WO2013122207A1 - 繊維強化樹脂の製造方法 - Google Patents

繊維強化樹脂の製造方法 Download PDF

Info

Publication number
WO2013122207A1
WO2013122207A1 PCT/JP2013/053698 JP2013053698W WO2013122207A1 WO 2013122207 A1 WO2013122207 A1 WO 2013122207A1 JP 2013053698 W JP2013053698 W JP 2013053698W WO 2013122207 A1 WO2013122207 A1 WO 2013122207A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
injection
reinforcing fiber
fiber base
reinforcing
Prior art date
Application number
PCT/JP2013/053698
Other languages
English (en)
French (fr)
Inventor
山本晃之助
辻誠司
北川将士
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP13749545.3A priority Critical patent/EP2815864A4/en
Priority to JP2013508705A priority patent/JP6066331B2/ja
Priority to CN201380007644.7A priority patent/CN104105584B/zh
Priority to KR1020147012943A priority patent/KR101974677B1/ko
Priority to US14/379,094 priority patent/US20150014883A1/en
Publication of WO2013122207A1 publication Critical patent/WO2013122207A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Definitions

  • the present invention relates to a method for producing a fiber reinforced resin (FRP: Fiber Reinforced Plastic), and in particular, the resin is injected from an injection port opened in a direction facing the surface of the reinforced fiber base material and impregnated in the reinforced fiber base material. It is related with the improvement of the manufacturing method of the fiber reinforced resin made to make.
  • FRP Fiber Reinforced Plastic
  • a surface layer portion having a resin diffusion medium is provided on at least one side of the reinforcing fiber base disposed in the mold, and the surface of the reinforcing fiber base can be quickly aligned in the surface direction.
  • the RTM method for example, Patent Document 2 in which the resin is spread, or a random mat layer is interposed in the surface layer part of at least one side of the reinforcing fiber base so that voids and pinholes do not occur particularly on the design surface side.
  • the RTM method for example, patent document 3 which improved the surface quality is also known, in these patent documents 2, 3, it is from the inlet opened in the direction which faces the surface of a reinforced fiber base material. No mention is made of the form of injecting the resin.
  • the method of injecting resin from the injection port established in the direction facing the surface of the reinforcing fiber base shortens the molding time, reduces the manufacturing cost, and has excellent productivity.
  • the conventional method may cause the following problems.
  • a reinforcing fiber substrate 104 (for example, a reinforcing fiber substrate in which a plurality of reinforcing fiber materials are laminated) disposed in a mold 103 composed of an upper mold 101 and a lower mold 102.
  • the resin is injected from the injection port 105 opened in the direction facing the surface of the reinforcing fiber substrate 104 (106 illustrates the reinforcing fiber bundle arranged in the direction perpendicular to the paper surface of the figure. 6), as shown in FIG.
  • the surface layer portion of the reinforcing fiber base 104 is pushed down by the injection resin 107, particularly by the collision (impact portion 108) due to the initial flow of the injection resin 107, and the surface of the reinforcing fiber base 104 becomes This surface part may be formed in a resin-rich part or a resin-only part. At this time, the arrangement of the reinforcing fiber bundles 106 in the surface layer portion of the reinforcing fiber substrate 104 may be disturbed. Further, even after the resin injection is completed, as shown in FIG. 7, for example, if there is a resin-only layer 110 at a site forming the surface of the molded product 109 just below the injection port 105, the surface 111 after the resin injection is completed.
  • the surface 111 is dented due to the curing shrinkage of the resin and becomes the surface 112 after the resin curing shrinkage, which may deteriorate the design of the molded product 109.
  • the dent tends to be prominent because the absolute amount of resin is large.
  • the number of resin-rich portions formed by pushing down the reinforcing fiber base just below the injection port as described above increases, which tends to deteriorate the surface design.
  • the resin after injection should be cured to form a molded product after the part opened from the injection port directly under the injection port. Since the inside of the inlet is controlled at a relatively low temperature for the purpose of maintaining a smooth flow of the resin to be injected while suppressing the hardening of the resin, the temperature of the resin tends to decrease as a result immediately below the inlet. It can be mentioned that curing shrinkage tends to collect in this part.
  • the object of the present invention is to focus on the problems in the conventional method as described above, in the method of injecting resin from the injection port established in the direction facing the surface of the reinforcing fiber base, particularly in the multi-point injection method, By improving the reinforcing fiber substrate side, the surface of the molded product surface design is maintained while suppressing the pressing down of the surface of the reinforcing fiber substrate due to the injected resin, reducing the resin layer on the surface, and maintaining excellent productivity. It is providing the manufacturing method of the fiber reinforced resin which can improve property.
  • a method for producing a fiber reinforced resin according to the present invention is established in a direction facing the surface of the reinforcing fiber substrate with respect to the reinforcing fiber substrate arranged in the mold.
  • a reinforcing fiber base portion located immediately below the inlet is at least partially removed in advance in the thickness direction.
  • the injection fiber passage space is formed in the reinforcing fiber substrate in the mold, and the resin injected from the injection port is impregnated into the reinforcement fiber substrate through the injection resin passage space.
  • the space portion has an effect of suppressing a steep pressure increase immediately after the resin injection, and further making the temperature of the resin immediately after being introduced into the mold match the mold temperature.
  • the initial collision of the resin immediately after the injection to the reinforcing fiber base surface is eliminated or alleviated, the depression of the reinforcing fiber base surface caused by the collision is suppressed, and the dents on the surface are suppressed.
  • the resin layer on the surface is reduced. By reducing the resin layer, curing shrinkage of the resin is suppressed. Moreover, since the dent of a surface is suppressed, disorder of the arrangement
  • the injection resin passage space only needs to be formed at least partially in the thickness direction of the reinforcing fiber base, that is, formed to a certain depth from the inlet side surface of the reinforcing fiber base.
  • the reinforcing fiber substrate is formed so as to penetrate in the thickness direction.
  • the pressing down of the reinforcing fiber base surface caused by the initial collision of the resin to the reinforcing fiber base surface is further suppressed, the surface dent is further suppressed, the resin layer on the surface of this part is further reduced, Curing shrinkage of the resin in this portion is further suppressed.
  • the dent of a surface is suppressed further, disorder of the arrangement
  • the surface quality of the molded product to be molded is greatly improved, and the design is further improved.
  • the area in the surface direction of the reinforcing fiber base of the injection resin passage space in the present invention is more than the opening area into the molding die of the injection port, from the opening area into the molding die of the injection port Any of the smaller forms can be employed. What is necessary is just to select suitably in consideration of the resin injection
  • the method for producing a fiber reinforced resin according to the present invention can be expected to have a great effect in improving the design properties of a molded product particularly when multiple points are injected. That is, it is particularly effective when a plurality of inlets are established, and in that case, the above injection is preferably performed for at least one inlet that is considered to be particularly effective, preferably for a plurality of inlets.
  • a resin passage space may be formed.
  • the method for producing a fiber reinforced resin according to the present invention can also be applied to the case where the reinforcing fiber substrate is in the form of a plurality of laminated reinforcing fiber substrates, and the laminated plural reinforcing fibers.
  • the injection resin passage space may be formed on the base material.
  • an intermediate layer having a higher resin fluidity than the reinforcing fiber substrate is disposed on the reinforcing fiber substrate, and the intermediate layer It is preferable that a portion faces the injection resin passage space. That is, it is the structure which arrange
  • This fluidity is generally defined by permeability using Darcy's law, and can be obtained by experiment. In this configuration in which a material having good fluidity is arranged in the intermediate layer, the resin flowing into the intermediate layer from the injection resin passage space flows in the layer faster than in the reinforcing fiber base layer laminated on both sides thereof.
  • a part of the resin flowing in the intermediate layer flows in the thickness direction of the base material from the intermediate layer to the surface layer side to form a resin flow from the intermediate layer to the surface side of the base material.
  • the resin flow toward the substrate surface tends to press the surface layer side of the laminate of the plurality of reinforcing fiber substrates against the inner surface of the mold, and this pressing further reduces the resin-rich portion on the substrate surface layer side. As a result, it is possible to expect a more excellent design of the surface of the molded product.
  • the thickness of the cavity is preferably set to a predetermined thickness.
  • the predetermined thickness determined in advance is substantially a target molded product thickness.
  • dents are less likely to occur in the portion immediately below the injection port. Therefore, even in the form of the reinforcing fiber base just before impregnation with the resin or in the form after impregnation with the resin, It becomes easy to maintain the target shape without dents, and if the thickness of the cavity is simply set to the target molded product thickness, the reinforcing fiber base form at the time of resin injection, resin injection, molding after curing Both product forms will be kept in the desired form.
  • the injection resin passage space since the injection resin is impregnated into the reinforcing fiber base through the injection resin passage space, the resin sent into the injection resin passage space remains after curing molding. become.
  • the injection resin passage space can be easily formed at a position within the product range of the product to be molded, for example, at a position within the product range of the product to be molded and cut after molding. It can be formed in the part to be turned off, and the injection resin passage space after molding where the cured resin remains and its peripheral part may be removed if necessary, and if there is no problem even if it is left as it is You can leave it as it is.
  • the present invention can be expected to reduce the resin viscosity just below the injection port and to reduce the injection pressure associated therewith, it is preferably used for injection molding using a fixed discharge pump rather than a constant pressure discharge pump.
  • the fixed discharge pump is a pump of a type that adjusts the flow rate according to the number of rotations and displacement of the pump, such as a gear pump, an axial piston pump, and a plunger pump equipped with a servo motor. While such pump groups have excellent discharge capacity at a constant flow rate, there is a concern that the rise of back pressure may become steep when flowing inside a material that has a high flow resistance, such as in a reinforcing fiber substrate, which reduces the injection pressure. The effect of the present invention capable of achieving the above is greatly preferred.
  • the present invention can be suitably used in a manufacturing method having a plurality of inlets.
  • a manufacturing method having a plurality of inlets For example, in a mold having a plurality of injection ports immediately below, it is difficult to equalize the cavity thickness directly below the injection ports and the fiber volume content of the reinforcing fiber laminate. In some cases, this may cause problems.
  • In order to improve the problem that the flow pattern is broken there is a method of processing and adjusting the mold itself, but it is not easy when the size of the mold is large.
  • the present invention can be easily processed in the field.
  • the method for producing a fiber reinforced resin according to the present invention by forming the injection resin passage space in the reinforcing fiber base portion immediately below the injection port, the surface of the reinforcing fiber base surface by the injection resin is formed.
  • the pressing can be suppressed, the resin layer on the surface can be reduced, and the surface design of the molded product can be improved while maintaining excellent productivity.
  • FIG. 2 is a schematic perspective plan view of a mold showing an example in which the method of FIG. 1 is applied to a multipoint injection method.
  • FIG. 2 is a schematic block diagram of the injection port vicinity which shows the manufacturing method of the fiber reinforced resin which concerns on another embodiment of this invention.
  • It is a schematic block diagram of the injection port vicinity which shows an example of the state before the resin injection
  • FIG. 1 shows a method for producing a fiber reinforced resin according to an embodiment of the present invention.
  • a reinforcing fiber base 4 made of, for example, a laminate of a plurality of reinforcing fiber materials is disposed in a molding die 3 composed of an upper mold 1 and a lower mold 2, and the upper mold is oriented in a direction facing one surface of the reinforcing fiber base 4.
  • a resin serving as a matrix resin of the fiber reinforced resin to be molded is injected from the injection port 5 opened in 1, and the injected resin is impregnated in the reinforcing fiber base 4.
  • the reinforcing fiber base portion located immediately below the injection port 5 is at least partially removed in the thickness direction in advance, so that an injection resin passage space 6 is formed in the reinforcing fiber base 4 in the mold 3. .
  • the injection resin passage space 6 is formed through the reinforcing fiber base 4 in the thickness direction.
  • the resin 7 injected from the injection port 5 is impregnated into the reinforcing fiber base 4 through the injection resin passage space 6.
  • the resin 7 injected from the injection port 5 is in the initial flow immediately after being injected.
  • the through-hole-shaped injection resin passage space 6 is formed in the reinforcing fiber base 4 immediately below the injection port 5, and the resin 7 injected from the injection port 5 is first injected resin passage space. 6 and then impregnated into the reinforcing fiber base 4 from there, there is no initial collision of the resin on the surface of the reinforcing fiber base 4 immediately after the injection from the injection port 5, The pressing down of the surface of the reinforcing fiber base 4 that has occurred is suppressed, and the occurrence of dents on the surface is suppressed. Moreover, since the injection resin passage space 6 is formed in the shape of a through hole, the injection resin 7 collides with the inner surface of the lower mold 2 as described above, and the momentum is scraped off.
  • FIG. 2 shows an example when the method of FIG. 1 is applied to the multipoint injection method.
  • Reference numeral 11 denotes a molding die
  • 12 denotes a seal line at the time of molding
  • 13 denotes an outer shape of a product molded in the cavity.
  • a reinforcing fiber base material is placed in the cavity to inject resin and form a fiber reinforced resin. Note that the reinforcing fiber base material is formed at an appropriate position of the mold 11 in a direction facing the surface of the reinforcing fiber base material.
  • a plurality of inlets 14 are provided, and in this example, a plurality of suction ports 15 are provided at appropriate positions different from the injection ports 14 in order to inject the resin by reducing the pressure in the cavity by suction. It is preferable that an injection resin passage space equivalent to that shown in FIG. 1 is formed for all the injection ports 14, but an injection resin passage space is formed only for the necessary injection ports 14. Alternatively, the resin injection space may be formed only for the remaining injection ports 14 without forming the resin passage space for the specific injection ports 14. In this way, by applying the present invention in the case of multi-point injection, the generation of surface dents, resin curing shrinkage, and disturbances in the array of reinforcing fibers that could occur in the conventional method are suppressed, and molding is performed. The surface quality of the product is greatly improved, and the design is greatly improved.
  • a cut-off portion 16 is set in a portion corresponding to the periphery of a specific inlet in the range of the molded product, and the cut-off portion 16 is removed from the molded product after molding.
  • the space portion after the removal is used for attachment of additional parts and connection with other members. Therefore, if the injection resin passage space is formed within the range of the cut-off portion 16, the portion made only of the molded resin remaining in the injection resin passage space is a molded product along with the cut-off. Will be removed. Of course, when the part which consists only of resin may remain
  • FIG. 3 shows a method for producing a fiber reinforced resin according to another embodiment of the present invention.
  • an intermediate layer 22 having higher resin fluidity than the reinforcing fiber base 21 is disposed in the reinforcing fiber base 21 made of a laminate of a plurality of reinforcing fiber materials.
  • the resin 7 injected into the injected resin passage space 6 is reinforced from the injected resin passage space 6 into the reinforcing fiber base 21 and the intermediate layer 22.
  • the resin 24 that has flowed into the intermediate layer 22 flows faster in the layers than in the layers of the reinforcing fiber base material 21 laminated on both sides thereof (resin flows 23 and 24).
  • a part of the resin flowing in the intermediate layer 22 flows in the thickness direction of the base material from the intermediate layer 22 to the surface layer side of the base material, forming a resin flow 25 from the intermediate layer 22 to the base material surface side.
  • the resin flow 25 toward the substrate surface side tries to press the surface layer side of the laminate of the plurality of reinforcing fiber substrates against the inner surface of the mold 3, the resin-rich portion on the substrate surface layer side is It is reduced over a wide range, and a more excellent design of the surface of the molded product is realized.
  • Other configurations, operations, and effects are in accordance with the embodiment shown in FIG.
  • FIG. 4 shows a method for producing a fiber reinforced resin according to still another embodiment of the present invention.
  • the reinforcing fiber base material 33 is left as a continuous layer on the design surface side 32, so that the quality (cross stitch) on the design surface side is maintained. It is preferable that the effects of the present invention can be achieved while keeping the same.
  • the number of the continuous layers can be appropriately selected in order to obtain a desired quality, but the laminated structure is not limited at all. Other configurations, operations, and effects are in accordance with the embodiment shown in FIG.
  • the reinforcing fiber of the reinforcing fiber base to be used is not particularly limited, and carbon fiber, glass fiber, aramid fiber, and a base material combining these reinforcing fibers can be used.
  • arbitrary forms such as a fabric, those in which reinforcing fibers are arranged in one direction, or a laminate thereof, can be applied to the base material.
  • the matrix resin of the fiber reinforced resin is not particularly limited, and either a thermosetting resin or a thermoplastic resin can be applied.
  • a multipoint injection method is used.
  • the present invention is particularly effective.
  • the present invention can be applied to the production of virtually any fiber reinforced resin, and is particularly suitable when a good design is required on the surface of a molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 成形型内に配置された強化繊維基材に対し、該強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入して該強化繊維基材中に含浸させる繊維強化樹脂の製造方法において、注入口の直下に位置する強化繊維基材部分を厚み方向に少なくとも部分的に予め除去しておくことにより成形型内の強化繊維基材中に注入樹脂通過用空間を形成し、注入口から注入された樹脂を、注入樹脂通過用空間を通して強化繊維基材中に含浸させることを特徴とする方法。注入口直下の強化繊維基材部位に注入樹脂通過用空間を形成しておくことにより、注入樹脂による強化繊維基材表面の押し下げを抑制でき、表面の樹脂層を軽減して、優れた生産性を維持しつつ成形品の表面の意匠性を向上することできる。

Description

繊維強化樹脂の製造方法
 本発明は、繊維強化樹脂(FRP:Fiber Reinforced Plastic)の製造方法に関し、とくに、強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入して強化繊維基材中に含浸させる繊維強化樹脂の製造方法の改良に関する。
 複数の型からなる成形型のキャビティ部に配置された強化繊維基材、とくに表面積の大きい強化繊維基材にFRP成形用のマトリックス樹脂を含浸させるに際し、成形時間の短縮、製造コストの低減、生産性の向上等をはかるために、強化繊維基材の表面に対面する方向に開設された複数の注入口からほぼ同時に樹脂を注入して、強化繊維基材中に、とくにその厚み方向に含浸させる、いわゆる多点注入法を採用したRTM(Resin Transfer Molding)法が知られている(例えば、特許文献1)。また、成形品の表面品位を向上するために、成形型内に配置される強化繊維基材の少なくとも片面に、樹脂拡散媒体を有する表層部を設け、強化繊維基材の表面の面方向に迅速に樹脂が広がるようにしたRTM法(例えば、特許文献2)や、強化繊維基材の少なくとも片側の表層部内にランダムマット層を介在させ、とくに意匠面側にボイドやピンホールが生じないようにして表面品位を向上するようにしたRTM法(例えば、特許文献3)も知られているが、これら特許文献2、3では、強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入する形態については、何ら言及されていない。
 上記の如く、強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入する方法、とくに多点注入法には、成形時間の短縮、製造コストの低減、優れた生産性の維持等をはかることができるという利点があるが、従来の方法では以下のような問題を生じるおそれがある。
 すなわち、例えば図5に示すように、上型101と下型102からなる成形型103内に配置された強化繊維基材104(例えば、複数枚の強化繊維材が積層された強化繊維基材)に対し、強化繊維基材104の表面に対面する方向に開設された注入口105から樹脂を注入する場合(106は、図の紙面と垂直の方向に配列された強化繊維束を例示している)、図6に示すように、注入樹脂107により、とくに注入樹脂107の初期流動による衝突(衝突部108)により、強化繊維基材104の表層部位が押し下げられ、強化繊維基材104の表面が凹んでこの表面部位が樹脂リッチ部分あるいは樹脂のみの部分に形成されてしまうことがある。また、このとき、強化繊維基材104の表層部における内部の強化繊維束106の配列に乱れが生じるおそれもある。さらに、樹脂注入完了後においても、例えば図7に示すように、上記注入口105直下の成形品109の表面を形成する部位に樹脂のみの層110があると、樹脂注入完了後の表面111から、樹脂の硬化収縮により表面111が凹んで樹脂硬化収縮後の表面112となってしまい、成形品109の意匠性を悪化させるおそれがある。特に板厚の厚い成形品(例えば、1.6mm以上)や繊維体積含有率の低い成形品(例えば、50%以下)では樹脂の絶対量が多いので、凹みが顕著になりやすい。そして、特に多点注入法を使ったRTM成形では、上記のような注入口直下の強化繊維基材押し下げによる樹脂リッチ部分の形成箇所が多くなり、表面の意匠性を悪化させる原因となりやすい。
 また、もう一つの注入口直下の意匠性が悪くなりやすい原因として、注入口直下の注入口から開放された部分以降では成形品形成のために注入後の樹脂を硬化させてゆきたいが、注入口内部では、樹脂の硬化を抑制して注入されるべき樹脂の円滑な流動を維持する目的で、相対的に低温に制御するため、結果的に注入口直下部分で樹脂の温度が低くなりがちであり、この部分に硬化収縮が集まりやすいことが挙げられる。
特開2005-246902号公報 特開2007-269015号公報 特開2005-232601号公報
 本発明の課題は、上記のような従来方法における問題点に着目し、強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入する方法において、特に多点注入法において、強化繊維基材側に改良を加えることにより、注入樹脂による強化繊維基材の表面の押し下げを抑制し、表面の樹脂層を軽減して、優れた生産性を維持しつつ成形品の表面の意匠性を向上することが可能な繊維強化樹脂の製造方法を提供することにある。
 上記課題を解決するために、本発明に係る繊維強化樹脂の製造方法は、成形型内に配置された強化繊維基材に対し、該強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入して該強化繊維基材中に含浸させる繊維強化樹脂の製造方法において、前記注入口の直下に位置する強化繊維基材部分を厚み方向に少なくとも部分的に予め除去しておくことにより成形型内の強化繊維基材中に注入樹脂通過用空間を形成し、前記注入口から注入された樹脂を、前記注入樹脂通過用空間を通して前記強化繊維基材中に含浸させることを特徴とする方法からなる。また、該空間部は樹脂注入直後の急峻な圧力上昇を抑制し、さらには該成形型内に導入された直後の樹脂の温度を金型温度と馴染ませる効果もある。
 このような本発明に係る繊維強化樹脂の製造方法においては、強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入するに際し、該注入口直下の強化繊維基材側に、注入口の直下に位置する強化繊維基材部分を厚み方向に少なくとも部分的に予め除去しておくことにより、穴等からなる注入樹脂通過用空間を形成し、該注入樹脂通過用空間を通して注入樹脂を強化繊維基材中に含浸させる。該注入樹脂通過用空間の存在により、注入口から注入されてきた樹脂は先ず注入樹脂通過用空間内へと注入され、そこから強化繊維基材中に含浸されることになるので、注入口から注入された直後の樹脂の強化繊維基材表面への初期衝突は無くなる、ないしは緩和され、該衝突により生じていた強化繊維基材表面の押し下げが抑制され、表面の凹みが抑制されて、この部分の表面の樹脂層が軽減される。この樹脂層の軽減により、樹脂の硬化収縮が抑制される。また、表面の凹みが抑制されるため、強化繊維基材の表層部中の強化繊維の配列の乱れも抑制される。さらには、金型内に樹脂が完全充填されたのち、前記注入樹脂通過用空間は樹脂材料のみで充填されているため、周辺の強化繊維基材部分に含浸した樹脂が硬化収縮するとき樹脂供給源となる。その結果、成形される成形品の表面品位が大幅に向上され、意匠性が向上される。
 また、本発明において、上記注入樹脂通過用空間は、強化繊維基材を厚み方向に少なくとも部分的に形成されていればよいが、つまり、強化繊維基材の注入口側表面からある深さまで形成されていればよいが、強化繊維基材を厚み方向に貫通して形成されていることがより好ましい。このような構成においては、注入口から注入された樹脂は、加速中の初期流動の樹脂が強化繊維基材には直接衝突せずに、貫通した注入樹脂通過用空間内を通過して注入口が設置された型とは反対側の型の内面に衝突されるようになる。型の内面への衝突によって注入樹脂の勢いが削がれ、しかる後に樹脂が強化繊維基材中に含浸されていく。したがって、樹脂の強化繊維基材表面への初期衝突により生じていた強化繊維基材表面の押し下げが一層抑制され、表面の凹みが一層抑制されて、この部分の表面の樹脂層が一層軽減され、この部分の樹脂の硬化収縮が一層抑制される。また、表面の凹みが一層抑制されるため、強化繊維基材の表層部中の強化繊維の配列の乱れも一層抑制される。その結果、成形される成形品の表面品位がより大幅に向上され、意匠性がより向上される。
 本発明における上記注入樹脂通過用空間の強化繊維基材の表面方向における面積としては、上記注入口の成形型内への開口面積以上である形態、上記注入口の成形型内への開口面積よりも小さい形態のいずれも採用可能である。注入口からの樹脂注入速度や、多点注入の場合の隣接注入口部分同士間の互いの影響の度合等を考慮して適宜選択すればよい。
 また、本発明に係る繊維強化樹脂の製造方法は、とくに多点注入される場合の成形品の意匠性向上に大きな効果が期待できる。つまり、注入口が複数開設されている場合にとくに有効であり、その場合にあっては、とくに有効と考えられる少なくとも一つの注入口に対して、望ましくは複数の注入口に対して、上記注入樹脂通過用空間が形成されればよい。
 また、本発明に係る繊維強化樹脂の製造方法は、上記強化繊維基材が、積層された複数枚の強化繊維基材の形態である場合にも適用でき、それら積層された複数枚の強化繊維基材に対し上記注入樹脂通過用空間が形成されればよい。
 このような積層された複数枚の強化繊維基材形態の場合、該複数枚の強化繊維基材に対し、強化繊維基材よりも樹脂の流動性が高い中間層が配置され、該中間層の一部は上記注入樹脂通過用空間に面していることが好ましい。すなわち、中間層に表層側よりも樹脂流動性の良い材料を配置する構成である。この流動性は、一般的にダルシー則を使ったパーミアビリティで定義され、実験により求めることができる。この中間層に流動性の良い材料を配置する構成では、注入樹脂通過用空間から中間層内に流入した樹脂は、その両側に積層されている強化繊維基材層内よりも速く層内を流動するので、中間層内を流動している樹脂の一部が中間層から表層側へと基材厚み方向に流動し、中間層から基材表面側への樹脂流れを形成する。この基材表面側への樹脂流れは、複数枚の強化繊維基材の積層体の表層側を成形型の内面に押しつけようとし、この押しつけにより基材表層側の樹脂リッチ部分はさらに低減されることになり、一層優れた成形品表面の意匠性を期待することが可能になる。
 また、本発明においては、上記成形型が両面型からなる場合、キャビティの厚みとしては、予め定めた所定の厚みに設定されることが好ましい。ここで予め定めた所定の厚みとは、実質的に、目標とする成形品厚みである。本発明方法では、上述の如く注入口直下部分に凹みが発生しにくくなるので、樹脂が含浸される直前の強化繊維基材の形態においても、樹脂が含浸された後の形態においても、表面に凹みのない目標とする形状が維持されやすくなり、キャビティの厚みを単純に目標とする所定の成形品厚みに設定しておけば、樹脂注入時の強化繊維基材形態、樹脂注入、硬化後成形品形態の両方が、所望の形態に保たれることになる。
 また、本発明においては、上記注入樹脂通過用空間を通して注入樹脂が強化繊維基材中に含浸される構成であるため、上記注入樹脂通過用空間内に送られた樹脂は硬化成形後にも残ることになる。しかし、とくに面積が大きく、比較的複雑な形状の成形品の場合には、製品の製品範囲内位置に穴等の成形後にカットオフされることが要求される部位が存在することが多い。そのような場合には、上記注入樹脂通過用空間を、容易に、成形すべき製品の製品範囲内位置に形成することができ、例えば、成形すべき製品の製品範囲内位置でかつ成形後にカットオフされるべき部位に形成することができ、硬化樹脂が残存した成形後の注入樹脂通過用空間やその周囲部は、必要に応じて除去すればよく、そのまま残存させても問題ない場合には、そのまま残すこともできる。
 また、本発明は注入口直下の樹脂粘度低減、それに伴う注入圧力の低減にも効果が期待できるため定圧吐出ポンプよりも定量吐出ポンプを用いた注入成形に用いることが好ましい。前記定量吐出ポンプとはギヤポンプ、アキシャルピストンポンプ、サーボモータを搭載したプランジャーポンプなどポンプ回転数や変位で流量を調整して吐出するタイプのポンプである。このようなポンプ群は流量一定吐出能力に優れる一方で、強化繊維基材内のように流動抵抗が大きいものの内部を流れる際に、背圧の立ち上がりが急峻になる懸念があり、注入圧力の低減を図ることができる本発明の効果が大きく好ましい。
 さらには、本発明は複数の注入口を有する製造方法に好適に用いることができる。例えば、複数の注入口直下を有する金型において、前記注入口直下のキャビティ厚みや強化繊維積層体の繊維体積含有率を等しくすることは難しく、比較的流れ易い注入口があると流動パターンがくずれて、それに伴う不具合が発生することがある。該流動パターンがくずれる不具合を改善するために、金型自体を加工調整する方法が挙げられるが、金型のサイズが大きい場合には容易ではない。一方で、本発明は現場で容易に加工できる。
 このように、本発明に係る繊維強化樹脂の製造方法によれば、注入口直下の強化繊維基材部位に注入樹脂通過用空間を形成しておくことにより、注入樹脂による強化繊維基材表面の押し下げを抑制でき、表面の樹脂層を軽減して、優れた生産性を維持しつつ成形品の表面の意匠性を向上することが可能になる。
本発明の一実施態様に係る繊維強化樹脂の製造方法を示す注入口近傍の概略構成図である。 図1の方法を多点注入法に適用した一例を示す成形型の概略透視平面図である。 本発明の別の実施態様に係る繊維強化樹脂の製造方法を示す注入口近傍の概略構成図である。 本発明のさらに別の実施態様に係る繊維強化樹脂の製造方法を示す注入口近傍の概略構成図である。 従来の繊維強化樹脂の製造方法の樹脂注入開始前の状態の一例を示す注入口近傍の概略構成図である。 図5の方法における樹脂注入開始直後の状態の一例を示す注入口近傍の概略構成図である。 図5の方法における樹脂注入後樹脂を硬化させた場合の一例を示す注入口近傍の概略構成図である。
 以下に、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の一実施態様に係る繊維強化樹脂の製造方法を示している。上型1と下型2からなる成形型3内に、例えば複数の強化繊維材の積層体からなる強化繊維基材4が配置され、強化繊維基材4の一表面に対面する方向に上型1に開設された注入口5から、成形すべき繊維強化樹脂のマトリックス樹脂となる樹脂が注入され、注入された樹脂が強化繊維基材4中に含浸される。注入口5の直下に位置する強化繊維基材部分が厚み方向に少なくとも部分的に予め除去されることにより、成形型3内の強化繊維基材4中に注入樹脂通過用空間6が形成される。本実施態様では、注入樹脂通過用空間6は、強化繊維基材4を厚み方向に貫通して形成されている。注入口5から注入された樹脂7は、この注入樹脂通過用空間6を通して強化繊維基材4中に含浸される。本実施態様では、注入樹脂通過用空間6が強化繊維基材4を貫通して形成されているので、注入口5から注入された樹脂7は、注入された直後の初期流動において強化繊維基材4には直接衝突せず、下型2の内面に衝突し(衝突部8)、注入樹脂7の勢いが削がれる。注入口5から注入樹脂通過用空間6内に注入された樹脂7は、注入樹脂通過用空間6から強化繊維基材4中へと、樹脂流れ9で示すように含浸されていく。
 上記方法においては、注入口5直下の強化繊維基材4に、貫通穴形態の注入樹脂通過用空間6が形成されており、注入口5から注入されてきた樹脂7は先ず注入樹脂通過用空間6内へと注入され、そこから強化繊維基材4中に含浸されることになるので、注入口5からの注入直後の樹脂の強化繊維基材4表面への初期衝突は無くなり、該衝突により生じていた強化繊維基材4表面の押し下げが抑制され、表面の凹みの発生が抑制される。また、注入樹脂通過用空間6が貫通穴形態に形成されているので、上述の如く、注入樹脂7は下型2の内面に衝突し、その勢いが削がれる。この点からも、強化繊維基材4表面の押し下げがより抑制され、表面の凹みの発生がより抑制される。したがって、この部分の表面には樹脂リッチの層や樹脂のみの層が実質的に形成されない。そのため、この部分で樹脂層が形成されていた場合の従来方法における樹脂の硬化収縮が抑制される。また、表面の凹みが抑制されるので、強化繊維基材4の表層部中の図5に示したような強化繊維の配列の乱れも抑制される。これら表面の凹みの発生抑制、樹脂の硬化収縮の抑制、強化繊維の配列の乱れ抑制の結果、成形される成形品の表面品位が大幅に向上され、その意匠性が大幅に向上される。
 上記のような方法は、前述の如く、とくに多点注入の場合に有効である。図2に、図1の方法を多点注入法に適用した場合の一例を示す。11は成形型を、12は成形の際のシールラインを示しており、13が、キャビティ内で成形される製品の外形を示している。このキャビティ内に強化繊維基材が配置されて樹脂の注入、繊維強化樹脂の成形が行われるが、成形型11の適当な位置に、強化繊維基材の表面に対面する方向に開設された注入口14が複数設けられ、本例では、キャビティ内を吸引により減圧して樹脂を注入するために、注入口14とは別の適当な位置に吸引口15が複数設けられている。すべての注入口14に対して、図1に示したのと同等の注入樹脂通過用空間が形成されていることが好ましいが、必要な注入口14に対してのみ注入樹脂通過用空間が形成されていてもよいし、特定の注入口14に対しては樹脂通過用空間を形成せずに残りの注入口14に対してのみ注入樹脂通過用空間が形成される形態としてもよい。このように多点注入の場合に本発明が適用されることにより、従来法では複数発生するおそれのあった表面の凹みの発生や樹脂の硬化収縮、強化繊維の配列の乱れが抑制され、成形品の表面品位が大幅に向上され、その意匠性が大幅に向上される。
 また、図2に示した例においては、成形品の範囲内の特定の注入口周りに相当する部分にカットオフ部分16が設定されており、カットオフ部分16内は成形後に成形品から除去されてその除去後の空間部分が付加部品の取付や他部材との取り合いに利用されるようになっている。したがって、このカットオフ部分16の範囲内に注入樹脂通過用空間が形成されていれば、該注入樹脂通過用空間内に残存した成形後の樹脂のみからなる部分は、カットオフに伴って成形品から除去されることになる。もちろん、樹脂のみからなる部分が残存していてもよい場合には、そのまま残せばよい。いずれの成形形態を採用するかは、成形品の要求仕様に応じて決めればよい。
 図3は、本発明の別の実施態様に係る繊維強化樹脂の製造方法を示している。本実施態様においては、複数の強化繊維材の積層体からなる強化繊維基材21中に、強化繊維基材21よりも樹脂の流動性が高い中間層22が配置されている。このような流動性が高い中間層22が配置された形態では、注入樹脂通過用空間6内に注入された樹脂7は、注入樹脂通過用空間6からは強化繊維基材21内と中間層22内の両方に流入されるが(樹脂流れ23、24)、中間層22内に流入した樹脂24は、その両側に積層されている強化繊維基材21の層内よりも速く層内を流動するので、中間層22内を流動している樹脂の一部が中間層22から基材の表層側へと基材厚み方向に流動し、中間層22から基材表面側への樹脂流れ25を形成する。この基材表面側への樹脂流れ25は、複数枚の強化繊維基材の積層体の表層側を成形型3の内面に押しつけようとするので、この押しつけにより基材表層側の樹脂リッチ部分は広い範囲にわたって低減されることになり、一層優れた成形品表面の意匠性が実現される。その他の構成、作用、効果は、前述の図1に示した実施態様に準じる。
 図4は、本発明のさらに別の実施態様に係る繊維強化樹脂の製造方法を示している。本実施態様においては、非意匠面側31と意匠面側32を有する成形において、該意匠面側32に強化繊維基材33を連続層として残すことで、意匠面側の品位(クロス目)を保ったまま、本発明の効果を奏することができ好ましい。上記連続層の枚数としては所望の品位を得るために適宜選択することができるが、積層構成についてなんら限定するものではない。その他の構成、作用、効果は、前述の図1に示した実施態様に準じる。
 なお、本発明においては、使用される強化繊維基材の強化繊維はとくに限定されず、炭素繊維やガラス繊維、アラミド繊維、さらにはこれら強化繊維を組み合わせた基材を使用できる。また、基材の形態も、織物や一方向に強化繊維を配列したもの、それらの積層体等、任意の形態を適用できる。さらに、繊維強化樹脂のマトリックス樹脂についてもとくに限定されず、熱硬化性樹脂、熱可塑性樹脂のいずれも適用できるが、樹脂の硬化収縮が生じやすい場合に、さらには多点注入法を使用する場合に、本発明はとくに有効である。
 本発明は、実質的にあらゆる繊維強化樹脂の製造に適用でき、とくに成形品の表面に良好な意匠性が要求される場合に好適である。
1 上型
2 下型
3 成形型
4、21 強化繊維基材
5 注入口
6 注入樹脂通過用空間
7 注入樹脂
8 衝突部
9、23 強化繊維基材中への樹脂流れ
11 成形型
12 シールライン
13 成形される製品の外形
14 注入口
15 吸引口
16 カットオフ部分
22 中間層
24 中間層内への樹脂流れ
25 中間層から基材表面側への樹脂流れ
31 非意匠面側
32 意匠面側
33 強化繊維基材の連続層

Claims (10)

  1.  成形型内に配置された強化繊維基材に対し、該強化繊維基材の表面に対面する方向に開設された注入口から樹脂を注入して該強化繊維基材中に含浸させる繊維強化樹脂の製造方法において、前記注入口の直下に位置する強化繊維基材部分を厚み方向に少なくとも部分的に予め除去しておくことにより成形型内の強化繊維基材中に注入樹脂通過用空間を形成し、前記注入口から注入された樹脂を、前記注入樹脂通過用空間を通して前記強化繊維基材中に含浸させることを特徴とする、繊維強化樹脂の製造方法。
  2.  前記注入樹脂通過用空間が、前記強化繊維基材を厚み方向に貫通して形成されている、請求項1に記載の繊維強化樹脂の製造方法。
  3.  前記注入樹脂通過用空間の前記強化繊維基材の表面方向における面積が、前記注入口の成形型内への開口面積以上である、請求項1または2に記載の繊維強化樹脂の製造方法。
  4.  前記注入樹脂通過用空間の前記強化繊維基材の表面方向における面積が、前記注入口の成形型内への開口面積よりも小さい、請求項1または2に記載の繊維強化樹脂の製造方法。
  5.  前記注入口が複数開設されており、少なくとも一つの注入口に対して前記注入樹脂通過用空間が形成される、請求項1~4のいずれかに記載の繊維強化樹脂の製造方法。
  6.  積層された複数枚の強化繊維基材に対し前記注入樹脂通過用空間が形成される、請求項1~5のいずれかに記載の繊維強化樹脂の製造方法。
  7.  複数枚の強化繊維基材に対し、強化繊維基材よりも樹脂の流動性が高い中間層が配置され、該中間層の一部は前記注入樹脂通過用空間に面している、請求項6に記載の繊維強化樹脂の製造方法。
  8.  前記成形型が両面型からなり、キャビティの厚みが予め定めた所定の厚みに設定される、請求項1~7のいずれかに記載の繊維強化樹脂の製造方法。
  9.  前記注入樹脂通過用空間が、成形すべき製品の製品範囲内位置に形成される、請求項1~8のいずれかに記載の繊維強化樹脂の製造方法。
  10.  前記強化繊維基材中に樹脂を含浸させる方法が定量吐出方法である、請求項1~9のいずれかに記載の繊維強化樹脂の製造方法。
PCT/JP2013/053698 2012-02-15 2013-02-15 繊維強化樹脂の製造方法 WO2013122207A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13749545.3A EP2815864A4 (en) 2012-02-15 2013-02-15 PROCESS FOR PRODUCING FIBER REINFORCED RESIN
JP2013508705A JP6066331B2 (ja) 2012-02-15 2013-02-15 繊維強化樹脂の製造方法
CN201380007644.7A CN104105584B (zh) 2012-02-15 2013-02-15 纤维增强树脂的制备方法
KR1020147012943A KR101974677B1 (ko) 2012-02-15 2013-02-15 섬유 강화 수지의 제조 방법
US14/379,094 US20150014883A1 (en) 2012-02-15 2013-02-15 Method of manufacturing fiber-reinforced resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012030436 2012-02-15
JP2012-030436 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013122207A1 true WO2013122207A1 (ja) 2013-08-22

Family

ID=48984316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053698 WO2013122207A1 (ja) 2012-02-15 2013-02-15 繊維強化樹脂の製造方法

Country Status (6)

Country Link
US (1) US20150014883A1 (ja)
EP (1) EP2815864A4 (ja)
JP (1) JP6066331B2 (ja)
KR (1) KR101974677B1 (ja)
CN (1) CN104105584B (ja)
WO (1) WO2013122207A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456157B2 (en) * 2015-08-26 2019-10-29 Ethicon Llc Ultrasonic surgical instrument clamp arm with snap-on clamp pad
US11225942B2 (en) * 2017-07-05 2022-01-18 General Electric Company Enhanced through-thickness resin infusion for a wind turbine composite laminate
WO2020038584A1 (en) * 2018-08-23 2020-02-27 Rhodia Operations Composites with flow enhancing structures and process for their manufacture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260238A (ja) * 2000-03-15 2001-09-25 Toray Ind Inc Rtm成形法およびfrp成形体
JP2005232601A (ja) 2004-02-17 2005-09-02 Toray Ind Inc 繊維強化樹脂およびその製造方法
JP2005246902A (ja) 2004-03-08 2005-09-15 Toray Ind Inc Rtm成形方法
WO2005095079A1 (ja) * 2004-03-30 2005-10-13 Toray Industries, Inc. プリフォーム、frpおよびそれらの製造方法
JP2006142651A (ja) * 2004-11-19 2006-06-08 Mitsubishi Rayon Co Ltd 浴槽の製造方法
JP2006306057A (ja) * 2005-03-28 2006-11-09 Toray Ind Inc Frp構造体の製造方法
JP2007269015A (ja) 2006-03-08 2007-10-18 Toray Ind Inc 繊維強化樹脂の製造方法
JP2009019201A (ja) * 2007-06-12 2009-01-29 Toray Ind Inc 成形材料、プリフォームおよび繊維強化樹脂

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913036A (en) * 1956-08-10 1959-11-17 Anthony Bros Fibre Glass Pool Process and apparatus for molding large plastic structures
US4560523A (en) * 1984-04-30 1985-12-24 A&M Engineered Composites Corporation Intrusion molding process for forming composite structures
WO1989000495A1 (en) * 1987-07-10 1989-01-26 3-D Composites Limited Moulding method
US5132069A (en) * 1987-07-10 1992-07-21 Newton John R Method of injection molding composite articles
GB8716315D0 (en) * 1987-07-10 1987-08-19 Newton J R Moulding method
FR2623121B1 (fr) * 1987-11-16 1993-10-01 Cappello Lucio Procede pour realiser par injection des pieces en materiaux composites contenant des fibres de renfort dans une matrice en resine de synthese allege par incorporation de gaz
US5958325A (en) * 1995-06-07 1999-09-28 Tpi Technology, Inc. Large composite structures and a method for production of large composite structures incorporating a resin distribution network
US5919327A (en) * 1995-06-30 1999-07-06 Insituform (Netherlands) B.V. Method and apparatus for sealed end for cured in place pipe liners
US6508974B1 (en) * 1996-02-15 2003-01-21 David Loving Process for fiberglass molding using a vacuum
US6090335A (en) * 1999-01-08 2000-07-18 Northrop Grumman Corporation Process of forming fiber reinforced composite articles using an insitu cured resin infusion port
JP2001129827A (ja) * 1999-11-08 2001-05-15 Toray Ind Inc 長繊維ペレットおよびその製造方法ならびにその製造装置
JP2004523397A (ja) * 2001-04-08 2004-08-05 トレンチ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気的なプラスチック絶縁体を製作するための方法および装置
US7060156B2 (en) * 2001-07-23 2006-06-13 Vrac, Llc Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures
US20030119398A1 (en) * 2001-11-30 2003-06-26 Alex Bogdanovich 3-D resin transfer medium and method of use
JP2003268137A (ja) * 2002-03-15 2003-09-25 Mitsubishi Rayon Co Ltd プリプレグ及びプリプレグの製造方法
TW200716361A (en) * 2005-07-27 2007-05-01 Mitsubishi Heavy Ind Ltd Rtm process
JP5136876B2 (ja) * 2006-11-28 2013-02-06 東レ株式会社 強化繊維積層体およびその製造方法
JP2011161879A (ja) * 2010-02-15 2011-08-25 Toray Ind Inc 真空rtm成形方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260238A (ja) * 2000-03-15 2001-09-25 Toray Ind Inc Rtm成形法およびfrp成形体
JP2005232601A (ja) 2004-02-17 2005-09-02 Toray Ind Inc 繊維強化樹脂およびその製造方法
JP2005246902A (ja) 2004-03-08 2005-09-15 Toray Ind Inc Rtm成形方法
WO2005095079A1 (ja) * 2004-03-30 2005-10-13 Toray Industries, Inc. プリフォーム、frpおよびそれらの製造方法
JP2006142651A (ja) * 2004-11-19 2006-06-08 Mitsubishi Rayon Co Ltd 浴槽の製造方法
JP2006306057A (ja) * 2005-03-28 2006-11-09 Toray Ind Inc Frp構造体の製造方法
JP2007269015A (ja) 2006-03-08 2007-10-18 Toray Ind Inc 繊維強化樹脂の製造方法
JP2009019201A (ja) * 2007-06-12 2009-01-29 Toray Ind Inc 成形材料、プリフォームおよび繊維強化樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2815864A4

Also Published As

Publication number Publication date
CN104105584B (zh) 2016-01-27
JPWO2013122207A1 (ja) 2015-05-18
KR20140127797A (ko) 2014-11-04
JP6066331B2 (ja) 2017-01-25
EP2815864A4 (en) 2015-11-04
US20150014883A1 (en) 2015-01-15
EP2815864A1 (en) 2014-12-24
KR101974677B1 (ko) 2019-05-02
CN104105584A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
KR101151966B1 (ko) Rtm 성형방법 및 장치
JP4825899B2 (ja) 繊維強化樹脂の製造方法、繊維強化樹脂の製造装置
KR101776383B1 (ko) 복합재 보강멤버 제조장치 및 제조방법
US20200180260A1 (en) Fiber-reinforced composite material
JP6728856B2 (ja) Rtm製造装置および繊維強化プラスチックのrtm製造方法
WO2013125641A1 (ja) Rtm方法
CN105313347A (zh) 纤维复合构件及其制造方法和制造装置
KR102012140B1 (ko) 복합 재료의 제조 방법 및 복합 재료의 제조 장치
JP6066331B2 (ja) 繊維強化樹脂の製造方法
DE102011120903A1 (de) Faserverbund-Halbzeug und Verfahren zur Herstellung von Sandwichbauteilen
JP4548243B2 (ja) 成形品の成形方法
JP2011031481A (ja) 繊維強化樹脂部品およびその製造方法並びに製造装置
JP2005193587A (ja) Rtm成形方法
WO2018179633A1 (ja) プレス成形金型および樹脂成形品
JP4442256B2 (ja) Rtm成形方法
JP2006095727A (ja) Rtm成形装置および方法
KR102349669B1 (ko) 섬유 강화 플라스틱의 성형방법
JP6791380B2 (ja) 複合材料の成形方法
JP2018047577A (ja) 複合材料の成形方法
KR102347729B1 (ko) 매트릭스 수지의 고속 함침을 위한 rtm 금형 구조체
JPH1158536A (ja) 繊維強化樹脂複合体の製造方法
KR101447133B1 (ko) 댐핑포켓과 슬릿채널이 부설되어 있는 진공함침 수지이송성형방식에 의한 섬유강화플라스틱 성형몰드
JP6821539B2 (ja) 複合強化繊維樹脂成形品の成形方法
JP2011224939A (ja) 繊維強化樹脂成形品、およびその製造方法
JP2012192542A (ja) Rtm成形装置および成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013508705

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147012943

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013749545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14379094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE