WO2015178256A1 - 電力需給ガイダンス装置および電力需給ガイダンス方法 - Google Patents

電力需給ガイダンス装置および電力需給ガイダンス方法 Download PDF

Info

Publication number
WO2015178256A1
WO2015178256A1 PCT/JP2015/063665 JP2015063665W WO2015178256A1 WO 2015178256 A1 WO2015178256 A1 WO 2015178256A1 JP 2015063665 W JP2015063665 W JP 2015063665W WO 2015178256 A1 WO2015178256 A1 WO 2015178256A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
power amount
predicted
production
Prior art date
Application number
PCT/JP2015/063665
Other languages
English (en)
French (fr)
Inventor
修司 久山
浅野 一哉
正之 小室
政志 清水
新井 幸雄
一哉 小野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015545228A priority Critical patent/JP6160705B2/ja
Priority to CN201580025534.2A priority patent/CN106463959B/zh
Publication of WO2015178256A1 publication Critical patent/WO2015178256A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/54The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads according to a pre-established time schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to an electric power supply / demand guidance device and an electric power supply / demand guidance method for predicting the amount of electric power used in a steelworks.
  • the maximum amount of electricity purchased from the power company is determined for a predetermined time, for example, every hour, based on a power purchase contract exchanged between the steel company and the power company. If the amount of power purchased from the power company exceeds the maximum contract amount, the steel company will pay a large penalty to the power company, and the power company will require more power generation / transmission load than expected, which is inconvenient for both parties. It becomes economy. For this reason, steel works often increase the amount of in-house power generation or decrease the amount of factory production so that the amount of power purchased does not exceed the amount of contracted power by predicting the power consumed by each plant.
  • Patent Document 1 describes a technique for predicting the amount of power used in a steel plant.
  • the time series pattern (electric power load pattern) of the electric energy of each factory in the steelworks is preliminarily calculated from past performance data for the inspection and repair period (regular maintenance), normal operation, and regular repair start / fall time.
  • the power consumption at each time is calculated from this and future fixed repair plan data. Thereby, the electric energy of the whole steelworks can be predicted in time series.
  • Patent Document 1 it is necessary to give a power load pattern during normal operation in advance. For this reason, there has been a problem that a hot rolling mill in which the amount of electric power used varies greatly according to the production amount is unpredictable at the timing when the variation in production amount greatly changes.
  • the present invention has been made in view of the above, and provides a power supply and demand guidance apparatus and a power supply and demand guidance method capable of predicting the amount of power to be used at a steelworks with high accuracy even at a timing when a fluctuation in production amount greatly changes.
  • the purpose is to provide.
  • a power supply and demand guidance apparatus includes a production plan acquisition means for acquiring a production plan of a product in a manufacturing factory belonging to an ironworks, and the acquired production Based on the plan, calculate the predicted power amount that predicted the power amount used in each manufacturing plant in time series, and add the calculated predicted power amount of each manufacturing plant to calculate the predicted power amount of the entire steel plant
  • Power generation means that determines the power prediction means, the amount of power generated in-house based on the predicted power amount of the entire steel plant and the predicted power amount of each manufacturing plant, the amount of power purchased from the power company, and the rate of product reduction
  • Electricity purchase determination means and visualization for displaying on the monitor time series changes of the predicted power amount of each manufacturing plant, the predicted power amount of the entire steelworks, the generated power amount, the purchased power amount, and the production reduction ratio hand
  • it comprises a and alarm notification means for alarm notifies the reduction production.
  • the production plan acquisition unit acquires a heating furnace extraction plan of a hot rolling factory, and the power prediction unit performs hot rolling based on the acquired heating furnace extraction plan. It is characterized in that predicted power is calculated by predicting, in time series, the amount of power used in each manufacturing factory using a power formula.
  • the power supply and demand guidance method includes a production plan acquisition step of acquiring a production plan of a product in a manufacturing factory belonging to an ironworks, and an amount of electric power used in each manufacturing factory based on the acquired production plan. Predicting the amount of power predicted in time series, and adding the calculated predicted power amount of each manufacturing plant to calculate the predicted power amount of the entire steel plant, and the predicted power of the entire steel plant.
  • a power generation purchase amount determining step for determining a power generation amount to be generated in-house based on the amount and a predicted power consumption of each manufacturing plant, a power purchase amount purchased from an electric power company, and a product production reduction ratio, and a prediction of each manufacturing plant Visualization step for displaying on a monitor a time series change of the electric energy, the predicted electric energy of the entire steelworks, the generated electric energy, the purchased electric energy, and the production reduction ratio, and the effect of the production reduction Characterized in that it comprises an alarm notification step of alarm notification, the.
  • the present invention it is possible to predict with high accuracy the amount of electric power used at a steel mill even at the timing when the fluctuation of the production amount changes greatly.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a power network to which the present invention is applied.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a power supply / demand guidance apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a data configuration example related to the production plan of the present embodiment.
  • FIG. 4 is a diagram illustrating a data configuration example related to power according to the present embodiment.
  • FIG. 5 is a flowchart showing the power supply / demand guidance processing procedure of the present embodiment.
  • FIG. 6 is a flowchart showing the power generation / purchase amount determination processing procedure of the present embodiment.
  • FIG. 7 is an explanatory diagram for explaining the effect of the embodiment.
  • FIG. 8 is a diagram showing a prediction error of the electric energy by the conventional method.
  • FIG. 9 is a diagram showing a prediction error of the electric energy by this method.
  • FIG. 10 is a diagram showing an example of a guidance screen showing the predicted value of the accumulated power purchase amount 25 minutes ahead (60 minutes) at the 35 minutes point according to the conventional method.
  • FIG. 11 is a diagram showing an example of a guidance screen showing the predicted value of the accumulated power purchase amount 25 minutes ahead (60 minutes) at the time of 35 minutes according to the present method.
  • FIG. 12 is a diagram showing an example of a guidance screen showing the actual value of the accumulated power purchase amount at the 60-minute time point.
  • an electric power network 101 includes an electric power network 102 in an ironworks, a transmission line 103, a manufacturing factory (A factory 104, B factory 105), other demand sources 106, an in-house power station 107, an energy management facility 108, and electric power. Includes company power plant 109.
  • the A factory 104, the B factory 105, the other demand sources 106, the in-house power plant 107, and the energy management facility 108 belong to the power network 102 in the steelworks.
  • the A factory 104 and the B factory 105 specifically represent factories involved in the manufacture of steel products such as a hot rolling factory and a steel making factory.
  • the other demand source 106 represents a power demand source other than the manufacturing factory such as an office.
  • the on-site power plant 107 specifically represents a thermal power plant using on-site generated gas.
  • the energy management facility 108 grasps the power demand from the A factory 104, the B factory 105, and other power demand sources 106 and determines the transmission amount distribution, instructs the power amount in the on-site power plant 107 and grasps the results, and the power company power plant 109.
  • Responsible for instructing and grasping the amount of power purchased from A factory 104, B factory 105, other demand sources 106, in-house power plant 107, energy management facility 108, and electric power company power plant 109 are connected by a transmission line 103.
  • the A factory 104, the B factory 105, and the other demand sources 106 consume the power received via the power transmission line 103.
  • the received power of the A factory 104 and the B factory 105 is used for the manufacture (production) of products based on the production plan.
  • the on-site power plant 107 and the power company power plant 109 supply the power generated via the power transmission line 103.
  • the on-site power plant 107 can only generate power depending on the amount of heat generated by the on-site generated gas, so the maximum amount of power is limited in each time zone, and the supply power is actually increased after an instruction to increase the amount of power generation is issued. It takes time depending on the dynamic characteristics of the power generation equipment.
  • the amount of power transmitted from the power company power plant 109 is provided with the maximum contracted power amount exchanged between the steel company and the power company.
  • the power supply / demand guidance apparatus 200 includes an arithmetic processing unit 220, a ROM 230, a RAM 240, a data collection device 261, a database (DB) 262, a monitor 263, and an input device 264 that are included in the apparatus main body 210. Data can be sent and received via the path 250.
  • the data collection device 261 is configured to be able to transmit data via the transmission path 265 with the A factory server 271, the B factory server 272, and the energy management server 273.
  • the A factory server 271 holds an operation plan and an operation result of the A factory installed in the A factory 104.
  • the B factory server 272 holds an operation plan and an operation result of the B factory installed in the B factory 105.
  • the energy management server 273 is installed in the energy management facility 108.
  • the apparatus main body 210 is realized by using a general-purpose information processing apparatus such as a personal computer or a workstation, and includes an arithmetic processing unit 220, a ROM 230, and a RAM 240.
  • the arithmetic processing unit 220 is realized by hardware such as a CPU.
  • the arithmetic processing unit 220 uses the power supply / demand guidance device 200 based on programs and data stored in the ROM 230, display signals output to the monitor 263, operation signals input from the input device 264, various information acquired from the DB 262, and the like. Instructions and data transfer to the constituent parts are performed, and overall operation of the power supply / demand guidance apparatus 200 is controlled.
  • the arithmetic processing unit 220 includes a production plan acquisition unit 221 as a production plan acquisition unit, a power prediction unit 222 as a power prediction unit, a power generation purchase amount determination unit 223 as a power generation purchase amount determination unit, and an alarm notification unit.
  • the alarm notification unit 224 and the visualization unit 225 as a visualization unit function.
  • the ROM 230 stores a program for operating the power supply / demand guidance apparatus 200 and realizing various functions of the power supply / demand guidance apparatus 200, data used during the execution of these programs, and the like. Further, the power supply / demand for causing the arithmetic processing unit 220 to function as the production plan acquisition unit 221, the power prediction unit 222, the power generation purchase amount determination unit 223, the alarm notification unit 224, and the visualization unit 225 to execute a power supply / demand guidance process described later.
  • a guidance program 231 is stored.
  • the RAM 240 is a semiconductor memory used as a working memory for the arithmetic processing unit 220, and includes a memory area that temporarily stores programs executed by the arithmetic processing unit 220, data used during the execution, and the like.
  • the monitor 263 is realized by a display device such as an LCD, an EL display, or a CRT display, and displays various screens based on a display signal input from the device main body 210 and a display signal input from the input device 264. To do.
  • the input device 264 is realized by an input device such as a keyboard, a mouse, a touch panel, and various switches, for example, and outputs a signal corresponding to an operation input to the device main body 210 and the monitor 263.
  • the data collection device 261 is a well-known server computer, workstation, personal computer or the like equipped with an arithmetic device such as a CPU, a main storage device, an auxiliary storage device such as a hard disk or various storage media, a communication device, a display device, an input device, etc. Realized by a general-purpose computer.
  • the data collection device 261 performs data registration processing for collecting data related to production plans and electric power from the A factory server 271, the B factory server 272, and the energy management server 273 and registering the data in the DB 262.
  • the data collection device 261 receives a manufacturing number, a manufacturing start time, a manufacturing end time, a material number (hereinafter referred to as a material number) as a raw material of the product manufactured from the A factory server 271 from the A factory server 271.
  • the physical characteristics of the material hereinafter referred to as material characteristics
  • the product number the physical characteristics of the product
  • the data collection device 261 collects the manufacturing number, the manufacturing start time, the manufacturing end time, the material number, the material characteristic, the product number, and the product characteristic of the product manufactured at the B factory 105 from the B factory server 272, and the DB 262. Register with.
  • the data collection device 261 receives, from the energy management server 273, the power consumption (actual) of the factory A 104, the power consumption (actual) of the factory B 105, the power consumption (actual) of the other power demand source 106, the in-house Actual power generation amount of power plant 107 (hereinafter referred to as in-house power generation amount) and maximum power generation possible amount (hereinafter referred to as maximum power generation amount), actual power amount transmitted from power company power plant 109 to steelworks power grid 102 (hereinafter referred to as purchase) Electric energy) and contract maximum electric energy (hereinafter, maximum electric energy purchased) are collected and registered in the DB 262.
  • the DB 262 is a storage device that accumulates (holds) data collected by the data collection device 261, and is constructed by collecting, registering, and updating data at regular intervals.
  • the DB 262 holds data related to the production plan illustrated in FIG. 3 and data related to power illustrated in FIG. Of the data relating to the production plan shown in FIG. 3, the predicted power amount is calculated and registered in a power supply and demand guidance process described later. In addition, the total electric energy, the insufficient electric energy, and the subtraction rate among the data related to electric power shown in FIG. 4 are calculated and registered in the electric power supply and demand guidance process described later.
  • the priority mode means a supply method that is prioritized when the amount of power is insufficient, and either power generation priority or power purchase priority is determined and registered in advance for each time period.
  • FIG. 5 is a flowchart showing a processing procedure of power supply / demand guidance processing performed by the arithmetic processing unit 220 in the apparatus main body 210.
  • the data collection device 261 performs the above-described data registration processing
  • the arithmetic processing unit 220 performs the power supply / demand guidance method by performing the power supply / demand guidance processing according to the processing procedure of FIG.
  • the power supply / demand guidance process is realized by the arithmetic processing unit 220 reading and executing the power supply / demand guidance program 231 stored in the ROM 230. This power supply / demand guidance process is started when the arithmetic processing unit 220 receives a calculation start command from the input device 264.
  • the production plan acquisition unit 221 acquires the production plan stored in the DB 262. That is, the production plan acquisition unit 221 manufactures from the DB 262 at each manufacturing factory (the A factory 104 and the B factory 105) from the current time to the future predetermined time ahead (in this embodiment, for example, the future 2 hours ahead). For the product to be processed, data of manufacturing No, manufacturing start time, manufacturing end time, material No, material characteristics, product No, and product characteristics is acquired.
  • the production plan acquisition unit 221 is not illustrated from the process computer 281 installed at the lower level of the A factory server 271. You may acquire a production plan with a fixed period (in this embodiment, for example, 1 minute period) via a gateway.
  • the process computer 281 receives the production plan from the A factory server 271 installed at the upper level, adds the manufacturing progress and the correction amount from the operator to the received production plan, and instructs the manufacturing facility 282 to manufacture at the corrected production timing. Computer to send. That is, since the manufacturing instruction from the process computer 281 substantially coincides with the actual manufacturing timing, a more accurate production plan can be acquired.
  • Such a process computer 281 may be installed in the factory B server 272, and in this case, the same processing can be performed.
  • the process computer 281 can be configured as a mill pacing computer that controls the slab extraction pitch from the heating furnace.
  • the hot rolling process consists of a series of equipment from the heating furnace to the rolling mill, the cooling equipment, and the winding equipment.
  • the mill pacing computer is the progress of rolling, cooling and winding of the slab already extracted from the heating furnace. The situation is acquired, and based on this progress information, the time required to complete winding after heating furnace extraction, rolling and cooling for the slab to be extracted from the heating furnace is predicted. Based on the amount of correction, the heating furnace extraction plan, which is a production plan acquired from the host computer (factory server), is corrected.
  • the mill pacing computer then sends a slab extraction instruction to the heating furnace at a timing according to the corrected heating furnace extraction plan.
  • the production plan acquisition unit 221 acquires the latest heating furnace extraction plan that has been corrected.
  • the power predicting unit 222 predicts the amount of power required up to two hours ahead in the predetermined time interval (in this embodiment, for example, in 1 minute increments) by the following method. . That is, the power predicting unit 222 first uses the following equation (1) with the amount of power used for manufacturing each product scheduled to be manufactured up to two hours in the future as input variables: material characteristics and product characteristics of the product. Is predicted by a function f expressed by:
  • the function f is specifically configured as the following equation (2).
  • the power prediction unit 222 writes the calculated power amount (predicted power amount) used for manufacturing each product in a data record related to the production plan of the DB 262 as shown in FIG.
  • the power predicting unit 222 calculates the power amount (predicted power amount) used at each manufacturing plant in units of 1 minute from the production plan and predicted power amount data of each manufacturing plant as shown in FIG. Calculate and predict according to (3).
  • the power prediction unit 222 searches for a demand power amount of the other demand source 106 in each time zone from a 12 ⁇ 2 two-dimensional lookup table using the month and day and night as keys.
  • the value of this lookup table is an average value calculated based on past performance data.
  • the power predicting unit 222 uses the power amount of the A factory 104 (used power amount), the power amount of the B factory 105 (used power amount), and the power amount of other demand sources 106 (used power amount) at each time determined above. Is the predicted value of the total amount of power (total power).
  • the power prediction unit 222 calculates an insufficient power amount obtained by subtracting the maximum generated power amount and the maximum purchased power amount from the total power amount.
  • the power predicting unit 222 calculates the power amount of the factory A 104, the power amount of the factory B 105, the power amount of the other demand source 106, the total power amount, and the shortage power amount in FIG. As shown, the data record related to the power of the DB 262 is written.
  • step S501 when the above-described mill pacing computer is used and the production plan acquisition unit 221 acquires the latest heating furnace extraction plan, the power prediction unit 222 in step S502 uses the heating furnace extraction plan. Based on the hot-rolled power formulas shown in the above formulas (1) to (3), the predicted power in which the amount of power used in each manufacturing plant is predicted in time series is calculated.
  • the generated power purchase amount determination unit 223 determines the distribution of the generated power amount and the purchased power amount for the next two hours ahead for each time slot in 1 minute increments.
  • the power generation / purchase amount determination unit 223 executes a power generation / purchase amount determination process according to the procedure of the flowchart shown in FIG. That is, the power generation / purchase amount determination unit 223 has the total power amount equal to or less than the sum of the maximum power generation amount and the maximum power purchase amount (S601, Yes), and the priority mode has power generation priority (step S602, Yes).
  • step S603 When the total power amount is equal to or less than the maximum generated power amount (step S603, Yes), the generated power amount is set to the same value as the total power amount, and the purchased power amount is set to 0 (step S604). Thereby, the process of step S503 is completed, and the power supply and demand guidance process proceeds to the process of step S504.
  • the total power amount is equal to or less than the sum of the maximum generated power amount and the maximum purchased power amount (step S601, Yes)
  • the priority mode is power generation priority (step S602, Yes)
  • the generated power purchase amount determining unit 223 sets the generated power amount to the same value as the maximum generated power amount, and the purchased power amount is calculated from the total power amount to the maximum generated power amount. A value obtained by subtracting the amount is set (step S605). Thereby, the process of step S503 is completed, and the power supply and demand guidance process proceeds to the process of step S504.
  • step S503 the total power amount is equal to or less than the sum of the maximum power generation amount and the maximum power purchase amount (step S601, Yes), the priority mode is power purchase priority (step S602, No), and
  • step S606 the generated power purchase amount determining unit 223 sets the power purchase power amount to the same value as the total power amount and sets the generated power amount to 0 (step S607). ).
  • step S503 the total power amount is equal to or less than the sum of the maximum power generation amount and the maximum power purchase amount (step S601, Yes), the priority mode is power purchase priority (step S602, No), and When the total power amount is larger than the maximum purchased power amount (step S606, No), the generated power purchase amount determining unit 223 sets the purchased power amount to the same value as the maximum purchased power amount, and the generated power amount is determined as the maximum purchase amount from the total power amount. A value obtained by subtracting the amount of electric power is set (step S608). Thereby, the process of step S503 is completed, and the power supply and demand guidance process proceeds to the process of step S504.
  • step S503 if none of the above applies, and the total power amount is larger than the sum of the maximum power generation amount and the maximum power purchase amount (step S601, No), the power generation power purchase amount determination unit 223 The power amount is set to the same value as the maximum generated power amount, and the purchased power amount is set to the same value as the maximum purchased power amount (step S609). Further, the power generation / purchase amount determination unit 223 sets the shortage power amount as a value obtained by subtracting the maximum power generation amount and the maximum power purchase amount from the total power amount, and sets a reduction rate (production reduction ratio) in advance from the shortage power amount. The value is divided by the amount of power used by the factory that is the candidate for reduced production (step S610).
  • the alarm notification unit 224 sends an alarm notification notifying that the production amount is reduced to the server and the monitor 263 of the factory for production reduction (Step S611). Thereby, the process of step S503 is completed, and the power supply and demand guidance process proceeds to the process of step S504.
  • the visualization unit 225 outputs the predicted power amount, the total power amount, the generated power amount, the purchased power amount, and the production reduction rate of each manufacturing factory calculated as described above to the monitor 263.
  • step S504 the arithmetic processing unit 220 performs the process of step S501 at a constant time interval (several tens of seconds to several tens of minutes) while receiving no arithmetic processing stop command from the input device 264 (step S504, No).
  • the process up to S503 is repeatedly executed.
  • the arithmetic processing unit 220 receives an arithmetic processing stop command from the input device 264 (step S504, Yes)
  • the arithmetic processing unit 220 ends a series of power supply / demand guidance processing.
  • FIG. 4 shows an embodiment in which the electric energy (MWh) at a certain time is indexed (non-dimensional) with a reference value of 100.
  • the power consumption of the factory A 104 is 100
  • the power consumption of the factory B 105 is 150
  • the power consumption of the other demand source 106 is 100
  • the total power The amount was 350.
  • the priority mode is power purchase priority and the maximum power purchase amount is 260
  • the on-site generated power amount is calculated as 100 and the purchased power amount is 260 by the power demand guidance process.
  • the power consumption of the factory A 104 is 120
  • the power consumption of the factory B 105 is 110
  • the power consumption at the other demand source 106 is 100
  • the total power The amount was 330.
  • the in-house generated power amount is 150
  • the purchased power amount is 150
  • the insufficient power amount is 30, and the reduction rate of the factory A 104 that is a candidate for reduction in production. was calculated to be 25%.
  • the power amount of each factory is predicted based on the production plan.
  • the amount can be predicted. Therefore, it is possible to prevent power purchase exceeding the contracted power amount, and to prevent inconvenience such as payment of penalty.
  • FIG. 7 is a diagram showing the actual value and the predicted value of the total electric energy in the steelworks having the electric power network 101 shown in FIG. 1, and the change in the production amount of each manufacturing factory (A factory 104, B factory 105).
  • a factory 104, B factory 105 the production quantities at the factory A 104 and the factory B 105 are rapidly increasing between the times t ⁇ 1 and t.
  • the amount of power is predicted by the power supply / demand guidance process at the timing between times t-1 and t.
  • the power amount is predicted by a method of extrapolating with the moving average of the total power amount obtained just before, so that the power amount at time t and t + 1 as shown by the broken line shown in the upper graph of FIG. Predicted to decrease from time t-1.
  • the production volume actually increased the amount of power increased as shown by the solid line, which was largely out of prediction.
  • the arithmetic processing unit 220 performs power amount prediction according to the increase in production volume, as shown by the dotted line in the upper graph of FIG. It can be seen that a predicted value closer to the actual value than the predicted value was obtained.
  • the prediction error of power demand by the conventional method is ⁇ 4.6 MWh, but as shown in FIG. 9, the prediction error by this method is ⁇ 1.7 MWh. From this, it can be seen that the prediction error of this method is smaller than that of the conventional method, and a predicted value close to the actual value is obtained. 8 and 9, the vertical axis represents the predicted value of the electric energy, the horizontal axis represents the actual value of the electric energy, and R 2 in the graph is the determination coefficient.
  • FIG. 10 to FIG. 12 are examples of the electricity purchase amount guidance screen, where the vertical axis represents the accumulated electricity purchase amount and the horizontal axis represents time.
  • the cumulative power purchase amount 25 minutes ahead (at 60 minutes) at the time of 35 minutes is predicted to be 77 MWh. Therefore, the conventional method has an error of 13 MWh as compared with the actual value 90 MWh of the accumulated power purchase amount at 60 minutes shown in FIG.
  • the accumulated power purchase amount 25 minutes ahead (at 60 minutes) at the time of 35 minutes is predicted to be 96 MWh, and the error from the actual value is 6 MWh. Therefore, it can be seen that, even in the prediction of the accumulated power purchase amount, the present method has a prediction error smaller than that of the conventional method, and a predicted value close to the actual value is obtained.
  • the ironworks having the power network for the two manufacturing factories shown in FIG. 1 has been described as an example, but the present invention is not limited to this, and three or more manufacturing factories are included. It can also be applied to the target power grid.
  • the power supply and demand guidance apparatus and the power supply and demand guidance method according to the present invention can be applied to steelworks equipped with power generation facilities because the amount of power used in the steelworks can be predicted with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Water Supply & Treatment (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Public Health (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • General Factory Administration (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 電力需給ガイダンス装置200は、生産計画取得部221が、製鉄所に属する製造工場の生産計画を取得し、電力予測部222が、取得された生産計画を基に各製造工場で使用する電力量を時系列に予測した予測電力量を算出し、算出された各製造工場の予測電力量を合算して製鉄所全体の予測電力量を算出し、発電買電量決定部223が、製鉄所全体の予測電力量および各製造工場の予測電力量を基に自家発電する発電電力量と電力会社から購入する買電電力量と生産量削減割合とを決め、可視化部225が、各製造工場の予測電力量、製鉄所全体の予測電力量、発電電力量、買電電力量、および生産量削減割合の時系列変化をモニタ263に表示させ、アラーム通知部224が、生産量削減の旨をアラーム通知する。

Description

電力需給ガイダンス装置および電力需給ガイダンス方法
 本発明は、製鉄所における使用電力量を予測する電力需給ガイダンス装置および電力需給ガイダンス方法に関する。
 従来、製鉄会社は生産に必要とする多量の電力を、製鉄所内にある発電設備を使った自家発電(以下、発電)と電力会社からの購入(以下、買電)という2つの方法でまかなっている。このうち、電力会社からの購入する電力については、製鉄会社と電力会社との間で取り交わされた電力購入契約に基づき、所定時間、例えば1時間毎の最大量が定められている。電力会社から購入する電力量が契約最大量を越えれば、製鉄会社は多額の違約金を電力会社に支払うことになり、電力会社は想定以上の発電・送電負荷を要することになり、双方にとって不経済となる。そのため、製鉄所では、各工場の使用電力を予測することで、買電量が契約電力量を上回らないように、自家発電量を増やしたり工場の生産量を減少させたりすることが多い。
 特許文献1には、製鉄所における使用電力量を予測する技術が記載されている。この技術では、製鉄所内の各工場の電力量の時系列パターン(電力負荷パターン)を、点検修理期間(定修時)、通常操業時、定修立上/立下時について過去実績データからあらかじめ算出しておき、これと将来の定修計画データとから各時刻での使用電力量を算出する。これにより、製鉄所全体の電力量を時系列的に予測することができる。
特開平8-186932号公報
 しかしながら、特許文献1に記載の技術では、通常操業時の電力負荷パターンをあらかじめ与えておく必要がある。そのため、生産量に応じて使用電力量が大きく変動する熱間圧延工場については、生産量の変動が大きく変化するタイミングで予測が外れるという課題があった。
 本発明は、上記に鑑みてなされたものであって、生産量の変動が大きく変化するタイミングでも、製鉄所で使用する電力量を高精度に予測可能な電力需給ガイダンス装置および電力需給ガイダンス方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力需給ガイダンス装置は、製鉄所に属する製造工場において、製品の生産計画を取得する生産計画取得手段と、取得された前記生産計画を基に各製造工場で使用する電力量を時系列に予測した予測電力量を算出し、算出された前記各製造工場の予測電力量を合算して製鉄所全体の予測電力量を算出する電力予測手段と、前記製鉄所全体の予測電力量および各製造工場の予測電力量を基に自家発電する発電電力量と電力会社から購入する買電電力量と製品の生産量削減割合とを決める発電買電量決定手段と、前記各製造工場の予測電力量、前記製鉄所全体の予測電力量、前記発電電力量、前記買電電力量、および前記生産量削減割合の時系列変化をモニタに表示させる可視化手段と、生産量削減の旨をアラーム通知するアラーム通知手段と、を備えることを特徴とする。
 また、本発明に係る電力需給ガイダンス装置は、前記生産計画取得手段が、熱間圧延工場の加熱炉抽出計画を取得し、前記電力予測手段が、取得した加熱炉抽出計画を基に、熱延電力式を用いて各製造工場で使用する電力量を時系列に予測した予測電力を算出することを特徴とする。
 また、本発明に係る電力需給ガイダンス方法は、製鉄所に属する製造工場において、製品の生産計画を取得する生産計画取得ステップと、取得された前記生産計画を基に各製造工場で使用する電力量を時系列に予測した予測電力量を算出し、算出された前記各製造工場の予測電力量を合算して製鉄所全体の予測電力量を算出する電力予測ステップと、前記製鉄所全体の予測電力量および各製造工場の予測電力量を基に自家発電する発電電力量と電力会社から購入する買電電力量と製品の生産量削減割合とを決める発電買電量決定ステップと、前記各製造工場の予測電力量、前記製鉄所全体の予測電力量、前記発電電力量、前記買電電力量、および前記生産量削減割合の時系列変化をモニタに表示させる可視化ステップと、生産量削減の旨をアラーム通知するアラーム通知ステップと、を含むことを特徴とする。
 本発明によれば、生産量の変動が大きく変化するタイミングでも、製鉄所で使用する電力量を高精度に予測することができる。
図1は、本発明が適用される電力網の概略構成を示す模式図である。 図2は、本発明の一実施形態に係る電力需給ガイダンス装置の概略構成を示す模式図である。 図3は、本実施形態の生産計画に関わるデータ構成例を示す図である。 図4は、本実施形態の電力に関わるデータ構成例を示す図である。 図5は、本実施形態の電力需給ガイダンス処理手順を示すフローチャートである。 図6は、本実施形態の発電買電量決定処理手順を示すフローチャートである。 図7は、実施例による効果を説明するための説明図である。 図8は、従来の手法による電力量の予測誤差を示す図である。 図9は、本手法による電力量の予測誤差を示す図である。 図10は、従来の手法による35分時点における25分先(60分時点)の累積買電量の予測値を示すガイダンス画面の一例を示す図である。 図11は、本手法による35分時点における25分先(60分時点)の累積買電量の予測値を示すガイダンス画面の一例を示す図である。 図12は、60分時点における累積買電量の実績値を示すガイダンス画面の一例を示す図である。
 以下、図面を参照して、本発明の一実施形態である電力需給ガイダンス装置および電力需給ガイダンス処理を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
[電力網の構成]
 まず、図1を参照して、本発明が適用される電力網101の構成について説明する。図1に示すように、電力網101は、製鉄所内の電力網102、送電線103、製造工場(A工場104、B工場105)、その他需要源106、所内発電所107、エネルギー管理施設108、および電力会社発電所109を含む。A工場104、B工場105、その他需要源106、所内発電所107、およびエネルギー管理施設108は、製鉄所内の電力網102に属する。A工場104およびB工場105は、具体的には熱間圧延工場や製鋼工場等の鉄鋼製品の製造に関わる工場を表す。その他需要源106は、具体的には事務所等、製造工場以外の電力需要源を表す。所内発電所107は、具体的には所内発生ガスを利用した火力発電所等を表す。エネルギー管理施設108は、A工場104、B工場105、およびその他電力需要源106からの電力需要の把握と送電量配分の決定、所内発電所107の電力量指示と実績把握、電力会社発電所109からの購入する電力量の指示と実績把握を担う。A工場104、B工場105、その他需要源106、所内発電所107、エネルギー管理施設108、および電力会社発電所109は、送電線103で接続されている。
 A工場104、B工場105、およびその他需要源106は、送電線103を介して受電した電力を消費する。ここで、A工場104およびB工場105の受電電力は、生産計画に基づいた製品の製造(生産)のために利用される。
 所内発電所107、電力会社発電所109は、送電線103を介して発電された電力を供給する。ただし、所内発電所107は、所内発生ガスがもつ熱量に依存した発電しかできないため各時間帯で最大電力量が制限され、さらに、発電量増加指示が出されてから実際に供給電力が増加されるまでには、発電設備の動特性に依存した時間を要する。また、電力会社発電所109から送電される電力量には、製鉄会社と電力会社との間で取り交わされた契約最大電力量が設けられている。
[電力需給ガイダンス装置の構成]
 次に、図2を参照し、上記のような電力網101に適用される電力需給ガイダンス装置200の構成について説明する。図2に示すように、電力需給ガイダンス装置200は、演算処理部220、ROM230、RAM240、データ収集装置261、データベース(DB)262、モニタ263、および入力装置264が、装置本体210内にある伝送路250を介してデータ送受可能に構成されている。
 また、データ収集装置261が、A工場サーバー271、B工場サーバー272、およびエネルギー管理サーバー273と、伝送路265を介してデータ伝送可能に構成されている。ここで、A工場サーバー271は、A工場104内に設置されているA工場の操業計画および操業実績を保持する。B工場サーバー272は、B工場105内に設置されているB工場の操業計画および操業実績を保持する。エネルギー管理サーバー273は、エネルギー管理施設108に設置されている。
 装置本体210は、パーソナルコンピュータやワークステーション等の汎用の情報処理装置を用いて実現されるものであり、演算処理部220と、ROM230と、RAM240とを含む。
 演算処理部220は、CPU等のハードウェアによって実現される。この演算処理部220は、ROM230に格納されるプログラムやデータ、モニタ263に出力する表示信号、入力装置264から入力される操作信号、DB262から取得した各種情報等を基に電力需給ガイダンス装置200を構成する各部への指示やデータの転送等を行い、電力需給ガイダンス装置200全体の動作を統括的に制御する。この演算処理部220は、生産計画取得手段としての生産計画取得部221と、電力予測手段としての電力予測部222と、発電買電量決定手段としての発電買電量決定部223と、アラーム通知手段としてのアラーム通知部224と、可視化手段としての可視化部225として機能する。
 ROM230には、電力需給ガイダンス装置200を動作させ、この電力需給ガイダンス装置200が備える種々の機能を実現するためのプログラムや、これらのプログラムの実行中に使用されるデータ等が格納される。また、演算処理部220を生産計画取得部221、電力予測部222、発電買電量決定部223、アラーム通知部224、可視化部225として機能させ、後述する電力需給ガイダンス処理を実行させるための電力需給ガイダンスプログラム231が格納される。
 RAM240は、演算処理部220の作業用メモリとして用いられる半導体メモリであり、演算処理部220が実行するプログラムや、その実行中に使用されるデータ等を一時的に保持するメモリ領域を備える。
 モニタ263は、LCDやELディスプレイ、CRTディスプレイ等の表示装置によって実現されるものであり、装置本体210から入力される表示信号および入力装置264から入力される表示信号をもとに各種画面を表示する。入力装置264は、例えばキーボードやマウス、タッチパネル、各種スイッチ等の入力装置によって実現されるものであり、操作入力に応じた信号を装置本体210およびモニタ263に出力する。
 データ収集装置261は、CPU等の演算装置、主記憶装置、ハードディスクや各種記憶媒体等の補助記憶装置、通信装置、表示装置、入力装置等を備えた周知のサーバーコンピュータやワークステーション、パソコン等の汎用コンピュータで実現される。このデータ収集装置261は、A工場サーバー271、B工場サーバー272、およびエネルギー管理サーバー273から生産計画や電力に関わるデータを収集してDB262に登録するデータ登録処理を行う。
 具体的に、データ収集装置261は、A工場サーバー271から、A工場104で製造される製品の製造No、製造開始時刻、製造終了時刻、製品の原料となる素材番号(以下、素材No)、素材がもつ物理特性(以下、素材特性)、製品No、製品がもつ物理特性(以下、製品特性)を収集し、DB262に登録する。また、データ収集装置261は、B工場サーバー272から、B工場105で製造される製品の製造No、製造開始時刻、製造終了時刻、素材No、素材特性、製品No、製品特性を収集し、DB262に登録する。また、データ収集装置261は、エネルギー管理サーバー273から、A工場104の使用電力量(実績)、B工場105の使用電力量(実績)、その他電力需要源106の使用電力量(実績)、所内発電所107の発電量実績(以下、所内発電電力量)および発電可能最大量(以下、最大発電電力量)、電力会社発電所109から製鉄所電力網102に送電された電力量実績(以下、買電電力量)および契約最大電力量(以下、最大買電電力量)を収集し、DB262に登録する。
 DB262は、データ収集装置261にて収集されたデータを蓄積(保持)する記憶装置であり、一定時間ごとにデータを収集・登録・更新していくことで構築される。DB262は、図3に例示する生産計画に関わるデータと、図4に例示する電力に関わるデータとを保持している。なお、図3に示す生産計画に関わるデータのうち、予測電力量は、後述する電力需給ガイダンス処理で算出され登録される。また図4に示す電力に関わるデータのうち、合計電力量、不足電力量、および減算率は、後述する電力需給ガイダンス処理で算出され登録される。また、優先モードとは、電力量が不足した場合に優先される供給方法を意味し、発電優先、買電優先のいずれかが各時間帯について予め決定され登録される。
[電力需給ガイダンス処理]
 次に、電力需給ガイダンス処理について説明する。図5は、装置本体210において演算処理部220が行う電力需給ガイダンス処理の処理手順を示すフローチャートである。電力需給ガイダンス装置200は、データ収集装置261が上記したデータ登録処理を行い、演算処理部220が、図5の処理手順に従って電力需給ガイダンス処理を行うことで電力需給ガイダンス方法を実施する。なお、電力需給ガイダンス処理は、演算処理部220がROM230に格納された電力需給ガイダンスプログラム231を読み出して実行することで実現される。この電力需給ガイダンス処理は、演算処理部220が入力装置264から演算開始命令を受信した時点で開始される。
 はじめに、ステップS501の処理では、生産計画取得部221が、DB262に格納されている生産計画を取得する。すなわち、生産計画取得部221は、DB262から、現在時刻から未来所定時間先(本実施の形態では、例えば未来2時間先とする)までに各製造工場(A工場104、B工場105)で製造される予定の製品について、製造No、製造開始時刻、製造終了時刻、素材No、素材特性、製品No、製品特性のデータを取得する。
 また、図2に記載しているように、ステップS501の処理で生産計画を取得する別の態様として、生産計画取得部221がA工場サーバー271の下位に設置されているプロセスコンピュータ281から図示しないゲートウェイを介して生産計画を一定周期(本実施形態では、例えば1分周期)で取得してもよい。プロセスコンピュータ281は、上位に設置されているA工場サーバー271から生産計画を受信し、受信した生産計画に製造進捗やオペレータからの修正量を加え、修正された生産タイミングで製造設備282に製造指示を送るコンピュータである。つまり、プロセスコンピュータ281からの製造指示は、実際の製造タイミングとほぼ一致しているため、より正確な生産計画を取得することができる。なお、このようなプロセスコンピュータ281はB工場サーバー272に設置してもよく、この場合も同様の処理を行うことができる。
 例えば、熱間圧延工場を例にとると、プロセスコンピュータ281は、加熱炉からのスラブ抽出ピッチを制御するミルペーシングコンピュータとして構成することができる。熱間圧延プロセスは加熱炉から圧延機、冷却設備を経て巻取設備に至る一連の設備で構成され、前記ミルペーシングコンピュータは、既に加熱炉から抽出されたスラブの圧延や冷却、巻取の進捗状況を取得し、この進捗情報を基に、これから加熱炉から抽出する予定のスラブに対する加熱炉抽出から圧延、冷却を経て巻取完了までに要する時間を予測し、予測された時間とオペレータからの修正量に基づいて上位コンピュータ(工場サーバー)から取得した生産計画である加熱炉抽出計画に修正を加える。そして、ミルペーシングコンピュータは、修正された加熱炉抽出計画に従ったタイミングで加熱炉にスラブ抽出指示を送る。ステップS501の処理にミルペーシングコンピュータを使用した場合、生産計画取得部221は前記修正された最新の加熱炉抽出計画を取得する。
 次に、ステップS502の処理では、電力予測部222が、未来2時間先までに必要な電力量を所定時間刻み(本実施の形態では、例えば1分刻みとする)で以下の方法により予測する。すなわち、電力予測部222は、先ず、未来2時間先までの製造予定の製品ひとつひとつに対して製造に使用する電力量を、当該製品の素材特性および製品特性を入力変数とする次式(1)で表される関数fによって予測する。
Figure JPOXMLDOC01-appb-M000001
 例えば、熱間圧延工場を例にとると、関数fは、具体的に次式(2)のように構成される。
Figure JPOXMLDOC01-appb-M000002
 電力予測部222は、算出した各製品の製造に使用する電力量(予測電力量)を、図3に示すように、DB262の生産計画に関わるデータレコードに書き込む。
 そして、電力予測部222は、図3に示すような各製造工場の生産計画と予測電力量とのデータから、1分刻みで各製造工場で使用される電力量(予測電力量)を次式(3)により算出して予測する。
Figure JPOXMLDOC01-appb-M000003
 また、電力予測部222は、各時間帯におけるその他需要源106の需要電力量を、月と昼夜とをキーとする12×2の2次元ルックアップテーブルから検索する。このルックアップテーブルの値は、過去実績データをもとに算出された平均値である。電力予測部222は、以上で求めた各時刻におけるA工場104の電力量(使用電力量)、B工場105の電力量(使用電力量)、およびその他需要源106の電力量(使用電力量)の合計値を所全体の電力量(合計電力量)の予測値とする。また、電力予測部222は、合計電力量から最大発電電力量と最大買電電力量とを差し引いた不足電力量を算出する。最後に、電力予測部222は、算出した各時間帯におけるA工場104の電力量、B工場105の電力量、その他需要源106の電力量、合計電力量、および不足電力量を、図4に示すように、DB262の電力に関わるデータレコードに書き込む。
 なお、ステップS501において、前記したミルペーシングコンピュータを使用し、生産計画取得部221が修正された最新の加熱炉抽出計画を取得した場合、ステップS502において電力予測部222は、この加熱炉抽出計画を基に、上記式(1)~(3)に示す熱延電力式を用いて、各製造工場で使用する電力量を時系列に予測した予測電力を算出する。
 次に、ステップS503の処理では、発電買電量決定部223が、未来2時間先までの発電電力量と買電電力量との配分を1分刻みの各時間帯に対して決定する発電買電量決定処理を行う。具体的に、発電買電量決定部223は、図6に示すフローチャートの手順に従って発電買電量決定処理を実行する。すなわち、発電買電量決定部223は、合計電力量が最大発電電力量と最大買電電力量との和以下であり(S601,Yes)、かつ、優先モードが発電優先であり(ステップS602,Yes)、かつ、合計電力量が最大発電電力量以下である場合(ステップS603,Yes)、発電電力量を合計電力量と同じ値とし、買電電力量を0とする(ステップS604)。これにより、ステップS503の処理は完了し、電力需給ガイダンス処理はステップS504の処理に進む。
 ステップS503の処理で、合計電力量が最大発電電力量と最大買電電力量との和以下であり(ステップS601,Yes)、かつ、優先モードが発電優先であり(ステップS602,Yes)、かつ、合計電力量が最大発電電力量より大きい場合(ステップS603,No)、発電買電量決定部223は、発電電力量を最大発電電力量と同じ値とし、買電電力量を合計電力量から最大発電電力量を引いた値とする(ステップS605)。これにより、ステップS503の処理は完了し、電力需給ガイダンス処理はステップS504の処理に進む。
 ステップS503の処理で、合計電力量が最大発電電力量と最大買電電力量との和以下であり(ステップS601,Yes)、かつ、優先モードが買電優先であり(ステップS602,No)、かつ、合計電力量が最大買電電力量以下である場合(ステップS606,Yes)、発電買電量決定部223は、買電電力量を合計電力量と同じ値とし、発電電力量を0とする(ステップS607)。これにより、ステップS503の処理は完了し、電力需給ガイダンス処理はステップS504の処理に進む。
 ステップS503の処理で、合計電力量が最大発電電力量と最大買電電力量との和以下であり(ステップS601,Yes)、かつ、優先モードが買電優先であり(ステップS602,No)、かつ、合計電力量が最大買電電力量より大きい場合(ステップS606,No)、発電買電量決定部223は、買電電力量を最大買電電力量と同じ値とし、発電電力量を合計電力量から最大買電電力量を引いた値とする(ステップS608)。これにより、ステップS503の処理は完了し、電力需給ガイダンス処理はステップS504の処理に進む。
 ステップS503の処理で、以上のいずれにも該当せず、合計電力量が最大発電電力量と最大買電電力量との和より大きい場合(ステップS601,No)、発電買電量決定部223は、発電電力量を最大発電電力量と同じ値とし、買電電力量を最大買電電力量と同じ値とする(ステップS609)。また、発電買電量決定部223は、不足電力量を合計電力量から最大発電電力量と最大買電電力量とを引いた値とし、減産率(生産量削減割合)を不足電力量からあらかじめ定めておいた減産候補の工場の使用電力量で割った値とする(ステップS610)。また、アラーム通知部224が、減産候補の工場のサーバーとモニタ263とに対して、生産量削減の旨を通知するアラーム通知を送る(ステップS611)。これにより、ステップS503の処理は完了し、電力需給ガイダンス処理はステップS504の処理に進む。
 なお、可視化部225は、以上のように算出された各製造工場の予測電力量、合計電力量、発電電力量、買電電力量、減産率の時系列変化をモニタ263に出力する。
 ステップS504の処理では、演算処理部220は、入力装置264から演算処理停止命令を受信しない間(ステップS504,No)、一定の時間間隔(数十秒~数十分間隔)でステップS501の処理に戻してS503までの処理を繰り返し実行する。演算処理部220は、入力装置264から演算処理停止命令を受信した場合(ステップS504,Yes)、一連の電力需給ガイダンス処理を終了させる。
 図4は、ある時点での電力量(MWh)を基準値100として指数(無次元)化した実施例を示す。例えば、2000年3月1日10時00分00秒において、A工場104の使用電力量は100、B工場105の使用電力量は150、その他需要源106での使用電力量は100、合計電力量は350であった。このとき、優先モードは買電優先、最大買電電力量が260であることから、電力需要ガイダンス処理により、所内発電電力量が100、買電電力量が260と算出された。
 また、2000年3月1日11時30分00秒において、A工場104の使用電力量は120、B工場105の使用電力量は110、その他需要源106での使用電力量は100、合計電力量は330であった。このとき、最大発電電力量が150、最大買電電力量が150であることから、所内発電電力量は150、買電電力量は150、不足電力量は30、減産候補であるA工場104の減産率が25%と算出された。
 以上、説明したように、本実施の形態の電力需給ガイダンス装置の電力需給ガイダンス処理によれば、生産計画に基づき各工場の電力量を予測するため、生産量が急変するタイミングにおいても精度よく電力量を予測することが可能となる。そのため、契約電力量を上回る買電を防ぐことができ、違約金支払い等の不経済を防止することができる。また、買電と発電との優先順に従った発電電力量、買電電力量、生産量削減割合を算出し、それらを各製造工場およびエネルギー管理施設のオペレータに操業ガイダンスできる。そのため、過剰な発電による発電コスト増、および、過剰な生産削減による生産性損失を防ぐ効果もある。
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。
[実施例]
 次に、図7を参照し、本実施の形態の効果を説明する。図7は、図1記載の電力網101をもつ製鉄所における合計電力量の実績値および予測値と、各製造工場(A工場104,B工場105)の生産量の変化とを示す図である。図7の中段グラフと下段グラフとでは、時刻t-1とtとの間を境に、A工場104とB工場105との生産量が急増していることがわかる。本実施例では、この時刻t-1とtとの間のタイミングで、電力需給ガイダンス処理により電力量を予測した。 
 従来の手法では、直前における実績の合計電力量の移動平均等で外挿する方法で電力量を予測していたため、図7の上段グラフに示す破線で示すように、時刻t,t+1の電力量は時刻t-1より減少すると予測した。しかし、実際には生産量が増加したため、実線で示すように電力量は増加し、予測が大きく外れた。
 一方、本実施の形態の電力需給ガイダンス処理によれば、演算処理部220が生産量の増加に応じた電力量予測を行うため、図7の上段グラフに点線で示すように、従来の手法による予測値よりも実績値に近い予測値が得られたことがわかる。
 また、図8に示すように、従来の手法による需用電力の予測誤差はσ4.6MWhであったが、図9に示すように、本手法による予測誤差はσ1.7MWhであった。このことからも、本手法は従来よりも予測誤差が減っており、実績値に近い予測値が得られていることがわかる。なお、図8および図9に示すグラフの縦軸は電力量の予測値、横軸は電力量の実績値、グラフ内のRは決定係数である。
 図10~図12は、買電量のガイダンス画面の一例であり、縦軸は累積買電量、横軸は時間である。従来の手法では、図10に示すように、35分時点における25分先(60分時点)の累積買電量を77MWhと予測していた。そのため、従来の手法は、図12に示す60分時点における累積買電量の実績値90MWhと比較すると、13MWhの誤差があった。一方、本手法では、図11に示すように、35分時点における25分先(60分時点)の累積買電量を96MWhと予測しており、実績値との誤差は6MWhである。従って、累積買電量の予測においても、本手法は従来よりも予測誤差が減っており、実績値に近い予測値が得られていることがわかる。
 なお、上記実施例においては、図1記載の2つの製造工場を対象とした電力網をもつ製鉄所を例に説明したが、本発明はこれに限られるものではなく、3つ以上の製造工場を対象とした電力網に適用することも可能である。
 以上のように、本発明に係る電力需給ガイダンス装置および電力需給ガイダンス方法は、製鉄所で使用する電力量を高精度に予測可能であるため、発電設備を備える製鉄所に適用することができる。
 101 電力網
 102 製鉄所内の電力網
 103 送電線
 104 A工場
 105 B工場
 106 その他需要源
 107 所内発電所
 108 エネルギー管理施設
 109 電力会社発電所
 200 電力需給ガイダンス装置
 210 装置本体
 220 演算処理部
 221 生産計画取得部
 222 電力予測部
 223 発電買電量決定部
 224 アラーム通知部
 225 可視化部
 230 ROM
 231 電力需給ガイダンスプログラム
 240 RAM
 250 伝送路
 261 データ収集装置
 262 データベース(DB)
 263 モニタ
 264 入力装置
 265 伝送路
 271 A工場サーバー
 272 B工場サーバー
 273 エネルギー管理サーバー
 281 プロセスコンピュータ
 282 製造設備

Claims (3)

  1.  製鉄所に属する製造工場において、製品の生産計画を取得する生産計画取得手段と、
     取得された前記生産計画を基に各製造工場で使用する電力量を時系列に予測した予測電力量を算出し、算出された前記各製造工場の予測電力量を合算して製鉄所全体の予測電力量を算出する電力予測手段と、
     前記製鉄所全体の予測電力量および各製造工場の予測電力量を基に自家発電する発電電力量と電力会社から購入する買電電力量と製品の生産量削減割合とを決める発電買電量決定手段と、
     前記各製造工場の予測電力量、前記製鉄所全体の予測電力量、前記発電電力量、前記買電電力量、および前記生産量削減割合の時系列変化をモニタに表示させる可視化手段と、
     生産量削減の旨をアラーム通知するアラーム通知手段と、
     を備えることを特徴とする電力需給ガイダンス装置。
  2.  前記生産計画取得手段は、熱間圧延工場の加熱炉抽出計画を取得し、
     前記電力予測手段は、取得した加熱炉抽出計画を基に、熱延電力式を用いて各製造工場で使用する電力量を時系列に予測した予測電力を算出することを特徴とする請求項1に記載の電力需給ガイダンス装置。
  3.  製鉄所に属する製造工場において、製品の生産計画を取得する生産計画取得ステップと、
     取得された前記生産計画を基に各製造工場で使用する電力量を時系列に予測した予測電力量を算出し、算出された前記各製造工場の予測電力量を合算して製鉄所全体の予測電力量を算出する電力予測ステップと、
     前記製鉄所全体の予測電力量および各製造工場の予測電力量を基に自家発電する発電電力量と電力会社から購入する買電電力量と製品の生産量削減割合とを決める発電買電量決定ステップと、
     前記各製造工場の予測電力量、前記製鉄所全体の予測電力量、前記発電電力量、前記買電電力量、および前記生産量削減割合の時系列変化をモニタに表示させる可視化ステップと、
     生産量削減の旨をアラーム通知するアラーム通知ステップと、
     を含むことを特徴とする電力需給ガイダンス方法。
PCT/JP2015/063665 2014-05-19 2015-05-12 電力需給ガイダンス装置および電力需給ガイダンス方法 WO2015178256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015545228A JP6160705B2 (ja) 2014-05-19 2015-05-12 電力需給ガイダンス装置および電力需給ガイダンス方法
CN201580025534.2A CN106463959B (zh) 2014-05-19 2015-05-12 电力供需指导装置及电力供需指导方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014103418 2014-05-19
JP2014-103418 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015178256A1 true WO2015178256A1 (ja) 2015-11-26

Family

ID=54553929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063665 WO2015178256A1 (ja) 2014-05-19 2015-05-12 電力需給ガイダンス装置および電力需給ガイダンス方法

Country Status (3)

Country Link
JP (1) JP6160705B2 (ja)
CN (1) CN106463959B (ja)
WO (1) WO2015178256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018229895A1 (ja) * 2017-06-14 2019-12-19 株式会社日立製作所 エネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152750A1 (ja) * 2019-01-21 2020-07-30 Jfeスチール株式会社 金属材料の設計支援方法、予測モデルの生成方法、金属材料の製造方法、及び設計支援装置
CN111367169A (zh) * 2020-02-07 2020-07-03 大连富士冰山智控系统有限公司 控制系统、控制装置以及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186932A (ja) * 1995-01-04 1996-07-16 Nippon Steel Corp 使用電力量予測装置
JP2000217253A (ja) * 1999-01-19 2000-08-04 Sumitomo Metal Ind Ltd 使用電力量予測方法
JP2010148185A (ja) * 2008-12-17 2010-07-01 Jfe Steel Corp 製造プラント発電設備の発電電力調整方法
WO2013121514A1 (ja) * 2012-02-14 2013-08-22 東芝三菱電機産業システム株式会社 電力平準化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240027A (ja) * 1985-08-14 1987-02-21 株式会社日立製作所 自家用発電設備の運転方法
JP4925356B2 (ja) * 2008-07-17 2012-04-25 郵船商事株式会社 機器運転パターン管理方法および負荷配分予測制御方法
JP6114532B2 (ja) * 2012-10-26 2017-04-12 株式会社日立製作所 エネルギー管理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186932A (ja) * 1995-01-04 1996-07-16 Nippon Steel Corp 使用電力量予測装置
JP2000217253A (ja) * 1999-01-19 2000-08-04 Sumitomo Metal Ind Ltd 使用電力量予測方法
JP2010148185A (ja) * 2008-12-17 2010-07-01 Jfe Steel Corp 製造プラント発電設備の発電電力調整方法
WO2013121514A1 (ja) * 2012-02-14 2013-08-22 東芝三菱電機産業システム株式会社 電力平準化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018229895A1 (ja) * 2017-06-14 2019-12-19 株式会社日立製作所 エネルギー管理装置および方法、エネルギー管理システム並びにエネルギー管理システムの運転計画方法

Also Published As

Publication number Publication date
JP6160705B2 (ja) 2017-07-12
CN106463959B (zh) 2019-12-03
CN106463959A (zh) 2017-02-22
JPWO2015178256A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5914210B2 (ja) エネルギー管理システム
US10223167B2 (en) Discrete resource management
Thollander et al. Optimization as investment decision support in a Swedish medium-sized iron foundry–A move beyond traditional energy auditing
US10282687B2 (en) Systems and methods for managing power generation resources
JP2008154418A (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
JP6160705B2 (ja) 電力需給ガイダンス装置および電力需給ガイダンス方法
CN105091076B (zh) 节能效果计算方法以及装置
Zhang et al. Optimal regulation provision by aluminum smelters
JP2008102816A (ja) 省エネルギー報告書作成装置およびその装置を使用してエネルギー使用量を予測する方法
CN111008727A (zh) 一种配电台区负荷预测方法及装置
JP5288271B2 (ja) 圧延プロセスにおける圧延トルク関数を規定する複数のモデルパラメータを最適化する方法
JP2010218394A (ja) エネルギー需要予測装置
JP5104567B2 (ja) エネルギー需要予測装置
JP4691005B2 (ja) 製造プロセスの操業状態の予測方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2010015207A (ja) エネルギ管理システム
KR101753907B1 (ko) 건물군 에너지 수요 관리 방법 및 그를 위한 장치
JP3498786B2 (ja) 使用電力量予測方法
JP2001290508A (ja) 結果予測装置、方法、及びコンピュータ読み取り可能な記憶媒体
JP5195331B2 (ja) 製造プロセスにおける品質予測装置、予測方法、プログラム及びコンピュータ読み取り可能な記録媒体
KR20190059606A (ko) 건설현장의 온실가스 발생추이 예측/경고시스템 및 그 방법
US20130191188A1 (en) Method for energy benchmarking and diagnosis through optimization and a system thereof
JP2005160171A (ja) 産業用エネルギー管理システム
AU2020260535B2 (en) Operation plan creation apparatus, operation plan creation method, and program
WO2021210290A1 (ja) エネルギー需給運用ガイダンス装置および製鉄所内のエネルギー需給運用方法
Puranik CUSUM quality control chart for monitoring energy use performance

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015545228

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795891

Country of ref document: EP

Kind code of ref document: A1