WO2013121514A1 - 電力平準化装置 - Google Patents

電力平準化装置 Download PDF

Info

Publication number
WO2013121514A1
WO2013121514A1 PCT/JP2012/053326 JP2012053326W WO2013121514A1 WO 2013121514 A1 WO2013121514 A1 WO 2013121514A1 JP 2012053326 W JP2012053326 W JP 2012053326W WO 2013121514 A1 WO2013121514 A1 WO 2013121514A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
manufacturing
power consumption
function
value
Prior art date
Application number
PCT/JP2012/053326
Other languages
English (en)
French (fr)
Inventor
宏幸 今成
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201280069768.3A priority Critical patent/CN104126262A/zh
Priority to KR1020147019134A priority patent/KR20140101855A/ko
Priority to US14/371,774 priority patent/US9715229B2/en
Priority to PCT/JP2012/053326 priority patent/WO2013121514A1/ja
Priority to TW101116478A priority patent/TWI473384B/zh
Publication of WO2013121514A1 publication Critical patent/WO2013121514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a power leveling device for leveling power supplied from the outside to a manufacturing plant or a manufacturing line.
  • the above power control method does not consider the case where a plurality of materials are manufactured at different positions on the manufacturing line. For this reason, the electric power supplied to the production line from the outside cannot be leveled.
  • the present invention has been made to solve the above-described problems, and its purpose is to level the power supplied to the production line from the outside even when a plurality of materials are manufactured simultaneously at different positions. It is to provide a power leveling device that can be used.
  • the power leveling device predicts power demand prediction function for predicting power consumption when a plurality of materials are simultaneously manufactured at different positions in a metal material manufacturing factory or production line, and the power demand prediction function predicts When the consumed power exceeds a predetermined value, the manufacturing factory or the power storage device is configured so that the power supplied from the external power system to the manufacturing factory or the manufacturing line is equal to or less than the predetermined value. And a power leveling control function for discharging to the production line.
  • the power leveling device predicts power demand prediction function for predicting power consumption when a plurality of materials are simultaneously manufactured at different positions in a metal material manufacturing factory or production line, and the power prediction demand function predicts When the consumed power exceeds a predetermined value, the product in the manufacturing factory or the manufacturing line is such that the power supplied from the external power system to the manufacturing factory or the manufacturing line is not more than the predetermined value. And a power leveling control function for adjusting the manufacturing timing.
  • the power supplied from the outside to the manufacturing line can be leveled.
  • FIG. 1 It is a block diagram of the power leveling apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the operation schedule prediction function of the power leveling apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the learning function of the operation schedule prediction function of the power leveling apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the individual product power consumption prediction function of the power leveling apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the model reference
  • FIG. 1 is a configuration diagram of a power leveling apparatus according to Embodiment 1 of the present invention.
  • 1 is a power distribution system.
  • An external power system is connected to the input side of the power distribution system 1.
  • a rolling line 2 is connected to the output side of the power distribution system 1.
  • the rolling line 2 is a hot sheet rolling machine.
  • a heating furnace is provided in the uppermost stream of the rolling line 2.
  • a roughing mill is provided on the downstream side of the heating furnace.
  • a finish rolling mill is provided on the downstream side of the rough rolling mill.
  • a coiler is provided on the downstream side of the finishing mill.
  • the control system 3 is a control system for the rolling line 2.
  • the control system 3 includes an initial setting calculation function 4 and a result data collection function 5.
  • the initial setting calculation function 4 includes a learning function A.
  • the product specification 6 is the product specification.
  • the product specification 6 includes material information and product specifications to be manufactured on the rolling line 2.
  • the product specification 6 is given from the host computer for each material.
  • the initial setting calculation function 4 calculates the initial setting of the rolling line 2 based on the product specification 6. Based on the initial setting, settings such as a heating furnace, a roughing mill, and a finishing mill are made. Based on the setting, the roughing mill, the finish rolling mill, and the like operate using the power supplied from the external power system via the power distribution system 1. In the heating furnace, control is performed using the supplied electric power based on the setting, the fuel is combusted appropriately, and the rolled material is heated to a desired temperature. Specifically, a slab is extracted from a heating furnace as a rolled material. The rolled material is rolled by a rough rolling mill and a finish rolling mill. Thereafter, the rolled material is wound on a coiler. At this time, the record data collection function 5 collects rolling record data of the rolling line 2.
  • the control system 3 controls the total length of the rolled material.
  • the initial setting calculation function 4 predicts time information indicating how many seconds rolling and conveyance are performed in each facility after the start of rolling. Based on the prediction and rolling performance data, the learning function A learns a model for calculating settings of a heating furnace, a roughing mill, a finishing mill, and the like. Based on the learning result, the initial setting calculation function 4 corrects the settings of the heating furnace, the roughing mill, the finishing mill, and the like.
  • a power storage device 7 is provided.
  • the power storage device 7 includes a storage battery, a flywheel, and a large-capacity capacitor.
  • Storage battery stores electrical energy as chemical energy. For this reason, rapid discharge of a storage battery is difficult. However, if a lithium ion battery or the like is used, rapid discharge is performed. On the other hand, for example, if a NaS battery (battery using sodium and sulfur) is used, the capacity of the storage battery can be easily increased. Recently, the price of storage batteries has also dropped significantly. For this reason, the capacity increase of the storage battery is easily and inexpensively realized.
  • the flywheel is a power storage device that uses the flywheel effect.
  • the rotating body and the motor generator are directly connected.
  • the rotating body has a large inertia.
  • the rotational speed of the rotating body is increased by supplying electric power to the motor generator.
  • the motor generator is used as an electric motor.
  • the rotational speed of the rotating body is reduced by using the motor generator as a generator.
  • the storage capacity of the flywheel is determined by the scale of the rotating body and the motor generator.
  • the discharge speed of the flywheel is equal to or higher than that of a storage battery capable of rapid discharge.
  • the storage battery, the flywheel, and the large-capacity capacitor are properly used so as to complement each other according to the speed response of the power to be discharged. For example, when a rapid and large amount of discharge is required, first, a large-capacity capacitor capable of rapid discharge is discharged. Thereafter, a flywheel is used. Finally, a storage battery with a slow response is used. The same effect can be expected with a combination of a large capacity capacitor and storage battery, a flywheel and storage battery, and a large capacity capacitor and flywheel.
  • a power conditioner 8 is connected between the power distribution system 1 and the power storage device 7.
  • the power conditioner 8 has a function of appropriately converting AC power supplied from an external power system to DC when charging the power storage device 7.
  • the power conditioner 8 has a function of appropriately converting DC power discharged by the power storage device 7 into AC power.
  • a power storage device control function 9 is connected to the power storage device 7 and the power conditioner 8.
  • the power storage device control function 9 has a function of controlling the power storage device 7 and the power conditioner 8 so that the power storage device 7 is charged and discharged appropriately.
  • the power leveling apparatus 10 is a power leveling device.
  • the power leveling apparatus 10 includes an operation schedule prediction function 11, an individual product power consumption prediction function 12, a power demand prediction function 13, a power leveling control function 14, and a display function 15.
  • the operation schedule prediction function 11 predicts the timing at which the slabs of the materials 1, 2,..., N planned in the product specification 6 are extracted from the heating furnace, and is calculated by the initial setting calculation function 4. A function is provided for predicting at what timing and in what position the rolled material is based on the rolling and conveying time in the equipment.
  • the operation schedule prediction function 11 includes a learning function B.
  • the learning function B has a function of correcting the prediction of the slab extraction timing based on the result data.
  • the individual product power consumption prediction function 12 is based on the settings of the heating furnace, rough rolling mill, finish rolling mill and the like calculated by the initial setting calculation function 4, regardless of the timing predicted by the operation schedule prediction function 11.
  • the material 1, 2, ..., N planned in the product specification 6 is provided with a function of calculating electric power consumed in each facility of the rolling line 2 from the slab to the product.
  • the individual product power consumption prediction function 12 includes a learning function C.
  • the learning function C has a function of correcting the calculation of power consumption based on the result data.
  • the power demand prediction function 13 is based on the position information and time information of the rolled material predicted by the operation schedule prediction function 11 and the power consumption for each rolled material calculated by the individual product power consumption prediction function 12. A function for calculating power consumption in a time series in a time series is provided.
  • the power demand prediction function 13 includes a learning function D.
  • the learning function D has a function of correcting the calculation of power consumption based on the result data.
  • the power leveling control function 14 When the power consumption calculated by the power demand prediction function 13 exceeds a predetermined peak value, the power leveling control function 14 causes the power supplied from the external power system to the rolling line 2 to be less than the peak value.
  • the power storage device control function 9 has a function of giving a discharge command for the power storage device 7.
  • the power leveling control function 14 is provided with a function of giving a charge command for the power storage device 7 to the power storage device control function 9 when the power consumption calculated by the power demand prediction function 13 does not exceed the peak value.
  • the power leveling control function 14 includes power monitor control means.
  • the power monitor control means has a function of monitoring actual power consumption data that changes every moment, and forcibly discharging the power storage device 7 when the actual power consumption data exceeds the power threshold.
  • the power threshold is set to a peak value or a value smaller than the peak value by a margin.
  • the display function 15 has a function of displaying the time series of power consumption calculated by the power demand prediction function 13 and the time series of power consumption leveled by the power leveling control function 14 on a display of a computer or the like.
  • An example of a time series of power consumption calculated by the power demand prediction function 13 is shown on the left side of the display function 15.
  • An example of time series of power consumption leveled by the power leveling control function 14 is shown on the right side of the display function 15.
  • FIG. 2 is a diagram for explaining an operation schedule prediction function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • N P is the number of slabs which are extracted in the past of a certain period.
  • Ti, i-1 are slab NO. i and NO. i ⁇ 1 time interval.
  • NO. -2 points to the slab two times before the current time.
  • T AV LL is a lower limit value of T AV .
  • T AV UL is an upper limit value of T AV .
  • the current time t 0, when the slab number within the forecast period to N F, the extraction timing t j of the slab, is calculated by the following equation (3).
  • the slab extraction timing t j may be predicted by first-order lag filtering of past slab extraction intervals.
  • the past slab extraction interval filtering value T FL satisfies the following equations (4) and (5).
  • ⁇ 2 is a filtering gain.
  • T FL LL is a lower limit value of T FL .
  • T FL UL is an upper limit value of T FL .
  • the slab extraction timing t j is calculated by the following equation (6).
  • the time (minutes) required for trouble processing is entered. At this time, the prediction of the extraction timing of the next slab is delayed by the input time. If the operator specifies the slab extraction timing, that timing is taken into account.
  • FIG. 3 is a diagram for explaining the learning function of the operation schedule prediction function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the learning function B divides the table by steel type, finish target plate thickness, finish target plate width, etc., and stores the slab extraction time interval in the corresponding table category.
  • the stored value is smoothed by the following equation (7).
  • (Newly stored slab extraction time interval T new ) G * (slab extraction time interval actual value T) + (1 ⁇ G) * (slab extraction time interval T old stored in the table) (7)
  • G is a weighting coefficient in the range of 0 ⁇ G ⁇ 1.
  • the slab extraction timing t j is predicted using the equation (3), the steel type l, the finishing target plate thickness m from the slab corresponding to the steel type i, the finishing target plate thickness j, and the finishing target plate width k.
  • the slab extraction timing t j is calculated by the following equation (8).
  • ⁇ 4 is the weight gain at the lot change.
  • FIG. 4 is a diagram for explaining an individual product power consumption prediction function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the individual product power consumption prediction function 12 includes a model reference power consumption calculation means 12a and a performance data reference power consumption prediction means 12b.
  • the model reference power consumption calculating means 12a has a function of calculating power consumption when manufacturing a rolling material to be calculated based on the calculation result 4a calculated by the initial setting function calculation function.
  • the actual data reference power consumption predicting means 12b has a function of calculating the power consumption when manufacturing the rolling material to be calculated based on the actual data.
  • the individual product power consumption prediction function 12 has a function of outputting a calculation result 12c of either the model reference power consumption calculation means 12a or the actual data reference power consumption prediction means 12b.
  • FIG. 5 is a diagram for explaining model reference power consumption calculation means of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the upper part of FIG. 5 is the speed predicted by the initial setting calculation function 4.
  • the lower part of FIG. 5 is the torque predicted by the initial setting calculation function 4.
  • the model reference power consumption calculation means 12a calculates the power consumption based on the torque and speed predicted by the initial setting calculation function 4. Specifically, the model reference power consumption calculation means 12a calculates the product of torque and speed at each time as the power consumption at that time. In this case, the amount of power of the rolling material to be calculated is an integrated value of the power within the rolling time.
  • FIG. 6 is a diagram for explaining the learning function of the model reference power consumption calculation means of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the calculated power value by the model reference power consumption calculating means 12a is a predicted value.
  • the predicted value has an error. Therefore, the learning function C calculates the learning value Z by collecting actual data of power consumption after the rolled material to be calculated is rolled and comparing it with the calculated value. As a result, the next calculation accuracy increases.
  • the learning value Z is stored in a table classified by parameters related to power consumption, such as steel type and slab extraction temperature. At this time, a smoothing process is performed for the purpose of filtering. Specifically, the learning value Z new to be used next time is calculated by the following equation (10) using the learning value Z old stored in the same table section and the value of equation (9).
  • (Learning value Z new ) K * (Learning value Z) + (1 ⁇ K) * (Learning value Z old ) (10)
  • K is a learning gain in the range of 0 ⁇ K ⁇ 1.
  • FIG. 7 is a diagram for explaining actual data reference power consumption prediction means of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the actual data-based power consumption predicting means 12b stores the actual power value used for rolling in a computer database or table every time rolling of the rolled material is completed.
  • a boundary is provided between rough rolling and finish rolling.
  • the actual data of the electric energy at the upstream side and the downstream side from the boundary is stored.
  • the width of the rolled material is substantially proportional to the power consumption.
  • the performance data of the electric energy is stored with the width of the rolled material normalized.
  • the standardization preserves a universal amount for the width of the rolled material. When this value is used for the rolled material to be calculated, the width of the rolled material may be multiplied.
  • the rolling time varies depending on the speed of each process such as rough rolling and finish rolling.
  • the electric energy required for each of rough rolling and finish rolling is stored on the basis of the length of the rolled material in the final rolling final pass and the final rolling final pass. That is, the amount of electric power is normalized without taking into account the time and speed that affect energy.
  • the horizontal axis of the power data collected from the performance data collection function 5 is time. For this reason, as shown in the lower part of FIG. 7, it is necessary to convert the data into electric energy data with the length of the rolled material as the horizontal axis. Specifically, the amount of electric power is accumulated for each facility of the rolling line 2 and each path in the facility, and the total amount of electric power of the rolled material is calculated. By dividing the total amount of power by the length and width of the rolled material, the amount of power per unit length and width of the rolled material is determined.
  • E C RM is the power consumption (kWh) in rough rolling.
  • L C RMD is the length (m) of the rolled material at the rough rolling delivery side.
  • B C RMD is the width of rolled material (m) on the rough rolling delivery side.
  • B C RMD may be the average of the width of the slab and the finished width of the rolled material.
  • E C FM is the power consumption (kWh) in rough rolling.
  • L C FMD is the length (m) of the rolled material on the rough rolling delivery side.
  • B C FMD is the width of the rolled material (m) on the rough rolling delivery side.
  • B C FMD may be the average of the width of the slab and the finished width of the rolled material.
  • FIG. 8 is a diagram for explaining a table of the performance database power consumption prediction means of the power leveling apparatus according to Embodiment 1 of the present invention.
  • data distribution uses parameters that affect power consumption as parameters. For example, slab extraction temperature, steel type, coarse bar thickness, product target thickness, etc.
  • Electric energy E M N_RM per unit length and width of the rolled material, E M N_FM is stored in the rough rolling and for finish rolling table previously prepared.
  • FIG. 9 is a diagram for explaining a power demand prediction function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the power consumed for each rolled material is calculated by the individual product power consumption prediction function 12.
  • Information on the position and time of the rolled material is calculated by the operation schedule prediction function 11.
  • the steady electric power consumption is the electric power consumption of equipment that is outside the rolling line 2 and constantly consumes electric power, such as a pump for circulating cooling water used for rolling, lighting, and an air conditioner. These total power consumptions are accurately obtained by actual measurement.
  • the power consumption at the time of simultaneously rolling a plurality of rolled materials at different positions is predicted by integrating the power at each time as shown in the lower stage of FIG.
  • FIG. 10 is a diagram for explaining the learning function of the power demand prediction function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the execution of the power demand prediction function 13 is repeated every shift time T s .
  • the prediction period is about 30 minutes to 2 hours.
  • shift time T S is set to about 1 minute 1 second.
  • FIG. 11 is a diagram for explaining the power leveling control function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the power leveling control function 14 controls the power storage device 7 so as not to exceed the contracted power purchase amount contracted with the power company or the like using the time series transition of the power demand predicted by the power demand prediction function 13.
  • the power leveling control function 14 considers the response of the device so that the power storage device 7 discharges early so that the power required for the rolling line 2 is not insufficient. Control.
  • the above processing is performed when the contracted power purchase amount has a margin and the predicted power reaches (contract power purchase amount) ⁇ (margin margin).
  • Charging the power storage device 7 is performed when the predicted power consumption value continues to fall below the contract power purchase amount. However, the capacity of the power storage device 7 has an upper limit. For this reason, when the power storage device 7 is fully charged, the power leveling control function 14 outputs a command to the power storage device control function 9 so as to stop the charging of the power storage device 7.
  • a calculation window is set, and a time-series transition of power demand within the range is obtained, and charging / discharging of the power storage device 7 is determined.
  • the calculation window is shifted every certain time. The shift in the calculation window may be matched with the execution timing of the power demand prediction function 13.
  • the calculation window period is set to be shorter than the forecast period. Control is performed so that the power consumption does not exceed the contract power purchase amount within the range of the calculation window. Furthermore, in order to prolong the life of the power storage device 7, a limit may be added to the rate of change of the predicted power value so that frequent charge / discharge switching is not performed.
  • the discharge is first set to discharge from the large-capacity capacitor or flywheel.
  • capacitance of a storage battery can be reduced or the frequency
  • FIG. 12 is a diagram for explaining the power monitor control means of the power leveling control function of the power leveling apparatus according to Embodiment 1 of the present invention.
  • the power monitor control means changes the operation of the power storage device 7 from charging to discharging by monitoring and controlling the power demand. For example, when rapid discharge is required, it is set to discharge from a large-capacity capacitor or flywheel, and then discharge from a storage battery if necessary. In this case, rapid discharge and subsequent large amount of discharge can be dealt with.
  • FIG. 13 is a flowchart for illustrating processing in the power leveling apparatus according to Embodiment 1 of the present invention.
  • step S1 it is determined whether or not it is a power prediction timing. In the case of the power prediction timing, the process proceeds to step S2. In step S2, the initial setting calculation function 4 performs setting calculation on the material to be rolled based on the product specification 6.
  • step S3 the operation schedule prediction function 11 predicts the operation state after a certain time from the present time. Specifically, it is predicted when which material is produced (rolled). Then, it progresses to step S4 and the individual product power consumption prediction function 12 estimates power consumption regarding each material.
  • step S5 the power demand prediction function 13 predicts the power consumption after a predetermined time from the present time.
  • the display function 15 displays the result on a display or the like.
  • step S6 the power leveling control function 14 produces the control policy of the power storage device 7 which implement
  • the display function 15 displays the result on a display or the like.
  • step S7 where the power storage device control function 9 controls the power storage device 7 via the power conditioner 8.
  • step S8 it is determined whether or not the actual power demand actual value exceeds the contract power purchase amount. If the actual power demand value does not exceed the contract power purchase amount, the process proceeds to step S7, and the control of the power storage device 7 is maintained.
  • step S8 If the actual power demand value exceeds the contract power purchase amount in step S8, the process proceeds to step S9.
  • step S9 the power leveling control function 14 creates a control strategy for the power storage device 7 so that the actual power demand actual value does not exceed the contract power purchase amount. Then, it progresses to step S7 and the electric power storage apparatus control function 9 controls the electric power storage apparatus 7 via the power conditioner 8 with the said measure.
  • the power storage device 7 when the power consumption predicted by the power demand prediction function 13 exceeds a predetermined value, the power storage device 7 is discharged. For this reason, even when a plurality of materials are simultaneously manufactured at different positions, the power supplied from the outside to the manufacturing line can be leveled. As a result, the capacity of the power supply facility can be reduced. Furthermore, the power lines and substation facilities of the external power system can be reduced. For this reason, electric power can be supplied inexpensively from the outside.
  • the power storage device 7 is charged with power supplied from an external power system. For this reason, an external electric power system can be effectively used for charging the power storage device 7.
  • the discharge order of the storage battery, flywheel, and large-capacity capacitor is switched. For this reason, the characteristic of the electric power storage apparatus 7 can be improved.
  • the predicted value of power consumption is calculated based on the prediction results of the operation schedule prediction function 11 and the individual power consumption prediction function. For this reason, the predicted value of power consumption can be easily obtained.
  • the individual product power consumption prediction function 12 outputs the calculation result of either the model reference power consumption calculation means 12a or the actual data reference power consumption prediction means 12b. For this reason, even if any one of the functions breaks down, power leveling can be maintained.
  • the operation schedule prediction function 11 has an individual product power consumption prediction function 12 and the power demand prediction function 13 has a learning function. For this reason, the precision at the time of leveling electric power can be raised.
  • the power storage device 7 is discharged. For this reason, the electric power supplied to a production line from the outside can be leveled more reliably.
  • the power leveling apparatus 10 can be applied.
  • FIG. FIG. 14 is a configuration diagram of a power leveling apparatus according to Embodiment 2 of the present invention.
  • symbol is attached
  • the power storage device 7 is provided. On the other hand, in the second embodiment, the power storage device 7 is not provided.
  • the power leveling control function 14 suppresses the peak power by suppressing the rolling pitch. Specifically, the power leveling control function 14 outputs a calculated value of a desired pitch of the rolled material as guidance to the operator. In this case, the operator performs peak power suppression by following the calculated value.
  • FIG. 15 is a diagram for explaining a method of suppressing the pitch of the rolled material by the power leveling apparatus according to Embodiment 2 of the present invention.
  • predicted values of electric energy required for rough rolling and finish rolling are accumulated for rolled materials 1, 2, 3,.
  • the peak power is suppressed by delaying the rolling time of the rolled material as shown in the lower part of FIG.
  • a calculation window is set. A time series transition of power demand within the range of the calculation window is obtained, and the rolling time of the rolled material is determined. The calculation window is shifted every certain time.
  • FIG. 16 is a flowchart for explaining processing in the power leveling apparatus according to Embodiment 2 of the present invention.
  • Steps S11 to S15 are the same as steps S1 to S5 in FIG. After step S15, the process proceeds to step S16.
  • step S16 the power leveling control function 14 creates a rolling pitch that realizes peak cutting of power.
  • the display function 15 displays the result on a display or the like.
  • the power supplied from the outside to the production line can be leveled.
  • FIG. 17 is a configuration diagram of a power leveling device according to Embodiment 3 of the present invention.
  • symbol is attached
  • FIG. 17 two rolling lines 2 are provided.
  • a power leveling device 10 is provided for each rolling line 2.
  • the power leveling control function 14 and the display function 15 are shared by a plurality of rolling lines 2.
  • the power leveling control function 14 takes in the prediction result of the power consumption by each power demand prediction function 13, arranges and rearranges the power demand in the same manner as in FIG. Level the power load.
  • the same control can be performed when there are three or more rolling lines 2.
  • the power supplied to the production line from the outside can be leveled even for the plurality of rolling lines 2.
  • the pitch of the rolled material is suppressed as in the second embodiment. May be.
  • the power leveling device 10 may be applied to a metal material production line other than the rolling line 2. Further, the power leveling device 10 may be applied to the entire manufacturing factory including the manufacturing line. Even in these cases, the power supplied from the outside to the production line can be leveled.
  • the power leveling apparatus according to the present invention can be used in a metal material manufacturing factory or a manufacturing line of a metal material in which a plurality of materials are manufactured simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 複数の素材が異なる位置で同時に製造される場合でも、外部から製造ラインに供給される電力を平準化することができる電力平準化装置を提供する。このため、電力平準化装置は、金属材料の製造工場又は製造ラインの異なる位置で複数の素材が同時に製造される際の消費電力を予測する電力需要予測機能と、電力需要予測機能が予測した消費電力が所定値を超えている場合は、外部の電力系統から製造工場又は製造ラインに供給される電力が所定値以下となるように、電力貯蔵装置に対して製造工場又は製造ラインに放電させる電力平準化制御機能と、を備えた。

Description

電力平準化装置
 この発明は、外部から製造工場又は製造ラインに供給する電力を平準化する電力平準化装置に関するものである。
 製造ラインの電力制御方法として、製造ラインの最大電力が契約電力を超えると予想されるときに、自家発電等により電力をまかなう方法が提案されている(例えば、特許文献1参照)。
日本特開2009-183077号公報
 しかしながら、上記電力制御方法は、製造ラインの異なる位置で複数の素材が同時に製造される場合を考慮していない。このため、外部から製造ラインに供給される電力を平準化することができない。
 この発明は、上述の課題を解決するためになされたもので、その目的は、複数の素材が異なる位置で同時に製造される場合でも、外部から製造ラインに供給される電力を平準化することができる電力平準化装置を提供することである。
 この発明に係る電力平準化装置は、金属材料の製造工場又は製造ラインの異なる位置で複数の素材が同時に製造される際の消費電力を予測する電力需要予測機能と、前記電力需要予測機能が予測した消費電力が所定値を超えている場合は、外部の電力系統から前記製造工場又は前記製造ラインに供給される電力が前記所定値以下となるように、電力貯蔵装置に対して前記製造工場又は前記製造ラインに放電させる電力平準化制御機能と、を備えたものである。
 この発明に係る電力平準化装置は、金属材料の製造工場又は製造ラインの異なる位置で複数の素材が同時に製造される際の消費電力を予測する電力需要予測機能と、前記電力予測需要機能が予測した消費電力が所定値を超えている場合は、外部の電力系統から前記製造工場又は前記製造ラインに供給される電力が前記所定値以下となるように、前記製造工場又は前記製造ラインでの製品の製造タイミングを調整する電力平準化制御機能と、を備えたものである。
 この発明によれば、複数の素材が異なる位置で同時に製造される場合でも、外部から製造ラインに供給される電力を平準化することができる。
この発明の実施の形態1における電力平準化装置の構成図である。 この発明の実施の形態1における電力平準化装置の操業スケジュール予測機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の操業スケジュール予測機能の学習機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の個別製品消費電力予測機能を説明するための図である。 この発明の実施の形態1における電力平準化装置のモデル基準消費電力演算手段を説明するための図である。 この発明の実施の形態1における電力平準化装置のモデル基準消費電力演算手段の学習機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の実績データ基準消費電力予測手段を説明するための図である。 この発明の実施の形態1における電力平準化装置の実績データ基準消費電力予測手段のテーブルを説明するための図である。 この発明の実施の形態1における電力平準化装置の電力需要予測機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の電力需要予測機能の学習機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の電力平準化制御機能を説明するための図である。 この発明の実施の形態1における電力平準化装置の電力平準化制御機能の電力モニター制御手段を説明するための図である。 この発明の実施の形態1における電力平準化装置内の処理を説明するためのフローチャートである。 この発明の実施の形態2における電力平準化装置の構成図である。 この発明の実施の形態2における電力平準化装置による圧延材のピッチの抑制方法を説明するための図である。 この発明の実施の形態2における電力平準化装置内の処理を説明するためのフローチャートである。 この発明の実施の形態3における電力平準化装置の構成図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1における電力平準化装置の構成図である。
 図1において、1は配電系統である。配電系統1の入力側には、外部の電力系統が接続される。配電系統1の出力側には、圧延ライン2が接続される。圧延ライン2は、熱間薄板圧延機である。
 圧延ライン2の最上流には、加熱炉が設けられる。加熱炉の下流側には、粗圧延機が設けられる。粗圧延機の下流側には、仕上圧延機が設けられる。仕上圧延機の下流側には、コイラーが設けられる。
 3は圧延ライン2の制御システムである。制御システム3は、初期設定計算機能4、実績データ採取機能5を備える。初期設定計算機能4は、学習機能Aを備える。
 6は製品仕様である。製品仕様6は、素材の情報と圧延ライン2で製造すべき製品の仕様等である。製品仕様6は、材料毎に上位計算機から与えられる。
 所望の製品を製造する際、初期設定計算機能4は、製品仕様6に基づいて、圧延ライン2の初期設定を計算する。当該初期設定に基づいて、加熱炉、粗圧延機、仕上圧延機等の設定がなされる。当該設定に基づいて、粗圧延機、仕上圧延機等は、外部の電力系統から配電系統1を介して供給された電力を用いて動作する。加熱炉では、当該設定に基づいて、供給された電力を用いて制御を行い、燃料を適切に燃焼させ、圧延材を所望の温度に昇温する。具体的には、圧延材として、加熱炉からスラブが抽出される。当該圧延材は、粗圧延機、仕上圧延機で圧延される。その後、圧延材は、コイラーに巻き取られる。この際、実績データ採取機能5は、圧延ライン2の圧延実績データを採取する。
 このとき、圧延材が粗圧延機に噛み込まれると、制御システム3は、圧延材の全長を制御する。具体的には、初期設定計算機能4は、圧延開始後、各設備で何秒間、圧延や搬送がなされるかという時間情報を予測する。当該予測と圧延実績データとに基づいて、学習機能Aは、加熱炉、粗圧延機、仕上圧延機等の設定を計算する際のモデルを学習する。当該学習結果に基づいて、初期設定計算機能4は、加熱炉、粗圧延機、仕上圧延機等の設定を補正する。
 本実施の形態においては、電力貯蔵装置7が設けられる。電力貯蔵装置7は、蓄電池、フライホイール、大容量コンデンサを備える。
 蓄電池は、電気エネルギーを化学エネルギーとして蓄える。このため、蓄電池の急速放電は難しい。ただし、リチウムイオン電池等を用いれば、急速放電が行われる。一方、例えば、NaS電池(ナトリウムと硫黄を使った電池)を用いれば、蓄電池の大容量化は容易である。最近では、蓄電池の価格も大きく下落している。このため、蓄電池の大容量化は、容易かつ安価に実現される。
 フライホイールは、はずみ車効果を利用した蓄電装置である。フライホイールにおいては、回転体と電動発電機とが直結される。回転体は、大きな慣性を有する。充電時は、電動発電機に電力を供給することで、回転体の回転数を上げる。この場合、電動発電機は電動機として利用される。放電時は、電動発電機を発電機として利用することで、回転体の回転数を下げる。フライホイールの蓄電容量は、回転体と電動発電機との規模で決まる。フライホイールの放電速度は、急速放電が可能な蓄電池の放電速度と同等以上である。
 大容量コンデンサは、電気エネルギーを他の形態のエネルギーに変換せずに蓄える。このため、大容量コンデンサの放電速度は、蓄電池の放電速度とフライホイールの放電速度とよりも速い。これに対し、大容量コンデンサの蓄電容量には、制約がある。最近では、電気2重層キャパシタ等を多く利用することで、大容量コンデンサの蓄電容量を大きくすることができる。
 電力貯蔵装置7においては、放電すべき電力の速応性に応じて、蓄電池、フライホイール、大容量コンデンサが相互補完するように使い分けられる。例えば、急激かつ大量の放電が必要な場合は、まず、急速放電が可能な大容量コンデンサが放電する。その後、フライホイールが使用される。最後に、応答が遅い蓄電池が使用される。なお、大容量コンデンサと蓄電池、フライホイールと蓄電池、大容量コンデンサとフライホイールのそれぞれの組合せでも、同等の効果が期待される。
 配電系統1と電力貯蔵装置7との間には、パワーコンディショナ8が接続される。パワーコンディショナ8は、電力貯蔵装置7を充電する際に外部の電力系統から供給される交流電力を直流に適切に変換する機能を備える。パワーコンディショナ8は、電力貯蔵装置7が放電する直流電力を交流電力に適切に変換する機能を備える。
 電力貯蔵装置7とパワーコンディショナ8とには、電力貯蔵装置制御機能9が接続される。電力貯蔵装置制御機能9は、電力貯蔵装置7が適切に充放電するように、電力貯蔵装置7とパワーコンディショナ8とを制御する機能を備える。
 10は電力平準化装置である。電力平準化装置10は、操業スケジュール予測機能11、個別製品消費電力予測機能12、電力需要予測機能13、電力平準化制御機能14、表示機能15を備える。
 操業スケジュール予測機能11は、製品仕様6の中で計画された材料1、2、・・・、Nのスラブが加熱炉から抽出されるタイミングを予測し、初期設定計算機能4に計算された各設備での圧延、搬送時間に基づいて、圧延材がどのタイミングでどの位置にあるかを予測する機能を備える。操業スケジュール予測機能11は、学習機能Bを備える。学習機能Bは、実績データに基づいて、スラブの抽出タイミングの予測を補正する機能を備える。
 個別製品消費電力予測機能12は、操業スケジュール予測機能11に予測されたタイミングとは無関係に、初期設定計算機能4に計算された加熱炉、粗圧延機、仕上圧延機等の設定に基づいて、製品仕様6の中で計画された材料1、2、・・・、Nがスラブから製品となるまでの間に、圧延ライン2の各設備で消費される電力を計算する機能を備える。個別製品消費電力予測機能12は、学習機能Cを備える。学習機能Cは、実績データに基づいて、消費電力の計算を補正する機能を備える。
 電力需要予測機能13は、操業スケジュール予測機能11に予測された圧延材の位置情報及び時間情報と個別製品消費電力予測機能12に計算された圧延材別の消費電力とに基づいて、所定の予測期間内における消費電力を時系列に計算する機能を備える。電力需要予測機能13は、学習機能Dを備える。学習機能Dは、実績データに基づいて、消費電力の計算を補正する機能を備える。
 電力平準化制御機能14は、電力需要予測機能13に計算された消費電力が所定のピーク値を超える場合に、外部の電力系統から圧延ライン2に供給される電力がピーク値以下となるように、電力貯蔵装置制御機能9に電力貯蔵装置7の放電指令を与える機能を備える。電力平準化制御機能14は、電力需要予測機能13に計算された消費電力がピーク値を超えない場合に、電力貯蔵装置制御機能9に電力貯蔵装置7の充電指令を与える機能を備える。電力平準化制御機能14は、電力モニター制御手段を備える。電力モニター制御手段は、時々刻々変化する消費電力の実績データをモニターし、消費電力の実績データが電力閾値を超えた場合に、強制的に電力貯蔵装置7に放電させる機能を備える。なお、電力閾値は、ピーク値又はピーク値よりも余裕代分だけ小さい値に設定される。
 表示機能15は、電力需要予測機能13に計算された消費電力の時系列と電力平準化制御機能14に平準化された消費電力の時系列とを計算機のディスプレイ等に表示させる機能を備える。電力需要予測機能13に計算された消費電力の時系列の例は、表示機能15の左側に示される。電力平準化制御機能14に平準化された消費電力の時系列の例は、表示機能15の右側に示される。
 次に、図2を用いて、操業スケジュール予測機能11によるスラブの抽出タイミングの予測方法を説明する。
 図2はこの発明の実施の形態1における電力平準化装置の操業スケジュール予測機能を説明するための図である。
 図2において、過去の一定期間のスラブ抽出間隔の平均値TAVは、次の(1)式、(2)式の関係を満たす。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、Nは過去の一定期間に抽出されたスラブ数である。Ti、i-1 はスラブNO.iとNO.i-1の時間間隔である。例えば、NO.-2は、現時刻から2つ前のスラブを指す。TAV LLはTAVの下限値である。TAV ULはTAVの上限値である。
 現時刻をt、予測期間内のスラブ本数をNとすると、スラブの抽出タイミングtは、次の(3)式で計算される。
Figure JPOXMLDOC01-appb-M000003
 なお、過去のスラブの抽出間隔を一次遅れフィルタリングして、スラブの抽出タイミングtを予測する場合もある。この場合、過去のスラブ抽出間隔のフィルタリング値TFLは、次の(4)式、(5)式を満たす。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、αはフィルタリングゲインである。TFL LLはTFLの下限値である。TFL ULはTFLの上限値である。この場合、スラブの抽出タイミングtは、次の(6)式で計算される。
Figure JPOXMLDOC01-appb-M000006
 オペレータが急速停止ボタンを押した場合は、トラブル処理にかかる時間(分)が入力される。この際、入力された時間分だけ、次のスラブの抽出タイミングの予測を遅らせる。オペレータがスラブの抽出タイミングを指定した場合は、そのタイミングが考慮される。
 次に、図3を用いて、学習機能Bによるスラブの抽出タイミングの予測の補正方法を説明する。
 図3はこの発明の実施の形態1における電力平準化装置の操業スケジュール予測機能の学習機能を説明するための図である。
 図3に示すように、学習機能Bは、鋼種、仕上目標板厚、仕上目標板幅等でテーブルを区分し、該当するテーブル区分に、スラブ抽出時間間隔を格納する。格納する値は、次の(7)式で平滑化される。
(新たに格納するスラブ抽出時間間隔Tnew)=G*(スラブ抽出時間間隔実績値T)+(1-G)*(テーブルに格納されていたスラブ抽出時間間隔Told) (7)
 ここで、Gは、0≦G≦1の範囲の重み係数である。
 例えば、(3)式を用いてスラブの抽出タイミングtを予測している際に、鋼種i、仕上目標板厚j、仕上目標板幅kに対応したスラブから鋼種l、仕上目標板厚m、仕上目標板幅nに対応したスラブに時刻tで変わった場合を説明する。この場合、スラブの抽出タイミングtは、次の(8)式で計算される。
Figure JPOXMLDOC01-appb-M000007
 ここで、αはロット変更時の重みゲインである。
 次に、図4を用いて、個別製品消費電力予測機能12による消費電力の計算方法を説明する。
 図4はこの発明の実施の形態1における電力平準化装置の個別製品消費電力予測機能を説明するための図である。
 図4に示すように、個別製品消費電力予測機能12は、モデル基準消費電力演算手段12aと実績データ基準消費電力予測手段12bとを備える。モデル基準消費電力演算手段12aは、初期設定機能計算機能に計算された計算結果4aに基づいて計算対象の圧延材を製造する際の消費電力を計算する機能を備える。実績データ基準消費電力予測手段12bは、実績データに基づいて、計算対象の圧延材を製造する際の消費電力を計算する機能を備える。個別製品消費電力予測機能12は、モデル基準消費電力演算手段12aと実績データ基準消費電力予測手段12bのいずれかの計算結果12cを出力する機能を備える。
 次に、図5を用いて、モデル基準消費電力演算手段12aによる消費電力の計算方法を説明する。
 図5はこの発明の実施の形態1における電力平準化装置のモデル基準消費電力演算手段を説明するための図である。
 図5の上段は、初期設定計算機能4が予測した速度である。図5の下段は、初期設定計算機能4が予測したトルクである。
 モデル基準消費電力演算手段12aは、初期設定計算機能4に予測されたトルクと速度とに基づいて、消費電力を計算する。具体的には、モデル基準消費電力演算手段12aは、各時刻におけるトルクと速度の積を当該時刻の消費電力として計算する。この場合、計算対象の圧延材の電力量は、圧延される時間内の電力の積分値となる。
 次に、図6を用いて、学習機能Cによる消費電力の計算の補正方法を説明する。
  図6はこの発明の実施の形態1における電力平準化装置のモデル基準消費電力演算手段の学習機能を説明するための図である。
 モデル基準消費電力演算手段12aによる電力計算値は予測値である。当該予測値は、誤差を伴う。そこで、学習機能Cは、計算対象の圧延材が圧延された後、消費電力の実績データを採取して計算値と比較することにより、学習値Zを計算する。その結果、次回の計算精度が高まる。学習値Zは、以下の(9)式で計算される。
(学習値Z)=(消費電力の実績値)/(消費電力の予測値)   (9)
 図6に示すように、学習値Zは、鋼種やスラブ抽出温度等、消費電力に関係のあるパラメータで分類されたテーブルに格納される。この際、フィルタリングの目的で、平滑化処理が行われる。具体的には、同じテーブル区分に格納されている学習値Zoldと(9)式の値を用いて、次回使用する学習値Znewが次の(10)式で計算される。
(学習値Znew)=K*(学習値Z)+(1-K)*(学習値Zold)   (10)
 ここで、Kは、0≦K≦1の範囲の学習ゲインである。
 学習値Znewは、当該テーブル区分に上書きされる。次回計算時には、当該テーブル区分の学習値Znewを用いて、次の(11)式で消費電力の予測値が補正される。
(消費電力予測値)=(学習値を含まない消費電力予測値)*(学習値Znew) (11)
 なお、初期設定計算機能4の学習機能Aでの学習計算も同様である。
 次に、図7を用いて、実績データ基準消費電力予測手段12bによる消費電力の計算方法を説明する。
 図7はこの発明の実施の形態1における電力平準化装置の実績データ基準消費電力予測手段を説明するための図である。
 実績データ基準消費電力予測手段12bは、圧延材の圧延が完了する度に、圧延に使用した電力の実績値が計算機のデータベースやテーブルに保存する。本実施の形態においては、粗圧延と仕上圧延の間に境界が設けられる。当該境界よりも上流側及び下流側での電力量の実績データがそれぞれ保存される。この際、圧延材の幅は消費電力の大小にほぼ比例する。このため、電力量の実績データは、圧延材の幅を規格化して保存される。当該規格化により、圧延材の幅に対し、普遍的な量が保存される。この値を計算対象の圧延材に使用する場合、当該圧延材の幅を乗じればよい。
 また、圧延時間は粗圧延、仕上圧延等、各工程の速度によって変化する。このため、粗圧延最終パスと仕上圧延最終パスとにおける圧延材の長さを基準として、粗圧延、仕上圧延それぞれに要する電力量が保存される。すなわち、電力量は、エネルギーに影響する時間や速度を考慮外として規格化される。
 図7の上段に示すように、実績データ採取機能5から採取される電力データの横軸は、時間である。このため、図7の下段に示すように、圧延材の長さを横軸とした電力量のデータに変換する必要がある。具体的には、圧延ライン2の各設備やその設備でのパスごとに電力量を積み上げて、圧延材の総合の電力量が計算される。当該総合の電力量を圧延材の長さと幅で除することで、圧延材の単位長さ・幅あたりの電力量が求められる。
 この際、粗圧延における圧延材の単位長さ・幅あたりの電力量E N_RMは、次の(12)式で計算される。
Figure JPOXMLDOC01-appb-M000008
 ここで、E RMは粗圧延における電力使用量(kWh)である。L RMDは粗圧延出側での圧延材の長さ(m)である。B RMDは粗圧延出側での圧延材幅(m)である。なお、B RMDはスラブの幅と圧延材の仕上幅の平均でもよい。
 仕上圧延における圧延材の単位長さ・幅あたりの電力量E N_FMは、次の(13)式で計算される。
Figure JPOXMLDOC01-appb-M000009
 ここで、E FMは粗圧延における電力使用量(kWh)である。L FMDは粗圧延出側での圧延材の長さ(m)である。B FMDは粗圧延出側での圧延材幅(m)である。なお、B FMDはスラブの幅と圧延材の仕上幅の平均でもよい。
 次に、図8を用いて、実績データ基準消費電力予測手段12bのテーブルを説明する。
 図8はこの発明の実施の形態1における電力平準化装置の実績データベース消費電力予測手段のテーブルを説明するための図である。
 図8に示すように、データの振り分けは、消費電力に影響する因子をパラメータとする。例えば、スラブ抽出温度、鋼種、粗バー厚、製品目標厚等である。圧延材の単位長さ・幅あたりの電力量E N_RM、E N_FMは、予め準備した粗圧延用及び仕上圧延用テーブルに格納される。
 次に、図9を用いて、電力需要予測機能13による消費電力の予測方法を説明する。
 図9はこの発明の実施の形態1における電力平準化装置の電力需要予測機能を説明するための図である。
 個々の圧延材に対して消費される電力は、個別製品消費電力予測機能12に計算される。圧延材の位置及び時間の情報は、操業スケジュール予測機能11により計算される。このため、図9の上段に示すように、圧延に要する電力消費量と時間とは仮想的なグラフの上に配置される。ここで、定常電力消費量は、圧延に使う冷却水の循環用のポンプ、照明、空調機等、圧延ライン2の外にあって、常に電力を消費している設備の電力消費量である。これらの合計電力消費量は、実測により正確に求められる。図9の上段の配置が完了すれば、図9の下段のように、各時刻における電力を積算することで、複数の圧延材を異なる位置で同時に圧延する際の消費電力が予測される。
 次に、図10を用いて、電力需要予測機能13の学習機能Dによる消費電力の予測の補正方法を説明する。
 図10はこの発明の実施の形態1における電力平準化装置の電力需要予測機能の学習機能を説明するための図である。
 図10に示すように、電力需要予測機能13の実行は、シフト時間T毎に繰り返される。予測期間は、30分から2時間程度である。また、電力系統の応答が速いこともあり、シフト時間Tは、1秒から1分程度に設定される。現時刻で予測計算をした後、対応する予測期間が終了したときに、実績データを採取して、学習計算が行なわれる。具体的には、予測期間内の平均電力量実績値と平均電力量計算値を比較することで学習する。学習計算は(9)式と同様に、次の(14)式で計算される。
(学習値Z)=(平均電力量実績値)/(平均電力量予測値)   (14)
 その後、(10)式、(11)式と同様の計算が行なわれる。
 次に、図11を用いて、電力平準化制御機能14による電力の平準化の方法を説明する。
 図11はこの発明の実施の形態1における電力平準化装置の電力平準化制御機能を説明するための図である。
 電力平準化制御機能14は、電力需要予測機能13に予測された電力需要の時系列の推移を用いて、電力会社等と契約した契約買電量を超えないように電力貯蔵装置7を制御する。消費電力が契約買電量を超える場合は、電力平準化制御機能14は、装置の応答も考慮して、圧延ライン2に必要な電力が不足しないように早めに電力貯蔵装置7から放電するように制御する。実際には、契約買電量に余裕代を持たせて、(契約買電量)-(余裕代)に予測電力が達したときに、上記処理が行なわれる。電力貯蔵装置7が放電し続け、電力貯蔵装置7の中の電力が枯渇した場合は、外部からの電力の供給が必要となる。
 電力貯蔵装置7への充電は、消費電力予測値が契約買電量を下回ることが続く場合に行なわれる。ただし、電力貯蔵装置7の容量には上限がある。このため、電力貯蔵装置7が満充電となった場合は、電力平準化制御機能14は、電力貯蔵装置7の充電を停止するように電力貯蔵装置制御機能9に指令を出力する。
 これらの計算は、計算windowを設定し、その範囲内の電力需要の時系列の推移を得て、電力貯蔵装置7の充放電が決定される。計算windowは、ある時間毎にずらされる。計算windowのずれは、電力需要予測機能13の実行タイミングと合わせてもよい。
 計算windowの期間は、予測期間以下に設定される。当該計算windowの範囲内で、消費電力量が契約買電量を超えないように制御される。さらに電力貯蔵装置7の寿命を長くするため、頻繁な充放電の切替をしないように、電力予測値の変化率に制限が付加される場合もある。
 また、電力貯蔵装置7の放電期間が短い場合、まず大容量コンデンサやフライホイールから放電するように設定される。この場合、蓄電池の容量を減らしたり充放電回数を減らしたりすることができる。
 次に、図12を用いて、電力平準化制御機能14の電力モニター制御手段を説明する。
 図12はこの発明の実施の形態1における電力平準化装置の電力平準化制御機能の電力モニター制御手段を説明するための図である。
 図12の計算window-4の中のように、電力需要が減ると予想された場合でも、実際には、電力需要が減らない場合もある。この場合、電力モニター制御手段は、電力需要をモニター制御することで、電力貯蔵装置7の運転を充電から放電に変更する。例えば、急速放電が必要である場合、大容量コンデンサやフライホイールから放電し、続いて必要があれば蓄電池から放電するように設定される。この場合、急速な放電とそれに続く多くの量の放電にも対応することができる。
 次に、図13を用いて、電力平準化装置10内の処理の概要を説明する。
 図13はこの発明の実施の形態1における電力平準化装置内の処理を説明するためのフローチャートである。
 ステップS1では、電力予測のタイミングか否かが判定される。電力予測のタイミングの場合は、ステップS2に進む。ステップS2では、圧延される材料について、製品仕様6に基づいて、初期設定計算機能4が設定計算を行う。
 その後、ステップS3に進み、操業スケジュール予測機能11が現在から一定時間後の操業状態を予測する。具体的には、どの材料がいつ生産(圧延)されるのかが予測される。その後、ステップS4に進み、個別製品消費電力予測機能12が個々の材料に関して消費電力を予測する。
 その後、ステップS5に進み、電力需要予測機能13が現在から一定時間後の消費電力を予測する。この際、表示機能15は、ディスプレイ等に結果を表示させる。その後、ステップS6に進み、電力平準化制御機能14がピークカットを実現する電力貯蔵装置7の制御方策を作成する。この際、表示機能15は、ディスプレイ等に結果を表示させる。
 その後、ステップS7に進み、電力貯蔵装置制御機能9は、パワーコンディショナ8を介して電力貯蔵装置7を制御する。
 ステップS1で予測タイミングでない場合は、ステップS8に進む。ステップS8では、電力需要時実績値が契約買電量を超過しているか否かが判定される。電力需要時実績値が契約買電量を超過していない場合は、ステップS7に進み、電力貯蔵装置7の制御が維持される。
 ステップS8で電力需要時実績値が契約買電量を超過している場合は、ステップS9に進む。ステップS9では、電力平準化制御機能14が電力需要時実績値が契約買電量を超過しないように電力貯蔵装置7の制御方策を作成する。その後、ステップS7に進み、当該方策で、電力貯蔵装置制御機能9がパワーコンディショナ8を介して電力貯蔵装置7を制御する。
 以上で説明した実施の形態1によれば、電力需要予測機能13が予測した消費電力が所定値を超えている場合は、電力貯蔵装置7が放電する。このため、複数の素材が異なる位置で同時に製造される場合でも、外部から製造ラインに供給される電力を平準化することができる。その結果、電源設備の容量を小さくすることができる。さらに、外部の電力系統の電力線や変電設備も小さくすることができる。このため、外部から安価に電力を供給することができる。
 また、電力需要予測機能13が予測した消費電力が所定値を超えていない場合に、電力貯蔵装置7は、外部の電力系統から電力の供給を受けて充電される。このため、電力貯蔵装置7の充電に関し、外部の電力系統を有効活用できる。
 また電力需要の変化率に応じて、蓄電池、フライホイール、大容量コンデンサの放電の順序が切り替わる。このため、電力貯蔵装置7の特性を高めることができる。
 また、消費電力の予測値は、操業スケジュール予測機能11と個別消費電力予測機能との予測結果に基づいて演算される。このため、簡単に消費電力の予測値を求めることができる。
 また、個別製品消費電力予測機能12は、モデル基準消費電力演算手段12aと実績データ基準消費電力予測手段12bのいずれかの計算結果を出力する。このため、いずれか一方の機能が故障しても、電力の平準化を維持することができる。
 また、操業スケジュール予測機能11は、個別製品消費電力予測機能12、電力需要予測機能13は、学習機能を備える。このため、電力を平準化する際の精度を高めることができる。
 また、外部の電力系統から供給される電力の実績値が所定の閾値を超えた場合に、電力貯蔵装置7が放電する。このため、外部から製造ラインに供給される電力をより確実に平準化することができる。
 なお、圧延ライン2が厚板圧延機であっても、電力平準化装置10を適用することができる。
実施の形態2.
 図14はこの発明の実施の形態2における電力平準化装置の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1においては、電力貯蔵装置7が設けられていた。一方、実施の形態2においては、電力貯蔵装置7が設けられていない。
 この場合、電力平準化制御機能14は、圧延のピッチを抑制することでピーク電力を抑える。具体的には、電力平準化制御機能14は、圧延材の所望のピッチの計算値をオペレータにガイダンスとして出力する。この場合、オペレータは、当該計算値に従うことでピーク電力の抑制を実施する。
 次に、図15を用いて、圧延材のピッチの抑制方法を説明する。
 図15はこの発明の実施の形態2における電力平準化装置による圧延材のピッチの抑制方法を説明するための図である。
 図15の上段のように、今後圧延される圧延材1、2、3、・・・について、粗圧延、仕上圧延に要する電力量の予測値が積み上げられる。このとき、電力量の予測値が電力量上限値を超えると、図15の下段に示すように、圧延材の圧延時刻を遅延させることで、ピーク電力が抑制される。当該計算においても、計算windowが設定される。当該計算windowの範囲内の電力需要の時系列の推移を得て、圧延材の圧延時刻が決定される。当該計算windowは、ある時間毎にずらされる。
 次に、図16を用いて、電力平準化装置10内の処理の概要を説明する。
 図16はこの発明の実施の形態2における電力平準化装置内の処理を説明するためのフローチャートである。
 ステップS11~S15は、図13のステップS1~S5と同様である。ステップS15の後、ステップS16に進む。
 ステップS16では、電力平準化制御機能14は、電力のピークカットを実現する圧延のピッチを作成する。この際、表示機能15は、ディスプレイ等に結果を表示させる。
 以上で説明した実施の形態2によれば、電力貯蔵装置7がない場合でも、外部から製造ラインに供給される電力を平準化することができる。
実施の形態3.
 図17この発明の実施の形態3における電力平準化装置の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 図17には、2つの圧延ライン2が設けられる。この場合、各圧延ライン2に対応して、電力平準化装置10が設けられる。ただし、電力平準化制御機能14と表示機能15とは、複数の圧延ライン2に対して共用される。
 この場合、電力平準化制御機能14は、各電力需要予測機能13による消費電力の予測結果を取り入れて、図15と同様に、電力需要を配置して、並べ替えることで、2つの圧延ライン2の電力負荷を平準化する。なお、3つ以上の圧延ライン2がある場合も同様に制御できる。
 以上で説明した実施の形態3によれば、複数の圧延ライン2に対しても、外部から製造ラインに供給される電力を平準化することができる。
 なお、実施の形態1において、電力貯蔵装置7が故障等で利用できない場合、電力貯蔵装置7の蓄電量がなくなった場合に、第2の実施の形態のように、圧延材のピッチを抑制してもよい。
 また、圧延ライン2以外の金属材料の製造ラインに電力平準化装置10を適用してもよい。さらに、製造ライン等を含む製造工場全体に電力平準化装置10を適用してもよい。これらの場合でも、外部から製造ラインに供給される電力を平準化することができる。
 以上のように、この発明に係る電力平準化装置は、複数の素材が同時に製造される金属材料の金属材料の製造工場又は製造ラインに利用できる。
 1 配電系統
 2 圧延ライン
 3 制御システム
 4 初期設定計算機能
 4a 計算結果
 5 実績データ採取機能
 6 製品仕様6
 7 電力貯蔵装置
 8 パワーコンディショナ
 9 電力貯蔵装置制御機能
10 電力平準化装置
11 操業スケジュール予測機能
12 個別製品消費電力予測機能
12a モデル基準消費電力演算手段
12b 実績データ基準消費電力予測手段
12c 計算結果
13 電力需要予測機能
14 電力平準化制御機能
15 表示機能

Claims (13)

  1.  金属材料の製造工場又は製造ラインの異なる位置で複数の素材が同時に製造される際の消費電力を予測する電力需要予測機能と、
     前記電力需要予測機能が予測した消費電力が所定値を超えている場合は、外部の電力系統から前記製造工場又は前記製造ラインに供給される電力が前記所定値以下となるように、電力貯蔵装置に対して前記製造工場又は前記製造ラインに放電させる電力平準化制御機能と、
    を備えたことを特徴とする電力平準化装置。
  2.  前記電力平準化制御機能は、前記電力需要予測機能が予測した消費電力が前記所定値を超えていない場合に、前記電力貯蔵装置に対して前記外部の電力系統から電力の供給を受けて充電させることを特徴とする請求項1記載の電力平準化装置。
  3.  金属材料の製造工場又は製造ラインの異なる位置で複数の素材が同時に製造される際の消費電力を予測する電力需要予測機能と、
     前記電力予測需要機能が予測した消費電力が所定値を超えている場合は、外部の電力系統から前記製造工場又は前記製造ラインに供給される電力が前記所定値以下となるように、前記製造工場又は前記製造ラインでの製品の製造タイミングを調整する電力平準化制御機能と、
    を備えたことを特徴する電力平準化装置。
  4.  前記電力平準化制御機能は、前記電力貯蔵装置を利用できない場合に、前記外部の電力系統から前記製造工場又は前記製造ラインに供給される電力が前記所定値以下となるように、前記製造工場又は前記製造ラインでの製品の製造タイミングを調整することを特徴とする請求項1記載の電力平準化装置。
  5.  前記電力貯蔵装置は、放電の速応性の異なる複数の装置からなり、
     前記電力平準化制御機能は、前記電力貯蔵装置に対して前記製造工場又は前記製造ラインに放電させる際に、電力需要の変化率に応じて、放電させる装置の順序を切り替えることを特徴とする請求項1記載の電力平準化装置。
  6.  前記製造工場又は前記製造ラインで各圧延材を製造する位置と時間とを予測する操業スケジュール予測機能と、
     前記各圧延材を前記位置で製造する際の消費電力を予測する個別製品消費電力予測機能と、
    を備え、
     前記電力需要予測機能は、ある時点での前記各圧延材の位置に基づいて、前記ある時点で前記各圧延材を製造する際の消費電力を計算し、前記各圧延材を製造する際の消費電力の計算値の積算値を、前記ある時点での前記製造工場又は前記製造ラインの消費電力の予測値とすることを特徴とする請求項1記載の電力平準化装置。
  7.  前記電力需要予測機能は、前記製造工場又は前記製造ラインの消費電力の予測値と実績値とを比較して、前記製造工場又は前記製造ラインの消費電力の予測精度を向上させることを特徴とする請求項1記載の電力平準化装置。
  8.  前記個別製品消費電力予測機能は、前記製造工場又は前記製造ラインで各圧延材を製造
    する際に与えられた製品仕様を満たすように演算された前記製造工場又は前記製造ラインの設定値に基づいて、前記各圧延材を前記位置で製造する際の消費電力を予測することを特徴とする請求項6記載の電力平準化装置。
  9.  前記個別製品消費電力予測機能は、前記製造工場又は前記製造ラインで圧延材を製造した際の消費電力の実績値に基づいて、前記各圧延材を前記位置で製造する際の消費電力を予測することを特徴とする請求項6記載の電力平準化装置。
  10.  前記操業スケジュール予測機能は、前記製造工場又は前記製造ラインで圧延材を製造する位置と時間の予測値と実績値とを比較して、前記各圧延材を製造する位置と時間の予測精度を向上させることを特徴とする請求項6記載の電力平準化装置。
  11.  前記個別製品消費電力予測機能は、前記製造工場又は前記製造ラインで圧延材を前記位置で製造する際の消費電力の予測値と実測値とを比較して、前記各圧延材を前記位置で製造する際の消費電力の予測精度を向上させることを特徴とする請求項6記載の電力平準化装置。
  12.  前記電力平準化制御機能は、複数の製造工場又は製造ラインの消費電力の予測値が前記所定値を超えている場合は、前記外部の電力系統から前記複数の製造工場又は製造ラインに供給される電力が前記所定値以下となるように、前記複数の製造工場又は製造ラインでの製品の製造タイミングを調整することを特徴とする請求項4記載の電力平準化装置。
  13.  前記電力平準化制御機能は、前記外部の電力系統から前記製造工場又は前記製造ラインに供給される電力の実績値が前記所定値以下に設定された閾値を超えた場合に、前記電力貯蔵装置に対して前記製造工場又は前記製造ラインに放電させることを特徴とする請求項1記載の電力平準化装置。
PCT/JP2012/053326 2012-02-14 2012-02-14 電力平準化装置 WO2013121514A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280069768.3A CN104126262A (zh) 2012-02-14 2012-02-14 电力均衡化装置
KR1020147019134A KR20140101855A (ko) 2012-02-14 2012-02-14 전력 평준화 장치
US14/371,774 US9715229B2 (en) 2012-02-14 2012-02-14 Power equalization device
PCT/JP2012/053326 WO2013121514A1 (ja) 2012-02-14 2012-02-14 電力平準化装置
TW101116478A TWI473384B (zh) 2012-02-14 2012-05-09 電力平準化裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053326 WO2013121514A1 (ja) 2012-02-14 2012-02-14 電力平準化装置

Publications (1)

Publication Number Publication Date
WO2013121514A1 true WO2013121514A1 (ja) 2013-08-22

Family

ID=48983678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053326 WO2013121514A1 (ja) 2012-02-14 2012-02-14 電力平準化装置

Country Status (5)

Country Link
US (1) US9715229B2 (ja)
KR (1) KR20140101855A (ja)
CN (1) CN104126262A (ja)
TW (1) TWI473384B (ja)
WO (1) WO2013121514A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015643A1 (ja) * 2013-08-02 2015-02-05 東芝三菱電機産業システム株式会社 省エネルギー操業リコメンドシステム
WO2015178256A1 (ja) * 2014-05-19 2015-11-26 Jfeスチール株式会社 電力需給ガイダンス装置および電力需給ガイダンス方法
WO2017014293A1 (ja) * 2015-07-22 2017-01-26 Jfeスチール株式会社 電力システム
JP2018182865A (ja) * 2017-04-10 2018-11-15 日本リライアンス株式会社 電力平準化装置
JP2020061796A (ja) * 2018-10-04 2020-04-16 株式会社Ihi 運転計画最適化装置
JP7094465B1 (ja) 2022-01-08 2022-07-01 株式会社Rej フライホイール及びコンデンサによる蓄電システムの制御装置
JP7387928B1 (ja) * 2023-02-16 2023-11-28 日鉄テックスエンジ株式会社 負荷平準化装置および負荷平準化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393422B (zh) * 2013-05-30 2019-06-18 东芝三菱电机产业系统株式会社 电力管理装置
CN104391172B (zh) * 2014-12-11 2017-03-01 柳州钢铁股份有限公司 热连轧钢卷电耗监测方法
CN110800180B (zh) * 2017-06-27 2023-03-28 松下知识产权经营株式会社 进行电力需量控制的装置以及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221739A (ja) * 1998-02-06 1999-08-17 Tokyo Electric Power Co Inc:The 生産スケジューリング装置及び電力監視装置
JP2000102174A (ja) * 1998-09-28 2000-04-07 Nissin Electric Co Ltd 電力供給装置
JP2004129322A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 電力需要の予測制御システム
JP2008148505A (ja) * 2006-12-12 2008-06-26 Chugoku Electric Power Co Inc:The 過負荷対策電力補償装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284572A (ja) 1993-03-31 1994-10-07 Nisshin Steel Co Ltd 電力デマンド制御方法
JPH11275762A (ja) 1998-03-24 1999-10-08 Ntt Power And Building Facilities Inc 電力貯蔵装置
JP2002165362A (ja) 2000-11-24 2002-06-07 Sumitomo Metal Ind Ltd 電力使用量の予測方法及び制御方法
US8069077B2 (en) * 2003-06-11 2011-11-29 Kabushiki Kaisha Toshiba Electric-power-generating-facility operation management support system, electric-power-generating-facility operation management support method, and program for executing support method, and program for executing operation management support method on computer
JP4369189B2 (ja) 2003-09-22 2009-11-18 三菱電機株式会社 スケジューリングシステムおよびスケジューリングをコンピュータに実行させるためのプログラム
JP4596907B2 (ja) 2004-12-24 2010-12-15 中国電力株式会社 電力需要予測支援方法、コンピュータプログラム、プログラム格納媒体、電力需要予測支援装置
EP2075891B1 (en) * 2006-10-16 2014-01-01 Vpec, Inc. Electric power system
JP2009183077A (ja) 2008-01-31 2009-08-13 Jfe Steel Corp 製造プラント発電設備の発電電力調整方法
TWM356944U (en) * 2008-11-21 2009-05-11 Lealea Technology Co Ltd Power monitoring platform device
US9318917B2 (en) * 2009-04-09 2016-04-19 Sony Corporation Electric storage apparatus and power control system
JP5479182B2 (ja) * 2009-09-30 2014-04-23 三洋電機株式会社 発電システムおよび充放電制御装置
JP2011188559A (ja) 2010-03-04 2011-09-22 Tokyo Electric Power Co Inc:The 蓄電システム並びに蓄電システムの運用方法及び制御プログラム
JP5510019B2 (ja) 2010-04-16 2014-06-04 富士通株式会社 電力制御方法、プログラム及び装置
US9160169B2 (en) * 2010-10-29 2015-10-13 The Boeing Company Scheduling to maximize utilization preferred power sources (SMUPPS)
US9893526B2 (en) * 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221739A (ja) * 1998-02-06 1999-08-17 Tokyo Electric Power Co Inc:The 生産スケジューリング装置及び電力監視装置
JP2000102174A (ja) * 1998-09-28 2000-04-07 Nissin Electric Co Ltd 電力供給装置
JP2004129322A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 電力需要の予測制御システム
JP2008148505A (ja) * 2006-12-12 2008-06-26 Chugoku Electric Power Co Inc:The 過負荷対策電力補償装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10482406B2 (en) 2013-08-02 2019-11-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving-operation recommending system
WO2015015643A1 (ja) * 2013-08-02 2015-02-05 東芝三菱電機産業システム株式会社 省エネルギー操業リコメンドシステム
JP5999265B2 (ja) * 2013-08-02 2016-09-28 東芝三菱電機産業システム株式会社 省エネルギー操業リコメンドシステム
KR101733366B1 (ko) * 2013-08-02 2017-05-08 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 에너지 절약 조업 리커멘드 시스템
CN106463959A (zh) * 2014-05-19 2017-02-22 杰富意钢铁株式会社 电力供需指导装置及电力供需指导方法
JPWO2015178256A1 (ja) * 2014-05-19 2017-04-20 Jfeスチール株式会社 電力需給ガイダンス装置および電力需給ガイダンス方法
WO2015178256A1 (ja) * 2014-05-19 2015-11-26 Jfeスチール株式会社 電力需給ガイダンス装置および電力需給ガイダンス方法
WO2017014293A1 (ja) * 2015-07-22 2017-01-26 Jfeスチール株式会社 電力システム
JPWO2017014293A1 (ja) * 2015-07-22 2017-07-27 Jfeスチール株式会社 電力システム
JP2018182865A (ja) * 2017-04-10 2018-11-15 日本リライアンス株式会社 電力平準化装置
JP2020061796A (ja) * 2018-10-04 2020-04-16 株式会社Ihi 運転計画最適化装置
JP7176338B2 (ja) 2018-10-04 2022-11-22 株式会社Ihi 運転計画最適化装置
JP7094465B1 (ja) 2022-01-08 2022-07-01 株式会社Rej フライホイール及びコンデンサによる蓄電システムの制御装置
JP2023101424A (ja) * 2022-01-08 2023-07-21 株式会社Rej フライホイール及びコンデンサによる蓄電システムの制御装置
JP7387928B1 (ja) * 2023-02-16 2023-11-28 日鉄テックスエンジ株式会社 負荷平準化装置および負荷平準化方法

Also Published As

Publication number Publication date
US9715229B2 (en) 2017-07-25
TW201334352A (zh) 2013-08-16
TWI473384B (zh) 2015-02-11
US20150051745A1 (en) 2015-02-19
CN104126262A (zh) 2014-10-29
KR20140101855A (ko) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2013121514A1 (ja) 電力平準化装置
CN102641904B (zh) 能量消耗量预测装置
EP3483517B1 (en) System and method for predicting load of and controlling subway heating, ventilation, and air conditioning system
JP5519665B2 (ja) 電池制御装置及び電池制御方法
JP5114026B2 (ja) デマンド制御装置
CN108292860B (zh) 电力控制装置、运转计划制定方法以及记录介质
CN104011967B (zh) 电力需求调整系统、电力需求调整装置及电力需求调整方法
JP5759206B2 (ja) 学習係数制御装置
US9727931B2 (en) Electricity demand prediction system
AU2018331966A1 (en) Method and system for controlling a rechargeable battery
JP6156493B2 (ja) 電力管理装置
JP6327226B2 (ja) 電力使用量の予測方法および予測システム
JP2008109813A (ja) デマンド制御装置および電力消費システム
JP2017022864A (ja) 蓄電池制御装置、蓄電池制御方法、及びプログラム
JP6641867B2 (ja) 消費電力量予測方法、装置及びプログラム
CN106413930A (zh) 轧制线的能量消耗量预测装置
JP2010015207A (ja) エネルギ管理システム
JPWO2013121514A1 (ja) 電力平準化装置
EP3411887B1 (en) Method and system for controlling cooling system of power equipment
JP2002165362A (ja) 電力使用量の予測方法及び制御方法
JP6160705B2 (ja) 電力需給ガイダンス装置および電力需給ガイダンス方法
KR102022809B1 (ko) 철강 열연 플랜트의 제어 시스템
JP2017225244A (ja) 集中電圧制御装置、集中電圧制御システムおよび計測装置
CN107851999A (zh) 电力系统
JP4514410B2 (ja) 熱間圧延装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558606

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147019134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868484

Country of ref document: EP

Kind code of ref document: A1