WO2013120339A1 - 锂离子电池正极材料及其制备方法、正极及锂离子电池 - Google Patents

锂离子电池正极材料及其制备方法、正极及锂离子电池 Download PDF

Info

Publication number
WO2013120339A1
WO2013120339A1 PCT/CN2012/078983 CN2012078983W WO2013120339A1 WO 2013120339 A1 WO2013120339 A1 WO 2013120339A1 CN 2012078983 W CN2012078983 W CN 2012078983W WO 2013120339 A1 WO2013120339 A1 WO 2013120339A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
positive electrode
electrode material
preparing
Prior art date
Application number
PCT/CN2012/078983
Other languages
English (en)
French (fr)
Inventor
刘军贤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12761536.7A priority Critical patent/EP2696404A4/en
Priority to US13/626,625 priority patent/US20130208429A1/en
Publication of WO2013120339A1 publication Critical patent/WO2013120339A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Lithium-ion battery cathode material and preparation method thereof, cathode and lithium ion battery The application is submitted to the Chinese Patent Office on February 13, 2012, and the application number is 201210031592.
  • the invention name is "lithium ion battery cathode material and its preparation method, The priority of the Chinese patent application for the positive electrode and the lithium ion battery is incorporated herein by reference.
  • the present invention relates to the field of batteries, and in particular to a cathode material for a lithium ion battery, a cathode for a lithium ion battery, and a lithium ion battery.
  • the current research on lithium ion battery electrode materials mainly focuses on the development of excellent cathode materials.
  • the phosphate cathode material is a lithium composite compound having the formula LiMP0 4 , wherein M is one or more elements selected from the group consisting of Co, Ni, Mn, Fe, and V.
  • LiMP0 4 type positive electrode materials are mainly prepared by a solid phase method.
  • the lithium iron phosphate material is prepared by mixing a lithium compound, an iron compound, a phosphorus compound, and a doping element compound in a molar ratio of Li:Fe:P of 1:1:1.
  • the preparation process of the lithium iron phosphate material is: ball milling the lithium source, the ferrous source, the phosphorus source and the carbon source in a planetary ball mill for 25 hours, drying after argon gas protection and 450 ° C After one sintering, the first sintered product was ball milled for 1 hour, dried and then subjected to a second sintering at 800 ° C to finally obtain a lithium iron phosphate cathode material.
  • these metal impurities may adversely affect the battery capacity due to the charge and discharge of the battery, and at the same time, as the battery is charged or discharged, it will dissolve in the electrolyte to form metal cations, and then gradually migrate to the negative electrode under the driving of the electric field, and Finally, it precipitates and deposits on the negative electrode and the separator of the battery, which increases the self-discharge of the battery, and severely pierces the diaphragm, causing a short circuit of the battery and causing a safety accident.
  • the electrolyte oxidizes or reacts with moisture to produce hydrofluoric acid (HF), which reacts with the LiMP0 4 positive electrode material to dissolve the impurity metal ions such as Fe and Mn in the material.
  • HF hydrofluoric acid
  • the LiMP0 4 battery under long-life or high-temperature use conditions needs to strictly control the metal impurity content of the LiMP0 4 positive electrode material.
  • the metal impurity content of lithium iron phosphate cathode materials is usually controlled within a few PPM, which places high demands on raw materials, equipment and production environment, so production High cost.
  • a method of immersing the positive electrode material in a deionized water or an acidic solution is generally used in the prior art, thereby reducing the adverse effect on the battery.
  • the lithium complex is washed with water.
  • International Publication No. 2005/051840 pamphlet synthesized by hydrothermal LiFeP0 4, LiFeP0 4 with distilled water purified to remove impurities in the cleaning LiFeP0 4.
  • the patent publication CN101276909 cleans the LiFeP0 4 material by using a pH buffer solution, and the buffer solution preferably has a pH range of 5.3-8.1, which can effectively remove elemental iron and iron oxide in the material.
  • Embodiments of the present invention provide a positive electrode material for a lithium ion battery, a preparation method thereof, a positive electrode for a lithium ion battery, a lithium ion battery, a preparation method thereof, and a communication device, which can effectively prevent precipitation of metal impurity ions on the negative electrode, and improve the lithium ion battery. Cyclic performance and high temperature storage performance.
  • a cathode material for a lithium ion battery comprising:
  • Conductive agent a nanophosphate, the nanophosphate having the general formula L iMP0 4 , wherein M is one or more of Co, N i, Mn, Fe and V;
  • a functional polymeric material comprising a transition metal ion chelating functional group.
  • a method for preparing a cathode material for a lithium ion battery comprising:
  • the nano-phosphate has the formula L iMP0 4 , wherein M is Co, N i, One or more of Mn, Fe and V;
  • the L iMP0 4 slurry is dried to remove the solvent to obtain a lithium ion battery positive electrode material.
  • a positive electrode of a lithium ion battery is made of a positive electrode material of a lithium ion battery provided by the embodiment of the invention.
  • a lithium ion battery comprising a positive electrode of a lithium ion battery provided by an embodiment of the invention.
  • a method for preparing a lithium ion battery comprising:
  • the battery case is sealed.
  • a communication device includes a power supply module and a working module
  • the power supply module includes a lithium ion battery provided by an embodiment of the present invention
  • the power supply module provides power for the working module
  • the working module is provided by using the power supply module. Electrical energy is running.
  • the lithium ion battery positive electrode material provided by the embodiment of the invention, the preparation method thereof, the lithium ion battery positive electrode, the lithium ion battery, the preparation method thereof and the communication device can pass the chelation of the transition metal ion chelating functional group in the functional polymer material Capturing metal impurity ions eluted on the surface of the positive electrode material, inhibiting migration of impurity ions, thereby preventing precipitation of metal ions on the negative electrode, reducing The self-discharge and safety hazard of the battery achieve the purpose of improving the cycle performance and high-temperature storage performance of the lithium ion battery.
  • FIG. 1 is a scanning electron microscope observation view of a positive electrode material of a lithium ion battery according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for preparing a positive electrode material for a lithium ion battery according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for preparing a lithium ion battery according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a communication device according to an embodiment of the present invention.
  • Embodiments of the present invention provide a cathode material for a lithium ion battery, including:
  • nanophosphate having the general formula L iMP0 4 , wherein M is one or more of Co, N i, Mn, Fe and V;
  • a functional polymeric material comprising a transition metal ion chelating functional group
  • the transition metal ion chelating functional group contained in the functional polymer material refers to a functional group capable of chelation with a transition metal ion.
  • the transition metal ion chelating functional group in the functional polymer material is selected from one or more of -C0-, -C00-, -CN and -CON.
  • those skilled in the art can also be known according to the art.
  • Commonly used and common technical means to select other functional groups capable of chelation with the transition metal ions which are not limited in the embodiment of the present invention.
  • the positive electrode material of the lithium ion battery provided by the embodiment of the present invention was tested by SEM (Scanning Electron Microscope) using a JSM-5610LV scanning electron microscope of Japan JE0L, and the magnification was 5000 times. The specific observations are shown in Figure 1.
  • the positive electrode material of the lithium ion battery provided by the embodiment of the invention can capture the metal impurity ions eluted on the surface of the positive electrode material by chelation of the transition metal ion chelating functional group in the functional polymer material, thereby inhibiting the migration of the impurity ions, thereby preventing the metal ions from being in the negative electrode.
  • the precipitation on the battery reduces the self-discharge and safety hazards of the battery, and achieves the purpose of improving the cycle performance and high-temperature storage performance of the lithium ion battery.
  • the conductive material of the lithium ion battery provided by the embodiment of the present invention may be a conductive material such as carbon nanotubes or carbon black, or may be other conductive materials known to those skilled in the art. Not limited.
  • the nanophosphate has the general formula of LiMP0 4 , wherein M is one or more of Co, Ni, Mn, Fe and V, wherein it should be noted that the formula LiMP0 4 is only used to define the composition.
  • the basic elements of nanophosphates do not limit the ratio of the basic elements contained.
  • a person skilled in the art can select a phosphate in accordance with the general formula LiMP0 4 according to common knowledge or common technical means in the art, for example, lithium iron phosphate (LiFeP0 4 ), lithium manganese iron phosphate (LiMn.. 6 Fe. 4 P0 4 ) and so on.
  • the embodiment of the invention provides a lithium ion battery cathode material having a particle size of 8-16 microns and good electrical conductivity.
  • the particle size may also be other suitable sizes, which are not limited in the present invention.
  • the functional polymer material may be copolymerized by a methyl methacrylate MMA monomer and at least one vinyl monomer containing a transition metal ion chelating functional group. to make.
  • the transition metal ion chelating functional group in the ethylene monomer may be selected from one or more of -CO-, _C00-, -CN, and -CON, and each functional group contained in the vinyl monomer may be one There may be a plurality of, and the number of each functional group contained in the vinyl monomer is not specifically limited in the examples of the present invention.
  • the molar ratio of the methyl methacrylate MMA monomer to the vinyl monomer in the functional polymer material is 1: 1-10, so that the functional polymer material is formed to have a sufficient amount of transition metal ion chelating functional groups, To effectively capture transition metal impurity ions.
  • the transition metal ion chelating functional group is -C0-
  • the transition metal ion chelating functional group is -C00-
  • the transition metal ion chelating functional group is -CN-, and the vinyl monomer used for copolymerization includes acrylonitrile, methacrylonitrile or dicyanoethylene;
  • the transition metal ion chelating functional group is -CON
  • the vinyl monomer used for copolymerization includes acrylamide, diacetone acrylamide or methylene bis acrylamide.
  • the embodiment of the present invention further provides a method for preparing the above lithium ion battery positive electrode material, as shown in FIG. 2, comprising:
  • a functional polymer solution having a mass percentage concentration of 1-5% can be obtained by controlling the ratio of the polymer material to the polar organic solvent.
  • the nanophosphate has a general formula of LiMP0 4 , wherein M is Co, Ni, One or more of Mn, Fe and V;
  • the selected nanophosphate particles have a particle size of 50-200 nm.
  • the manner of performing the sealing grinding is preferably a ball milling machine using a ball mill.
  • other grinding methods may be selected by those skilled in the art according to common knowledge in the art or common technical means.
  • the step specifically includes: A conductive agent is dispersed in the polymer solution and then mixed with the nanophosphate. In the solution.
  • the step includes:
  • the L iMP0 4 slurry is dried to remove the solvent, and the product particle diameter is controlled to be 8-16 ⁇ m to obtain a lithium ion battery positive electrode material.
  • the centrifugal spray drying device can be specifically used for drying.
  • the preparation method of the positive electrode material for a lithium ion battery provided by the embodiment of the invention can capture the metal impurity ions eluted on the surface of the positive electrode material by chelation of the transition metal ion chelating functional group in the functional polymer material, thereby inhibiting the migration of the impurity ions, thereby avoiding the metal
  • the precipitation of ions on the negative electrode reduces the self-discharge and safety hazard of the battery, and achieves the purpose of improving the cycle performance and high-temperature storage performance of the lithium ion battery.
  • the above preparation method for preparing a lithium ion positive electrode material those skilled in the art can configure other concentrations of the functional polymer solution according to common knowledge or technical means in the art, adopt other nanometer phosphates of particle size, and adopt other
  • the particle size of the positive electrode material of the lithium ion battery is controlled by a suitable grinding method to control the particle size of the positive electrode material of the lithium ion battery to other sizes, which is not limited in the embodiment of the present invention.
  • the method further comprises preparing the functional polymer; the preparing the functional polymer comprises:
  • the solvent may select a corresponding organic solvent or deionized water according to the solubility property of the monomer
  • the initiator may select an oily initiator such as benzoyl peroxide BP0 or azobisisobutyl according to the selected solvent.
  • an oily initiator such as benzoyl peroxide BP0 or azobisisobutyl according to the selected solvent.
  • Nitrile AI BN or the like or a water-soluble initiator such as hydrogen peroxide, ammonium persulfate or the like.
  • the mass of the added solvent is specifically 5-1 0 times the total mass of the monomer, and the mass of the initiator is specifically 1 - 5% of the total mass of the monomer.
  • the molar ratio of methyl methacrylate MMA monomer to the vinyl monomer is 1 : 1 -1 0.
  • Nitrogen gas is passed through the reaction vessel, and the reaction vessel is sealed after stirring the mixture. Heating and constant temperature, the mixture is reacted under stirring, then a crosslinking agent is added, and the reaction is continued under stirring to obtain a polymerization product;
  • the cross-linking time is 0. 5-24 hours, adding a cross-linking agent, the reaction time is 0. 5-24 hours, the cross-linking agent is added.
  • the mass of the monomer is 0. 02-0. 1%, and the reaction time after stirring is 2-12 hours.
  • the obtained polymerization product is subjected to suction filtration and dried to obtain the functional polymer material.
  • the filtered polymerization product is dried by using a vacuum drying oven.
  • the specific preparation conditions such as the specific solvent, the initiator, the crosslinking agent and the quality of their addition, the molar ratio of the monomers participating in the reaction, the temperature, time and specificity of the reaction
  • the device and the like can be selected by those skilled in the art according to common knowledge in the art or common technical means, which is not limited in this embodiment.
  • the embodiment of the invention further provides a positive electrode of a lithium ion battery, wherein the lithium ion positive electrode is made of the above positive electrode material of the lithium ion battery.
  • the embodiment of the invention further provides a lithium ion battery, wherein the lithium ion battery comprises the above positive electrode of the lithium ion battery.
  • the embodiment of the present invention further provides a method for preparing the above lithium ion battery, as shown in FIG. 3, including:
  • a positive electrode of a lithium ion battery and a negative electrode of a lithium ion battery wherein the positive electrode of the lithium ion battery is made of a positive electrode material of a lithium ion battery provided by the embodiment of the invention;
  • a separator may be disposed in the battery positive electrode and the battery negative electrode, and then wound into a battery pole core, and the specific shape of the battery pole core may be, for example, a square shape.
  • the implementation of the present invention is not limited to the specific type of the diaphragm to be used and the specific shape of the battery movement. Those skilled in the art can select according to common knowledge or common technical means in the art.
  • the implementation of the present invention does not specifically limit the manner in which the battery core is fixed in the battery case.
  • the battery pole core can be fixed in the battery case by welding.
  • the singularity is 3. 8 g, the concentration is 1 mol / L, and the injection amount is 3. 8 g. /Ah.
  • the preparing the lithium ion battery positive electrode comprises:
  • the lithium ion positive electrode material is mixed with a conductive agent, a binder and a solvent in a certain ratio, and then stirred to prepare a positive electrode slurry;
  • the mixture formed by the mixing may be stirred by a vacuum high-speed mixer.
  • the stirring may be performed by other means or means, which is not limited in the embodiment of the present invention.
  • the coated aluminum foil is dried, rolled, and cut to obtain a positive electrode of a lithium ion battery.
  • the conductive agent is carbon black s upe r-P
  • the binder is polyvinylidene fluoride PVDF
  • the solvent is N-methylpyrrolidone NMP.
  • the embodiment of the present invention further provides a communication device.
  • the communication device includes a power supply module 31 and a working module 32.
  • the power supply module 31 includes the lithium ion battery provided by the embodiment of the present invention.
  • the power supply module 31 supplies power to the working module 32, and the working module 32 operates using the power provided by the power supply module 31.
  • the power supply module 31 includes at least one lithium ion battery, and may specifically include a lithium ion battery, and may further include a lithium ion battery pack in which the lithium ion battery is connected in series and/or in parallel, which is not specifically limited in the embodiment of the present invention.
  • the work module 32 operates using electrical energy provided by the work module 32, such as performing related tasks of receiving, exchanging, processing, and the like.
  • the communication device may be any electronic device that is powered by a lithium ion battery, such as a mobile phone or a notebook computer.
  • the communication device provided by the embodiment of the present invention is specifically described by taking a notebook computer as an example.
  • the power supply module 32 of the notebook computer includes a lithium ion battery and corresponding other circuit components connected to the working module 31.
  • the working module 31 includes a processor and a hard disk. , display, optical drive and graphics card.
  • the power supply module 32 of the notebook computer supplies power for the normal operation of the working module 31 of the notebook computer, and the working module 31 of the notebook computer uses the power provided by the power supply module 32 to operate normally.
  • the lithium ion battery positive electrode material and the preparation method thereof the lithium ion battery positive electrode, the lithium ion battery, the preparation method thereof and the communication device provided by the embodiments of the present invention, the following detailed description will be given in detail.
  • the prepared functional polymer was sufficiently dissolved in N,N-dimethylformamide DMF to prepare a functional polymer solution having a mass concentration of 2%, and a total mass of 1% of the slurry, a diameter of 10 nm, and a long diameter were added.
  • the carbon nanotubes having a ratio of 150 to 1 were used as a conductive agent, and the carbon nanotubes were uniformly dispersed in the functional polymer solution by ultrasonic dispersion.
  • a nano lithium iron phosphate (L i FeP0 4 ) cathode material having a total particle size of 50% and a particle size of 10 O Onm was added, and the above materials were sealed and ball milled for 10 hours.
  • a uniformly dispersed lithium iron phosphate slurry was obtained.
  • the slurry was dried by a centrifugal spray drying apparatus to remove the solvent, and the product particle size was controlled to be about 8 to 16 ⁇ m to obtain a lithium iron phosphate cathode material coated with
  • the positive electrode sheet, the negative electrode sheet and the Celgard 2400 polypropylene porous film were respectively wound into a rectangular battery core, and the electrolyte was injected into the battery aluminum case at a dose of 3.8 g/Ah, and sealed to form a square lithium ion battery.
  • Preparation of cathode materials for lithium ion batteries The prepared functional polymer was sufficiently dissolved in acetone to prepare a polymer solution having a mass percentage concentration of 2%, and a carbon nanotube having a total mass of 1.5%, a diameter of 10 nm, and an aspect ratio of 150:1 was added. And dispersing the carbon nanotubes in the functional polymer solution by ultrasonic dispersion.
  • a nanometer lithium iron phosphate (L i FeP0 4 ) positive electrode material having a particle size of 10 O Onm and having a total particle mass of 50% was added, and the above materials were sealed and ball milled for 10 hours to obtain a lithium iron phosphate slurry which was uniformly dispersed. material.
  • the slurry was dried by a centrifugal spray drying apparatus to remove the solvent, and the product particle size was controlled to be about 8 to 16 ⁇ m to obtain a lithium iron phosphate cathode material coated with a functional polymer material.
  • a positive electrode was prepared in the same manner as in Example 1.
  • a lithium ion battery was prepared in the same manner as in Example 1.
  • a lithium ion battery positive electrode material, a lithium ion battery positive electrode, and a lithium ion battery are prepared.
  • the difference is that when preparing the lithium iron phosphate positive electrode material, the nano carbon black having a particle size of 20-50 nm is used instead of the carbon.
  • the nanotube is used as a conductive agent, and the mass is 2% of the total mass of the slurry, and finally a lithium iron phosphate cathode material, a lithium ion battery cathode and a lithium ion battery coated with a functional polymer material are obtained.
  • a positive electrode material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery are prepared.
  • a nanometer manganese iron phosphate having a particle size of 80 to 200 nm is used.
  • iMn.. 6 Fe.. 4 P0 4 The positive electrode material replaces the nano lithium iron phosphate (L i FeP0 4 ) positive electrode material to form a homogenized lithium manganese iron phosphate slurry, which is finally coated with a functional polymer material.
  • the positive electrode was prepared in the same manner as in Example 1, except that the lithium ion battery positive electrode material was directly used in the nanometer lithium iron phosphate positive electrode material having a particle size of 100 nm as used in Examples 1 to 4.
  • a method of preparing a lithium ion battery was carried out in accordance with Example 1.
  • the method of preparing the positive electrode in the first embodiment except that the positive electrode material of the lithium ion battery is directly used as the lithium manganese iron phosphate (LiMn. 6 Fe.. 4 ) having a particle size of about 80-200 nm as used in the embodiment 5.
  • P0 4 Positive electrode material.
  • a method of preparing a lithium ion battery was carried out in accordance with Example 5. The following are performance tests for the above examples and comparative examples:
  • the batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 2 were subjected to normal temperature and high temperature cycle performance tests.
  • the test method is as follows:
  • Capacity retention rate (discharge capacity after 500 cycles / initial discharge capacity)
  • the test results showed that the lithium ion batteries made of the lithium iron phosphate cathode material coated with the functional polymer material prepared in Example 1, Example 2, Example 3 and Example 4 were compared with those in Comparative Example 1.
  • the lithium ion battery made of lithium iron phosphate cathode material coated with functional polymer material has better cycle performance at both normal temperature and high temperature.
  • the lithium ion battery made of the ferromanganese phosphate cathode material coated with the functional polymer material prepared in Example 5 is made of the ferromanganese phosphate cathode material coated with the non-functional polymer material in Comparative Example 2.
  • the lithium ion battery has better cycle performance at both normal temperature and high temperature.
  • the batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 2 were subjected to high temperature storage performance tests.
  • the test method is as follows:
  • the battery is placed on the charge and discharge test, first, the current is constant current and constant voltage is charged to the upper limit voltage of 3.8V with a current of 1C;
  • the battery was placed in a high-temperature oven at 60 ° C for 7 days, and then discharged from 3.8 V to 2.5 V at a current of 1 C, and the discharge capacity of the battery was recorded as the storage capacity;
  • Capacity retention capacity storage capacity / initial capacity
  • Capacity recovery capacity Recovery capacity / Initial capacity Table 1
  • the test results show that the high-temperature storage performance of the lithium ion battery made of the lithium iron phosphate cathode material coated with the functional polymer material prepared in the example 1, the embodiment 2, the embodiment 3 and the embodiment 4 is better than that of the comparative example 1
  • the high-temperature storage performance of the lithium ion battery made of the ferromanganese phosphate cathode material coated with the functional polymer material prepared in Example 5 is superior to that of the non-functional polymer material coated with the ferromanganese phosphate cathode in Comparative Example 2.
  • the lithium ion battery cathode material in the specific embodiment provided by the present invention captures the metal impurity ions eluted on the surface of the cathode material through the chelation of the transition metal ion chelating functional group contained therein. Further, the precipitation of metal ions on the negative electrode is avoided, and the purpose of improving the cycle performance and high-temperature storage performance of the lithium ion battery is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池正极材料及其制备方法、锂离子电池正极及锂离子电池,涉及电池领域,能够有效避免金属杂质离子在负极上的析出,提高锂离子电池的循环性能和高温存储性能。其中,锂离子电池正极材料包括:导电剂;纳米磷酸盐,所述纳米磷酸盐的通式为LiMPO4,其中,M为Co、Ni、Mn、Fe和V中的一种或几种;功能聚合物材料,所述功能聚合物材料含有过渡金属离子螯合官能团。本发明还提供了一种锂离子电池的制备方法及一种通信设备。本发明可用于电池领域。

Description

锂离子电池正极材料及其制备方法、 正极及锂离子电池 本申请要求于 2012 年 2 月 13 日提交中国专利局、 申请号为 201210031592. 4发明名称为 "锂离子电池正极材料及其制备方法、 正极及锂离子电池" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明涉及电池领域, 尤其涉及一种锂离子电池正极材料、 锂 离子电池正极及锂离子电池。
背景技术
当前锂离子电池电极材料的研究主要集中于优异的正极材料的开发 上。 其中, 磷酸盐正极材料是一种锂复合化合物, 通式为 LiMP04, 其中 M 是选自 Co、 Ni、 Mn、 Fe、 V中的一种或几种元素。
目前 LiMP04型正极材料主要通过固相方法制备。 例如, 在公开号为 CN101630730的专利中, 磷酸铁锂材料的制备过程为: 将锂化合物、 铁化 合物、 磷化合物、 掺杂元素化合物按 Li: Fe: P的摩尔比为 1: 1: 1混合, 经 过高能球磨处理 10-20小时,在鼓风干燥机中干燥,后再经粉碎设备粉碎, 于气氛炉中 400°C下预烧结 10小时, 后再与导电碳分散液按 100: 2-30的 比例混合, 再置于高能球磨机中混合研磨 20 小时, 然后在保护气氛下 500-70(TC烧结 20-30小时, 最后得到掺杂型磷酸铁锂材料。 又如, 在公 开号为 CN101399343的专利中, 磷酸铁锂材料的制备过程为: 将锂源、 二 价铁源、 磷源和碳源在行星式球磨机上球磨 25小时, 烘干后在氩气保护 及 450°C下进行第一次烧结, 然后将第一次烧结的产物球磨 1小时, 烘干 后在 800°C下进行第二次烧结, 最后得到磷酸铁锂正极材料。
然而, 这些方法的制备过程中, 由于混料不均或反应不均会导致一 定未反应的铁化合物等杂质残留在产物正极材料中。 另外, 由于这些方法 都需要经过多次的高能球磨混合、干燥、烧结及碎料等步骤,操作时间长, 使用的金属设备、 管道、 原料及环境粉尘也会引入一部分的 Fe、 Mn、 Cr、 Ni、 Zn、 Cu 等金属杂质。 这些金属杂质的引入会对电池的充放电不利而 影响电池容量, 同时随着电池的充放电循环或储存,会溶解在电解液中形 成金属阳离子, 然后在电场的驱动下逐渐迁移到负极, 并最终在电池负极 和隔膜上析出并沉积, 增大了电池的自放电, 严重的会刺穿隔膜, 造成电 池短路, 发生安全事故。 此外, 在电池的长时间循环使用过程中, 电解液 发生氧化或与水分反应产生氢氟酸( HF ), 与 LiMP04正极材料反应, 也会 使材料中的 Fe、 Mn等杂质金属离子溶出。 在高温使用环境下还会加速这 一反应过程。 因此长寿命或高温使用条件下的 LiMP04电池, 都需要严格 控制 LiMP04正极材料的金属杂质含量。 在储能设备、 电动汽车等需要高 质量正极的应用领域,磷酸铁锂正极材料的金属杂质含量通常都要控制在 几个 PPM以内, 对原料、 设备及生产环境提出很高的要求, 因此生产成本 很高。
为了减少正极材料中的金属杂质含量, 现有技术中通常采用去离子 水清洗或者酸性溶液浸泡正极材料的方法, 从而减轻对电池的不良影响。 比如, 在日本特开 2003-17054号公报中, 利用水对锂复合物进行清洗。 又如,在国际公开第 2005/051840号小册子中,通过水热合成 LiFeP04后, 用蒸馏水清洗来纯化 LiFeP04以去除 LiFeP04中的杂质。 又如, 公开号为 CN101276909的专利通过用 PH緩沖溶液对 LiFeP04材料进行清洗,其緩沖 溶液优选 PH值范围为 5.3-8.1, 能有效去除材料中单质铁和铁氧化物。
但是这些方法对于不活泼的金属杂质的去除效果并不理想, 而且对 于电池内正极材料在充放电过程溶出的金属离子无法处理,比如电解液中 HF与正极材料反应, 使正极材料中溶出杂质离子。
发明内容
本发明的实施例提供一种锂离子电池正极材料及其制备方法、 锂离 子电池正极、锂离子电池及其制备方法和通信设备, 能够有效避免金属杂 质离子在负极上的析出, 提高锂离子电池的循环性能和高温存储性能。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种锂离子电池正极材料, 包括:
导电剂; 纳米磷酸盐, 所述纳米磷酸盐的通式为 L iMP04 , 其中, M为 Co、 N i、 Mn、 Fe和 V中的一种或几种;
功能聚合物材料, 所述功能聚合物材料含有过渡金属离子螯合官能 团。
一种上述锂离子电池正极材料的制备方法, 包括:
将含有过渡金属离子螯合官能团的功能聚合物材料溶解在极性有机 溶剂中, 制得功能聚合物溶液;
将所述功能聚合物溶液与导电剂及纳米磷酸盐混合, 然后密封研磨, 得到磷酸盐浆料, 其中, 所述纳米磷酸盐的通式为 L iMP04 , 其中, M为 Co、 N i、 Mn、 Fe和 V中的一种或几种;
将所述 L iMP04浆料烘干除去溶剂得到锂离子电池正极材料。
一种锂离子电池正极, 所述锂离子电池正极由本发明实施例提供的 锂离子电池正极材料制成。
一种锂离子电池, 所述锂离子电池包括本发明实施例提供的锂离子 电池正极。
一种锂离子电池的制备方法, 包括:
制备锂离子电池正极和锂离子电池负极, 所述锂离子电池正极由本 发明实施例提供的锂离子电池正极材料制成;
使用所述锂离子电池正极和所述锂离子电池负极制成电池极芯; 将所述电池极芯固定在电池壳中;
将电解液注入所述电池壳中;
对所述电池壳进行密封。
一种通信设备, 包括供电模块和工作模块, 所述供电模块包括本发 明实施例提供的锂离子电池, 所述供电模块为所述工作模块提供电能, 所 述工作模块使用所述供电模块提供的电能运行。
本发明实施例提供的锂离子电池正极材料及其制备方法、 锂离子电 池正极、锂离子电池及其制备方法和通信设备, 能够通过功能聚合物材料 中的过渡金属离子螯合官能团的螯合作用捕获正极材料表面溶出的金属 杂质离子, 抑制杂质离子迁移, 进而避免金属离子在负极上的析出, 减少 电池的自放电及安全隐患,达到提高锂离子电池的循环性能和高温存储性 能的目的。
附图说明 对实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术 人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他 的附图。
图 1 为本发明实施例提供的锂离子电池正极材料的扫描电子显微镜 观测图;
图 2为本发明实施例提供的锂离子电池正极材料的制备方法流程图; 图 3为本发明实施例提供的锂离子电池的制备方法流程图;
图 4为本发明实施例提供的通信设备的组成框图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保 护的范围。
本发明实施例提供了一种锂离子电池正极材料, 包括:
导电剂;
纳米磷酸盐, 所述纳米磷酸盐的通式为 L iMP04 , 其中, M为 Co、 N i、 Mn、 Fe和 V中的一种或几种;
功能聚合物材料, 所述功能聚合物材料含有过渡金属离子螯合官能 团;
其中, 所述功能聚合物材料含有的过渡金属离子螯合官能团是指能 够与过渡金属离子发生螯合作用的官能团。 优选的, 在本发明实施例中, 功能聚合物材料中的过渡金属离子螯合官能团选自 -C0-、 -C00-、 -CN 和 -CON 中的一种或几种。 当然, 本领域技术人员也可以根据本领域的公知 常识和常用技术手段选择其他能够与过渡金属离子发生螯合的官能团,本 发明实施例对此不作限定。
对本发明实施例提供的锂离子电池正极材料采用 日本 JE0L 的 JSM-5610LV型扫描电子显敫镜进行 SEM( Scanning Electron Microscope, 扫描电子显微镜) 测试, 放大倍率为 5000倍。 具体观测结果在图 1 中示 出。
本发明实施例提供的锂离子电池正极材料能够通过功能聚合物材料 中的过渡金属离子螯合官能团的螯合作用捕获正极材料表面溶出的金属 杂质离子, 抑制杂质离子迁移, 进而避免金属离子在负极上的析出, 减少 电池的自放电及安全隐患,达到提高锂离子电池的循环性能和高温存储性 能的目的。
其中, 本发明实施例提供的锂离子电池正极材料, 所述导电剂可以 为碳纳米管或碳黑等导电材料,也可以为本领域技术人员公知的其他导电 材料, 本法发明实施例对此不作限定。
所述纳米磷酸盐的通式为 LiMP04, 其中 M为 Co、 Ni、 Mn、 Fe和 V中 的一种或几种, 其中, 需要说明的是, 所述通式 LiMP04仅用来限定构成 纳米磷酸盐的基本元素, 并不限定含有的基本元素的配比关系。 本领域技 术人员可以根据本领域公知常识或常用技术手段选择现有技术中符合通 式 LiMP04 的磷酸盐, 例如, 磷酸铁锂 ( LiFeP04 ) , 磷酸锰铁锂 ( LiMn。.6Fe。.4P04) 等。
优选的, 本发明实施例提供锂离子电池正极材料的颗粒粒径大小为 8-16 微米, 具有良好的导电性能。 当然, 颗粒粒径也可以为其他适合的 尺寸, 本发明对此不作限定。
可选的, 本发明实施例提供的锂离子电池正极材料中, 所述功能聚 合物材料可由甲基丙烯酸甲酯 MMA 单体和至少一种含有过渡金属离子螯 合官能团的乙烯基单体共聚而成。此时乙烯单体中的过渡金属离子螯合官 能团可以选自 -CO-、 _C00-、 -CN和 -CON中的一种或几种, 乙烯基单体中 含有的每一种官能团可以为一个也可以为多个,本发明实施例对乙烯基单 体中含有的每种官能团的数量不作具体限定。 优选的, 功能聚合物材料中的甲基丙烯酸甲酯 MMA 单体与乙烯基单 体的组成摩尔比为 1: 1-10, 使形成功能聚合物材料具有足够数量的过渡 金属离子螯合官能团, 以有效的捕捉过渡金属杂质离子。
具体的, 本发明提供的一个实施例中, 所述过渡金属离子螯合官能 团为 -C0-, 这时, 用于共聚的乙烯基单体包括 N-乙烯基吡咯烷酮和通式 为 CH2=CH(CH2)nC0R的酮, 其中 n大于或等于 0, R为烷基。
在本发明提供的另一个实施例中, 所述过渡金属离子螯合官能团为 -C00-, 这时, 用于共聚的乙烯基单体包括酸酐类乙烯基单体或通式为 CH2=CH(CH2)nC00R的酮, 其中 n大于或等于 0, R为烷基;
在本发明提供的另一个实施例中, 所述过渡金属离子螯合官能团为 -CN-, 这时, 用于共聚的乙烯基单体包括丙烯腈、 甲基丙烯腈或偏二氰基 乙烯;
在本发明提供的另一个实施例中, 所述过渡金属离子螯合官能团为 -CON, 这时, 用于共聚的乙烯基单体包括丙烯酰胺、 双丙酮丙烯酰胺或亚 甲基双丙烯酰胺。 与上述锂离子电池正极材料相对应的, 本发明实施例还提供了一种 上述锂离子电池正极材料的制备方法, 如图 2所示, 包括:
101、 将含有过渡金属离子螯合官能团的功能聚合物材料溶解在极性 有机溶剂中, 制得功能聚合物溶液;
优选的, 可以通过控制聚合物材料与极性有机溶剂的配比制得质量 百分比浓度为 1-5%的功能聚合物溶液。
102、 将所述功能聚合物溶液与导电剂及纳米磷酸盐混合, 然后密封 研磨, 得到磷酸盐浆料, 其中, 所述纳米磷酸盐的通式为 LiMP04, 其中, M为 Co、 Ni、 Mn、 Fe和 V中的一种或几种;
具体的, 所选用的纳米磷酸盐颗粒粒径大小为 50-200纳米。 且可选 的, 进行密封研磨的方式优选为采用球磨机进行密封球磨, 当然也可由本 领域技术人员根据本领域公知常识或常用技术手段选用其他研磨方式。
优选的, 本步骤具体包括: 将导电剂分散在所述聚合物溶液中, 然后与纳米磷酸盐混合。 合物溶液中。
103、 将所述 L iMP04浆料烘干除去溶剂得到锂离子电池正极材料。 优选的, 本步骤包括:
将所述 L iMP04浆料烘干除去溶剂,并控制产物颗粒粒径为 8-16微米, 得到锂离子电池正极材料。
本发明实施例中, 具体可以采用离心喷雾干燥设备进行烘干。
本发明实施例提供的锂离子电池正极材料的制备方法能够通过功能 聚合物材料中的过渡金属离子螯合官能团的螯合作用捕获正极材料表面 溶出的金属杂质离子, 抑制杂质离子迁移, 进而避免金属离子在负极上的 析出, 减少电池的自放电及安全隐患, 达到提高锂离子电池的循环性能和 高温存储性能的目的。
当然, 在上述制备锂离子正极材料的制备方法中, 本领域技术人员 可以根据本领域的公知常识或技术手段配置其他浓度的功能聚合物溶液、 采用其他颗粒粒径大小的纳米磷酸盐、采用其他合适的研磨方式对功能聚 合物溶液与导电剂及纳米磷酸盐的混合物进行研磨、控制锂离子电池正极 材料的颗粒粒径为其他尺寸, 本发明实施例对此不作限定。
进一步的, 在本发明提供的一个实施例中, 在步骤 1 01 之前, 所述 方法还包括制备所述功能聚合物; 所述制备功能聚合物包括:
在反应容器中加入甲基丙烯酸甲酯 MMA 单体、 至少一种含有过渡金 属离子螯合官能团的乙烯基单体、 溶剂及的引发剂, 形成混合物;
需要说明的是, 所述溶剂可根据单体的溶解性质选择相应的有机溶 剂或去离子水,引发剂可根据所选溶剂来选择油性引发剂如过氧化苯甲酰 BP0、 偶氮二异丁腈 AI BN等或水溶性引发剂如过氧化氢、 过硫酸铵等。
在本发明实施例中, 加入的溶剂质量具体为单体总质量的 5-1 0倍, 引发剂的质量具体为单体总质量的 1 -5%。 甲基丙烯酸甲酯 MMA单体与所 述乙烯基单体的摩尔比为 1 : 1 -1 0。
在所述反应容器中通氮气, 搅拌所述混合物后密封所述反应容器, 加热并恒温, 所述混合物在搅拌下进行反应, 然后加入交联剂, 继续在搅 拌下进行反应, 得到聚合产物;
具体的, 在本发明实施例中, 加热并恒温的温度范围为 40-80 °C , 所 述混合物在加入交联剂前, 搅拌下反应的时间为 0. 5-24小时, 加入交联 剂的质量为单体总质量的 0. 02-0. 1 % , 加入交联剂后在搅拌下反应的时间 为 2-12小时。
将所制得的聚合产物进行抽滤并烘干得到所述功能聚合物材料。
在本发明实施例中, 具体采用真空干燥箱将抽滤后的聚合产物进行 烘干。
当然在上述功能聚合物的制备过程中, 具体制备条件如所采用的具 体溶剂、引发剂、交联剂及它们加入的质量,参加反应的单体的摩尔配比, 反应的温度、时间及具体设备等都可以由本领域技术人员根据本领域的公 知常识或常用技术手段进行选定, 本实施例中对此不作限定。
相应的, 本发明实施例还提供了一种锂离子电池正极, 所述锂离子 正极由上述锂离子电池正极材料制成。
相应的, 本发明实施例还提供了一种锂离子电池, 所述锂离子电池 包括上述锂离子电池正极。
相应的, 本发明实施例还提供了一种上述锂离子电池的制备方法, 如图 3所示, 包括:
201、 制备锂离子电池正极和锂离子电池负极, 所述锂离子电池正极 由本发明实施例提供的锂离子电池正极材料制成;
202、 使用所述锂离子电池正极和所述锂离子电池负极制成电池极 芯;
具体的, 可以在所述电池正极和所述电池负极中设置隔膜, 然后卷 绕成电池极芯, 电池极芯的具体形状例如可以为方形。 当然本发明实施对 采用的具体隔膜种类及电池机芯的具体形状不作限定,本领域技术人员可 根据本领域公知常识或常用技术手段进行选择。
203、 将所述电池极芯固定在电池壳中;
其中, 本发明实施对电池极芯在电池壳中的固定方式不作具体限定, 本领域技术人员可根据本领域公知常识或常用技术手段进行确定,例如可 以通过焊接方式将电池极芯固定在电池壳中。
2 04、 将电解液注入所述电池壳中;
其中, 本发明实施例对电解液的浓度及注入量不作具体限定, 本领 域技术人员可根据本领域公知常识或常用技术手段进行确定,例如浓度为 lmo l /L , 注入量为 3. 8 g/Ah。
205、 对所述电池壳进行密封。
进一步的, 在本发明提供的一个实施例中, 所述制备锂离子电池正 极包括:
将所述锂离子正极材料与导电剂、 粘结剂及溶剂按一定比例混合后, 搅拌以制成正极浆料;
具体的, 本实施例中可以采用真空高速搅拌机对混合后形成的混合 物进行搅拌, 当然, 还可以采用其他设备或手段进行搅拌, 本发明实施例 对此不作限定;
将所述正极浆料涂布于铝箔上;
将所述涂布后的铝箔烘干、 辊压并剪裁得到锂离子电池正极。
进一步优选的, 所述导电剂为碳黑 s upe r-P , 粘结剂为聚偏氟乙烯 PVDF , 溶剂为 N-甲基吡咯烷酮 NMP。 当然, 还可采用其他导电剂、 粘结剂 及溶剂, 本发明实施例对此不作限定。 此外, 锂离子正极材料与导电剂、 粘结剂及溶剂的混合比例可以根据本领域公知常识或常用技术手段根据 具体情况确定, 例如锂离子正极材料:导电剂:粘结剂:溶剂 = 1 00: 5 : 5 : 1 1 0 (质量比), 本发明实施例对此不作限定。
此外, 相应的, 本发明实施例还提供了一种通信设备, 如图 4所示, 所述通信设备包括供电模块 31和工作模块 32 , 供电模块 31 包括本发明 实施例提供的锂离子电池, 供电模块 31为所述工作模块 32提供电能, 工 作模块 32使用所述供电模块 31提供的电能运行。
供电模块 31 包括至少一个锂离子电池, 具体可以包括一个锂离子电 池, 还可以包括锂离子电池经串联和 /或并联组成的锂离子电池组, 本发 明实施例对此不作具体限定。 工作模块 32使用通过工作模块 32提供的电能运行, 例如执行相关 的信息接收、 交换、 处理存储等任务。
所述通信设备可以为手机、 笔记本电脑等任何一种使用锂离子电池 供电的电子设备, 当然本发明实施例对此不作限定。
下面具体以笔记本电脑为例对本发明实施例提供的通信设备进行说 明, 笔记本电脑的供电模块 32 包括锂离子电池及相应的与工作模块 31 进行连接的其他电路元件, 工作模块 31 包括处理器、 硬盘、 显示屏、 光 驱及显卡等。 其中笔记本电脑的供电模块 32为笔记本电脑的工作模块 31 的正常运行提供电能,笔记本电脑的工作模块 31使用供电模块 32提供的 电能正常运行。 为了更好的说明本发明实施例提供的锂离子电池正极材料及其制备 方法、 锂离子电池正极、 锂离子电池及其制备方法和通信设备, 下面以具 体实施例进行详细说明。
实施例 1
功能聚合物材料的制备:
在反应容器中按摩尔比 1 : 2 的比例加入甲基丙烯酸甲酯 MMA单体和 丙烯晴 AN单体, 加入单体总摩尔数 2倍的溶剂, 加入单体总质量 3%的引 发剂过氧化苯甲酰 BP0 , 形成混合物。 将所述混合物搅拌均勾后密封反应 容器, 加热并恒温至 65 °C , 搅拌反应 30分钟后, 通过恒压滴液漏斗加入 单体总质量的 0. 05 %的 N,N-亚甲基双丙烯酸酰胺作为交联剂, 继续搅拌 3. 5小时, 得到聚合产物。 将所制得的聚合物进行抽滤, 并在真空干燥箱 中烘干得到所需的功能聚合物, 所述功能聚合物为淡黄色固体。
锂离子电池正极材料的制备:
将制备的功能聚合物充分溶解在 N,N-二甲基甲酰胺 DMF中制得质量 百分比浓度为 2%的功能聚合物溶液,加入浆料总质量 1 %的、直径为 1 0nm、 长径比为 1 5 0 : 1的碳纳米管作为导电剂,并通过超声分散将碳纳米管均匀 分散在功能聚合物溶液中。加入浆料总质量 5 0%的、颗粒粒径大小为 l O Onm 的纳米磷酸铁锂(L i FeP04 )正极材料, 将上述材料一起密封球磨 1 0小时, 得到均匀分散的磷酸铁锂浆料。将该浆料通过离心喷雾干燥设备烘干除去 溶剂, 控制产物颗粒大小约为 8-16微米, 得到由功能聚合物材料包覆的 磷酸铁锂正极材料。
锂离子电池正极的制备:
按锂离子电池正极材料: 导电剂碳黑 super-P: 粘结剂聚偏氟乙烯 PVDF: N -甲基吡咯烷酮匪 P=100: 5: 5: 110 (质量比) 的比例混合后, 在真 空高速搅拌机中搅拌 4-8小时形成均勾的正极浆料,将该正极浆料均匀地 涂覆在铝箔上, 将铝箔烘干、 辊压、 裁切制得尺寸为 540 X 43.5mm的正极 片。
锂离子电池的制备:
按质量比为石墨: 羧甲基纤维素钠 CMC: 丁苯橡胶 SBR: 水 = 100: 6: 7: 120 的比例混合后, 在真空高速搅拌机中搅拌制得均勾的负极 浆料, 将该负极浆料均勾地涂布在铜箔上, 将铜箔烘干、 辊压、 裁切制得 尺寸为 500 X 44mm的负极片。
分别将正极片、 负极片与 Celgard2400 聚丙烯多孔膜卷绕成一个方 形电池极芯, 将电解液以 3.8g/Ah的量注入电池铝壳中, 密封, 制成方形 锂离子电池。其中电解液为六氟磷酸锂溶解在碳酸乙烯酯:碳酸二乙烯酯: 碳酸二甲酯 =1: 1: 1 (质量比 )的混合溶剂中形成的浓度为 lmol/L的溶液。
实施例 2
功能聚合物材料的制备:
在反应容器中按摩尔比 1: 1 的比例加入甲基丙烯酸甲酯 MMA和乙酸 乙烯酯 VAc, 加入单体总摩尔数 2倍的溶剂, 加入单体总质量 3%的引发剂 偶氮二异丁腈 AIBN, 形成混合物。 将所述混合物搅拌均勾后, 通入氮气 30分钟以除去反应体系中的氧, 然后密封反应容器, 加热并恒温至 70°C , 搅拌反应 30分钟后, 通过恒压滴液漏斗加入单体总质量的 0.05%的 N,N- 亚甲基双丙烯酸酰胺作为交联剂, 继续搅拌 3小时, 得到聚合产物。 将所 制得的聚合物进行抽滤, 并在真空干燥箱中烘干得到所需的功能聚合物, 所述功能聚合物为半透明白色固体。
锂离子电池正极材料的制备: 将制备的功能聚合物充分溶解在丙酮中制得质量百分比浓度为 2%的 聚合物溶液, 加入浆料总质量 1. 5%的、 直径为 10nm , 长径比为 150: 1的 碳纳米管, 并通过超声分散将碳纳米管均勾分散在功能聚合物溶液中。 加 入浆料总质量 50%的、 颗粒粒径大小为 l O Onm的纳米磷酸铁锂 (L i FeP04 ) 正极材料, 将上述材料一起密封球磨 1 0小时, 得到均勾分散的磷酸铁锂 浆料。将该浆料通过离心喷雾干燥设备烘干除去溶剂, 控制产物颗粒大小 约为 8-16微米, 得到由功能聚合物材料包覆的磷酸铁锂正极材料。
锂离子电池正极的制备:
采用与实施例 1 中相同的方式, 制备正极。
锂离子电池的制备:
采用与实施例 1 中相同的方式, 制备锂离子电池。
实施例 3
采用与实施例 1 相同的方式, 制备锂离子电池正极材料、 锂离子电 池正极及锂离子电池, 不同的是, 制备功能聚合物材料时, 增加了一种丙 烯酰胺 AM单体, 三种单体加入的摩尔比为 MMA: AN: AM=4: 4 : 2 , 最终制得 由功能聚合物材料包覆的磷酸铁锂正极材料、锂离子电池正极及锂离子电 池。
实施例 4
采用与实施例 1 相同的方式, 制备锂离子电池正极材料、 锂离子电 池正极及锂离子电池, 不同的是, 制备磷酸铁锂正极材料时, 用颗粒大小 为 20-50nm的纳米碳黑替代碳纳米管作为导电剂,且加入质量为浆料总质 量的 2% , 最终制得由功能聚合物材料包覆的磷酸铁锂正极材料、 锂离子 电池正极及锂离子电池。
实施例 5
采用与实施例 1 相同的方式, 制备锂离子电池正极材料、 锂离子电 池正极及锂离子电池, 不同的是, 制备锂离子电池正极材料时, 用颗粒大 小为 80_200nm的纳米磷酸锰铁锂 ( L iMn。.6Fe。.4P04 ) 正极材料替代纳米磷 酸铁锂 (L i FeP04 ) 正极材料, 形成均勾分散的磷酸锰铁锂浆料, 最终制 得由功能聚合物材料包覆的磷酸锰铁锂正极材料、锂离子电池正极及锂离 子电池。
对比例 1
锂离子电池正极的制备:
按照实施例 1 中制备正极的方法, 不同的是, 锂离子电池正极材料 直接采用实施例 1至 4中所使用的颗粒大小 lOOnm的纳米磷酸铁锂正极材 料。
锂离子电池的制备:
按照实施例 1 中制备锂离子电池的方法。
对比例 2
锂离子电池正极的制备:
按照实施例 1 中制备正极的方法, 不同的是, 锂离子电池正极材料 直接采用实施例 5 中所使用的颗粒大小约为 80-200nm的纳米磷酸锰铁锂 ( LiMn。.6Fe。.4P04) 正极材料。
锂离子电池的制备:
按照实施例 5 中制备锂离子电池的方法。 下面是针对上述实施例和对比例的性能测试:
( 1 ) 常温和高温循环性能测试
将实施例 1至 5及对比例 1至 2制得的电池进行常温和高温循环性 能测试。 测试方法如下:
将电池放在充放电测试拒上, 首先以 1C的电流进行恒流恒压充电至 上限电压 3.8V;
搁置 10分钟后, 再以 1C的电流从 3.8V放电至 2.5V, 记录电池的初 始放电容量;
然后再重复上述充放电步骤 500次后, 记录电池循环 500次后的放 电容量, 按公式 ( I ) 计算 5QQ次循环容量维持率。
公式( I ): 容量维持率 = (循环 500次后的放电容量 /初始放电容量)
X 100%
该性能测试分别在常温 25°C和高温 60°C环境下进行测试, 所得结果 列于表 1 中。 表 1
Figure imgf000016_0001
测试结果表明: 实施例 1、 实施例 2、 实施例 3和实施例 4中制备的 经过功能聚合物材料包覆的磷酸铁锂正极材料制成的锂离子电池相比于 对比例 1 中未经功能聚合物材料包覆的磷酸铁锂正极材料制成的锂离子 电池, 无论在常温还是高温下, 都具有更优良的循环性能。 实施例 5 中制 备的经过功能聚合物材料包覆的磷酸锰铁锂正极材料制成的锂离子电池 相比于对比例 2 中未经功能聚合物材料包覆的磷酸锰铁锂正极材料制成 的锂离子电池, 在常温和高温下都具有更优良的循环性能。
( 2 ) 高温储存性能测试
将实施例 1至 5及对比例 1至 2制得的电池进行高温存储性能测试。 测试方法如下:
将电池放在充放电测试拒上, 先以 1C的电流进行恒流恒压充电至上 限电压 3.8V;
搁置 10分钟后, 再以 1C的电流从 3.8V放电至 2.5V, 记录电池的放 电容量为初始容量;
然后将电池放置于 60°C高温烘箱中储存 7 天后, 再以 1C 的电流从 3.8V放电至 2.5V, 记录电池的放电容量为储存容量;
然后再重复上述充放电过程 3 次后, 记录最后一次的放电容量, 即 为恢复容量。 按公式 ( II ) ( ΠΙ ) 计算容量保持能力、 容量恢复能力, 并 将结果列于表 2中。
公式 ( II ): 容量保持能力 =储存容量 /初始容量 公式 ( III ): 容量恢复能力 =恢复容量 /初始容量 表 1
Figure imgf000017_0001
测试结果表明: 实施例 1、 实施例 2、 实施例 3和实施例 4中制备的 经过功能聚合物材料包覆的磷酸铁锂正极材料制成的锂离子电池的高温 存储性能优于对比例 1 中未经功能聚合物材料包覆的磷酸铁锂正极材料 制成的锂离子电池。实施例 5 中制备的经过功能聚合物材料包覆的磷酸锰 铁锂正极材料制成的锂离子电池的高温存储性能优于对比例 2 中未经功 能聚合物材料包覆的磷酸锰铁锂正极材料制成的锂离子电池。
通过上述实施例与对比例的性能测试可知, 本发明提供的具体实施 例中的锂离子电池正极材料通过其含有的过渡金属离子螯合官能团的螯 合作用捕获正极材料表面溶出的金属杂质离子,进而避免金属离子在负极 上的析出, 达到提高锂离子电池的循环性能和高温存储性能的目的。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发 明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种锂离子电池正极材料, 其特征在于, 包括:
导电剂;
纳米磷酸盐, 所述纳米磷酸盐的通式为 LiMP04, 其中, M为 Co、 Ni、 Mn、 Fe和 V中的一种或几种;
功能聚合物材料, 所述功能聚合物材料含有过渡金属离子螯合官能 团。
2、 根据权利要求 1 所述的锂离子电池正极材料, 其特征在于, 所述 功能聚合物材料中的过渡金属离子螯合官能团选自 -C0-、 -C00-、 -CN 和 -CON中的一种或几种。
3、 根据权利要求 1 或 2所述的锂离子电池正极材料, 其特征在于, 所述锂离子电池正极材料的颗粒粒径大小为 8-16微米。
4、 根据权利要求 1或 2所述的锂离子电池正极材料, 其特征在于, 所述功能聚合物材料由甲基丙烯酸甲酯 MMA单体和至少一种含有所述 过渡金属离子螯合官能团的乙烯基单体共聚而成。
5、 根据权利要求 4所述的锂离子电池正极材料, 其特征在于, 所述过渡金属离子螯合官能团为 -C0-,所述乙烯基单体包括 N-乙烯基 吡咯烷酮或通式为 CH2=CH (CH2)nCOR的酮, 其中 n大于或等于 0, R为烷基; 或者
所述过渡金属离子螯合官能团为 -C00-, 所述乙烯基单体包括酸酐类 乙烯基单体或通式为 CH2=CH (CH2)nC00R的酮, 其中 n大于或等于 0, R为烷 基;
或者
所述过渡金属离子螯合官能团为 -CN, 所述乙烯基单体包括丙烯腈、 甲基丙烯腈或偏二氰基乙烯;
或者
所述过渡金属离子螯合官能团为 -CON, 所述乙烯基单体包括丙烯酰 胺、 双丙酮丙烯酰胺或亚甲基双丙烯酰胺。
6、 根据权利要求 4 所述的锂离子电池正极材料, 其特征在于, 所述 甲基丙烯酸甲酯 MMA单体和所述乙烯基单体的组成摩尔比为 1 : 1 -1 0。
7、 一种权利要求 1 至 6所述的锂离子电池正极材料的制备方法, 其 特征在于, 包括:
将含有过渡金属离子螯合官能团的功能聚合物材料溶解在极性有机 溶剂中, 制得功能聚合物溶液;
将所述功能聚合物溶液与导电剂及纳米磷酸盐混合, 然后密封研磨, 得到磷酸盐浆料, 其中, 所述纳米磷酸盐的通式为 L iMP04 , 其中, M为 Co、 N i、 Mn、 Fe和 V中的一种或几种;
将所述 L iMP04浆料烘干除去溶剂得到锂离子电池正极材料。
8、 根据权利要求 7 所述的锂离子电池正极材料的制备方法, 其特征 在于,
所述功能聚合物溶液的质量百分比浓度为 1 -5%。
9、 根据权利要求 7 所述的复合锂离子电池正极材料的制备方法, 其 特征在于, 所述纳米磷酸盐颗粒粒径大小为 5 0-200纳米。
1 0、 根据权利要求 7所述的锂离子电池正极材料的制备方法, 其特征 在于, 所述将所述功能聚合物溶液与导电剂及纳米磷酸盐混合包括:
将导电剂分散在所述功能聚合物溶液中, 然后与纳米磷酸盐混合。
1 1、 根据权利要求 7所述的锂离子电池正极材料的制备方法, 其特征 在于, 所述密封研磨包括密封球磨。
1 2、 根据权利要求 7所述的锂离子电池正极材料的制备方法, 其特征 在于,所述将所述 L iMP04浆料烘干除去溶剂得到锂离子电池正极材料包括: 将所述 L iMP04浆料烘干除去溶剂, 并控制产物颗粒粒径为 8-1 6微米, 得到锂离子电池正极材料。
1 3、 根据权利要求 7 至 1 2任一项所述的锂离子电池正极材料的制备 方法, 其特征在于, 在所述制得功能聚合物溶液前, 所述方法还包括: 制 备所述功能聚合物; 所述制备所述功能聚合物包括:
在反应容器中加入甲基丙烯酸甲酯 MMA单体、 至少一种含有过渡金属 离子螯合官能团的乙烯基单体、 溶剂及引发剂, 形成混合物;
在所述反应容器中通氮气, 搅拌所述混合物后密封所述反应容器, 加 热并恒温, 所述混合物在搅拌下进行反应, 然后加入交联剂, 继续在搅拌 下进行反应, 得到聚合产物;
将所制得的聚合产物进行抽滤并烘干得到所述功能聚合物材料。
14、 根据权利要求 1 3 所述的锂离子电池正极材料, 其特征在于, 所 述甲基丙烯酸甲酯 MMA单体与所述乙烯基单体的摩尔比为 1 : 1 - 1 0。
1 5、 一种锂离子电池正极, 其特征在于, 所述锂离子电池正极由权利 要求 1至 6任一项所述的锂离子电池正极材料制成。
1 6、 一种锂离子电池, 其特征在于, 所述锂离子电池包括权利要求 1 5 所述的锂离子电池正极。
1 7、 一种锂离子电池的制备方法, 其特征在于, 包括:
制备锂离子电池正极和锂离子电池负极, 所述锂离子电池正极由权利 要求 1至 6任一项所述的锂离子电池正极材料制成;
使用所述锂离子电池正极和所述锂离子电池负极制成电池极芯; 将所述电池极芯固定在电池壳中;
将电解液注入所述电池壳中;
对所述电池壳进行密封。
1 8、 根据权利要求 1 7 所述的锂离子电池的制备方法, 其特征在于, 所述制备锂离子电池正极包括:
将所述锂离子正极材料与导电剂、 粘结剂及溶剂按一定比例混合后, 搅拌以制成正极浆料;
将所述正极浆料涂布于铝箔上;
将所述涂布后的铝箔烘干、 辊压并剪裁得到锂离子电池正极。
1 9、 根据权利要求 1 8 所述的锂离子电池的制备方法, 其特征在于, 所述导电剂为碳黑、 所述粘结剂为聚偏氟乙烯及所述溶剂为 N-甲基吡咯烷 酮。
20、 一种通信设备, 其特征在于,
包括供电模块和工作模块, 所述供电模块包括权利要求 1 6 所述的锂 离子电池;
所述供电模块为所述工作模块提供电能, 所述工作模块使用所述供电 模块提供的电能运行。
PCT/CN2012/078983 2012-02-13 2012-07-20 锂离子电池正极材料及其制备方法、正极及锂离子电池 WO2013120339A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12761536.7A EP2696404A4 (en) 2012-02-13 2012-07-20 POSITIVE ELECTRODE MATERIAL FOR A LITHIUM ION BATTERY, METHOD OF MANUFACTURE THEREOF, POSITIVE ELECTRODE AND LITHIUM ION BATTERY
US13/626,625 US20130208429A1 (en) 2012-02-13 2012-09-25 Positive pole material of lithium ion battery, method for preparing the same, positive pole, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100315924A CN102569723A (zh) 2012-02-13 2012-02-13 锂离子电池正极材料及其制备方法、正极及锂离子电池
CN201210031592.4 2012-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/626,625 Continuation US20130208429A1 (en) 2012-02-13 2012-09-25 Positive pole material of lithium ion battery, method for preparing the same, positive pole, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2013120339A1 true WO2013120339A1 (zh) 2013-08-22

Family

ID=46414603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078983 WO2013120339A1 (zh) 2012-02-13 2012-07-20 锂离子电池正极材料及其制备方法、正极及锂离子电池

Country Status (3)

Country Link
EP (1) EP2696404A4 (zh)
CN (1) CN102569723A (zh)
WO (1) WO2013120339A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682355A (zh) * 2012-09-18 2014-03-26 华为技术有限公司 复合硅酸盐正极材料、锂电池及其制备方法、通信设备
JP5929990B2 (ja) * 2014-09-29 2016-06-08 住友大阪セメント株式会社 正極材料、正極材料の製造方法、正極およびリチウムイオン電池
CN104538640A (zh) * 2015-01-04 2015-04-22 合肥国轩高科动力能源股份公司 一种锂离子电池正极浆料及其制备方法
US9299981B1 (en) * 2015-06-30 2016-03-29 Alveo Energy, Inc. Surface-modified cyanide-based transition metal compounds
CA3038800A1 (en) 2016-12-13 2018-06-21 Henkel Ag & Co. Kgaa Improved secondary li ion battery and li capacitor electrode compositions
US10581119B2 (en) * 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries
CN107742708B (zh) * 2017-10-13 2020-02-07 安徽玄同工业设计有限公司 一种聚合物包覆复合正极材料的制备方法
CN109768221A (zh) * 2017-11-09 2019-05-17 江苏金阳光新能源科技有限公司 一种高性能的锰系材料正极浆料及其制备方法
CN108287314A (zh) * 2017-12-30 2018-07-17 惠州亿纬锂能股份有限公司 一种锂离子电池自放电的评价方法
CN110065999A (zh) * 2019-04-26 2019-07-30 上海大学 机械球磨改性铁碳材料的制备方法及其应用
CN111146420A (zh) * 2019-12-26 2020-05-12 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN111430685B (zh) * 2020-01-19 2022-11-18 蜂巢能源科技有限公司 改性磷酸铁锂材料及其制备方法和应用
CN112290012A (zh) * 2020-10-20 2021-01-29 合肥国轩高科动力能源有限公司 一种锂离子电池三元正极材料的制备方法
CN114156450A (zh) * 2021-11-29 2022-03-08 珠海冠宇电池股份有限公司 极片及电化学装置
WO2023184494A1 (zh) * 2022-04-01 2023-10-05 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法以及包含其的正极极片、二次电池及用电装置
CN114744202A (zh) * 2022-05-24 2022-07-12 阳光储能技术有限公司 正极极片、其制备方法及锂离子电池
CN115377401B (zh) * 2022-10-26 2023-01-24 楚能新能源股份有限公司 一种改性正极材料及其锂离子电池的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195548A (ja) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
CN1866605A (zh) * 2005-02-28 2006-11-22 三星Sdi株式会社 用于锂电池的电解液以及包括该电解液的锂电池
TW200723572A (en) * 2005-12-02 2007-06-16 Lg Chemical Ltd Electrolyte for lithium secondary battery comprising chelating agent and lithium secondary battery using the same
CN101276909A (zh) 2007-02-28 2008-10-01 三洋电机株式会社 活性物质的制造方法及质监方法、使用其的锂二次电池的制造方法及锂二次电池用电极
CN101399343A (zh) 2007-09-25 2009-04-01 比亚迪股份有限公司 锂离子二次电池正极活性物质磷酸铁锂的制备方法
CN101630730A (zh) 2009-07-27 2010-01-20 深圳市德方纳米科技有限公司 纳米磷酸铁锂复合物及其制备方法
CN102163740A (zh) * 2010-02-17 2011-08-24 三洋电机株式会社 非水电解质二次电池
CN102526723A (zh) * 2005-06-27 2012-07-04 葛兰素史密丝克莱恩生物有限公司 免疫原性组合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245064B1 (ko) * 2004-10-06 2013-03-18 니폰 제온 가부시키가이샤 전극 조성물, 전극 및 전지
CN1316653C (zh) * 2005-01-28 2007-05-16 中国科学院成都有机化学有限公司 一种锂离子电池正极材料、其制备方法及锂离子电池
CN101431165A (zh) * 2008-04-28 2009-05-13 耀安电池电源科技(深圳)有限公司 一种二次锂离子电池及其制造方法
DE102009047216A1 (de) * 2008-12-04 2010-10-14 Basf Se Lithiumvanadylphosphat
JP2010272272A (ja) * 2009-05-20 2010-12-02 Hitachi Ltd リチウム二次電池用正極及びリチウム二次電池
KR101093699B1 (ko) * 2009-12-11 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지용 바인더, 양극 활물질 조성물 및 이를 포함하는 리튬 이차 전지
US8785054B2 (en) * 2009-12-18 2014-07-22 GM Global Technology Operations LLC Lithium ion battery
WO2012006725A1 (en) * 2010-07-15 2012-01-19 Phostech Lithium Inc. Battery grade cathode coating formulation
CN102306792A (zh) * 2011-08-23 2012-01-04 山东天岳先进材料科技有限公司 一种蠕虫石墨高导电性锂离子电池正极材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195548A (ja) * 1998-10-19 2000-07-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
CN1866605A (zh) * 2005-02-28 2006-11-22 三星Sdi株式会社 用于锂电池的电解液以及包括该电解液的锂电池
CN102526723A (zh) * 2005-06-27 2012-07-04 葛兰素史密丝克莱恩生物有限公司 免疫原性组合物
TW200723572A (en) * 2005-12-02 2007-06-16 Lg Chemical Ltd Electrolyte for lithium secondary battery comprising chelating agent and lithium secondary battery using the same
CN101276909A (zh) 2007-02-28 2008-10-01 三洋电机株式会社 活性物质的制造方法及质监方法、使用其的锂二次电池的制造方法及锂二次电池用电极
CN101399343A (zh) 2007-09-25 2009-04-01 比亚迪股份有限公司 锂离子二次电池正极活性物质磷酸铁锂的制备方法
CN101630730A (zh) 2009-07-27 2010-01-20 深圳市德方纳米科技有限公司 纳米磷酸铁锂复合物及其制备方法
CN102163740A (zh) * 2010-02-17 2011-08-24 三洋电机株式会社 非水电解质二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696404A4 *

Also Published As

Publication number Publication date
CN102569723A (zh) 2012-07-11
EP2696404A1 (en) 2014-02-12
EP2696404A4 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2013120339A1 (zh) 锂离子电池正极材料及其制备方法、正极及锂离子电池
EP3493304B1 (en) Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
CN108470884B (zh) 一种水基粘结剂制备的锂离子电池电极
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
JP7156449B2 (ja) リチウムイオン電池負極用バインダー水溶液
CN109411713B (zh) 含硅基材料的机械共包覆方法、含硅基材料及锂离子电池
JP6475244B2 (ja) リチウムイオン電池電極のイオン伝導率を向上させるための添加剤
WO2014084527A1 (ko) 접착력이 우수한 이차전지용 바인더
JP2015018663A (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
US20130208429A1 (en) Positive pole material of lithium ion battery, method for preparing the same, positive pole, and lithium ion battery
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN107507961B (zh) 一种导电聚合物修饰锂离子电池正极极片的制备方法
JPWO2012005358A1 (ja) 非水電解質電池電極用バインダ樹脂組成物ならびに該バインダ樹脂組成物を含むスラリー組成物、電極および電池
CN103259046A (zh) 可快速充电的高倍率磷酸铁锂电池的制备方法
CN105470461B (zh) 一种锂离子电池高镍基正极浆料及其制备方法
JP2019212619A (ja) 電極活物質層の製造方法、リチウムイオン電池用電極の製造方法及びリチウムイオン電池の製造方法
CN110190258B (zh) 硅碳复合材料水性复合浆料及其制备方法、锂离子电池
KR20170113332A (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
KR20150087864A (ko) 건조속도제어를 위한 전극용 바인더조성물, 그 전극 및 이를 포함하는 리튬이차전지
WO2021253615A1 (en) Binder composition for secondary battery
WO2014044039A1 (zh) 复合硅酸盐正极材料、锂电池及其制备方法、通信设备
JP2023529531A (ja) 二次電池用バインダー組成物
KR102033670B1 (ko) 리튬 이차전지용 바인더, 이를 포함하는 전극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE