆動する汎用のコンピュータ70(以下、調整用PCという)と、受光部16による受光量を信号として入力すると共に入力した受光量を解析して超解像を行なう汎用のコンピュータ80(以下、解析用PCという)と、を備える。実施例では、照明装置20とレンズ機構14と受光部16とによって顕微観察装置12(例えば、光学顕微鏡など)が構成され、この顕微観察装置12と調整用PC70と解析用PC80とによって顕微観察システム10が構成されている。
 実施例の照明装置20は、レーザ光などのコヒーレント光を3つに分割して放射する光源部30と、試料面23を中央にして対向する位置に配置され試料面23上で互いに干渉させたときに定在波を生成する2つ(2光波,2光束)の平面波41,51(図2参照)による照明を試料面23に対して行なう2つの定在波用平面波照明部40,50と、試料面23の鉛直上方に配置され試料面23上で定在波と干渉したときに定在波の電場変位を嵩上げ(バイアス加算)する平面波(以下、バイアス平面波という)61(図2参照)による照明を試料面23に対して行なうバイアス平面波照明部60と、備える。バイアス平面波61による照明は、試料面23の鉛直上方から試料面23に対して行なわれることから、落射照明として機能する。
 光源部30は、コヒーレント光源としての光源装置32と、光源装置32からの光を2つに分割してその一方をバイアス平面波照明部60に入射させるビームスプリッタ34と、ビームスプリッタ34により分割された他方の光を入射し2つに分割してその一方を定在波用平面波照明部40に入射させると共にその他方を定在波用平面波照明部50に入射させるビームスプリッタ36と、を有する。
 定在波用平面波照明部40,50は、それぞれ、偏光子や波長板等により構成されビームスプリッタ36からの入射光を偏光面(電場の向き)が試料面23に平行となるS偏光とするよう調整する偏光調整機構42,52と、偏光子や波長板等により構成され平面波41,51の各振幅を調整する振幅調整機構44,54と、波長板や位相変調素子,ピエゾアクチュエータ等により構成され平面波41,51の干渉により試料面23上で生成される定在波をナノオーダでシフトさせる際に平面波41,51の各位相を調整する相対的位相差調整機構46,56と、ミラーやピエゾアクチュエータ等により構成され平面波41,51の試料面23に対する各入射角を微調整する入射角度微調整機構48,58と、を有する。平面波41,51の試料面23に対する入射角は、実施例では、試料22と定在波用平面波照明部40,50との相対的な位置関係によって、平面波41,51の干渉により試料面23上に所望の定在波が生成されるように予め調整されているものとしたが、入射角度微調整機構48,58により微調整が可能となっている。
 バイアス平面波照明部60は、偏光子や波長板等により構成されビームスプリッタ34からの入射光を偏光面(電場の向き)が定在波生成用の平面波41,51の偏光面に合うように調整する偏光調整機構62と、偏光子や波長板等により構成されバイアス平面波61の振幅を調整する振幅調整機構64と、波長板や位相変調素子,ピエゾアクチュエータ等により構成されバイアス平面波61の位相を調整する位相差調整機構66と、ミラーやピエゾアクチュエータ等により構成されバイアス平面波61が試料面23に対して垂直に入射するように微調整する入射角度微調整機構68と、を有する。バイアス平面波61の試料面23に対する入射角は、実施例では、試料22とバイアス平面波照明部60との相対的な位置関係によって、バイアス平面波61による照明が試料面23に対してできるだけ理想的な落射照明となるように予め調整されているものとしたが、入射角度微調整機構68により微調整が可能となっている。
 調整用PC70は、図示しないCPUやROM,RAM,HDD,入出力ポート等を有すると共にキーボードやマウス等の入力装置が接続され且つディスプレイ等の出力装置が接続されており、照明装置20における偏光調整機構42,52,62と、振幅調整機構44,54,64と、相対的位相差調整機構46,56,位相差調整機構66と、入射角度微調整機構48,58,68と、による各調整が行なわれるよう駆動信号を出力ポートを介して出力することによって、照明装置20の各種調整機構を駆動する。
 解析用PC80は、図示しないCPUやROM,RAM,HDD,入出力ポート等を有すると共にキーボードやマウス等の入力装置が接続され且つディスプレイ等の出力装置が接続されており、受光部16による測定光の受光量を信号として入力ポートを介して入力すると共に、予めROMに記憶されたプログラムが採用する所定のアルゴリズムに入力した受光量を適用し解析して超解像を行なう。所定のアルゴリズムは、平面波41,51の干渉により試料面23上で生成される定在波による照明(以下、定在波照明ともいう)を複数回シフトさせて超解像を行なう超解像処理(超解像手法)を実現するためのものであり、実施例では、以下のアルゴリズムを用いるものとした。
 実施例のアルゴリズムでは、まず、試料面23からの散乱光を含む測定光の受光量を受光部16上の位置i(i=1~n)における受光量Xiとして予め定めておき、試料面23上の位置jにおける照明光の強度を示す照明光量Ij、及び、試料面23上の位置jと受光部16上の位置iとの関係に応じた回折の程度を示す回折寄与率D(|i-j|)を予め取得しておく。そして、定在波生成用の平面波41,51のうち少なくとも一方の位相を調整することにより試料面23上の定在波照明の位置をm通りシフトさせた際のシフト毎(定在波照明の位置毎)に、受光部16によるn個の受光量Xiを入力する。さらに、受光量Xiと照明光量Ijと回折寄与率D(|i-j|)とを用いた、試料面23上の位置jにおける散乱効率αjを未知数とする次式(8)に示すn個の方程式に基づいて、m通りの定在波照明により得られたn×m個の連立方程式を解くことによって(即ち、受光量Xiをこの連立方程式を用いて解析することによって)、散乱効率αjを求める。これにより、試料面23からの光波情報に基づく画像を取得する(即ち、結像を行なう)。実施例のアルゴリズムでは、こうした結像を、定在波生成用の平面波41,51の入射面と試料面23との交線方向(以下、x軸方向とする)の定在波照明のシフトと、試料面23上でx軸方向に垂直な方向(以下、z軸方向とする)の定在波照明のシフトとによって行なうものとした。これにより、より明瞭な画像を取得することができる。このアルゴリズムについては、本発明の中核をなさないため、これ以上詳細な説明は省略する。図3に、試料面23とx軸,y軸,z軸の各方向との関係の一例を示す。図中、y軸方向は、試料面23に対する法線方向となっている。図3には、x軸を定める入射面についても参考のために示した。実施例では、以下、必要に応じてこのx軸,y軸,z軸の各方向を用いて試料面23上の電場の様子等の説明を行なう。
Figure JPOXMLDOC01-appb-M000005
 ここで、「超解像」は、実施例では、例えばレンズなどの光学系を通して対象物の細部まで明瞭な像を取得することを意味するものとし、高解像と言い換えることもできるし、より具体的には、観察光学系の回折限界を超える解像などということもできる。また、「定在波による照明(定在波照明)をシフトする」とは、実施例では、定在波による照明(定在波照明)を形成する定在波の節の位置を所定方向に移動することを意味するものとする。
 次にこうして構成された実施例の顕微観察システム10が含む照明装置20の動作について説明する。図4は、定在波生成用の平面波41,51のみによる照明を試料面23に対して行なう従来例の様子を模式的に示す説明図であり、図5は、定在波生成用の平面波41,51による照明とバイアス平面波61による照明とを試料面23に対して行なう実施例の様子を模式的に示す説明図であり、図6は、平面波41,51による定在波照明とバイアス平面波61による照明とを試料面23上で干渉させたときの試料面23上の電場の時間変化の様子の一例を示す説明図である。図4および図5中、「θ」は、平面波41,51の試料面23に対する入射角(実施例ではスカラー量)を示し、試料面23上の波形は、各照明の試料面23上での電場の和の波形の一状態を示す。なお、この電場の波形は、本来、試料面23上でz軸方向に電場変位が時間変化する波形であるが、説明図の都合上、y軸方向である紙面上下方向に振動する波形として示している。図6中、一点鎖線は平面波41,51の干渉による定在波のみの電場分布(電場変位の分布)を示し、破線はバイアス平面波61のみの電場分布を示し、実線は平面波41,51とバイアス平面波61との干渉による各照明の試料面23上での和の電場分布を示す。図6では、電場分布は、時間的に(a)~(h)の状態を順に繰り返す。これらの状態のうち、図6(a),(e)の状態は、定在波の電場変位が試料面23上の各位置(xz平面上の各位置)で値0になる時期として予め実験や解析により定められた「基準時期」における電場分布の状態を示す。
 まず、照明装置20の定在波用平面波照明部40,50の動作について説明する。実施例では、定在波生成用の二光波の平面波41,51の各電場をE1,E2,平面波41,51の各振幅をA,平面波41,51の各波数をk,平面波41,51の試料面23に対する入射角をθ(前述),平面波41,51の入射面と試料面23との交線方向の位置をx(前述),試料面23に対する法線方向の位置をy(前述),角周波数をω,時間をtとする。これらのうち、振幅Aと入射角θとが調整対象としての目標値であり、電場E1,E2が最終的に得るべき目標値(平面波41,51の波形)である。波数kと角周波数ωとは光源部30の特性に基づいて予め定められた値である。そして、定在波用平面波照明部40,50は、次式(1)および式(2)の関係を有する二光波の平面波41,51による照明を試料面23に対して行なう。具体的には、調整用PC70によって、ビームスプリッタ36からの入射光を偏光面が試料面23に平行となるS偏光とする調整が行なわれるよう偏光調整機構42,52を駆動し、平面波41,51の各振幅を目標値としての振幅Aとする調整が行なわれるよう振幅調整機構44,54を駆動し、平面波41,51の干渉により試料面23上で生成される定在波を前述した所定のアルゴリズムに従ってナノオーダでシフトさせる際に平面波41,51の各位相の調整が行なわれるよう相対的位相差調整機構42,52を駆動し、平面波41,51の試料面23に対する各入射角を目標値としての入射角θとする微調整が行なわれるよう入射角度微調整機構48,58を駆動する。
Figure JPOXMLDOC01-appb-M000006
 こうして定在波用平面波照明部40,50が駆動され式(1)および式(2)の関係を有する定在波照明が行なわれると(この定在波照明のみが行なわれたとすると)、図4の波形や図6の一点鎖線の波形に示すように、試料面23上で正負に亘る電場分布が定在波状に周期的に現れる。即ち、試料面23上の電場分布において隣接するピークが正負に亘る(跨る)分布が形成される。
 続いて、照明装置20のバイアス平面波照明部60の動作について説明する。実施例では、バイアス平面波61の電場をE3,バイアス平面波61の振幅(以下、バイアス用振幅という)を平面波41,51の干渉により生成される定在波と等しい振幅(即ち、振幅Aの2倍),バイアス平面波61の各波数をk,試料面23に対する法線方向の位置をy(前述),角周波数をω,時間をtとする。これらのうち、バイアス用振幅が調整対象としての目標値であり、電場E3が最終的に得るべき目標値(バイアス平面波61の波形)である。前述したように波数kと角周波数ωとは光源部30の特性に基づいて予め定められた値である。そして、バイアス平面波照明部60は、次式(3)の関係を有するバイアス平面波61による照明を試料面23に対して行なう。具体的には、調整用PC70によって、ビームスプリッタ34からの入射光について偏光面を定在波生成用の平面波41,51の偏光面に合わせる調整が行なわれるよう偏光調整機構62を駆動し、バイアス平面波61のバイアス用振幅を目標値(振幅Aの2倍)とする調整が行なわれるよう振幅調整機構64を駆動し、式(3)の電場E3の位相(x軸方向の位置に関係なくy軸方向の位置に応じた初期位相)が得られるよう位相差調整機構62を駆動し、バイアス平面波61が試料面23に対して垂直に入射する微調整が行なわれるよう入射角度微調整機構68を駆動する。
Figure JPOXMLDOC01-appb-M000007
 こうしてバイアス平面波照明部60が駆動され式(3)の関係を有するバイアス平面波61による照明が行なわれると(このバイアス平面波61による照明のみが行なわれたとすると)、バイアス平面波61は、図6の破線の波形に示すように、定在波の電場変位が試料面23上の各位置(xz平面上の各位置)で値0になる時期として予め定められた「基準時期」を境にして、試料面23上で位置(xz平面上の各位置)に拘わらず等しい変位をもって正側と負側とに交互に振れるよう定在波(図6中、一点鎖線参照)に同期し、且つ、定在波の振幅と等しいバイアス用振幅(値2A)で振動するものとなる。ここで、バイアス用振幅は、定在波の振幅と等しい振幅、即ち、定在波生成用の平面波41,51の振幅Aの2倍の値(値2A)としたから、図6からも分かるように、試料面23上での定在波の電場変位(試料面23上に存在する他の光波群(平面波41,51)からなる電場変位)を丁度正側のみまたは負側のみとなるまで嵩上げする振幅となっている。
 このように、定在波照明に加えて、定在波に同期し且つ定在波と等しい振幅で振動するバイアス平面波61による照明を試料面23に対して行なうから、図6に試料面23上に現れる電場E1,E2,E3の和の電場として実線で示すように、定在波照明による試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるように嵩上げした(即ち、丁度正負に亘らないように嵩上げした)電場分布が周期的に現れるようにすることができる。即ち、試料面23上の電場分布の波形において隣接するピークが正負に亘らない分布を形成することができる。
 図7は、図4の従来例の試料面23上の2点の解像対象の解像を行なう様子の一例を説明するための説明図であり、図8は、図5の実施例の試料面23上の2点の解像対象の解像を行なう様子の一例を説明するための説明図であり、図9は、平面波41,51による定在波照明とバイアス平面波61による照明とを試料面23上で干渉させたときの試料面23上の照明強度(電場の二乗値)の時間変化の様子の一例を示す説明図である。図9中、細い実線は平面波41,51とバイアス平面波61との干渉による各照明の試料面23上での和の電場分布を示し、太い実線は平面波41,51とバイアス平面波61との干渉後の試料面23上の照明強度を示す。図9では、図6(b),(c),(f),(g)の状態に対応する4状態を示している。
 実施例の照明装置20のような構造照明を利用する超解像処理(超解像手法)は、微細な周期状の照明強度分布を有する照明に対する試料応答を活用する。図7に示すように、従来例の定在波照明のみの場合は、試料面23上の電場分布(電場変位の分布)において隣接するピークが正負に亘るため、試料面23からの隣接するピーク間の光波情報は互いに打ち消し合う。この場合、超解像処理の適用対象は、コヒーレント光源を用いてもインコヒーレント結像が可能な蛍光サンプルといった特殊な試料のみに限定され、超解像処理を広く一般的な試料に適用することができなかった。一方、図8に実施例の様子として示すように、定在波照明に加えてバイアス平面波61による照明を行なう場合は、試料面23上の電場分布を隣接するピークが正負に亘らないように生成して、微細な周期状の照明強度分布を生成することができるため(図9参照)、試料面23からの隣接するピーク間の光波情報の打ち消し合いがなくなり、光波情報の足し合わせにより像形成を行なうことができる。したがって、コヒーレント光源からの光を試料に照射してその試料からの測定光を受光して結像し超解像を行なう際に、蛍光サンプルのように干渉性がない測定光を発する特殊な試料に限定されることなく、試料が発する散乱光を含む測定光の干渉性の有無に関係なく一般的な試料に対して超解像処理を適用することができる。
 また、実施例の照明装置20では、バイアス平面波61を、定在波に同期し且つ定在波と等しい振幅で振動するものとすることにより、定在波照明による試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるように嵩上げする(即ち、丁度正負に亘らないように嵩上げする)から、定在波照明により試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとする嵩上げ量より小さい嵩上げ量とするものに比して、試料面23からの隣接するピーク間の光波情報の打ち消し合いをより確実に抑制することができる。また、定在波照明により試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとする嵩上げ量より大きい嵩上げ量とするものに比して、より陰影が明瞭な像形成を行なうことができる。
 図10に、超解像処理を適用する際の計算機シミュレーション条件を示し、図11に一般的な光学顕微鏡により得られる照明強度分布の一例を示し、図12に、一般的な試料に対して定在波照明のみを照射して図10に示す条件下で超解像処理を行なった場合の計算機シミュレーション結果としての照明強度分布の一例を示し、図13に、蛍光サンプルに対して定在波照明のみを照射して図10に示す条件下で超解像処理を行なった場合の計算機シミュレーション結果としての照明強度分布の一例を示し、図14に、一般的な試料に対して定在波照明とバイアス平面波による照明とを照射して図10に示す条件下で超解像処理を行なった場合(実施例の照明装置20を用いて超解像処理を行なった場合)の計算機シミュレーション結果としての照明強度分布の一例を示す。図10に示すシミュレーション条件は、光源からの光の波長が488nm,定在波のピッチ(節と節との間の長さ)が270nm,超解像処理における所定方向への定在波照明のシフト回数が10回,その1回のシフトステップサイズ(シフト量)が25nm,光学系NA(実施例のレンズ機構14のレンズ開口数)が0.95,レイリー限界が313nm,2点の解像対象の試料が互いに50nm離れた位置(試料面23上の位置)にある条件となっている。図11に示すように、一般的な光学顕微鏡の場合には、解像対象の試料の像はぼやけて全く見ることができない。図12に示すように、蛍光でない一般的な試料に定在波照明のみを照射する従来例の場合には、発散のために超解像を行なうことができない。一方、図13に示すように、蛍光サンプルに定在波照明のみを照射する従来例の場合には、従来より超解像が可能であった。そして、図14に示すように、定在波照明とバイアス平面波による照明とを行なう本発明の照明装置20によれば、蛍光サンプルでない一般的な試料であっても50nm相当の微細構造を明瞭に分離して像形成が行なわれ超解像が可能となっている。
 以上説明した実施例の顕微観察システム10が含む照明装置20によれば、定在波用平面波照明部40,50によって、光源部30からの光を用いて二光波の平面波41,51を生成すると共に、生成した二光波の平面波41,51を試料面23上で干渉させて生成される定在波による照明を試料面23に対して行なう。さらに、バイアス平面波照明部60によって、定在波の電場変位が試料面23上の各位置で値0になる時期として予め定められた基準時期を境にして電場変位が試料面23上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるよう定在波に同期し、且つ、試料面23上での定在波の電場変位を丁度正側のみまたは負側のみとなるまで嵩上げする振幅として予め定められたバイアス用振幅(定常波と等しい値2Aの振幅)で振動する平面波であるバイアス平面波61を、光源部30からの光を用いて生成すると共に、生成したバイアス平面波61による照明を試料面23に対して行なう。したがって、定在波による照明のみの場合には試料面上で正負に亘る電場分布が定在波状に周期的に現れるのに対し、バイアス平面波61による照明を加えることによって試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるまで嵩上げした(即ち、丁度正負に亘らなくなるまで嵩上げした)電場分布が周期的に現れるようにすることができる。これにより、試料面23からの光波情報が打ち消し合うのが抑制され、蛍光試料に限定されずに一般的な試料に超解像処理を適用するなど、試料面23からの光波情報を用いた超解像処理の適用範囲の拡大を図ることができる。
 実施例の顕微観察システム10が含む照明装置20では、バイアス平面波61を、定在波に同期し且つ定在波と等しい振幅で振動するものとすることにより、定在波照明による試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるように嵩上げする(即ち、丁度正負に亘らないように嵩上げする)ものとしたが、バイアス平面波61を、定在波照明により試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとする嵩上げ量より若干小さい嵩上げ量とするものとしたり、定在波照明により試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとする嵩上げ量(値Aの2倍)より若干大きい嵩上げ量としたりしてもよい。若干小さい嵩上げ量とすることは、バイアス平面波61のバイアス用振幅を、例えば値Aの1.9倍とするなどにより行なうことができる。また、若干大きい嵩上げ量とすることは、バイアス平面波61のバイアス用振幅を、例えば値Aの2.1倍とするなどにより行なうことができる。
 実施例の顕微観察システム10が含む照明装置20では、バイアス平面波61は、平面波41,51の干渉により生成される定在波の電場変位が試料面23上の各位置で値0になる時期として予め定められた「基準時期」を境にして、試料面23上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるよう定在波に同期するものとしたが、この「基準時期」としては、例えば、定在波の電場変位が試料面23上の各位置で値0になる直前の時期や直後の時期などを用いるものとしてもよい。
 実施例の顕微観察システム10が含む照明装置20では、バイアス平面波61による照明を落射照明として行なう、即ち落射型を用いるものとしたが、透過型を用いるものとしてもよい。また、定在波照明についてはエバネッセント型の照明を用いるものとしてもよいし、照明装置20を含む顕微観察装置12としては、偏光子を使用して暗視野型の装置としてもよいし、明視野型の装置としても構わない。
 実施例の顕微観察システム10が含む照明装置20では、上述した所定のアルゴリズムを用いて超解像処理を行なうものとしたが、これとは異なる超解像処理を行なうものとしてもよい。例えば、周波数空間領域において、複数の取得像を合成し、帯域を拡張後に逆フーリエ変換し、実空間領域内での超解像観察像を得る処理(手法)を行なうものとしてもよいし、複数の取得像から逐次的に反復演算し、超解像観察像を得る処理(手法)を行なうなどとしてもよい。
 実施例の顕微観察システム10が含む照明装置20では、試料面23上での各光波の反射による反射光波については特に考慮していないが、反射光波の影響が比較的大きい場合などにはこれを考慮するものとしてもよい。この変形例の場合、照明装置20のバイアス平面波照明部60の動作を以下のように行なう。なお、照明装置20の定在波用平面波照明部40,50の動作は実施例と同様である。
 この変形例では、定在波生成用の平面波41,51の試料面23での反射による各反射光波の電場をE1r,E2r,試料面23における平面波41,51の各反射率をr1,r2,平面波41,51の試料面23での反射による各反射光波の平面波41,51に対する位相差をδ1,δ2とする。なお、振幅A,波数k,入射角θ,位置x,位置y,角周波数ω,時間tについては、実施例と同様である。そうすると、平面波41,51の各反射光波について、次式(4)および式(5)の関係が成立する。さらに、バイアス平面波61の試料面23での反射による反射光波の電場をE3r,試料面23におけるバイアス平面波61の反射率をr3,バイアス平面波61の試料面23での反射による反射光波のバイアス平面波61に対する位相差をδ3,定在波と等しい振幅としてのバイアス用振幅(値2A)を補正したときの補正後振幅をP,バイアス平面波61の位相を補正したときの位相補正分をΔD,補正後振幅Pと位相補正分ΔDとを用いて電場E3を補正した補正後電場をE3aとする。そうすると、バイアス平面波61の反射光波について、式(6)の関係が成立する。また、バイアス平面波61は、式(7)の関係を有することになる。ここで、補正後振幅Pと位相補正分ΔDとが調整対象としての目標値であり、補正後電場E3aが最終的に得るべき目標値(バイアス平面波61の波形)である。前述したように波数kと角周波数ωとは光源部30の特性に基づいて予め定められた値である。なお、試料面23上には、電場E1,E1r,E2,E2r,E3a,E3rの和の電場が現れる。
Figure JPOXMLDOC01-appb-M000008
 ここで、この変形例では、補正後振幅Pは、試料面23上での定在波および全ての反射光波(即ち、平面波41,51の反射光波とバイアス平面波61自身の反射光波)の和の電場変位(即ち、電場E1,E1r,E2,E2r,E3rの和の電場変位)を丁度正側のみまたは負側のみとなるまで(即ち、丁度正負に亘らなくなるまで)嵩上げする振幅として予め実験や解析により定められたものを用いるものとした。また、位相補正分ΔDは、定在波の電場と試料面23での全ての反射光波の電場との和の電場変位(即ち、電場E1,E1r,E2,E2r,E3rの和の電場変位)が試料面23上の各位置で値0若しくは略値0になる時期として予め定められた「基準時期」のタイミングで、バイアス平面波61のみによる電場変位(即ち、電場E3aの電場変位)が試料面23上で位置に拘わらず値0となるように予め実験や解析により定められたものを用いるものとした。したがって、補正後振幅Pによる振幅の補正は、全ての反射光波の試料面23上での電場変位に基づくバイアス用振幅の補正ということができ、位相補正分ΔDによる位相の補正は、全ての反射光波の試料面23上での電場変位に基づく「基準時期」の補正ということができる。
 そして、この変形例では、バイアス平面波照明部60は、式(7)の関係を有するバイアス平面波61による照明を試料面23に対して行なう。具体的には、調整用PC70によって、ビームスプリッタ34からの入射光について偏光面を定在波生成用の平面波41,51の偏光面に合わせる調整が行なわれるよう偏光調整機構62を駆動し、バイアス平面波61の振幅を補正後振幅Pとする調整が行なわれるよう振幅調整機構64を駆動し、位相補正分ΔDを含む式(7)の電場E3aの位相(x軸方向の位置に関係なくy軸方向の位置に応じた初期位相)が得られるよう位相差調整機構62を駆動し、バイアス平面波61が試料面23に対して垂直に入射する微調整が行なわれるよう入射角度微調整機構68を駆動する。即ち、バイアス平面波照明部60は、式(4)ないし(6)の関係に基づいて(各反射光波を考慮して)、試料面23上での定在波および全ての反射光波の和の電場変位(即ち、試料面23上に存在する他の光波群からなる電場変位)を丁度正負に亘らなくなるまで嵩上げする補正後振幅Pと、上述の「基準時期」のタイミングでバイアス平面波61のみによる電場変位を試料面23上で位置に拘わらず値0とす位相補正分ΔDとを予め定めておき、こうして定めた補正後振幅Pと位相補正分ΔDとを用いて電場E3を補正した補正後電場E3aの式(7)の関係を有するバイアス平面波61による照明を行なうのである。
 この変形例によっても、実施例と同様に、バイアス平面波61による照明を加えることによって試料面23上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるまで嵩上げした(即ち、丁度正負に亘らなくなるまで嵩上げした)電場分布が周期的に現れるようにすることができる。これにより、試料面23からの光波情報が打ち消し合うのが抑制され、蛍光試料に限定されずに一般的な試料に超解像処理を適用するなど、試料面23からの光波情報を用いた超解像処理の適用範囲の拡大を図ることができる。
 この変形例に用いられる各データの例としては、図15に例1として示すように、振幅Aを値1.0,反射率r1,r2を値0.4,反射率r3を値0.2,位相差δ1,δ2,δ3を値3.14とした場合には、補正後振幅Pを値1.5,位相補正分ΔDを値0とすればよいことが解析によって分かっている。また、図15に例2として示すように、振幅Aを値1.0,反射率r1,r2を値0.75,反射率r3を値0.55,位相差δ1,δ2,δ3を値3.14とした場合には、補正後振幅Pを値1.1,位相補正分ΔDを値0とすればよいことが解析によって分かっている。さらに、図15に例3として示すように、振幅Aを値1.0,反射率r1,r2を値0.3,反射率r3を値0.2,位相差δ1,δ2を値1.57,位相差δ3を値3.14とした場合には、補正後振幅Pを値2.6,位相補正分ΔDを値0.28とすればよいことが解析によって分かっている。
 次に、上述した実施例で原理を説明した二光波の平面波とバイアス平面波とを用いて具体的な機器を組み込んで構成した第2実施例の顕微観察システム110について説明する。図16は、第2実施例の顕微観察システム110の構成の概略を示す構成図である。第2実施例の顕微観察装置110は、図示するように、試料122を載置する回転ステージとしてのサンプルステージ121と、レーザ光源132と、レーザ光源132からの直線偏光の偏光方向を任意に変更可能な波長板134と、波長板134により偏光方向が定められた光を図16の紙面に平行な偏光(以下、「平面内偏光」という。)の透過成分と図16の紙面に垂直な偏光(以下、「垂直偏光」という。)の反射成分とに分割する偏光ビームスプリッタ136と、偏光ビームスプリッタ136により反射された垂直偏光成分の方向を変更するミラー140と、ミラー140からの垂直偏光成分を二光束に分割するビームスプリッタ142と、ビームスプリッタ142からの垂直偏光成分の一方を試料122の試料面123に照射するミラー148と、ビームスプリッタ142からの垂直偏光成分の他方の方向を変更するミラー144aと光路長の変更により位相を変更するためにミラー144aを駆動するピエゾアクチュエータ144bとからなる駆動ミラー144と、駆動ミラー144からの垂直偏光成分を試料122の試料面123に照射するミラー146と、偏光ビームスプリッタ136からの平面内偏光成分の光量調節(強度調節、振幅調節)を行なう波長板150および偏光板152と、光量調節がされた平面内偏光成分の方向を変更するミラー154aと光路長の変更により位相を変更するためにミラー154aを駆動するピエゾアクチュエータ154bとからなる駆動ミラー154と、駆動ミラー154からの平面内偏光成分のビーム径を拡大するビームエキスパンダ156と、ビーム径が拡大された平面内偏光成分が最終的に平行光となるようにするためのレンズ158と、平面内偏光の透過成分と垂直偏光の反射成分とに分割する偏光ビームスプリッタ160と、偏光ビームスプリッタ162からの平面内偏光成分を垂直偏光成分に偏光する波長板162と、波長板162からの垂直偏光成分を試料面123に照射する対物レンズ164と、試料面123で反射して偏光ビームスプリッタ160で反射された平面内偏光成分の散乱光を結像する結像レンズ166と、結像レンズ166により結像された光の光量の分布(光分布データ)を検出する冷却CCD(charge-coupled device)カメラ168と、サンプルステージ121や波長板134,150,偏光板152,駆動ミラー145,155,冷却CCDカメラ168などを駆動制御すると共に冷却CCDカメラ168により検出された光分布データを入力して超解像処理を行なうコンピュータ170と、を備える。
 第2実施例の顕微観察システム110では、システムを構成する具体的な各機器等については以下のものを用いた。
(1)レーザ光源132:Coherent Inc.製のCWブルーレーザ(出力パワー:150mW、波長:488nm、偏光:リニア垂直(>100:1)、ビーム径:0.70±0.05mm)
(2)波長板134,150,162:ソーラボ製のMounted Zero Order 1/2 Waveplate(型番:WPH10M-488、材質:Crystal Quarts、直径:24.0mm)
(3)偏光ビームスプリッタ136:ソーラボ製のPolarizing Beamsplitter Cubes(型番:PBS101、材質:SF2、Tp:Ts:1000:1、サイズ:10mm×10mm×10mm)
(4)偏光ビームスプリッタ160:ソーラボ製のPolarizing Beamsplitter Cubes(型番:PBS251、材質:SF2、Tp:Ts:1000:1、サイズ:25.4mm×25.4mm×25.4mm)
(5)ミラー140,144a,154a:シグマ光機製の45°入射用誘多膜平面ミラー(型番:TFM-25C05-500、材質:BK7、入射角:45度±3度、直径:25mm)
(6)ミラー146,148:シグマ光機製のアルミ平面ミラー(型番:TFM-25C05-20、材質:BK7、直径:25mm)
(7)ビームスプリッタ142:シグマ光機製の無偏光キューブハーフミラー(型番:NPCH-10-4880、材質:BK7、サイズ:10mm×10mm×10mm、R:T:1:1)
(8)ビームエキスパンダ156:シグマ光機製のレーザビームエキスパンダー(型番:BE-21-V、アフォーカル倍率:×21.0、入射有効径:1.7mm)
(9)対物レンズ164:Edmund Optics製の対物レンズ(型番:BD Plan Apo SL 20×,BD Plan Apo SL 50×,BD Plan Apo SL 100×、NA:0.28,0.42,0.55、焦点距離:10mm,4mm,2mm、作動距離:30.5mm,20.0mm,13.0mm)
(10)ピエゾアクチュエータ144b,154b:Physik Instrumente製のPZT(型番:P-753.11C、閉ループ制御時の駆動距離:10μm、位置決め分解能:Closed loop:0.1nm)およびPhysik Instrumente製のPZTコントローラ(型番:E-710.4CL、サンプリングレート(サーボ):200μs/5kHz、サンプリングレート(センサ):50μs/20kHz、DAC分解能:20bit)
(11)冷却CCDカメラ168:BTTRAN製の冷却CCDカメラ(型番:BS-40、ピクセルサイズ:8.3μm×8.3μm、ピクセル数:772×580、ダイナミックレンジ:16bit、最小撮像時間:0.001s、インターフェース:USB)
(12)サンプルステージ121:シグマ光機製の回転ステージ(型番:KSP-606M、テーブル面直径:60mm、表示分解能:1度)
 第2実施例の顕微観察システム110では、レーザ光源132からのレーザ光(直線偏光)は、波長板134により偏光方向を決定され、偏光ビームスプリッタ136により平面内偏光成分と垂直偏光成分とに分割される。垂直偏光成分は、ミラー140によりビームスプリッタ142に入射されて分割され、一方の光はミラー148によって入射角が調整されて対物レンズ164の外側(図中右側)から試料122の試料面123に照射され、他方の光は駆動ミラー144とミラー146とによりミラー148からの一方の光に対して反対方向(図中左側)から同じ入射角に調整されて対物レンズ164の外側から試料122の試料面123に照射される。ミラー146からの光とミラー148からの光の二光束は、同一の垂直偏光で同一の入射角で反対方向から試料面123に照射されるから、二光束干渉定在波として試料面123に照射されることになる。この二光束干渉定在波は、駆動ミラー144により他方の光の光路長を変更することにより位相を調節することができる。
 一方、偏光ビームスプリッタ136を透過した平面内偏光成分は、波長板150と偏光板152によりその光量(強度、振幅)が調節され、駆動ミラー155により反射されてビームエキスパンダ156に入射される。ビームエキスパンダ156でビーム径が約20倍に拡大された平面内偏光成分は、レンズ158により最終的に平行光として試料面123に照射されるよう調節されて偏光ビームスプリッタ160に入射されるが、平面内偏光成分であるため、全ての光が反射されることなく偏光ビームスプリッタ160を透過する。偏光ビームスプリッタ160を透過した平面内偏光成分は、波長板162により垂直偏光成分に偏光され、対物レンズ164を通って平行光となって試料面123に照射される。こうした落射照明は、上述したように、ミラー146,148からの二光束干渉定在波は垂直偏光成分と同様の垂直偏光成分であるから、二光束干渉定在波と高い干渉性を有するもの、即ち三光束干渉定在波となり、第1実施例の顕微観察システム10で説明した定在波生成用の平面波41,51による照明とバイアス平面波61による照明とによる三光波の照明と同様の照明となる。
 三光束干渉定在波の照射による試料面123からの反射光や散乱光は、そのうち二光束干渉定在波に由来するものは斜方照明であることから、対物レンズ164によって取得されないが、落射照明に由来するものは、対物レンズ164を通過し、波長板162により平面内偏光成分に変更される。このため、偏光ビームスプリッタ160によって反射され、結像レンズ166に入射され、冷却CCDカメラ168内のCCD上で結像される。
 第2実施例の顕微観察システム110では、駆動ミラー144により光路長を変更することにより二光束干渉定在波をナノメートルスケールでシフトすると共に、二光束干渉定在波のシフトによって生じる位相変化に対して駆動ミラー154により落射照明の位相を同期させることにより、三光束干渉定在波の位相をナノメートルスケールでシフトすることができる。したがって、三光束干渉定在波の位相をナノメートルスケールのシフト量で1波長分(2π)に至るまで順次シフトさせてシフト毎に冷却CCDカメラ168で光分布データを取得すれば、試料面123の観測範囲全体で三光束干渉定在波の位相をシフト量ずつシフトさせた光分布データを得ることができる。一方、サンプルステージ121により試料122を回転させることができるから、サンプルステージ121の回転中心に試料122を載置し、三光束干渉定在波の位相をナノメートルスケールのシフト量で1波長分に至るまで順次シフトさせてシフト毎に冷却CCDカメラ168で光分布データを検出し、その後、試料122を90度回転し、再び三光束干渉定在波の位相をナノメートルスケールのシフト量で1波長分に至るまで順次シフトさせてシフト毎に冷却CCDカメラ168で光分布データを検出するものとすれば、得られる光分布データは、三光束干渉定在波を試料面123に直交する方向に照射し、三光束干渉定在波の位相を順次シフトさせるものとなる。
 図17は、位相差ζ1と光路長lとの関係を説明する説明図である。駆動ミラー144のミラー144aが移動距離d1だけ移動すると、ミラー144aへの入射角をθ1とすれば、光路差l1は次式(9)によって表わされる。このときの位相差ζ1は、波長をλとすれば式(10)により表わされ、移動距離d1は式(11)により表わされる。駆動ミラー144を駆動して二光束干渉定在波の他方の光の位相をζ1だけシフトすると、二光束定在波の位相はζ1/2だけシフトするから、バイアス平面波の位相をζ1/2だけシフトすれば三光束干渉定在波の位相をζ1/2だけシフトすることができる。駆動ミラー154のミラー154aの移動距離をd2、バイアス平面波の位相差をζ2、ミラー154aへの入射角をθ2として、d1,ζ1,θ1を置き換えれば式(9)~式(11)はバイアス平面波にも成立する。ここで、ζ1=2ζ2であるから、双方の式(10)から式(12)となり、これを整理して移動距離d2について解くと式(13)となる。ミラー144a,154aの入射角θ1,θ2が共に45度で波長λが488nmのときを考えれば、移動距離d1≒172.5・ζ1/π[nm],d2=d1/2となる。そして、位相差ζ1=2π/nとすれば、移動距離d1=345/n[nm]となり、n=60の位相差ζ1=π/30(6度)のときで移動距離d1=5.75nm,d2=2.875nmとなる。第2実施例で用いたピエゾアクチュエータ144b,154bは位置決め分解能が0.1nmであるから、位相差ζ1=π/30(6度)を十分な精度で変更することができる。
Figure JPOXMLDOC01-appb-M000009
 次に、第2実施例の顕微観察システム110で試料面123を顕微観察する様子について説明する。第2実施例の顕微観察システム110では、まず、試料面123に位相を順次シフトさせた三光束干渉定在波を照射してシフト毎の光分布データを取得する光分布データ取得制御を実行し、次に、得られたシフト毎の光分布データを逆問題解析により解析する超解像処理を実行する。図18はコンピュータ170により実行される光分布データ取得制御プログラムの一例を示すフローチャートであり、図19はコンピュータ170により実行される超解像処理プログラムの一例を示すフローチャートであり、図20は図19における超解像処理プログラムによる処理を模式的に示す説明図である。以下に、光分布データ取得制御を説明し、その後に、超解像処理を説明する。
 光分布データ取得制御プログラムを起動すると、まず、試料122の試料面123の観察範囲の中心がサンプルステージ121の回転中心となるよう初期位置をセットし(ステップS100)、三光束干渉定在波の初期値を調整する(ステップS110)。三光束干渉定在波の初期値の調整は、落射照明の強度(振幅)と位相を調整することにより行なうことができる。こうした初期調整は、具体的には、基準試料を用いて、二光束干渉定在波を照射した状態で図21に例示する初期調整プログラムを実行することにより行なわれる。基準試料としては、定在波との間にモアレ縞を生成する周期構造とし、ラインピッチが既知であるようなラインアンドスペースパターンが望ましい。
 初期調整プログラムが実行されると、まず、駆動ミラー154を駆動して落射照明の位相を位相変更量Δζ2だけ変更し(ステップS300)、冷却CCDカメラ168により光強度像を取得すると共に(ステップS310)、取得した光強度像をフーリエ変換してフーリエ変換画像を取得し(ステップS320)、合計位相変更量ΣΔζ2を2πと比較し(ステップS330)、合計位相変更量ΣΔζ2が2πに至るまでステップS300~S330の処理を繰り返す。ここで、落射照明の位相を位相変更量Δζ2だけ変更する処理は、位相変更量Δζ2として例えば6度(π/30)を用いれば、このときの駆動ミラー154の移動距離d2は入射角θ2が45度のときには5.75nmとなるから、駆動ミラー154のピアゾアクチュエータ154bを駆動してミラー154aを5.75nmだけ移動させるものとなる。したがって、ステップS300~S330を繰り返す処理は、落射照明の位相を位相変更量Δζ2ずつ変更した際の位相毎の光強度像のフーリエ変換画像を取得する処理となる。このフーリエ変換画像では、基準試料と用いると、一定の周期の二光束干渉定在波に基づくモアレ縞に由来するピークやその2倍の周期の三光束干渉定在波に基づくモアレ縞に由来するピークを観察することができる。合計位相変更量ΣΔζ2が2πに至ると、取得したフーリエ変換画像のうち三光束干渉定在波に基づくモアレ縞に由来するピークのみが観察される画像を判定用画像として検索し(ステップS340)、判定用画像が存在するか否かを判定し(ステップS350)、判定用画像が存在しないときには、取得した全てのフーリエ変換画像を破棄し(ステップS370)、波長板150と偏光板152を予め定めた分だけ駆動して落射照明の強度(振幅)を予め定めた所定量だけ大きくして(ステップS380)、ステップS300に戻る。ここで、所定量としては、二光束干渉定在波の振幅の1/10や1/20或いは1/30などを用いることができる。一方、ステップS350で判定用画像が存在すると判定されたときには、検出された判定用画像数が閾値未満であるか否かを判定し(ステップS380)、検出された判定用画像数が閾値以上であるときには、取得した全てのフーリエ変換画像を破棄し(ステップS390)、波長板150と偏光板152を予め定めた分だけ駆動して落射照明の強度(振幅)を予め定めた所定量だけ小さくして(ステップS400)、ステップS300に戻る。ここで閾値としては、例えば値2や値3などを用いることができる。このようにして判定用画像が存在し、その画像数が閾値未満となったときには、そのときの振幅を初期振幅として設定すると共に判定用画像を取得したときの位相を初期位相として設定し(ステップS410)、落射照明が初期位相となるように駆動ミラー154を駆動して(ステップS420)、初期調整プログラムを終了する。なお、振幅は既に初期振幅になっているため、特に調整する必要はない。このように調整することにより、許容範囲内で、落射照明の振幅を二光束干渉定在波の振幅の2倍に調整することができると共に落射照明の位相を二光束干渉定在波の位相に同期させることができる。即ち、顕微観察の許容範囲内で有効な三光束干渉定在波を得ることができる。
 光分布データ取得制御プログラムの説明に戻る。三光束干渉定在波の初期値を調整すると、冷却CCDカメラ168に結像される散乱光の強度(光量)分布(光分布データ)を入力し(ステップS120)、三光束干渉定在波の位相をシフト量ζだけシフトさせ(ステップS130)、合計シフト量Σζが2πに至っているか否かを判定し(ステップS140)、合計シフト量ζが2πに至るまでステップS120~S140の処理を繰り返す。ここで、シフト量ζは、例えば、2π/nで表わしたときにnが10や20或いは30などを用いることができる。三光束干渉定在波の位相をシフト量ζだけシフトする処理は、具体的には、駆動ミラー144のミラー144aを移動距離d1=172.5・ζ/π[nm]だけ移動させると共に駆動ミラー154のミラー154aを移動距離d2=d1/2[nm]だけ移動させる処理となる。これは、同期している三光束干渉定在波を形成する二光束干渉定在波(斜方照明)の二光束の一方の位相をシフト量ζだけシフトすると二光束干渉定在波は位相がζ/2だけシフトするから、この位相がシフトした二光束干渉定在波に三光束目のバイアス平面波(落射照明)を同期させるには位相をζ/2だけシフトすればよいことに基づく。これらのことを以下に更に説明する。
 いま、二光束のz軸方向の電場成分E1,E2をそれぞれ次式(14),(15)とすると、電場成分E1+E2は式(16)として示される定在波となる。一方、バイアス平面波の電場成分E3は式(17)で示されるから、簡単のため位相ζ1、ζ2を無視すると、電場成分E1+E2+E3は式(18)となる。ここで、二光束の定在波とバイアス平面波とが理想的に同期する条件は、2a=b、且つ、ζ3=0,πとなる。2a=bは、二光束干渉定在波の振幅とバイアス平面波の振幅とが同じであることを意味すると共に、二光束干渉定在波を形成する二光波の平面波の振幅の2倍とバイアス平面波の振幅とが同じであることを意味している。理想的に同期した三光束定在波は、式(19)となる。
Figure JPOXMLDOC01-appb-M000010
 位相ζ1,ζ2を考慮して電場成分E1+E2+E3を表わすと式(20)となる。2a=bであり、且つ、位相ζ1,ζ2,ζ3が同期しているとして全て値0とし、定在波をシフトさせるために位相ζ1をζ1+Δζ1,位相ζ3をζ3+Δζ1/2として変形すると、式(21)を得る。式(21)では、x軸項,時間項が分離しているから、位相をシフトしても定在波を維持しているのが解る。即ち、斜方照明における位相シフトの半分の位相シフトを落射照明に与えることにより三光束干渉定在波の位相をシフトすることができる。
Figure JPOXMLDOC01-appb-M000011
 入射光波の干渉だけでなく反射光波の干渉を考えると、以下のようになる。三光束のz軸方向の電場成分E1,E,E3の反射光波をEr1,Er2,Er2、反射率をr1,r2,r3とすると、反射光波Er1,Er2,Er3は、次式(22),(23),(24)により示される。この三光波を加えても落射照明の強度と位相を補正することにより三光束干渉定在波を生成することができ、斜方照明の一光束の位相をシフトし、その半分の位相シフトを落射照明に与えることにより、三光束干渉定在波のシフトが可能となる。斜方照明は同じ角度で入射するから、r1=r2、ζ4=ζ1+ζ7、ζ5=ζ2+ζ7となり、y=0とすると、二光束干渉定在波は式(25)となり、落射照明は式(26)となる。式(25)と式(26)から式(27)となるように落射照明の振幅(強度)と位相を調整すれば、式(28)の三光束干渉定在波の式となる。ここで、二光束干渉定在波の式(25)のBは、斜方照明の一方の平面波の位相をζだけシフトするとζ/2だけずれる。一方、落射照明の位相をζ/2だけシフトすると、式(26)のDはζ/2だけずれるから、式(27)の等号を保持したまま定在波のシフトが実現する。したがって、入射光波の干渉だけでなく反射光波の干渉を考慮しても、同期している三光束干渉定在波の斜方照明(二光束干渉定在波)の一方の平面波の位相をシフト量ζだけシフトさせると共に落射照明(バイアス平面波)の位相をシフト量ζ/2だけ同期してシフトさせることにより、同期を保持したまま三光束干渉定在波の位相をシフトすることができるのが解る。
Figure JPOXMLDOC01-appb-M000012
 再び、光分布データ取得制御プログラムの説明に戻る。合計シフト量Σζが2πに至るまでステップS120~S140の処理を繰り返すと、回転済フラグFを調べる(ステップS150)。回転済フラグFは、初期値として値0がセットされており、ステップS120~S140の処理を繰り返してサンプルステージ121を90度回転させたときに後述するステップS180で値1がセットされるフラグである。回転済フラグFが値0のときは、ステップS110で調整した初期値を用いて三光束干渉定在波を初期値に調整し(ステップS160)、サンプルステージ121を90度回転させて(ステップS170)、回転済フラグFに値1をセットし(ステップS180)、ステップS120に戻る。サンプルステージ121を90度回転させてステップS120に戻るのは、試料面123に照射される三光束干渉定在波を相対的に90度回転させて再び位相をシフト量ζだけシフトする処理を行なうためである。これにより、三光束干渉定在波を試料面123に直交する2方向に照射し、三光束干渉定在波の位相を順次シフトさせて光分布を取得することができる。
 サンプルステージ121を90度回転させた後に三光束干渉定在波の位相をシフト量ζずつシフトして光分布データを取得して合計シフト量Σζが2πに至ると、ステップS150で否定的判定がなされ、本ルーチンを終了する。
 次に、超解像処理について説明する。図19の超解像処理プログラムが起動されると、まず、既知の構造の推定試料のシフト毎の光分布データを計算する処理が行なわれる(ステップS200)。推定試料としては、既知であれば如何なるものを用いてもよく、例えば試料面123の設計値どおりの理想的な構造を用いるものとしたり、試料面123の構造が全く分からない場合には一様なもの(即ち、真っ平らなもの)を用いるものとしたりすることができる。推定試料のシフト毎の光分布データは、光分布データ取得制御プログラムで用いたシフト量ζを用いて計算される。続いて、試料面123のシフト毎の光分布データと推定試料のシフト毎の光分布データとの誤差を求め(ステップS210)、この誤差を打ち消す方向に推定試料に修正を加えて近似試料を作成し(ステップS220)、誤差が収束したか否かを判定する(ステップS230)。ここで、推定試料に修正を加える際の修正量は予め定められた微小量としたり、誤差の大きさにゲインを乗じて得られる値としたりすることができる。また、誤差が収束したか否かの判定としては、誤差が収束したと判断することができる程度の値として予め定めた閾値と誤差とを比較し、誤差が閾値以下に至ったときに収束したと判断する手法を用いたり、ステップS200~S230の処理を予め定めておいた所定回数(例えば、100回や1000回或いは10000回など)繰り返したときに収束したと判断する手法を用いたりすることができる。誤差が収束していないと判定されたときには、近似試料を推定試料に置き換えて(ステップS240)、置き換えた推定試料のシフト毎の光分布データを計算するステップS200の処理に戻る。こうしたステップS200~S230の処理を繰り返すことにより、近似試料は試料面123に近似していく。ステップS230で収束したと判定されると、そのときに得られた近似試料を解(即ち、試料面123の解像)として出力して(ステップS250)、本プログラムを終了する。
 以上説明した第2実施例の顕微観察システム110によれば、第1実施例の顕微観察システム10の照明装置20による効果と同様の効果、即ち、落射照明を加えることによって試料面123上での正負に亘る電場分布を丁度正側のみまたは負側のみとなるまで嵩上げした(即ち、丁度正負に亘らなくなるまで嵩上げした)電場分布が周期的に現れるようにすることができる。
 また、第2実施例の顕微観察システム110によれば、駆動ミラー144により二光束干渉定在波を生成する他方の光の光路長を移動距離d1に対応する分だけ変更することにより二光束干渉定在波の位相をシフトすると共に二光束干渉定在波の位相シフトに同期して駆動ミラー154により落射照明の光路長を移動距離d2=d1/2に対応する分だけ変更することにより落射照明の位相を二光束干渉定在波の位相変化に同期させることにより、試料面123に照射する三光束干渉定在波の位相をシフト量ζずつシフトさせて光分布データを検出することができる。しかも、こうした光分布データの検出に加えて、サンプルステージ121を駆動して試料122を90度回転させ、更に試料面123に照射する三光束干渉定在波の位相をシフト量ζずつシフトさせて光分布データを検出することにより、容易に、三光束干渉定在波を試料面123に直交する方向に照射し、三光束干渉定在波の位相を順次シフトさせて光分布を取得することができる。
 第2実施例の顕微観察システム110によれば、落射照明の位相が2πに至るまで位相変更量Δζ2だけ変更して冷却CCDカメラ168により光強度像を取得し、取得した光強度像をフーリエ変換して得られるフーリエ変換画像から三光束干渉定在波に基づくモアレ縞に由来するピークのみが観察される画像を判定用画像として検索し、判定用画像が存在しないときには波長板150と偏光板152を駆動して落射照明の強度(振幅)を所定量だけ大きくし、判定用画像数が閾値以上であるときには波長板150と偏光板152を駆動して落射照明の強度(振幅)を所定量だけ小さくする処理を判定用画像数が閾値未満に至るまで繰り返し、判定用画像数が閾値未満に至ったときの振幅を落射照明の初期振幅とし、判定用画像が閾値未満に至ったときの判定用画像に対応する位相を落射照明の初期位相とすることにより、落射照明の振幅を二光束干渉定在波の振幅の2倍に調整することができると共に落射照明の位相を二光束干渉定在波の位相に同期させることができる。即ち、顕微観察の許容範囲内で有効な三光束干渉定在波を得ることができる。
 第2実施例の顕微観察システム110では、レーザ光源132としてCoherent Inc.製のCWブルーレーザ、波長板134,150,162としてソーラボ製のMounted Zero Order 1/2 Waveplate、偏光ビームスプリッタ136としてソーラボ製のPolarizing Beamsplitter Cubes、偏光ビームスプリッタ160としてソーラボ製のPolarizing Beamsplitter Cubes、ミラー140,144a,154aとしてシグマ光機製の45°入射用誘多膜平面ミラー、ミラー146,148としてシグマ光機製のアルミ平面ミラー、ビームスプリッタ142としてシグマ光機製の無偏光キューブハーフミラー、ビームエキスパンダ156としてシグマ光機製のレーザビームエキスパンダー、対物レンズ164としてEdmund Optics製の対物レンズ、ピエゾアクチュエータ144b,154bとしてPhysik Instrumente製のPZTおよびPhysik Instrumente製のPZTコントローラ、冷却CCDカメラ168としてBTTRAN製の冷却CCDカメラ、サンプルステージ121としてシグマ光機製の回転ステージ、を用いるものとしたが、これらの機器等に限定されるものではなく、これらと同等の性能、あるいは、これら以上の性能を有するものであれば、如何なる機器等を用いるものとしてもよい。
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本発明は、照明装置や顕微観察装置の製造産業などに利用可能である。

Claims (18)

  1.  試料の顕微観察される試料面からの光の強度分布に基づいて該試料面を解像する顕微観察装置に用いられる照明方法であって、
     光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を前記試料面に照射する一方で前記光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を前記試料面に対して法線方向から照射することによって三光束定在波を前記試料面への照射する、
     ことを特徴とする照明方法。
  2.  請求項1記載の照明方法であって、
     前記バイアス平面波は、位相が前記二光束定在波の電場変位が前記試料面上の各位置で値0になる程度の時期として予め定められた基準時期を境にして電場変位が前記試料面上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるように調整されており、振幅が前記試料面上に存在する他の光波群からなる電場変位を正側のみまたは負側のみとなる程度まで嵩上げするよう調整されている平面波である、
     ことを特徴とする照明方法。
  3.  請求項1記載の照明方法であって、
     前記バイアス平面波は、振幅については前記二光束定在波の振幅と同一になるように調整されていると共に位相については前記二光束定在波に同期するように調整されている、
     ことを特徴とする照明方法。
  4.  請求項1記載の照明方法であって、
     前記二光束定在波による前記試料面への照明を伴って前記バイアス平面波の位相を2πに至るまで所定量ずつシフトさせて前記試料面を照明することにより前記試料面から反射または散乱する光の強度分布であるシフト毎の光分布を取得する処理と、前記シフト毎の光分布に対してフーリエ変換して得られるフーリエ変換画像から前記二光束定在波に基づくモアレ縞に由来するピークの周期の2倍の周期となる前記三光束定在波に基づくモアレ縞に由来するピークだけが観察される判定用画像を検索する処理と、前記判定用画像が存在しないときには前記バイアス平面波の振幅を大きくする一方で前記判定用画像の数が閾値以上のときには前記バイアス平面波の振幅を小さくする処理と、からなる一連の処理を、前記判定用画像の数が前記閾値未満になるまで繰り返し実行し、前記判定用画像の数が前記閾値未満のときの振幅を前記バイアス平面波の初期振幅とすると共に前記判定用画像の数が前記閾値未満のときの該判定用画像に対応する位相を前記バイアス平面波の初期位相として調整された三光束定在波を照明する、
     ことを特徴とする照明方法。
  5.  請求項1ないし4のうちのいずれか一つの請求項に記載の照明方法であって、
     前記二光束定在波の位相と前記バイアス平面波の位相とを同期して順次シフトすることにより前記三光束定在波の位相を順次シフトする、
     ことを特徴とする照明方法。
  6.  請求項5記載の照明方法であって、
     前記二光束定在波の一方の平面波の位相を所定位相ずつ順次シフトすると共に前記バイアス平面波の位相を前記所定位相の半分ずつ順次シフトすることにより前記三光束定在波の位相を順次シフトする、
     ことを特徴とする照明方法。
  7.  請求項6記載の照明方法であって、
     前記二光束定在波の一方の平面波の光路長を所定距離ずつ順次変更すると共に前記バイアス平面波の光路長を前記所定距離の半分ずつ順次変更することにより前記三光束定在波の位相を順次シフトする、
     ことを特徴とする照明方法。
  8.  試料の顕微観察される試料面からの光の強度分布に基づいて該試料面を解像する顕微観察装置であって、
     光源部と、
     前記光源部からの光から生成される二光波の平面波を斜方方向から対向するよう照射することにより得られる二光束定在波を前記試料面に照射する二光束定在波照射手段と、前記光源部からの光から生成される一光波の平面波の振幅と位相を調整して得られるバイアス平面波を前記試料面に対して法線方向から照射するバイアス平面波照射部と、を有し、前記二光束定在波と前記バイアス平面波とによる三光束定在波を前記試料面に照射する照明装置と、
     前記三光束定在波の照射によって反射および/または散乱する前記試料面からの光の強度分布を光分布として取得する光分布取得部と、
     前記三光束定在波の位相を順次シフトするように前記照明装置を制御すると共に前記三光束定在波の位相がシフトする毎に前記光分布を取得するように前記光分布取得部を制御するシフト制御部と、
     前記三光束定在波の位相がシフトする毎に取得したシフト毎の光分布に対して超解像処理を施して前記試料面を解像する解像部と、
     を備える顕微観察装置。
  9.  請求項8記載の顕微観察装置であって、
     前記バイアス平面波照射部は、前記バイアス平面波の位相を、前記二光束定在波の電場変位が前記試料面上の各位置で値0になる程度の時期として予め定められた基準時期を境にして電場変位が前記試料面上で位置に拘わらず等しい変位をもって正側と負側とに交互に振れるように調整すると共に、前記バイアス平面波の振幅を、前記試料面上に存在する他の光波群からなる電場変位を正側のみまたは負側のみとなる程度まで嵩上げするよう調整する照射部である、
     顕微観察装置。
  10.  請求項9記載の顕微観察装置であって、
     前記二光波の平面波の各電場をE1,E2,前記バイアス平面波の電場をE3,前記二光波の平面波の各振幅をA,前記バイアス平面波の振幅を前記二光束定在波と等しい振幅,前記二光波の平面波および前記バイアス平面波の各波数をk,前記二光波の平面波の前記試料面に対する入射角をθ,前記二光波の平面波の入射面と前記試料面との交線方向の位置をx,前記試料面に対する法線方向の位置をy,角周波数をω,時間をtとしたときに、
     前記二光束定在波照明部は、次式(1)および式(2)の関係を有する前記二光波の平面波を用いて照明を行なう照明部であり、
     前記バイアス平面波照明部は、次式(3)の関係を有する前記バイアス平面波を用いて照明を行なう照明部である、
     顕微観察装置。
    Figure JPOXMLDOC01-appb-M000001
  11.  請求項10記載の顕微観察装置であって、
     前記二光波の平面波の前記試料面での反射による各反射光波の電場をE1r,E2r,前記試料面における前記二光波の平面波の各反射率をr1,r2,前記二光波の平面波の前記試料面での反射による各反射光波の前記二光波の平面波に対する位相差をδ1,δ2とすると共に、前記バイアス平面波の前記試料面での反射による反射光波の電場をE3r,前記試料面における前記バイアス平面波の反射率をr3,前記バイアス平面波の前記試料面での反射による反射光波の前記バイアス平面波に対する位相差をδ3,前記定在波と等しい振幅として前記バイアス平面波の振幅を補正したときの補正後振幅をP,前記バイアス平面波の位相を補正したときの位相補正分をΔDとしたときに、
     前記バイアス平面波照明部は、次式(4)ないし(6)の関係に基づく前記補正後振幅Pと前記位相補正分ΔDとを用いて前記電場E3を補正した補正後電場E3aの式(7)の関係を有する前記バイアス平面波を用いて照明を行なう照明部である、
     顕微観察装置。
    Figure JPOXMLDOC01-appb-M000002
  12.  請求項9記載の顕微観察装置であって、
     前記バイアス平面波照明部は、前記二光波の平面波と前記バイアス平面波との前記試料面での各反射光波の電場変位に基づく前記基準時期および振幅を用いて照明を行なう、
     顕微観察装置。
  13.  請求項8記載の顕微観察装置であって、
     前記バイアス平面波照明部は、振幅については前記二光束定在波の振幅と同一になるように調整すると共に位相については前記二光束定在波に同期するように調整して前記バイアス平面波を照射する照射部である、
     ことを特徴とする顕微観察装置。
  14.  請求項8記載の顕微観察装置であって、
     前記二光束定在波照明部による前記二光束定在波による照明を伴って前記バイアス平面波の位相を2πに至るまで所定量ずつシフトさせて前記バイアス平面波による照明を行なうよう前記照明装置を制御するバイアス平面波位相シフト制御と、前記バイアス平面波の位相を前記所定量ずつシフトさせる毎にシフト毎の光分布を取得するよう前記光分布取得部を制御するシフト毎光分布取得制御と、前記シフト毎の光分布に対してフーリエ変換して得られるフーリエ変換画像から前記二光束定在波に基づくモアレ縞に由来するピークの周期の2倍の周期となる前記三光束定在波に基づくモアレ縞に由来するピークだけが観察される判定用画像を検索すると共に前記判定用画像が存在しないときには前記バイアス平面波の振幅を大きくする一方で前記判定用画像の数が閾値以上のときには前記バイアス平面波の振幅を小さくするよう前記照明装置を制御する振幅調整制御と、からなる3つの制御を前記判定用画像の数が前記閾値未満になるまで繰り返し実行し、前記判定用画像の数が前記閾値未満のときの振幅を前記バイアス平面波の初期振幅として設定すると共に前記判定用画像の数が前記閾値未満のときの該判定用画像に対応する位相を前記バイアス平面波の初期位相として設定する初期値設定部、
     を備える顕微観察装置。
  15.  請求項13または14記載の顕微観察装置であって、
     前記シフト制御部は、前記二光束定在波の位相と前記バイアス平面波の位相とを同期して順次シフトするよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部である、
     顕微観察装置。
  16.  請求項15記載の顕微観察装置であって、
     前記シフト制御部は、前記二光束定在波の一方の平面波の位相を所定位相ずつ順次シフトすると共に前記バイアス平面波の位相を前記所定位相の半分ずつ順次シフトするよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部である、
     顕微観察装置。
  17.  請求項16記載の顕微観察装置であって、
     前記シフト制御部は、前記二光束定在波の一方の平面波の光路長を所定距離ずつ順次変更すると共に前記バイアス平面波の光路長を前記所定距離の半分ずつ順次変更するよう前記照明装置を制御することにより前記三光束定在波の位相を順次シフトする制御部である、
     顕微観察装置。
  18.  請求項15ないし17のいずれか1つの請求項に記載の顕微観察装置であって、
     前記試料を載置すると共に前記試料面の法線方向を回転軸として前記試料を回転させる回転ステージを備え、
     前記シフト制御部は、前記試料面が90度回転するよう前記回転ステージを制御すると共に、前記試料面の90度の回転の前後で前記三光束定在波の位相を順次シフトするように前記照明装置を制御すると共に前記三光束定在波の位相がシフトする毎に前記光分布を取得するように前記光分布取得部を制御する制御部である、
     顕微観察装置。
PCT/JP2013/054821 2012-02-24 2013-02-25 照明方法および顕微観察装置 WO2013125723A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014500972A JP6183915B2 (ja) 2012-02-24 2013-02-25 照明方法および顕微観察装置
US14/380,785 US9297991B2 (en) 2012-02-24 2013-02-25 Lighting method and microscopic observation device
EP13751843.7A EP2818906A4 (en) 2012-02-24 2013-02-25 ILLUMINATION METHOD AND MICROSCOPIC OBSERVATION DEVICE
IL234127A IL234127A (en) 2012-02-24 2014-08-14 Illumination method and microscopic viewing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012039261 2012-02-24
JP2012-039261 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125723A1 true WO2013125723A1 (ja) 2013-08-29

Family

ID=49005897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054821 WO2013125723A1 (ja) 2012-02-24 2013-02-25 照明方法および顕微観察装置

Country Status (5)

Country Link
US (1) US9297991B2 (ja)
EP (1) EP2818906A4 (ja)
JP (1) JP6183915B2 (ja)
IL (1) IL234127A (ja)
WO (1) WO2013125723A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085402A1 (ja) * 2018-10-23 2020-04-30 国立大学法人東京大学 顕微鏡及び顕微法
JP2020118533A (ja) * 2019-01-23 2020-08-06 国立大学法人福井大学 計測対象物の面外変位分布や3次元形状を計測する方法とその装置
JP2021529991A (ja) * 2018-07-03 2021-11-04 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ フォトスイッチング及び定在波照明技術を用いた顕微鏡における改善された軸分解能のためのシステム及び方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150120796A1 (en) * 2015-01-09 2015-04-30 Seth John Winnipeg Standing wave simple math processor
US20170023628A1 (en) * 2015-07-20 2017-01-26 Tektronix, Inc. Time corrected time-domain reflectometer
US11105746B2 (en) * 2016-07-20 2021-08-31 Technion Research & Development Foundation Ltd. Multi moire structured illumination microscopy with high index materials
KR102605494B1 (ko) * 2016-10-13 2023-11-24 라이프 테크놀로지스 홀딩스 프리베이트 리미티드 오브젝트 조명 및 이미징을 위한 디바이스, 시스템 및 방법
WO2019120561A1 (en) * 2017-12-22 2019-06-27 European Space Agency Wave front reconstruction for dielectric coatings at arbitrary wavelength
KR102028864B1 (ko) * 2019-05-07 2019-11-04 연세대학교 산학협력단 광원 위치를 보정하기 위한 현미경 장치 및 그 방법
CN116736532B (zh) * 2023-08-01 2023-10-20 中国科学院长春光学精密机械与物理研究所 贝塞尔双光子显微镜照明光路非共轭像差校正方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313433A (ja) * 1995-05-17 1996-11-29 Satoshi Kawada 赤外顕微分光分析方法及び装置
JP2005322754A (ja) * 2004-05-07 2005-11-17 Canon Inc 反射型マスクの検査方法
JP2007225563A (ja) 2006-02-27 2007-09-06 Univ Of Tokyo 高解像検出装置及び方法
JP2011106974A (ja) * 2009-11-18 2011-06-02 Hitachi High-Technologies Corp 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830596B4 (de) * 1997-07-10 2008-08-21 Ruprecht-Karls-Universität Heidelberg Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie
US6020988A (en) * 1997-08-05 2000-02-01 Science Research Laboratory, Inc. Ultra high resolution wave focusing method and apparatus and systems employing such method and apparatus
WO2013011680A1 (ja) * 2011-07-15 2013-01-24 株式会社ニコン 構造化照明装置、構造化照明顕微鏡、構造化照明方法
US9170411B2 (en) * 2013-10-11 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Scanning optical microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313433A (ja) * 1995-05-17 1996-11-29 Satoshi Kawada 赤外顕微分光分析方法及び装置
JP2005322754A (ja) * 2004-05-07 2005-11-17 Canon Inc 反射型マスクの検査方法
JP2007225563A (ja) 2006-02-27 2007-09-06 Univ Of Tokyo 高解像検出装置及び方法
JP2011106974A (ja) * 2009-11-18 2011-06-02 Hitachi High-Technologies Corp 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818906A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529991A (ja) * 2018-07-03 2021-11-04 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ フォトスイッチング及び定在波照明技術を用いた顕微鏡における改善された軸分解能のためのシステム及び方法
WO2020085402A1 (ja) * 2018-10-23 2020-04-30 国立大学法人東京大学 顕微鏡及び顕微法
JP2020118533A (ja) * 2019-01-23 2020-08-06 国立大学法人福井大学 計測対象物の面外変位分布や3次元形状を計測する方法とその装置
JP7215719B2 (ja) 2019-01-23 2023-01-31 国立大学法人福井大学 計測対象物の面外変位分布や3次元形状を計測する方法とその装置

Also Published As

Publication number Publication date
JP6183915B2 (ja) 2017-08-23
US9297991B2 (en) 2016-03-29
EP2818906A1 (en) 2014-12-31
JPWO2013125723A1 (ja) 2015-07-30
EP2818906A4 (en) 2015-11-18
US20150043049A1 (en) 2015-02-12
IL234127A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6183915B2 (ja) 照明方法および顕微観察装置
JP6033798B2 (ja) 蛍光顕微鏡検査法における照明位相制御のためのシステムおよび方法
EP2724361B1 (en) Illumination control
EP1873481B1 (en) Oblique incidence interferometer
JP5954979B2 (ja) 多波長干渉計を有する計測装置
CN112859542A (zh) 成像计量工具中的光学系统及成像叠加计量工具中的光学系统
TW201730622A (zh) 物鏡系統
CN114502912B (zh) 混合式3d检验系统
JP5085608B2 (ja) 空間光変調器を用いた広視野超解像光学顕微鏡
JP2008292939A (ja) 定量位相顕微鏡
TW202113459A (zh) 在對準中用以減小標記尺寸的相位調變器
JP2008225380A (ja) 位相制御光学系、該光学系を備えたレーザ照射装置、及びレーザ照射方法
JP5354675B2 (ja) 変位分布計測方法、装置及びプログラム
JP4427632B2 (ja) 高精度三次元形状測定装置
US9097518B2 (en) Method for determining roughness data and/or topography data of surfaces in material microscopy
JP4542108B2 (ja) セグメントグレーティングアライメント装置
JP7326292B2 (ja) 基板上のターゲット構造の位置を決定するための装置及び方法
JP2014106222A (ja) 干渉測定装置、波面収差測定装置、形状測定装置、露光装置、干渉測定方法、投影光学系の製造方法、及び露光装置の製造方法
TW202129222A (zh) 混合式3d檢測系統
JP2012145554A (ja) シアリング干渉測定装置
KR101085061B1 (ko) 고속카메라와 연속위상주사 방법을 이용한 진동둔감 간섭계
JP2005249576A (ja) 干渉測定方法及び干渉計
WO2017030194A1 (ja) 観察システム
CN112731344A (zh) 具有主动光学防抖功能的放大型面阵扫频测距/厚的装置和方法
JPS61202102A (ja) 光波干渉顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 234127

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2014500972

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013751843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14380785

Country of ref document: US