WO2013118776A1 - Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 - Google Patents

Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 Download PDF

Info

Publication number
WO2013118776A1
WO2013118776A1 PCT/JP2013/052743 JP2013052743W WO2013118776A1 WO 2013118776 A1 WO2013118776 A1 WO 2013118776A1 JP 2013052743 W JP2013052743 W JP 2013052743W WO 2013118776 A1 WO2013118776 A1 WO 2013118776A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
ionic liquid
membrane
acid ionic
mixed gas
Prior art date
Application number
PCT/JP2013/052743
Other languages
English (en)
French (fr)
Inventor
岡田 治
伸彰 花井
英治 神尾
奨平 笠原
秀人 松山
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ, 国立大学法人神戸大学 filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to JP2013557550A priority Critical patent/JP6245607B2/ja
Priority to US14/377,075 priority patent/US9597632B2/en
Priority to EP13746403.8A priority patent/EP2813279B1/en
Priority to DK13746403.8T priority patent/DK2813279T3/da
Priority to KR1020147025262A priority patent/KR101942135B1/ko
Publication of WO2013118776A1 publication Critical patent/WO2013118776A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21815Acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a CO 2 permselective membrane, a method for separating CO 2 from a mixed gas, and a membrane separation apparatus.
  • Non-Patent Document 1 Selectively transmits CO 2, as CO 2 selective permeation membrane which can be used to separate CO 2 from a gas mixture, various polymer membranes have been developed (e.g., Non-Patent Document 1). However, since polymer membranes generally allow CO 2 to physically permeate based on the dissolution and diffusion mechanism, they are limited in improving CO 2 permeability and CO 2 selectivity to N 2 (CO 2 / N 2 selectivity). was there.
  • Non-Patent Documents 2 and 3 a permeable membrane that uses a substance called “carrier” that selectively reacts with CO 2 and selectively permeates gas by a facilitated transport mechanism in addition to a dissolution and diffusion mechanism.
  • a permeable membrane called a facilitated transport membrane that uses a substance called “carrier” that selectively reacts with CO 2 and selectively permeates gas by a facilitated transport mechanism in addition to a dissolution and diffusion mechanism.
  • a specific gas is selectively permeated based on a reversible chemical reaction between a specific gas and a carrier in a film.
  • a permeable membrane using an ionic liquid has been proposed as a membrane oriented for a facilitated transport mechanism (Non-patent Documents 4 and 5).
  • Patent Document 1 discloses a carbon dioxide gas permselective membrane containing an ionic liquid.
  • the relative humidity of the supply gas is preferably 50% or more and 100% or less from the viewpoint of membrane performance. Says.
  • the water content in the imidazolium-based amino acid ionic liquid which is one of the structures of the gas permeable membrane, is described in p. From the 11th line of REFERENCE (8) in the right column of 2399, the water content after the produced amino acid ionic liquid is vacuum-dried at 80 ° C. for 2 days is 0.2% or less, and the water content after the salt is produced Is 0.4%.
  • Table 1 of 3158 shows that the amount of water in the amino acid ionic liquid is an extremely low value of 200 ppm.
  • the main object of the present invention is to provide a CO 2 selective separation membrane capable of achieving sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
  • the present invention sets the water content in the amino acid ionic liquid within an appropriate range. By doing so, sufficiently high CO 2 permeance and CO 2 / N 2 selectivity are achieved.
  • a sufficiently high CO 2 concentration can be obtained by adjusting the water content in the amino acid ionic liquid to preferably 3 to 50% by mass, more preferably 5 to 20% by mass.
  • Two permeances and CO 2 / N 2 selectivity can be achieved.
  • Amino acid ions constituting the amino acid ionic liquid, CO 2 and reversibly react acts as a carrier for CO 2, it is believed to contribute to a high CO 2 permeance and selectivity.
  • the function of this amino acid ion is sufficiently exhibited in both dry conditions and high humidity environments.
  • the present invention also includes a step of separating CO 2 from the mixed gas by allowing CO 2 in the mixed gas containing CO 2 to pass through the CO 2 permselective membrane, thereby separating the CO 2 from the mixed gas.
  • a step of separating CO 2 from the mixed gas by allowing CO 2 in the mixed gas containing CO 2 to pass through the CO 2 permselective membrane, thereby separating the CO 2 from the mixed gas.
  • CO 2 can be efficiently separated under both dry conditions and a high humidity environment.
  • the method according to the present invention is particularly effective when the low humidity condition, specifically, the relative humidity of the mixed gas is 30% or less, or the portion of the condition where the water vapor concentration of the mixed gas is 30 mol% or less is included. Useful.
  • the CO 2 permselective membrane and the mixed gas are heated to 60 ° C.
  • the CO 2 in the mixed gas can permeate through the permselective membrane while maintaining the following temperature.
  • the temperature of the CO 2 selective permeation membrane and the mixed gas is set to The CO 2 in the mixed gas can be allowed to permeate through the permselective membrane while maintaining the temperature above 60 ° C.
  • the amino group in the amino acid ionic liquid is mainly a primary amino group, a secondary amino group or a tertiary amino group
  • excellent CO 2 permeance or CO 2 / N 2 selectivity can be obtained.
  • the total number of primary amino groups and secondary amino groups contained in the amino acid ionic liquid is equal to or greater than the number of tertiary amino groups contained in the amino acid ionic liquid, and is contained in the amino acid ionic liquid.
  • the CO 2 permselective membrane and the mixed gas are kept in a mixed gas while maintaining the temperature above 60 ° C. and below 80 ° C. Of CO 2 can permeate through the permselective membrane.
  • a CO 2 selective separation membrane capable of achieving sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
  • CO 2 is a graph showing the relationship between transmission characteristics and the partial pressure of CO 2 selectively permeable membrane.
  • CO 2 is a graph showing the relationship between transmission characteristics and the relative humidity of the permselective membrane. It is a graph showing the relationship between the water content of the transmission characteristic and the amino acid ionic liquid CO 2 selectively permeable membrane.
  • CO 2 is a graph showing the relationship between transmission characteristics and the temperature of the permselective membrane.
  • FIG. 1 is a schematic view showing an embodiment of a membrane separation apparatus having a CO 2 permselective membrane.
  • Membrane separation apparatus 10 shown in FIG. 1 is mainly composed of a CO 2 selective permeation membrane 1, and the permeation cell 3 that accommodates the CO 2 selective permeation membrane 1, the heating unit 5 for heating the CO 2 selective permeation membrane 1 .
  • a space in which the CO 2 selective permeable membrane 1 is mounted is provided inside the permeation cell 3, and this space is divided by the CO 2 selective permeable membrane 1 into a feed side portion and a sweep side portion.
  • a feed gas (mixed gas) F1 containing CO 2 is supplied to the feed side portion and discharged as a feed gas F2.
  • the sweep gas S1 is normally supplied to the sweep side portion.
  • the sweep gas S1 is generally an inert gas such as helium gas.
  • CO 2 selectively permeable membrane 1 selectively permeable to CO 2 which has moved to the sweep side portion gas is discharged together with the sweep gas as a discharge gas S2. As a result, CO 2 is separated from the feed gas F1.
  • the CO 2 selective separation membrane 1 has an amino acid ionic liquid and a porous membrane impregnated with the amino acid ionic liquid.
  • the amino acid ionic liquid is an ionic liquid containing one or more salts composed of amino acid ions and counter ions thereof, and a small amount of water.
  • the amino acid ion may be an anion or a cation, but is preferably an anion from the viewpoint of permeation performance.
  • the amino acid ion and the counter ion are each arbitrarily selected in combination that forms an ionic liquid.
  • the amino acid ionic liquid preferably contains 3 to 50% by mass, more preferably 5 to 20% by mass of water. This amount of water is a ratio based on the mass of the entire amino acid ionic liquid.
  • the amount of water contained in the amino acid ionic liquid may be adjusted by an evaporation operation when preparing the amino acid ionic liquid, or may be adjusted by adding an arbitrary amount of water to the prepared amino acid ionic liquid. Good.
  • the amino acid used as the amino acid ion is one or more selected from a primary amino group (—NH 2 ), a secondary amino group (—NH—) and a tertiary amino group (—N ⁇ ). It may be a compound having an amino group and a carboxyl group, and may be natural or non-natural.
  • the amino acid ion is, for example, from the group consisting of arginine, histidine, lysine, aspartic acid, glutamic acid, serine, threonine, asparagine, glutamine, cysteine, glycine, proline, alanine, isoleucine, leucine, methionine, phenylalanine, tryptophan, tyrosine and valine. It is an ion formed from at least one selected amino acid. Some or all of the hydrogen atoms of the amino group of these amino acids may be substituted with an alkyl group or an aryl group. For example, N-alkyl amino acids and N-aryl amino acids having secondary amino groups, N, N-dialkyl amino acids and N-alkyl-N-aryl amino acids having tertiary amino groups can be used.
  • the counter cation combined with the amino acid anion is essentially not limited as long as it forms an ionic liquid with the amino acid ion.
  • This counter cation is represented by, for example, imidazolium represented by the following formula (1), phosphonium represented by the following formula (2), ammonium represented by the following formula (3), and the following formula (4).
  • pyridinium pyrrolidinium optionally having a substituent (eg alkyl group), morpholinium optionally having a substituent (eg alkyl group, alkoxyalkyl group) and guanidinium optionally having a substituent Is at least one selected from the group consisting of
  • R 1 and R 2 each independently represents an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) which may have a substituent.
  • This alkyl group is, for example, ethyl, butyl or hexyl.
  • One of R 1 and R 2 is preferably methyl.
  • Specific examples of imidazolium include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, and 1-hexyl-3-methylimidazolium.
  • R 3 represents an optionally substituted alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), and a plurality of R 3 in the same molecule may be the same or different. Alternatively, they may be bonded to each other to form a ring.
  • This alkyl group is, for example, butyl or hexyl.
  • R 3 may be, for example, an alkyl group substituted with an amino group.
  • Specific examples of phosphonium include tetrabutylphosphonium, tetrahexylphosphonium, tributyl (hexyl) phosphonium, and aminopropyltributylphosphonium.
  • R 4 represents an alkyl group which may have a substituent (preferably an alkyl group having 1 to 10 carbon atoms), and a plurality of R 4 in the same molecule may be the same or different. Alternatively, they may be bonded to each other to form a ring.
  • This alkyl group is, for example, butyl or hexyl.
  • Specific examples of ammonium include tetrabutylammonium, tetrahexylammonium, and tributyl (hexyl) ammonium.
  • R 5 represents an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) which may have a substituent.
  • This alkyl group is for example butyl or hexyl.
  • Specific examples of pyridinium include 1-butylpyridinium and 1-hexylpyridinium.
  • the porous membrane can be appropriately selected from those normally used as a support membrane for a selectively permeable membrane.
  • the porous membrane may be hydrophilic or hydrophobic, but is preferably hydrophilic when the amino acid ionic liquid is hydrophilic.
  • the porous membrane includes, for example, polytetotetrafluoroethylene.
  • the thickness of the porous membrane is not particularly limited, but is, for example, 10 to 100 ⁇ m.
  • the voids in the porous membrane are preferably sufficiently filled with the amino acid ionic liquid, but may be partially unfilled.
  • the porous membrane may be impregnated with a material other than the amino acid ionic liquid, if necessary, in addition to the amino acid ionic liquid. The type and amount of this additional material can be arbitrarily selected without departing from the spirit of the present invention.
  • the CO 2 permselective membrane 1 can be produced by a method including a step of impregnating a porous membrane with an amino acid ionic liquid. Impregnation can be performed by a method usually used in the art.
  • the temperature of the feed gas (mixed gas) F1 passing through the membrane separator 10 and the CO 2 permselective membrane 1 is usually 10 to 150 ° C. 80 to 110 ° C.
  • the CO 2 permselective membrane 1 is heated by the heating unit 5 as necessary.
  • the heating unit 5 for example, an oven capable of accommodating the transmission cell 3 is used.
  • CO 2 selective permeation membrane 1 in consideration of the type of amino groups of the amino acids contained in the amino acid ionic liquid constituting a temperature of CO 2 selectively permeable membrane 1 and the gas mixture F1 can be set as follows.
  • a CO 2 selective permeable membrane containing an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component is used, and a CO 2 mixed gas is used while keeping the CO 2 selective permeable membrane and the mixed gas at a temperature of 60 ° C. or lower.
  • the lower limit of the temperature of the CO 2 permselective membrane and the mixed gas at this time is not particularly limited but is, for example, 10 ° C. Even at a low temperature of 60 ° C. or lower, even better CO 2 permeance and CO 2 / N 2 selectivity are achieved by using an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component. Is possible.
  • An amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component is, for example, an amino acid ionic liquid in which the number of tertiary amino groups is larger than the total number of primary amino groups and secondary amino groups. is there.
  • an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component an amino acid having only a tertiary amino group is 50 mol% or more, 60 mol% or more, 70 mol% or more of all amino acids.
  • An amino acid ionic liquid containing 80 mol% or more or 90 mol% or more can be used.
  • CO 2 selective permeation membrane comprising an ionic liquid containing as a main component an amino acid having a primary amino group or secondary amino group
  • the temperature of the CO 2 selectively permeable membrane and a gas mixture to a temperature exceeding 60 ° C.
  • CO 2 can also be separated from the mixed gas.
  • the upper limit of the temperature of the CO 2 selective permeable membrane and the mixed gas at this time is not particularly limited, but is, for example, 200 ° C.
  • Further excellent CO 2 permeance and CO 2 / N 2 selectivity by using an amino acid ionic liquid containing an amino acid having a primary amino group or a secondary amino group as a main component at a high temperature exceeding 60 ° C. Can be achieved.
  • the total number of primary amino groups and secondary amino groups is not less than the number of tertiary amino groups. It is an amino acid ionic liquid.
  • an amino acid ionic liquid containing an amino acid having a primary amino group or a secondary amino group as a main component an amino acid having at least one of the primary amino group or the secondary amino group is converted to all amino acids.
  • an amino acid ionic liquid containing 50 mol% or more, 60 mol% or more, 70 mol% or more, 80 mol% or more, or 90 mol% or more can be used.
  • CO 2 selective permeation membrane comprising an amino acid ionic liquid containing amino acids with secondary amino groups as the main component
  • an amino acid ionic liquid containing an amino acid having a secondary amino group as a main component at a temperature higher than 60 ° C. and lower than 80 ° C., further reducing CO 2 permeance while suppressing energy consumption for heating. It is possible to achieve.
  • the amino acid ionic liquid containing an amino acid having a secondary amino group as a main component has, for example, a total number of primary amino groups and secondary amino groups equal to or greater than the number of tertiary amino groups, and the secondary amino group. It is an amino acid liquid in which the number of amino groups is larger than the number of primary amino groups.
  • an amino acid having only a secondary amino group is 50 mol% or more, 60 mol% or more, 70 mol% or more of all amino acids.
  • An amino acid ionic liquid containing 80 mol% or more or 90 mol% or more can be used.
  • the comparison of the number of amino groups (number of moles) in the amino acid ionic liquid as described above is usually performed based on the number of amino groups in all amino acids constituting the amino acid ionic liquid. That is, when an amine compound other than an amino acid having an amino group is contained in a small amount in the amino acid ionic liquid, the number of amino groups of these amine compounds can usually be ignored.
  • a CO 2 permselective membrane containing an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component, and an ion containing an amino acid having a primary amino group or a secondary amino group as a main component may be combined.
  • the temperature of each CO2 permselective membrane can be set to the above-mentioned temperature range.
  • the feed gas F1 often contains N 2 in addition to CO 2 .
  • CO 2 selectively permeable film according to the present embodiment a high CO 2 permeance and CO 2 / N 2 selectivity even when CO 2 minutes low pressure is maintained.
  • the partial pressure of CO 2 separates the CO 2 from the gas mixture is not so high, CO 2 selectively permeable film according to the present embodiment is particularly useful.
  • the CO 2 partial pressure in the feed gas tends to decrease. Therefore, practically even, in many cases, may include the step of separating CO 2 from a gas mixture of low partial pressure of CO 2 is assumed.
  • the CO 2 partial pressure of the feed gas (mixed gas) F1 may be 15 kPa or less.
  • the CO 2 permselective membrane according to the present embodiment, it is possible to achieve sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
  • the relative humidity of the feed gas (mixed gas) F1 may be less than 50%, 30% or less, preferably 5% or less.
  • the water vapor concentration of the feed gas (mixed gas) F1 may be less than 30 mol%, preferably 5 mol% or less.
  • the flow rate of the feed gas F1 is not particularly limited, but is, for example, 2 to 1000 mL / min per 10 cm 2 area of the CO 2 permselective membrane.
  • the pressure of the feed gas is not particularly limited, but may be atmospheric pressure, and may be adjusted, for example, in the range of 100 to 10000 kPa or 100 to 1000 kPa.
  • the flow rate of the sweep gas S1 is not particularly limited, and is, for example, 1 to 500 mL / min per 10 cm 2 area of the CO 2 permselective membrane.
  • the pressure of the sweep gas is not particularly limited, but may be atmospheric pressure or less than atmospheric pressure, and may be adjusted to a range of 30 to 5000 kPa or 30 to 1000 kPa, for example. When the partial pressure of CO 2 in the feed gas is sufficiently high, the sweep gas may not necessarily flow.
  • an arbitrary layer may be laminated on one side or both sides of the CO 2 permselective membrane.
  • An aqueous solution containing 40% by mass of tetrabutylphosphonium hydroxide (hereinafter referred to as “[P (C 4 ) 4 ] [OH]”), or 1-ethyl-3-methylimidazolium glycine (hereinafter referred to as “[Emim]”).
  • An aqueous solution containing 50% by mass of [OH] ”) was added dropwise to an aqueous glycine solution containing glycine in an amount 5% excess of the number of moles thereof and 100 mL of pure water while cooling to 8 ° C. in a nitrogen atmosphere. did.
  • the neutralization reaction of the hydroxide ion and the hydrogen ion derived from an amino acid was performed by stirring for 24 hours or more.
  • water was removed at 40 ° C. by an evaporator. Water was removed until the prepared amino acid ionic liquid became a 90 mass% aqueous solution (water concentration 10 mass%).
  • a hydrophilic polytetotetrafluoroethylene (PTFE) porous membrane (thickness 35.7 ⁇ m, average pore diameter 0.2 ⁇ m) is immersed in the amino acid ionic liquid thus prepared, and the pressure is reduced for 1800 seconds in that state.
  • the porous membrane was impregnated with an amino acid ionic liquid.
  • the porous membrane impregnated with the amino acid ionic liquid was taken out, and the excess amino acid ionic liquid adhering to the surface was removed to obtain a permeable membrane for evaluation.
  • a PTFE porous membrane is impregnated with 1-ethyl-3-methylimidazolium bis (trifluoromethane) sulfonamide (hereinafter referred to as “[Emim] [Tf 2 N]”) which is an ionic liquid, A comparative permeable membrane was obtained.
  • Each prepared permeable membrane was attached to a stainless steel permeable cell.
  • This permeation cell was accommodated in an oven equipped with a thermostat to prepare an evaluation apparatus having the same configuration as the apparatus shown in FIG. The oven was adjusted to a predetermined temperature with a thermostat.
  • a dry mixed gas (CO 2 partial pressure: 10 kPa) containing CO 2 gas and N 2 gas and substantially free of moisture was used as the feed gas F1.
  • the feed gas F1 was adjusted to a flow rate of 200 mL / min and a temperature of 298K. The pressure on the feed side was maintained at atmospheric pressure.
  • Helium gas was used as the sweep gas S1.
  • the sweep gas S1 was adjusted to a flow rate of 40 mL / min and a temperature of 298K. The pressure on the sweep side was maintained at almost atmospheric pressure.
  • Table 1 shows the evaluation results of permeance and selectivity when the set temperature of the oven is set to 363K or 373K.
  • the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly], which is an amino acid ionic liquid, is [Emim] [Tf 2 N ], Excellent CO 2 permeance and CO 2 / N 2 selectivity were exhibited.
  • FIG. 2 shows another ionic liquid N-aminopropyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C 3 NH 2 min] [Tf 2 ) along with the results of this experiment.
  • the value of CO 2 permeance of the permeable membrane using N]) is shown for comparison with reference to Non-Patent Document 5.
  • the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] has [Emim] [Tf 2 N], particularly in the low CO 2 partial pressure region. ], Excellent CO 2 permeance and CO 2 / N 2 selectivity were exhibited.
  • [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] is much better CO 2 permeance than [C 3 NH 2 min] [Tf 2 N] under dry conditions. It was suggested that
  • the DAPA permeable membrane was prepared by the following procedure. First, polyvinyl alcohol-polyacrylic acid copolymer (PVA / PAA copolymer), DAPA and CsOH were dissolved in water and stirred at 298K for 24 hours. The molar ratio of CsOH to DAPA was adjusted to 2. After stirring, fine bubbles were removed by centrifugation, and the solution was applied to a hydrophilic porous PTFE membrane. The applied solution was dried overnight at 298K. Finally, the polymer was crosslinked by heating at 393 K for 2 hours to obtain a DAPA permeable membrane.
  • PVA / PAA copolymer polyvinyl alcohol-polyacrylic acid copolymer
  • FIG. 3A is a graph showing the relationship between the CO 2 permeance and the relative humidity in the feed gas
  • FIG. 3B shows the CO 2 / N 2 selectivity and the relative humidity in the feed gas. It is a graph which shows the relationship.
  • the CO 2 permeance value of the facilitated transport membrane (Gly-FTM) using glycine is shown for comparison from Non-Patent Document 2. Since the temperature of the permeation cell is 373 K and the pressure of the feed gas is atmospheric pressure, the value of relative humidity (%) in FIG. 3 can be read as the value of water vapor concentration (mol%) as it is.
  • the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] is high not only under dry conditions with low steam concentration but also under high humidity conditions. CO 2 permeance and CO 2 / N 2 selectivity were shown. In contrast, facilitated transport membrane of DAPA (DAPA-FTM), although a relatively high CO 2 permeance and CO 2 / N 2 selectivity at high humidity conditions, CO 2 permeance and CO 2 with decreasing relative humidity / N 2 selectivity rapidly decreased. Gly-FTM has the same tendency. [Emim] [Tf 2 N] showed CO 2 permeance that was somewhat high in both dry conditions and high humidity conditions, but the CO 2 / N 2 selectivity was generally low.
  • DAPA-FTM DAPA-FTM
  • the concentration of the prepared amino acid ionic liquid is 100 mass%, 90 mass%, 80 mass%, or 50 mass% (the water content is 0 mass%, 10 mass%, 20 mass%, or 50 mass%). Until removed.
  • the amino acid ionic liquid thus prepared was evaluated for CO 2 permeance and CO 2 / N 2 selectivity by the same method as in Study 1.
  • FIG. 4A is a graph showing the relationship between CO 2 permeance and the amount of water contained in the amino acid ionic liquid.
  • FIG. 4B is a graph showing the relationship between CO 2 / N 2 selectivity and the amount of moisture contained in the amino acid ionic liquid.
  • [P (C 4 ) 4 ] [Gly] which is an amino acid ionic liquid containing 20% by mass of water, containing 10% by mass of water [ Similar to P (C 4 ) 4 ] [Gly], it exhibited high CO 2 permeance and CO 2 selectivity under dry conditions.
  • [P (C 4 ) 4 ] [Gly] having a water content of 50% by mass showed good CO 2 permeance, but its CO 2 / N 2 selectivity was low.
  • FIG. 5A is a graph showing the relationship between the CO 2 permeance and the set temperature of the oven (the temperature of the mixed gas and the separation permeable membrane).
  • FIG. 5B is a graph showing the relationship between CO 2 / N 2 selectivity and the set temperature of the oven (temperature of the separation permeable membrane).
  • the separation / permeation membrane using [P (C 4 ) 4 ] [mGly] having a secondary amino group has [P ( C 4 ) 4 ] [Gly] or a CO 2 permeance higher than that of a separation permeable membrane using [P (C 4 ) 4 ] [mGly] having a tertiary amino group was exhibited.
  • the CO 2 permselective membrane according to the present invention is sufficiently expected to be applied to air purification in a living space of a building, a vehicle interior space, etc., and further to CO 2 removal from natural gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

アミノ酸イオン液体と、該アミノ酸イオン液体が含浸している多孔質膜と、を有し、該アミノ酸イオン液体が特定の範囲の水分を含有するCO選択透過膜が開示される。

Description

CO2選択透過膜、CO2を混合ガスから分離する方法、及び膜分離装置
 本発明は、CO選択透過膜、COを混合ガスから分離する方法、及び膜分離装置に関する。
 COを選択的に透過し、混合ガスからCOを分離するために用いることのできるCO選択透過膜として、種々のポリマー膜が開発されてきた(例えば、非特許文献1)。しかし、ポリマー膜は、一般に溶解拡散機構に基いてCOを物理的に透過させるため、CO透過性、及びCOのNに対する選択性(CO/N選択性)の向上に限界があった。
 そこで、COと選択的に反応する「キャリア」と呼ばれる物質を用い、溶解拡散機構に加えて促進輸送機構により選択的にガスを透過する、促進輸送膜と呼ばれる透過膜について検討がなされている(例えば、非特許文献2、3)。促進輸送機構では、特定のガスとキャリアとの膜内での可逆的な化学反応に基いて、特定のガスを選択的に透過させる。さらに近年、イオン液体を用いた透過膜が促進輸送機構を志向した膜として提案されている(非特許文献4、5)。
特開2010-214324号公報
J.Membr.Sci.,2008,320,390-400 Ind.Eng.Chem.Res.,2000,39,2447 J.Membr.Sci.,2007,291,157 J.Membr.Sci.,2008,314,1 J.Membr.Sci.,2008,322,28 J.Am.Chem.Soc.Communications,2005, 127、2398-2399 J.Chem. Eng.Data., 2011,56,315 7-3162
 従来の促進輸送膜によれば、ある程度良好なCOパーミアンス及びCO/N選択性が達成され得るものの、まだ必ずしも十分ではなく、改善の余地があった。さらに、促進輸送機構を発揮するために本質的に水分の存在を必要とすることが多いため、透過性能が相対湿度の影響を受けやすく、用途が制限されるという問題があった。例えば、特許文献1は、イオン性液体を含む炭酸ガス選択透過膜を開示しているが、その段落0057では、膜性能の観点から、供給ガスの相対湿度は50%以上100%以下が好ましいと述べている。
 一方、ガス透過膜の構成の一つであるイミダゾリウム系のアミノ酸イオン液体中の水分量については、非特許文献6のp.2399の右欄REFERENCE(8)の11行目以降には、生成したアミノ酸イオン液体を80℃で2日間真空乾燥した後の水分が0.2%以下であり、塩を生成した後の水分量が0.4%であると記載されている。非特許文献7のp.3158のTable 1では、アミノ酸イオン液体中の水分量が200ppmの水準の極めて低い値であることが示されている。
 本発明の主な目的は、十分に高いCOパーミアンス及びCO/N選択性を達成することが可能なCO選択分離膜を提供することにある。
 本発明は、アミノ酸イオン液体と、該アミノ酸イオン液体が含浸している多孔質膜と、を有するCO選択透過膜において、鋭意検討の結果、アミノ酸イオン液体中の水分量を適切な範囲に設定することで、十分に高いCOパーミアンス及びCO/N選択性を達成するものである。
 上記本発明に係るCO選択透過膜によれば、アミノ酸イオン液体中の水分量を好ましくは3~50質量%、更に好ましくは5~20質量%となるよう調整することにより、十分に高いCOパーミアンス及びCO/N選択性を達成することが可能である。アミノ酸イオン液体を構成するアミノ酸イオンは、COと可逆的に反応してCOのキャリアとして機能し、高いCOパーミアンス及び選択性に寄与すると考えられる。後述する実験結果において本発明者らが明らかにしたように、このアミノ酸イオンの機能は、乾燥条件及び高湿環境のいずれにおいても十分に発揮される。
 本発明はまた、上記CO選択透過膜に、COを含む混合ガス中のCOを透過させることにより、COを混合ガスから分離する工程を備える、COを混合ガスから分離する方法に関する。この方法によれば、乾燥条件及び高湿環境のいずれにおいても、効率的にCOを分離することができる。そのため、低湿条件、具体的には混合ガスの相対湿度が30%以下、又は混合ガスの水蒸気濃度が30モル%以下であるような条件の部分が含まれるときに、本発明に係る方法は特に有用である。
 アミノ酸イオン液体に含まれる第3級アミノ基の数がアミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数よりも多いとき、CO選択透過膜及び混合ガスを60℃以下の温度としながら混合ガス中のCOを前記選択透過膜に透過させることができる。アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数がアミノ酸イオン液体に含まれる第3級アミノ基の数以上であるとき、CO選択透過膜及び混合ガスの温度を60℃を超える温度としながら混合ガス中のCOを選択透過膜に透過させることができる。
 このように、アミノ酸イオン液体中のアミノ基が、主として第1級アミノ基、第2級アミノ基又は第3級アミノ基のいずれであるかに着目して、分離工程の温度を制御することにより、更に優れたCOパーミアンス又はCO/N選択性を得ることができる。同様の観点から、アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数がアミノ酸イオン液体に含まれる第3級アミノ基の数以上であり、且つ、アミノ酸イオン液体に含まれる第2級アミノ基の数がアミノ酸イオン液体に含まれる第1級アミノ基の数よりも多いとき、CO選択透過膜及び混合ガスを60℃を超え80℃未満の温度としながら混合ガス中のCOを選択透過膜に透過させることができる。
 本発明によれば、十分に高いCOパーミアンス及びCO/N選択性を達成することが可能なCO選択分離膜が提供される。
膜分離装置の一実施形態を示す模式図である。 CO選択透過膜の透過特性とCO分圧との関係を示すグラフである。 CO選択透過膜の透過特性と相対湿度との関係を示すグラフである。 CO選択透過膜の透過特性とアミノ酸イオン液体の水分量との関係を示すグラフである。 CO選択透過膜の透過特性と温度との関係を示すグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 図1は、CO選択透過膜を有する膜分離装置の一実施形態を示す模式図である。図1に示す膜分離装置10は、CO選択透過膜1と、CO選択透過膜1を収容する透過セル3と、CO選択透過膜1を加熱する加熱部5とから主として構成される。
 透過セル3の内部には、CO選択透過膜1が装着される空間が設けられており、この空間が、CO選択透過膜1によりフィード側部分とスイープ側部分に分割されている。フィード側部分にCOを含むフィードガス(混合ガス)F1が供給され、フィードガスF2として排出される。スイープ側部分には、通常スイープガスS1が供給される。スイープガスS1は、一般にヘリウムガス等の不活性ガスである。CO選択透過膜1を選択的に透過してスイープ側部分に移動したCOガスが、排出ガスS2としてスイープガスとともに排出される。その結果、フィードガスF1からCOが分離される。
 CO選択分離膜1は、アミノ酸イオン液体と、該アミノ酸イオン液体が含浸している多孔質膜とを有する。
 アミノ酸イオン液体は、アミノ酸イオンと、そのカウンターイオンとから構成される1種又は2種以上の塩と、少量の水分とを含むイオン液体である。アミノ酸イオンは、アニオンであってもよいし、カチオンであってもよいが、透過性能の観点から、好ましくはアニオンである。アミノ酸イオン及びカウンターイオンは、それぞれ、イオン液体を形成する組み合わせで任意に選択される。
 アミノ酸イオン液体は、好ましくは3~50質量%、更に好ましくは5~20質量%の水分を含む。この水分量は、アミノ酸イオン液体全体の質量を基準とする割合である。アミノ酸イオン液体に含有される水分の量は、アミノ酸イオン液体を調製する際の蒸発操作で調整してもよいし、調製したアミノ酸イオン液体に任意の量の水分を添加することにより調整してもよい。
 アミノ酸イオンとして用いられるアミノ酸は、第1級アミノ基(-NH)、第2級アミノ基(-NH-)及び第3級アミノ基(-N=)から選ばれる1種又は2種以上のアミノ基とカルボキシル基とを有する化合物であればよく、天然でも非天然でもよい。
 アミノ酸イオンは、例えば、アルギニン、ヒスチジン、リシン、アスパラギン酸、グルタミン酸、セリン、トレオニン、アスパラギン、グルタミン、システイン、グリシン、プロリン、アラニン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、トリプトファン、チロシン及びバリンからなる群より選ばれる少なくとも1種のアミノ酸から形成されるイオンである。これらのアミノ酸のアミノ基が有する水素原子の一部又は全部が、アルキル基又はアリール基によって置換されていてもよい。例えば、第2級アミノ基を有するN-アルキルアミノ酸及びN-アリールアミノ酸、第3級アミノ基を有するN,N-ジアルキルアミノ酸及びN-アルキル-N-アリールアミノ酸が用いられ得る。
 アミノ酸アニオンと組み合わせるカウンターカチオンは、アミノ酸イオンとイオン液体を形成するものであれば、本質的に制限されない。このカウンターカチオンは、例えば、下記式(1)で表されるイミダゾリウム、下記式(2)で表されるホスホニウム、下記式(3)で表されるアンモニウム、下記式(4)で表されるピリジニウム、置換基(例えばアルキル基)を有していてもよいピロリジニウム、置換基(例えば、アルキル基、アルコキシアルキル基)を有していてもよいモルホリニウム及び置換基を有していてもよいグアニジウムからなる群より選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R及びRはそれぞれ独立に、置換基を有していてもよいアルキル基(好ましくは炭素数1~10のアルキル基)を示す。このアルキル基は、例えば、エチル、ブチル又はヘキシルである。R及びRのうち一方がメチルであることが好ましい。イミダゾリウムの具体例としては、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、及び1-ヘキシル-3-メチルイミダゾリウムが挙げられる。
 式(2)中、Rは置換基を有していてもよいアルキル基(好ましくは炭素数1~10のアルキル基)を示し、同一分子中の複数のRは、同一でも異なっていてもよく、互いに結合して環を形成してもよい。このアルキル基は、例えば、ブチル又はヘキシルである。Rは、例えばアミノ基で置換されたアルキル基であってもよい。ホスホニウムの具体例としては、テトラブチルホスホニウム、テトラヘキシルホスホニウム、トリブチル(ヘキシル)ホスホニウム及びアミノプロピルトリブチルホスホニウムが挙げられる。
 式(3)中、Rは置換基を有していてもよいアルキル基(好ましくは炭素数1~10のアルキル基)を示し、同一分子中の複数のRは、同一でも異なっていてもよく、互いに結合して環を形成してもよい。このアルキル基は、例えば、ブチル又はヘキシルである。アンモニウムの具体例としては、テトラブチルアンモニウム、テトラヘキシルアンモニウム及びトリブチル(ヘキシル)アンモニウムが挙げられる。
 式(4)中、Rは置換基を有していてもよいアルキル基(好ましくは炭素数1~10のアルキル基)を示す。このアルキル基は、例えばブチルまたはヘキシルである。ピリジニウムの具体例としては、1-ブチルピリジニウム及び1-ヘキシルピリジニウムが挙げられる。
 多孔質膜は、選択透過膜の支持膜として通常使用されているものから適宜選択することができる。多孔質膜は親水性でも疎水性でもよいが、アミノ酸イオン液体が親水性である場合、親水性であることが好ましい。多孔質膜は、例えば、ポリテトテトラフルオロエチレンを含む。多孔質膜の厚さは、特に制限されないが、例えば、10~100μmである。多孔質膜内の空隙はアミノ酸イオン液体により十分に充填されていることが好ましいが、部分的に未充填であってもよい。多孔質膜は、必要に応じて、アミノ酸イオン液体に加えて、アミノ酸イオン液体以外の材料により含浸されていてもよい。この追加的な材料の種類及び量は、本発明の趣旨を逸脱しない範囲で任意に選択され得る。
 CO選択透過膜1は、多孔質膜にアミノ酸イオン液体を含浸させる工程を含む方法により、製造することができる。含浸は、当該技術分野において通常用いられる方法で行うことができる。
 膜分離装置10を用いてフィードガスF1からCOを分離する際、膜分離装置10を通過するフィードガス(混合ガス)F1、及びCO選択透過膜1の温度は、通常は10~150℃とされ、80~110℃であってもよい。必要に応じて、CO選択透過膜1は加熱部5により加熱される。加熱部5としては、例えば、透過セル3を収容可能なオーブンが用いられる。
 CO選択透過膜1を構成するアミノ酸イオン液体に含まれるアミノ酸のアミノ基の種類を考慮して、CO選択透過膜1及び混合ガスF1の温度を以下のように設定することもできる。
 例えば、第3級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を含むCO選択透過膜を用い、CO選択透過膜及び混合ガスを60℃以下の温度としながらCOを混合ガスから分離することができる。このときのCO選択透過膜及び混合ガスの温度の下限は、特に制限されないが、例えば10℃である。60℃以下の低い温度であっても、第3級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を用いることで、より一層良好なCOパーミアンス及びCO/N選択性を達成することが可能である。
 第3級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体は、例えば、第3級アミノ基の数が第1級アミノ基及び第2級アミノ基の合計数よりも多いアミノ酸イオン液体である。あるいは、第3級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体として、第3級アミノ基のみを有するアミノ酸を、全アミノ酸のうち50モル%以上、60モル%以上、70モル%以上、80モル%以上又は90モル%以上含有するアミノ酸イオン液体を用いることができる。
 第1級アミノ基又は第2級アミノ基を有するアミノ酸を主成分として含有するイオン性液体を含むCO選択透過膜を用い、CO選択透過膜及び混合ガスの温度を60℃を超える温度としながらCOを混合ガスから分離することもできる。このときのCO選択透過膜及び混合ガスの温度の上限は、特に制限されないが、例えば200℃である。60℃を超える高い温度で、第1級アミノ基又は第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を用いることで、さらに優れたCOパーミアンス及びCO/N選択性を達成することが可能である。
 第1級アミノ基又は第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体は、例えば、第1級アミノ基及び第2級アミノ基の合計数が第3級アミノ基の数以上であるアミノ酸イオン液体である。あるいは、第1級アミノ基又は第2級アミノ基を有するアミノ酸を主成分として含有するイオン性液体として、第1級アミノ基又は第2級アミノ基のうち少なくとも一方のみを有するアミノ酸を、全アミノ酸のうち50モル%以上、60モル%以上、70モル%以上、80モル%以上又は90モル%以上含有するアミノ酸イオン液体を用いることができる。
 第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を含むCO選択透過膜を用い、CO選択透過膜及び混合ガスを60℃を超え80℃未満の温度としながらCOを混合ガスから分離することもできる。60℃を超え80℃未満の温度で第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を用いることで、加熱のためのエネルギー消費を抑えながら、より一層優れたCOパーミアンスを達成することが可能である。
 第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体は、例えば、第1級アミノ基及び第2級アミノ基の合計数が第3級アミノ基の数以上であり、第2級アミノ基の数が第1級アミノ基の数よりも多い、アミノ酸液体である。あるいは、第2級アミノ基を有するアミノ酸を主成分として含有するイオン性液体として、第2級アミノ基のみを有するアミノ酸を、全アミノ酸のうち50モル%以上、60モル%以上、70モル%以上、80モル%以上又は90モル%以上含有するアミノ酸イオン液体を用いることができる。
 上記のようなアミノ酸イオン液体中の各種アミノ基の数(モル数)の比較は、通常、アミノ酸イオン液体を構成する全アミノ酸中のアミノ基の数に基づいて行われる。すなわち、アミノ基を有するアミノ酸以外のアミン化合物がアミノ酸イオン液体中に少量含まれる場合、それらアミン化合物のアミノ基の数は、通常、無視することができる。
 必要により、第3級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を含むCO選択透過膜と、第1級アミノ基若しくは第2級アミノ基を有するアミノ酸を主成分として含有するイオン性液体を含むCO選択透過膜又は第2級アミノ基を有するアミノ酸を主成分として含有するアミノ酸イオン液体を含むCO選択透過膜とを組み合わせてもよい。その場合、それぞれのCO2選択透過膜の温度を、上述の温度範囲に設定することができる。
 フィードガスF1は、COの他にNを含むことが多い。本実施形態に係るCO選択透過膜によれば、CO分圧が低いときであっても高いCOパーミアンス及びCO/N選択性が維持される。したがって、CO分圧がそれほど高くない混合ガスからCOを分離する場合、本実施形態に係るCO選択透過膜は特に有用である。一般に、フィードガスが下流側に流れていくのに従って、フィードガス中のCO分圧が減少していく傾向がある。そのため、実用的にも、多くの場合、低いCO分圧の混合ガスからCOを分離する工程が含まれることが想定される。具体的には、フィードガス(混合ガス)F1のCO分圧が15kPa以下であってもよい。
 さらに、本実施形態に係るCO選択透過膜によれば、十分に高いCOパーミアンス及びCO/N選択性を達成することが可能である。一般に、促進輸送膜においては、低湿度の混合ガスからCOガスを分離する場合、混合ガスに水蒸気を加えることが必要となることが多いが、本実施形態によれば水蒸気を添加しなくとも、COを効率的に分離することができる。水蒸気の供給のためには多大なエネルギーを要するため、水蒸気が不要であることは、環境面、経済面の意義が非常に大きい。具体的には、フィードガス(混合ガス)F1の相対湿度は、50%未満、30%以下、好ましくは5%以下であってもよい。また、フィードガス(混合ガス)F1の水蒸気濃度は、30モル%未満、好ましくは5モル%以下であってもよい。
 フィードガスF1の流量は、特に制限されないが、例えばCO選択透過膜の面積10cmあたり、2~1000mL/分である。フィードガスの圧力は、特に制限されないが、大気圧であってもよいし、例えば100~10000kPa又は100~1000kPaの範囲で調整してもよい。
 スイープガスS1の流量は、特に制限されないが、例えばCO選択透過膜の面積10cmあたり、1~500mL/分である。スイープガスの圧力は、特に制限されないが、大気圧又は大気圧未満であってもよいし、例えば30~5000kPa又は30~1000kPaの範囲に調整してもよい。フィードガス中のCO分圧が十分高い場合などには、スイープガスを必ずしも流す必要がないこともある。
 本発明は、以上説明した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変形が可能である。例えば、CO選択透過膜の片面又は両面に任意の層が積層されていてもよい。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(検討1)
 アミノ酸イオン液体として、テトラブチルホスホニウムグリシン(以下、「[P(C][Gly]」という。)、及び1-エチル-3-メチルイミダゾリウムグリシン(以下、「[Emim][Gly]」という。)を準備した。これらアミノ酸イオン液体は中和法により調製した。テトラブチルホスホニウム水酸化物(以下、「[P(C][OH]」という。)を40質量%含む水溶液、あるいは1-エチル-3-メチルイミダゾリウムグリシン(以下、「[Emim][OH]」という。)を50質量%含む水溶液を、窒素雰囲気下で8℃に冷却しながら、それらのモル数よりも5%過剰な量のグリシンと純水100mLとを含むグリシン水溶液に滴下した。その後、24時間以上撹拌することで水酸化物イオンとアミノ酸由来の水素イオンの中和反応を行った。中和反応後、エバポレーターによって40℃で水を除去した。水は、調製されるアミノ酸イオン液体が90質量%水溶液(水分濃度10質量%)となるまで除去した。このようにして調製したアミノ酸イオン液体に、親水性のポリテトテトラフルオロエチレン(PTFE)多孔質膜(厚さ35.7μm,平均孔径0.2μm)を浸し、その状態で1800秒間減圧することにより、多孔質膜にアミノ酸イオン液体を含浸させた。アミノ酸イオン液体が含浸した多孔膜を取り出し、表面に付着した余剰なアミノ酸イオン液体を取り除いて、評価用の透過膜を得た。
 同様に、イオン液体である1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタン)スルホンアミド(以下、「[Emim][TfN]」という。)を、PTFE多孔質膜に含浸させて、比較用の透過膜を得た。
 準備した各透過膜をステンレススチール製の透過セルに装着した。この透過セルをサーモスタットが取り付けられたオーブン内に収容して、図1に示す装置と同様の構成を有する評価装置を準備した。サーモスタットにより、オーブンを所定の温度に調整した。
 フィードガスF1として、COガス及びNガスを含み、水分を実質的に含まない乾燥した混合ガス(CO分圧:10kPa)を用いた。フィードガスF1は、流量200mL/分、温度298Kに調整した。フィード側の圧力は大気圧に維持した。スイープガスS1として、ヘリウムガスを用いた。スイープガスS1は、流量40mL/分、温度298Kに調整した。スイープ側の圧力はほぼ大気圧に維持した。出口側のスイープガス(排出ガス)S2を、ガスクロマトグラフィー(GC)で分析した。GCの分析結果から、CO及びNのパーミアンスと、CO/N選択性(=COパーミアンス/Nパーミアンス)を求めた。
 オーブンの設定温度を363K又は373Kに設定したときのパーミアンス及び選択性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、アミノ酸イオン液体である[P(C][Gly]又は[Emim][Gly]を用いた透過膜は、乾燥条件下で、[Emim][TfN]と比較して優れたCOパーミアンス及びCO/N選択性を示した。
(検討2)
 検討1と同様の方法で、フィードガスF1におけるCO分圧を変化させながらCO及びNのパーミアンスとCO/N選択性の測定を行った。図2の(a)はCOパーミアンスとCO分圧との関係を示すグラフであり、図2の(b)はCO/N選択性とCO分圧との関係を示すグラフである。図2の(a)には、本実験の結果とともに、別のイオン液体であるN-アミノプロピル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド([CNHmin][TfN])を用いた透過膜のCOパーミアンスの値を、非特許文献5から引用して比較のために示した。
 図2に示されるように、[P(C][Gly]又は[Emim][Gly]を用いた透過膜は、特に低いCO分圧の領域において、[Emim][TfN]と比較して優れたCOパーミアンス及びCO/N選択性を示した。また、[P(C][Gly]又は[Emim][Gly]は、乾燥条件下で、[CNHmin][TfN]と比較してはるかに優れたCOパーミアンスを示すことが示唆された。
(検討3)
 検討1と同様の方法で、フィードガスF1における水蒸気の濃度を変化させながらCO及びNのパーミアンスとCO/N選択性の測定を行った。フィードガスのCO分圧は、2kPaに設定した。透過セルを加熱するオーブンの温度は、373Kに設定した。比較のため、DL-2,3-ジアミノプロピオン酸(DAPA)をCOキャリアとして用いた透過膜(促進輸送膜)を準備し、これを[P(C][Gly]、[Emim][Gly]及び[Emim][TfN]の透過膜とともに評価した。
 DAPAの透過膜は、以下のような手順で準備した。まず、ポリビニルアルコール-ポリアクリル酸コポリマー(PVA/PAAコポリマー)、DAPA及びCsOHを水に溶解し、298Kで24時間攪拌した。CsOHのDAPAに対するモル比は2に調整した。攪拌後、遠心分離により微小な泡を取り除いてから、溶液を親水性の多孔質PTFE膜に塗布した。塗布された溶液を298Kで一晩乾燥させた。最後に、393Kで2時間の加熱によりポリマーを架橋させて、DAPAの透過膜を得た。
 図3の(a)は、COパーミアンスとフィードガス中の相対湿度との関係を示すグラフであり、図3の(b)は、CO/N選択性とフィードガス中の相対湿度との関係を示すグラフである。図3の(a)には、本実験の結果とともに、グリシンを用いた促進輸送膜(Gly-FTM)のCOパーミアンスの値を、非特許文献2から引用して比較のために示した。透過セルの温度は373Kで、フィードガスの圧力が大気圧であることから、図3の相対湿度(%)の値は、そのまま水蒸気濃度(モル%)の値に読み替えることができる。
 図3に示されるように、[P(C][Gly]又は[Emim][Gly]を用いた透過膜は、スチーム濃度の低い乾燥条件ばかりでなく、高湿度条件下においても高いCOパーミアンス及びCO/N選択性を示した。これに対して、DAPAの促進輸送膜(DAPA-FTM)は、高湿度条件では比較的高いCOパーミアンス及びCO/N選択性を示すものの、相対湿度の低下とともにCOパーミアンス及びCO/N選択性が急激に低下した。Gly-FTMも同様の傾向である。[Emim][TfN]は、乾燥条件、高湿度条件ともにある程度高いCOパーミアンスを示すものの、CO/N選択性が全般に低かった。
(検討4)
 アミノ酸イオン液体として、テトラブチルホスホニウムアラニン(以下、「[P(C][Ala]」という。)及びテトラブチルホスホニウムセリン(以下、「[P(C][Ser]」という。)を準備した。これらについて、検討1と同様の方法により、[P(C][Gly]及び[Emim][TfN]とともにCOパーミアンス及びCO/N選択性を評価した。
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、アミノ酸イオン液体である[P(C][Ala]及び[P(C][Ser]によれば、[P(C][Gly]と同様に、乾燥条件で高いCOパーミアンス及びCO選択性を示した。[Emim][TfN]は、良好なCOパーミアンスを示したものの、そのCO/N選択性が低かった。
(検討5)
 アミノ酸イオン液体として、所定量の水分を含有する[P(C][Gly]を中和法により準備した。[P(C][OH]を40質量%含む水溶液を、窒素雰囲気下で8℃に冷却しながら、それらのモル数よりも5%過剰な量のグリシンと純水100mLとを含むグリシン水溶液に滴下した。その後、24時間以上撹拌することで水酸化物イオンとアミノ酸由来の水素イオンの中和反応を行った。中和反応後、エバポレーターにて40℃で水を除去した。水は、調製されるアミノ酸イオン液体の濃度が100質量%、90質量%、80質量%、又は50質量%(水分量が0質量%、10質量%、20質量%又は50質量%)となるまで除去した。このようにして調製したアミノ酸イオン液体について、検討1と同様の方法により、COパーミアンス及びCO/N選択性を評価した。
 図4の(a)は、COパーミアンスと、アミノ酸イオン液体に含まれる水分の量との関係を示すグラフである。図4の(b)はCO/N選択性と、アミノ酸イオン液体に含まれる水分の量との関係を示すグラフである。
 図4(a)及び図4(b)に示されるように、水分を20質量%含むアミノ酸イオン液体である[P(C][Gly]によれば、水分を10質量%含む[P(C][Gly]と同様に、乾燥条件で高いCOパーミアンス及びCO選択性を示した。水分量0質量%の[P(C][Gly]は、COパーミアンス、CO選択性ともに低かった。一方、水分量が50質量%の[P(C][Gly]は、良好なCOパーミアンスを示したものの、そのCO/N選択性が低かった。
(検討6)
 アミノ酸イオン液体として、テトラブチルホスホニウムグリシン([P(C][Gly])、テトラブチルホスホニウム N-メチルグリシン(以下、[P(C][mGly]という。)、及びテトラブチルホスホニウム N,N-ジメチルグリシン(以下、[P(C][dmGly]という。)を準備した。これらについて、検討1と同様の方法により、オーブンの設定温度を変化させながら、COパーミアンス及びCO/N選択性を評価した。
 図5の(a)は、COパーミアンスと、オーブンの設定温度(混合ガス及び分離透過膜の温度)との関係を示すグラフである。図5の(b)はCO/N選択性と、オーブンの設定温度(分離透過膜の温度)との関係を示すグラフである。
 図5に示されるように、60℃以下の温度範囲においては、第3級アミノ基を有する[P(C][mGly]を用いた分離透過膜が、最も高いCOパーミアンス及びCO/N選択性を示した。60℃を超える温度範囲においては、第1級アミノ基を有する[P(C][Gly]又は第2級アミノ基を有する[P(C][mGly]を用いた分離透過膜が、より高いCO/N選択性を示した。60℃を超えて80℃未満の温度範囲においては、第2級アミノ基を有する[P(C][mGly]を用いた分離透過膜が、第1級アミノ基を有する[P(C][Gly]又は第3級アミノ基を有する[P(C][mGly]を用いた分離透過膜よりも高いCOパーミアンスを示した。
(結論)
 以上の実験結果から、本発明によれば、十分に高いCOパーミアンス及びCO/N選択性を達成することが可能なCO選択透過膜が提供されることが確認された。更に、アミノ酸が有するアミノ基の種類を考慮して温度を制御することにより、更に優れたCOパーミアンス及びCO/N選択性を達成し得ることが明らかとなった。
 本発明に係るCO選択透過膜は、建物の居住空間、車両内空間などの空気浄化、さらには、天然ガスからのCO除去などへの応用が十分に期待される。
 1…CO2選択透過膜、3…透過セル、5…加熱部、10…膜分離装置、F1,F2…フィードガス(混合ガス)、S1,S2…スイープガス(排出ガス)。

Claims (7)

  1.  アミノ酸イオン液体と、該アミノ酸イオン液体が含浸している多孔質膜と、を有し、該アミノ酸イオン液体が3~50質量%の水分を含有する、CO選択透過膜。
  2.  該アミノ酸イオン液体が5~20質量%の水分を含有する、請求項1に記載のCO選択透過膜。
  3.  請求項1又は2に記載のCO選択透過膜に、COを含む混合ガス中のCOを透過させることにより、COを前記混合ガスから分離する工程を備える、COを混合ガスから分離する方法。
  4.  COを前記混合ガスから分離する前記工程において、
     前記アミノ酸イオン液体に含まれる第3級アミノ基の数が前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数よりも多いとき、前記CO選択透過膜及び前記混合ガスを60℃以下の温度としながら前記混合ガス中のCOを前記選択透過膜に透過させ、
     前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数が前記アミノ酸イオン液体に含まれる第3級アミノ基の数以上であるとき、前記CO選択透過膜及び前記混合ガスの温度を60℃を超える温度としながら前記混合ガス中のCOを前記選択透過膜に透過させる、
    請求項3に記載の方法。
  5.  COを前記混合ガスから分離する前記工程において、
     前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数が前記アミノ酸イオン液体に含まれる第3級アミノ基の数以上であり、且つ、前記アミノ酸イオン液体に含まれる第2級アミノ基の数が前記アミノ酸イオン液体に含まれる第1級アミノ基の数よりも多いとき、前記CO選択透過膜及び前記混合ガスを60℃を超え80℃未満の温度としながら前記混合ガス中のCOを前記選択透過膜に透過させる、請求項4に記載の方法。
  6.  COを前記混合ガスから分離する前記工程が、前記混合ガスの相対湿度が50%未満、又は前記混合ガスの水蒸気濃度が30モル%未満である部分を含む、請求項3~5のいずれか一項に記載の方法。
  7.  請求項1又は2に記載のCO選択透過膜を備える、膜分離装置。
PCT/JP2013/052743 2012-02-06 2013-02-06 Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 WO2013118776A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013557550A JP6245607B2 (ja) 2012-02-06 2013-02-06 Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置
US14/377,075 US9597632B2 (en) 2012-02-06 2013-02-06 Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
EP13746403.8A EP2813279B1 (en) 2012-02-06 2013-02-06 Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment
DK13746403.8T DK2813279T3 (da) 2012-02-06 2013-02-06 Selektiv co2-permeabel membran, fremgangsmåde til at separere co2 fra blandingsgas, og membranseparationsudstyr
KR1020147025262A KR101942135B1 (ko) 2012-02-06 2013-02-06 Co2 선택 투과막, co2를 혼합 가스로부터 분리하는 방법, 및 막 분리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023403 2012-02-06
JP2012-023403 2012-02-06

Publications (1)

Publication Number Publication Date
WO2013118776A1 true WO2013118776A1 (ja) 2013-08-15

Family

ID=48947537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052743 WO2013118776A1 (ja) 2012-02-06 2013-02-06 Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置

Country Status (5)

Country Link
EP (1) EP2813279B1 (ja)
JP (1) JP6245607B2 (ja)
KR (1) KR101942135B1 (ja)
DK (1) DK2813279T3 (ja)
WO (1) WO2013118776A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2974781A1 (en) * 2014-07-14 2016-01-20 DMT Milieutechnologie B.V. Combination of a biogas plant and a membrane filter unit for removal of carbon dioxide
JP2016077997A (ja) * 2014-10-21 2016-05-16 国立大学法人神戸大学 アミノ酸イオン性液体含有相互侵入網目構造体及びその製造方法
CN106984137A (zh) * 2016-12-23 2017-07-28 湖北大学 一种相分离的吸收co2的聚氨基酸离子液体的制备及其使用方法
WO2017130833A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液
WO2018012459A1 (ja) * 2016-07-15 2018-01-18 シャープ株式会社 酸素分離膜
WO2018155450A1 (ja) 2017-02-21 2018-08-30 国立大学法人大阪大学 アンチセンスオリゴ核酸
WO2018211944A1 (ja) * 2017-05-18 2018-11-22 株式会社ダイセル イオン液体含有積層体及びその製造方法
WO2018211945A1 (ja) * 2017-05-18 2018-11-22 株式会社ダイセル 二酸化炭素分離膜及びその製造方法
CN110494696A (zh) * 2017-04-27 2019-11-22 川崎重工业株式会社 空气净化系统
JP2020032383A (ja) * 2018-08-31 2020-03-05 東京瓦斯株式会社 評価方法及び評価システム
JP2020126073A (ja) * 2015-02-03 2020-08-20 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子炉冷却材系の脱ガス装置
WO2021172087A1 (ja) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692080B2 (ja) * 2016-05-30 2020-05-13 住友化学株式会社 Dnゲル膜の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129598A1 (en) * 2003-12-16 2005-06-16 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
JP2008036464A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk 二酸化炭素分離装置及び方法
JP2010163561A (ja) * 2009-01-16 2010-07-29 Niigata Univ 置換ポリアセチレン及びその製造方法、置換ポリアセチレン自立膜及びその製造方法、二酸化炭素分離膜、伸縮により可逆的に色変化を呈する膜
JP2010214324A (ja) 2009-03-18 2010-09-30 Petroleum Energy Center 炭酸ガス分離膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318714A (en) * 1980-05-14 1982-03-09 General Electric Company Facilitated separation of a select gas through an ion exchange membrane
US4761164A (en) * 1985-03-01 1988-08-02 Air Products And Chemicals, Inc. Method for gas separation
NL9401233A (nl) * 1994-03-25 1995-11-01 Tno Werkwijze voor membraangasabsorptie.
DE102009026869A1 (de) 2009-06-09 2011-02-03 Schott Ag Membran aus porösem Glas, Verfahren zu deren Herstellung und Verwendung derselben

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129598A1 (en) * 2003-12-16 2005-06-16 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
JP2008036464A (ja) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk 二酸化炭素分離装置及び方法
JP2010163561A (ja) * 2009-01-16 2010-07-29 Niigata Univ 置換ポリアセチレン及びその製造方法、置換ポリアセチレン自立膜及びその製造方法、二酸化炭素分離膜、伸縮により可逆的に色変化を呈する膜
JP2010214324A (ja) 2009-03-18 2010-09-30 Petroleum Energy Center 炭酸ガス分離膜

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BARA, J. E. ET AL.: "Guide to C02 Separations in Imidazolium-Based Room-Temperature Ionic Liquids", INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH, vol. 48, no. 6, 11 February 2009 (2009-02-11), pages 2739 - 2751, XP055160228 *
IND. ENG. CHEM. RES., vol. 39, 2000, pages 2447
J. AM. CHEM. SOC. COMMUNICATIONS, vol. 127, 2005, pages 2398 - 2399
J. CHEM. ENG. DATA., vol. 56, 2011, pages 3157 - 3162
J. MEMBR. SCI., vol. 291, 2007, pages 157
J. MEMBR. SCI., vol. 314, 2008, pages 1
J. MEMBR. SCI., vol. 320, 2008, pages 390 - 400
J. MEMBR. SCI., vol. 322, 2008, pages 28
See also references of EP2813279A4
SHIFLETT, M. B. ET AL.: "Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate", ENERGY FUELS, vol. 24, no. 10, 7 September 2010 (2010-09-07), pages 5781 - 5789, XP055160230 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2974781A1 (en) * 2014-07-14 2016-01-20 DMT Milieutechnologie B.V. Combination of a biogas plant and a membrane filter unit for removal of carbon dioxide
JP2016077997A (ja) * 2014-10-21 2016-05-16 国立大学法人神戸大学 アミノ酸イオン性液体含有相互侵入網目構造体及びその製造方法
JP2020126073A (ja) * 2015-02-03 2020-08-20 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子炉冷却材系の脱ガス装置
JPWO2017130833A1 (ja) * 2016-01-27 2018-11-15 シャープ株式会社 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液
US10814269B2 (en) 2016-01-27 2020-10-27 Sharp Kabushiki Kaisha Liquid having oxygen absorbing ability, method for producing same, and complex solution containing same
CN108602009A (zh) * 2016-01-27 2018-09-28 夏普株式会社 具有氧吸收能力的液体、其制备方法以及含有该液体的复合溶液
WO2017130833A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液
WO2018012459A1 (ja) * 2016-07-15 2018-01-18 シャープ株式会社 酸素分離膜
JPWO2018012459A1 (ja) * 2016-07-15 2019-04-25 シャープ株式会社 酸素分離膜
CN106984137B (zh) * 2016-12-23 2020-08-25 湖北大学 一种可快速相分离的吸收co2的聚氨基酸离子液体型相分离吸收剂的制备及其使用方法
CN106984137A (zh) * 2016-12-23 2017-07-28 湖北大学 一种相分离的吸收co2的聚氨基酸离子液体的制备及其使用方法
US11261440B2 (en) 2017-02-21 2022-03-01 Osaka University Antisense oligonucleic acid
WO2018155450A1 (ja) 2017-02-21 2018-08-30 国立大学法人大阪大学 アンチセンスオリゴ核酸
CN110494696B (zh) * 2017-04-27 2022-04-29 川崎重工业株式会社 空气净化系统
US11413573B2 (en) 2017-04-27 2022-08-16 Kawasaki Jukogyo Kabushiki Kaisha Air purifying system
CN110494696A (zh) * 2017-04-27 2019-11-22 川崎重工业株式会社 空气净化系统
JPWO2018211944A1 (ja) * 2017-05-18 2020-03-19 株式会社ダイセル イオン液体含有積層体及びその製造方法
JPWO2018211945A1 (ja) * 2017-05-18 2020-05-28 株式会社ダイセル 二酸化炭素分離膜及びその製造方法
US11524265B2 (en) 2017-05-18 2022-12-13 Daicel Corporation Carbon dioxide separation membrane and method for producing same
WO2018211945A1 (ja) * 2017-05-18 2018-11-22 株式会社ダイセル 二酸化炭素分離膜及びその製造方法
WO2018211944A1 (ja) * 2017-05-18 2018-11-22 株式会社ダイセル イオン液体含有積層体及びその製造方法
JP7073357B2 (ja) 2017-05-18 2022-05-23 株式会社ダイセル 二酸化炭素分離膜及びその製造方法
JP7078613B2 (ja) 2017-05-18 2022-05-31 株式会社ダイセル イオン液体含有積層体及びその製造方法
US11491447B2 (en) 2017-05-18 2022-11-08 Daicel Corporation Ionic liquid-containing laminate and method for producing same
JP2020032383A (ja) * 2018-08-31 2020-03-05 東京瓦斯株式会社 評価方法及び評価システム
WO2021172087A1 (ja) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置

Also Published As

Publication number Publication date
KR20140130469A (ko) 2014-11-10
EP2813279A1 (en) 2014-12-17
EP2813279A4 (en) 2015-10-21
DK2813279T3 (da) 2020-08-24
EP2813279B1 (en) 2020-07-22
KR101942135B1 (ko) 2019-01-24
JPWO2013118776A1 (ja) 2015-05-11
JP6245607B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245607B2 (ja) Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置
US9597632B2 (en) Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
Gao et al. Functionalized ionic liquid membranes for CO 2 separation
US6635103B2 (en) Membrane separation of carbon dioxide
US5749941A (en) Method for gas absorption across a membrane
Tomé et al. CO 2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes
US11772052B2 (en) Membranes for gas separation
JP6431481B2 (ja) Co2選択透過膜及びco2を混合ガスから分離する方法
US20140137734A1 (en) Cross-linked polyimide membranes for separations
Chen et al. Selective CO2 Separation from CO2− N2 Mixtures by Immobilized Glycine-Na− Glycerol Membranes
CN107847837A (zh) 用于分离气体的聚合物膜
WO2005089907A1 (en) Membrane for separating co2 and process for the production thereof
JP2879057B2 (ja) 二酸化炭素分離促進輸送膜
WO2020240522A1 (en) Guanidine-containing membranes and methods of using thereof
JP2000229219A (ja) 二酸化炭素の吸収剤
Roy et al. Poly (acrylamide-co-acrylic acid) hydrophilization of porous polypropylene membrane for dehumidification
WO2017086293A1 (ja) ガス回収装置、ガス回収方法、及び、半導体洗浄システム
Matsumoto et al. Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids
Patil et al. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review
WO2019130470A1 (ja) Co2除去方法及び装置
Blinova et al. Functionalized high performance polymer membranes for separation of carbon dioxide and methane
Erdni-Goryaev et al. New membrane materials based on crosslinked poly (ethylene glycols) and ionic liquids for separation of gas mixtures containing CO 2
JP2012210589A (ja) ガス分離膜
Kalmykov et al. Deoxygenation of CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors Using Composite Membranes
Kamiya et al. CO2 separation from air by nanoparticle-supported liquid membranes of amine and ionic liquid mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14377075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013746403

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147025262

Country of ref document: KR

Kind code of ref document: A