WO2013118564A1 - 板ガラス製造装置、及び板ガラス製造方法 - Google Patents

板ガラス製造装置、及び板ガラス製造方法 Download PDF

Info

Publication number
WO2013118564A1
WO2013118564A1 PCT/JP2013/050957 JP2013050957W WO2013118564A1 WO 2013118564 A1 WO2013118564 A1 WO 2013118564A1 JP 2013050957 W JP2013050957 W JP 2013050957W WO 2013118564 A1 WO2013118564 A1 WO 2013118564A1
Authority
WO
WIPO (PCT)
Prior art keywords
bathtub
plate glass
bottom wall
heat insulating
insulating member
Prior art date
Application number
PCT/JP2013/050957
Other languages
English (en)
French (fr)
Inventor
伊賀 元一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147021862A priority Critical patent/KR102051882B1/ko
Priority to CN201380008853.3A priority patent/CN104114505B/zh
Priority to JP2013557455A priority patent/JP6070576B2/ja
Publication of WO2013118564A1 publication Critical patent/WO2013118564A1/ja
Priority to US14/339,254 priority patent/US20140331717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices

Definitions

  • the present invention relates to a plate glass manufacturing apparatus and a plate glass manufacturing method.
  • the plate glass manufacturing apparatus includes a bathtub that accommodates molten metal (for example, molten tin), and flows molten glass continuously supplied onto the molten metal onto the molten metal to form a glass ribbon (for example, Patent Document 1). reference).
  • molten metal for example, molten tin
  • the formed glass ribbon is pulled up obliquely upward from the molten metal and sent to a slow cooling furnace.
  • the glass ribbon slowly cooled in the slow cooling furnace is cut into a predetermined size and shape by a cutting device to obtain a plate glass as a product.
  • the plate glass may be polished.
  • the bathtub is formed in a box shape opened upward and is composed of a plurality of bricks.
  • a heater for heating the glass ribbon and the molten metal is provided above the bathtub.
  • a cooler that cools the entire lower surface of the bathtub to a temperature equal to or lower than the melting point of the molten metal is provided below the bathtub in order to suppress the outflow of the molten metal from the joint (gap) between the bricks. Therefore, since the heat given by the heater is removed by the cooler, the energy use efficiency is poor.
  • This invention is made
  • a plate glass manufacturing apparatus comprising a bathtub for containing molten metal, and forming molten glass continuously supplied onto the molten metal on the molten metal to form a glass ribbon
  • the bathtub is formed of carbon or boron nitride.
  • the bathtub is made of carbon, and at least a part of the exposed portion of the surface of the bathtub is covered with an antioxidant film.
  • a heat insulating member including a side wall portion that surrounds the side of the bathtub and a bottom wall portion that is disposed below the bathtub.
  • the plate glass manufacturing method by the other aspect of this invention is the following.
  • a glass sheet manufacturing method comprising a step of flowing molten glass continuously supplied onto a molten metal in a bathtub to form a glass ribbon by flowing on the molten metal,
  • the bathtub is formed of carbon or boron nitride.
  • the bathtub is made of carbon, and at least a part of the exposed portion of the surface of the bathtub is covered with an antioxidant film.
  • a heat insulating member configured by a side wall portion that surrounds the side of the bathtub and a bottom wall portion that is disposed below the bathtub is disposed. It is preferable that
  • a space is formed between the bottom wall portion of the bathtub and the bottom wall portion of the heat insulating member.
  • a heating element is disposed in the space.
  • an airtight case composed of a side wall surrounding the side of the heat insulating member and a bottom wall covering the lower side of the heat insulating member is disposed outside the heat insulating member.
  • the plate glass is expressed in terms of mass% based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0-12%, MgO: 0-8%, CaO: 0-14.5%, SrO: 0-24%, BaO: 0-13.5%, ZrO 2 : 0-5%, MgO + CaO + SrO + BaO: It is preferably made of an alkali-free glass of 9 to 29.5%.
  • the plate glass is expressed in terms of mass% based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: It is preferably made of an alkali-free glass containing 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, and MgO + CaO + SrO + BaO: 9 to 18%.
  • a plate glass manufacturing apparatus and a plate glass manufacturing method with high energy use efficiency are provided.
  • FIG. 1 is a cross-sectional view showing a part of a glass sheet manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a connection mode between adjacent bottom wall blocks.
  • FIG. 3 is a cross-sectional view illustrating a connection mode between adjacent bottom wall blocks according to a first modification.
  • FIG. 4 is a cross-sectional view showing a connection mode between adjacent bottom wall blocks according to a second modification.
  • the upstream side in the conveyance direction of the glass ribbon is defined as the upstream side
  • the downstream side in the conveyance direction of the glass ribbon is defined as the downstream side.
  • FIG. 1 is a cross-sectional view showing a part of a plate glass manufacturing apparatus according to an embodiment of the present invention.
  • the plate glass manufacturing apparatus 10 includes a bathtub 21 that accommodates a molten metal (for example, molten tin) M, and flows the molten glass G1 continuously supplied on the molten metal M over the molten metal M to form a glass ribbon G2. To do.
  • the formed glass ribbon G2 is pulled up obliquely upward from the molten metal M and sent to a slow cooling furnace.
  • the glass ribbon slowly cooled in the slow cooling furnace is cut into a predetermined size and shape by a cutting device to obtain a plate glass as a product.
  • the plate glass may be polished.
  • the glass sheet manufacturing apparatus 10 further includes a ceiling 22 that covers the upper side of the bathtub 21.
  • the ceiling 22 is provided with a gas supply path 24 that supplies a reducing gas to a space between the ceiling 22 and the bathtub 21.
  • a heater 25 is inserted into the gas supply path 24, and a heat generating portion 25 a of the heater 25 is disposed above the bathtub 21.
  • the gas supply path 24 supplies reducing gas to the space between the bathtub 21 and the ceiling 22 in order to prevent oxidation of the molten metal M in the bathtub 21.
  • the reducing gas contains, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas.
  • the space between the bathtub 21 and the ceiling 22 is maintained at a pressure higher than the atmospheric pressure in order to prevent air from entering from the outside.
  • a plurality of heaters 25 are arranged at intervals in the flow direction and the width direction of the glass ribbon G2, for example.
  • the output of the heater 25 is controlled so that the temperature of the glass ribbon G2 becomes higher toward the upstream side in the flow direction of the glass ribbon G2.
  • the output of the heater 25 is controlled so that the thickness of the glass ribbon G2 is uniform in the width direction.
  • the plate glass manufacturing apparatus 10 is characterized by the lower structure 40.
  • the lower structure 40 includes a bathtub 21, a heat insulating member 41, a space forming member 42, a heating element 43, a case 44, a support member 45, and the like.
  • the bathtub 21 has a box shape opened upward, and includes a plurality of side wall blocks 26 and a plurality of bottom wall blocks 27.
  • Each side wall block 26 and each bottom wall block 27 are made of carbon (including graphite and amorphous carbon) or boron nitride (BN).
  • the bathtub 21 is formed with carbon or boron nitride (BN), the wettability with the molten metal M accommodated in the bathtub 21 is low compared with the case where it is formed with the conventional brick. . Therefore, since the molten metal M hardly flows out from the joint (gap) of the bathtub 21, a cooler for cooling the entire lower surface of the bathtub 21 to a temperature equal to or lower than the melting point of the molten metal M is unnecessary. Therefore, energy use efficiency is good.
  • BN boron nitride
  • the bathtub 21 When the bathtub 21 is formed of carbon, at least a part of the exposed portion (portion not in contact with the molten metal M) of the surface of the bathtub 21 may be covered with an antioxidant film in order to prevent the carbon from being burned out.
  • the antioxidant film may be a ceramic film such as silicon carbide (SiC) or silica (SiO 2 ).
  • SiC silicon carbide
  • SiO 2 silica
  • a thermal spraying method is used as a thermal spraying method.
  • FIG. 2 is a cross-sectional view showing a connection mode between adjacent bottom wall blocks.
  • connection aspect of the block 27 for bottom walls and the block 26 for side walls which are adjacent is the same, illustration is abbreviate
  • Adjacent bottom wall blocks 27A and 27B may be connected by bolts 28.
  • the bolt 28 passes through one bottom wall block 27A and is screwed to the other bottom wall block 27B.
  • the bolt 28 may be formed of the same carbon as the bottom wall blocks 27A and 27B.
  • the opposing surfaces 29A and 29B of the adjacent bottom wall blocks 27A and 27B are vertical planes, and may be in contact with each other.
  • a heat-resistant sealing member 31 that seals the gap may be disposed in order to reliably prevent the molten metal M from flowing out.
  • the heat resistant seal member 31 is formed of a material having high corrosion resistance against the molten metal M, and may be formed of a material that can be deformed during use. Specific examples include glass that softens at the operating temperature.
  • the heat-resistant sealing member 31 may be supported by the groove portions 32A and 32B formed on at least one (both in FIG. 2) of the opposing surfaces 29A and 29B of the adjacent bottom wall blocks 27A and 27B.
  • the heat insulating member 41 is disposed outside the bathtub 21. Unlike the bathtub 21, the heat insulating member 41 does not come into contact with the molten metal M, so that corrosion resistance to the molten metal M is not required.
  • a material of the heat insulating member 41 for example, a fibrous heat insulating material such as ceramic wool or glass wool having low thermal conductivity can be used.
  • the heat insulating member 41 has a box shape opened upward, and includes an annular side wall portion 41 a surrounding the side of the bathtub 21 and a bottom wall portion 41 b disposed below the bathtub 21.
  • the bathtub 21 can be efficiently heated by arranging the heat insulating member 41 outside the bathtub 21.
  • the thickness of the bottom wall portion 41b of the heat insulating member 41 may be such that the upstream portion 41c is thick and the downstream portion 41d is thin. Since heat dissipation proceeds in the downstream portion 41d, the flow distance of the glass ribbon G2 for reducing the temperature of the glass ribbon G2 to a temperature that can be pulled up from the molten metal M can be shortened.
  • the space forming member 42 forms a space S between the bottom wall portion 21 b of the bathtub 21 and the bottom wall portion 41 b of the heat insulating member 41 in order to suppress heat conduction from the bathtub 21 to the heat insulating member 41.
  • the annular side wall 21 a of the bathtub 21 is smaller than the annular side wall 41 a of the heat insulating member 41, and a space is also formed between the side wall 21 a of the bathtub 21 and the side wall 41 a of the heat insulating member 41.
  • the space forming member 42 may be fixed to the bottom wall portion 44b of the case 44 through the heat insulating member 41 as shown in FIG.
  • a plurality of space forming members 42 may be provided at intervals.
  • the space forming member 42 is disposed as a spacer between the bottom wall portion 41 b of the heat insulating member 41 and the bottom wall portion 21 b of the bathtub 21 when the heat insulating member 41 is a block-like sintered body and is hard. Good.
  • the space forming member 42 is loaded with the load of the bathtub 21 and the heat of the bathtub 21 is transmitted. Therefore, the space forming member 42 is formed of a material (for example, silicon carbide, heat resistant alloy, etc.) having high load bearing strength and heat resistance.
  • the space forming member 42 may be formed of a plurality of types of materials.
  • the upper portion of the space forming member 42 may be formed of silicon carbide, and the lower portion of the space forming member 42 may be formed of a heat resistant alloy.
  • the heating element 43 is configured by a heater or the like, and is disposed in the space S between the bottom wall portion 21 b of the bathtub 21 and the bottom wall portion 41 b of the heat insulating member 41.
  • the bathtub 21 can be efficiently heated from below.
  • a plurality of heating elements 43 may be arranged at intervals in the horizontal direction.
  • the output of each heating element 43 may be set to be higher toward the downstream side.
  • the case 44 has a box shape opened upward, is disposed outside the heat insulating member 41, and has an annular side wall 44 a that surrounds the side of the heat insulating member 41, and a bottom wall 44 b that covers the lower side of the heat insulating member 41. Consists of.
  • the case 44 has airtightness and suppresses oxidation of the molten metal M due to intrusion of outside air.
  • the case 44 is formed, for example, by joining together a plurality of metal plates (stainless steel plate or iron plate) by welding.
  • the heat insulating member 41 may be attached to the inside of the case 44.
  • the support member 45 is a columnar member that is fixed to the floor Fr and supports the case 44. Since the support member 45 is deprived of heat from the floor Fr, high heat resistance is not required.
  • the support member 45 is made of a material having a high load bearing strength. Examples of the material of the support member 45 include stainless steel (SUS) and cast iron.
  • molten glass G1 continuously supplied onto a molten metal (for example, molten tin) M in a bathtub 21 is caused to flow on the molten metal M to be formed into a glass ribbon G2.
  • the formed glass ribbon G2 is pulled up obliquely upward from the molten metal M and sent to a slow cooling furnace.
  • the glass ribbon slowly cooled in the slow cooling furnace is cut into a predetermined size and shape by a cutting device to obtain a plate glass as a product.
  • the plate glass may be polished.
  • the bathtub 21 is formed of carbon or boron nitride, the wettability with the molten metal M accommodated in the bathtub 21 is low as compared with the case where the bathtub 21 is formed of conventional bricks. Therefore, the molten metal M hardly flows out from the joint of the bathtub 21, and a cooler for cooling the entire lower surface of the bathtub 21 to a temperature equal to or lower than the melting point of the molten metal M is unnecessary. Therefore, energy use efficiency is good.
  • a heat insulating member 41 composed of an annular side wall portion 41 a surrounding the side of the bathtub 21 and a bottom wall portion 41 b covering the lower side of the bathtub 21 is arranged outside the bathtub 21. It's okay.
  • a space S may be formed between the bottom wall portion 21 b of the bathtub 21 and the bottom wall portion 41 b of the heat insulating member 41 in order to suppress heat conduction from the bathtub 21 to the heat insulating member 41.
  • the heating element 43 may be arranged in the space S.
  • the bathtub 21 can be efficiently heated from below.
  • a plurality of heating elements 43 may be arranged at intervals in the horizontal direction.
  • the output of each heating element 43 may be set to be higher toward the downstream side.
  • the heat insulating member 41 includes an annular side wall 44 a surrounding the side of the heat insulating member 41 and a bottom wall 44 b covering the lower side of the heat insulating member 41.
  • An airtight case 44 may be disposed. The oxidation of the molten metal M can be suppressed.
  • the case 44 is formed, for example, by joining together a plurality of metal plates by welding.
  • the heat insulating member 41 may be attached to the inside of the case 44.
  • Plate glass The kind of glass of plate glass is selected according to the use of plate glass.
  • alkali-free glass is used in the case of a glass substrate for LCD.
  • soda lime glass is used in the case of a window glass for a vehicle and a window glass for a building.
  • soda lime glass is used in the case of a window glass for a vehicle and a window glass for a building.
  • a cover glass for a display an alkali silicate glass that can be chemically strengthened is mainly used.
  • quartz glass having a low thermal expansion coefficient is mainly used.
  • the alkali-free glass is, for example, expressed by mass% based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, MgO + CaO + SrO + BaO: 9 to 29.5%.
  • the alkali-free glass may have a total content of alkali metal oxides of 0.1% or less.
  • the alkali-free glass is preferably expressed in terms of mass% based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8 %, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, and MgO + CaO + SrO + BaO: 9 to 18%.
  • the chemical composition of the plate glass is measured with a commercially available fluorescent X-ray analyzer (for example, ZSX100e, manufactured by Rigaku Corporation).
  • the opposing surfaces 29A and 29B of the adjacent bottom wall blocks 27A and 27B are vertical planes, whereas in this modification, a convex portion is formed on one of the opposing surfaces and a concave portion is formed on the other. Is different. Hereinafter, the difference will be mainly described.
  • FIG. 3 is a cross-sectional view showing a connection mode of adjacent bottom wall blocks according to the first modification, and corresponds to FIG.
  • the adjacent bottom wall blocks 27A and 27B are connected by inserting a convex portion 33A formed on one opposing surface 29A into a concave portion 34B formed on the other opposing surface 29B. Good. In this modification, the bolt 28 shown in FIG. 2 is unnecessary.
  • the opposing surfaces 29A and 29B of the adjacent bottom wall blocks 27A and 27B are each a vertical plane, whereas in this modification, the opposing surfaces 29A and 29B are different in that each has a horizontal portion. .
  • the difference will be mainly described.
  • FIG. 4 is a cross-sectional view showing a connection mode of adjacent bottom wall blocks according to the second modification, and corresponds to FIG.
  • the opposing surfaces 29A and 29B of the adjacent bottom wall blocks 27A and 27B may have horizontal portions 36A and 36B, respectively. Between the horizontal portions 36A and 36B facing each other, the outflow of the molten metal M due to gravity becomes gentle.
  • the heat resistant seal member 31 may be supported by the groove portion 37A formed in at least one of the horizontal portions 36A and 36B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、溶融金属を収容する浴槽を備え、前記溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させてガラスリボンに成形する板ガラス製造装置において、前記浴槽がカーボン又は窒化ホウ素で形成される板ガラス製造装置に関する。

Description

板ガラス製造装置、及び板ガラス製造方法
 本発明は、板ガラス製造装置、及び板ガラス製造方法に関する。
 板ガラス製造装置は、溶融金属(例えば溶融スズ)を収容する浴槽を備え、溶融金属上に連続的に供給される溶融ガラスを溶融金属上で流動させてガラスリボンに成形する(例えば、特許文献1参照)。成形されたガラスリボンは、溶融金属から斜め上方に引き上げられ、徐冷炉に送られる。徐冷炉内で徐冷されたガラスリボンは、切断装置によって所定の寸法形状に切断され、製品である板ガラスが得られる。板ガラスは研磨されていてもよい。
日本国特開2010-202507号公報
 浴槽は、上方に開放された箱状に形成され、複数のレンガで構成される。浴槽の上方には、ガラスリボンや溶融金属を加熱するヒータが設けられる。一方、浴槽の下方には、レンガ同士の間の目地(隙間)からの溶融金属の流出を抑制するため、溶融金属の融点以下の温度に浴槽の下面全体を冷却するクーラが設けられる。従って、ヒータが与えた熱をクーラで取り除くので、エネルギーの使用効率が悪かった。
 本発明は、上記課題に鑑みてなされたものであって、エネルギーの使用効率が良い板ガラス製造装置、及び板ガラス製造方法の提供を目的とする。
 上記課題を解決するため、本発明の一の態様による板ガラス製造装置は、
 溶融金属を収容する浴槽を備え、前記溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させてガラスリボンに成形する板ガラス製造装置において、
 前記浴槽がカーボン又は窒化ホウ素で形成される。
 本発明の一の態様による板ガラス製造装置において、前記浴槽はカーボンで形成され、前記浴槽の表面の露出部分の少なくとも一部は酸化防止膜で覆われていることが好ましい。
 本発明の一の態様による板ガラス製造装置において、前記浴槽の側方を囲む側壁部と、前記浴槽の下方に配置される底壁部とで構成される断熱部材を備えることが好ましい。
 前記浴槽の底壁部と前記断熱部材の底壁部との間に空間を形成する空間形成部材を備えることが好ましい。
 前記空間に配置される発熱体を備えることが好ましい。
 前記断熱部材の側方を囲む側壁部と、前記断熱部材の下方を覆う底壁部とで構成される気密性を有するケースを備えることが好ましい。
 また、本発明の他の態様による板ガラス製造方法は、
 浴槽内の溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させてガラスリボンに成形する工程を有する板ガラス製造方法であって、
 前記浴槽がカーボン又は窒化ホウ素で形成される。
 本発明の他の態様による板ガラス製造方法において、前記浴槽はカーボンで形成され、前記浴槽の表面の露出部分の少なくとも一部は酸化防止膜で覆われていることが好ましい。
 本発明の他の態様による板ガラス製造方法において、前記浴槽の外側には、前記浴槽の側方を囲む側壁部と、前記浴槽の下方に配置される底壁部とで構成される断熱部材が配置されていることが好ましい。
 前記浴槽の底壁部と前記断熱部材の底壁部との間に空間が形成されていることが好ましい。
 前記空間に発熱体が配置されていることが好ましい。
 前記断熱部材の外側には、前記断熱部材の側方を囲む側壁部と、前記断熱部材の下方を覆う底壁部とで構成される気密性を有するケースが配置されていることが好ましい。
 本発明の他の態様による板ガラス製造方法において、前記板ガラスは、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%を含有し、MgO+CaO+SrO+BaO:9~29.5%である無アルカリガラスからなることが好ましい。
 前記板ガラスは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%を含有し、MgO+CaO+SrO+BaO:9~18%である無アルカリガラスからなることが好ましい。
 本発明によれば、エネルギーの使用効率が良い板ガラス製造装置、及び板ガラス製造方法が提供される。
図1は、本発明の一実施形態による板ガラス製造装置の一部を示す断面図である。 図2は、隣り合う底壁用ブロック同士の連結態様を示す断面図である。 図3は、第1変形例による隣り合う底壁用ブロック同士の連結態様を示す断面図である。 図4は、第2変形例による隣り合う底壁用ブロック同士の連結態様を示す断面図である。
 以下、本発明を実施するための形態について図面を参照して説明する。なお、以下の図面において、同一のまたは対応する構成には、同一のまたは対応する符号を付して、説明を省略する。また、ガラスリボンの搬送方向上流側を上流側とし、ガラスリボンの搬送方向下流側を下流側として説明する。
 図1は本発明の一実施形態による板ガラス製造装置の一部を示す断面図である。
 板ガラス製造装置10は、溶融金属(例えば溶融スズ)Mを収容する浴槽21を備え、溶融金属M上に連続的に供給される溶融ガラスG1を溶融金属M上で流動させてガラスリボンG2に成形する。成形されたガラスリボンG2は、溶融金属Mから斜め上方に引き上げられ、徐冷炉に送られる。徐冷炉内で徐冷されたガラスリボンは、切断装置によって所定の寸法形状に切断され、製品である板ガラスが得られる。板ガラスは研磨されていてもよい。
 板ガラス製造装置10は、浴槽21の上方を覆う天井22を更に備える。天井22には、天井22と浴槽21との間の空間に還元性ガスを供給するガス供給路24が設けられている。また、ガス供給路24にはヒータ25が挿通されており、ヒータ25の発熱部25aが浴槽21の上方に配置されている。
 ガス供給路24は、浴槽21内の溶融金属Mの酸化を防止するため、浴槽21と天井22との間の空間に還元性ガスを供給する。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含んでいる。浴槽21と天井22との間の空間は、外部から大気が混入するのを防止するため、大気圧よりも高い気圧に保たれている。
 ヒータ25は、例えば、ガラスリボンG2の流動方向および幅方向に間隔をおいて複数配列されている。ヒータ25の出力は、ガラスリボンG2の流動方向上流側ほど、ガラスリボンG2の温度が高くなるように制御される。また、ヒータ25の出力は、ガラスリボンG2の厚さが幅方向に均一になるように制御される。
 板ガラス製造装置10は、下部構造40に特徴がある。以下、板ガラス製造装置10の下部構造40について説明する。下部構造40は、浴槽21、断熱部材41、空間形成部材42、発熱体43、ケース44、及び支持部材45等を含む。
 (浴槽)
 浴槽21は、上方に開放された箱状であって、複数の側壁用ブロック26、及び複数の底壁用ブロック27で構成される。各側壁用ブロック26及び各底壁用ブロック27は、カーボン(グラファイト、非晶質カーボンを含む)又は窒化ホウ素(BN)で形成される。
 このように、浴槽21は、カーボン又は窒化ホウ素(BN)で形成されているので、従来のレンガで形成される場合に比べて、浴槽21内に収容される溶融金属Mとの濡れ性が低い。よって、浴槽21の目地(隙間)から溶融金属Mが流出し難いので、溶融金属Mの融点以下の温度に浴槽21の下面全体を冷却するクーラが不要である。そのため、エネルギーの使用効率が良い。
 浴槽21がカーボンで形成される場合、カーボンの焼失を防止するため、浴槽21の表面の露出部分(溶融金属Mと接触していない部分)の少なくとも一部は酸化防止膜で覆われてよい。酸化防止膜は、炭化ケイ素(SiC)やシリカ(SiO)等のセラミックス膜であってよい。酸化防止膜の形成方法としては、例えば溶射法が用いられる。
 図2は、隣り合う底壁用ブロック同士の連結態様を示す断面図である。尚、隣り合う底壁用ブロック27と側壁用ブロック26との連結態様は同様であるので、図示を省略する。
 隣り合う底壁用ブロック27A、27Bは、ボルト28によって連結されてよい。ボルト28は、一方の底壁用ブロック27Aを貫通し、他方の底壁用ブロック27Bにねじ止めされる。ボルト28は、底壁用ブロック27A、27Bと同じカーボンで形成されてよい。
 隣り合う底壁用ブロック27A、27Bの対向面29A、29Bは、それぞれ、鉛直な平面であって、互いに接触してよい。
 隣り合う底壁用ブロック27A、27Bの間には、溶融金属Mの流出を確実に防止するため、隙間をシールする耐熱性シール部材31が配置されてよい。耐熱性シール部材31は、溶融金属Mに対する耐食性が高い材料で形成され、使用時に変形可能な材料で形成されてよい。具体例としては、使用温度で軟化するガラスが挙げられる。耐熱性シール部材31は、隣り合う底壁用ブロック27A、27Bの対向面29A、29Bの少なくとも一方(図2では両方)に形成される溝部32A、32Bに支持されてよい。
 (断熱部材)
 断熱部材41は、浴槽21の外側に配置される。断熱部材41は、浴槽21とは異なり、溶融金属Mと接触しないので、溶融金属Mに対する耐食性は要求されない。断熱部材41の材料としては、例えば熱伝導率の低いセラミックウール、ガラスウール等の繊維状の断熱材が使用可能である。
 断熱部材41は、上方に開放された箱状であって、浴槽21の側方を囲む環状の側壁部41a、及び浴槽21の下方に配置される底壁部41bで構成される。このように、浴槽21の外側に断熱部材41が配置されることによって、浴槽21を効率良く加熱することができる。
 断熱部材41の底壁部41bの厚さは、上流部分41cが厚く、下流部分41dが薄くてよい。下流部分41dにおいて放熱が進むので、ガラスリボンG2の温度を溶融金属Mから引き上げ可能な温度に低下するためのガラスリボンG2の流動距離を短縮することができる。
 (空間形成部材)
 空間形成部材42は、浴槽21から断熱部材41への熱伝導を抑えるため、浴槽21の底壁部21bと断熱部材41の底壁部41bとの間に空間Sを形成する。尚、浴槽21の環状の側壁部21aは断熱部材41の環状の側壁部41aよりも小さく、浴槽21の側壁部21aと断熱部材41の側壁部41aとの間にも空間が形成されている。
 空間形成部材42は、断熱部材41が繊維材料で形成され柔らかい場合、図1に示すように断熱部材41を貫通して、ケース44の底壁部44bに固定されてよい。空間形成部材42は、間隔をおいて複数設けられてよい。尚、空間形成部材42は、断熱部材41がブロック状の焼結体であって硬い場合、断熱部材41の底壁部41bと、浴槽21の底壁部21bとの間にスペーサとして配置されてよい。
 空間形成部材42には、浴槽21の荷重がかかると共に、浴槽21の熱が伝達する。そのため、空間形成部材42は、耐荷重強度及び耐熱性が高い材料(例えば、炭化ケイ素、耐熱合金等)で形成される。空間形成部材42は、複数種類の材料で形成されてもよく、例えば空間形成部材42の上部分が炭化ケイ素で形成され、空間形成部材42の下部分が耐熱合金で形成されてもよい。
 (発熱体)
 発熱体43は、ヒータ等で構成され、浴槽21の底壁部21bと断熱部材41の底壁部41bとの間の空間Sに配置される。浴槽21を下方から効率良く加熱することができる。
 発熱体43は、水平方向に間隔をおいて複数配列されてよい。各発熱体43の出力は、下流側ほど高くなるように設定されてよい。
 (ケース)
 ケース44は、上方に開放された箱状であって、断熱部材41の外側に配置され、断熱部材41の側方を囲む環状の側壁部44a、及び断熱部材41の下方を覆う底壁部44bで構成される。ケース44は、気密性を有し、外気の浸入による溶融金属Mの酸化を抑制する。ケース44は、例えば複数枚の金属板(ステンレス鋼板、又は鉄板等)を溶接で継ぎ合わせて形成される。ケース44の内側に断熱部材41が貼り付けられてよい。
 (支持部材)
 支持部材45は、床Frに固定され、ケース44を支持する柱状の部材である。支持部材45は、床Frから熱を奪われるので、高い耐熱性は要求されない。支持部材45は、耐荷重強度の高い材料で構成される。支持部材45の材料としては、例えばステンレス鋼(SUS)や鋳鉄等が挙げられる。
 (板ガラス製造方法)
 板ガラス製造方法は、図1に示すように、浴槽21内の溶融金属(例えば溶融スズ)M上に連続的に供給される溶融ガラスG1を溶融金属M上で流動させてガラスリボンG2に成形する工程を有する。成形されたガラスリボンG2は、溶融金属Mから斜め上方に引き上げられ、徐冷炉に送られる。徐冷炉内で徐冷されたガラスリボンは、切断装置によって所定の寸法形状に切断され、製品である板ガラスが得られる。板ガラスは研磨されていてもよい。
 浴槽21は、カーボン又は窒化ホウ素で形成されているので、従来のレンガで形成される場合に比べて、浴槽21内に収容される溶融金属Mとの濡れ性が低い。よって、浴槽21の目地から溶融金属Mが流出し難く、溶融金属Mの融点以下の温度に浴槽21の下面全体を冷却するクーラが不要である。そのため、エネルギーの使用効率が良い。
 浴槽21の外側には、熱の流出を抑制するため、浴槽21の側方を囲む環状の側壁部41aと、浴槽21の下方を覆う底壁部41bとで構成される断熱部材41が配置されてよい。浴槽21の底壁部21bと断熱部材41の底壁部41bとの間には、浴槽21から断熱部材41への熱伝導を抑えるため、空間Sが形成されてよい。
 空間Sには発熱体43が配置されてよい。浴槽21を下方から効率良く加熱することができる。発熱体43は、水平方向に間隔をおいて複数配列されてよい。各発熱体43の出力は、下流側ほど高くなるように設定されてよい。
 断熱部材41の外側には、外気(酸素)の混入を防止するため、断熱部材41の側方を囲む環状の側壁部44aと、断熱部材41の下方を覆う底壁部44bとで構成される気密性を有するケース44が配置されてよい。溶融金属Mの酸化を抑制することができる。ケース44は、例えば複数枚の金属板を溶接で継ぎ合わせて形成される。ケース44の内側に断熱部材41が貼り付けられてよい。
 (板ガラス)
 板ガラスのガラスの種類は、板ガラスの用途に応じて選択される。例えばLCD用のガラス基板の場合、無アルカリガラスが用いられる。また、PDP用のガラス基板の場合、車両用の窓ガラス、建築物用の窓ガララスの場合、ソーダライムガラスが用いられる。ディスプレイ用のカバーガラスの場合、化学強化可能なアルカリシリケートガラスが主に用いられる。フォトマスク用の基板の場合、熱膨張係数の低い石英ガラスが主に用いられる。
 無アルカリガラスは、例えば、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%を含有し、MgO+CaO+SrO+BaO:9~29.5%である。無アルカリガラスは、アルカリ金属酸化物の含有量の合量が0.1%以下であってよい。
 無アルカリガラスは、好ましくは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%を含有し、MgO+CaO+SrO+BaO:9~18%である。
 板ガラスの化学組成は、市販の蛍光X線分析装置(例えば、理学電気工業株式会社製、ZSX100e)で測定される。
 [第1変形例]
 上記実施形態では隣り合う底壁用ブロック27A、27Bの対向面29A、29Bがそれぞれ鉛直な平面であるのに対し、本変形例では対向面の一方に凸部が形成され、他方に凹部が形成されている点で相違する。以下、相違点を中心に説明する。
 図3は、第1変形例による隣り合う底壁用ブロックの連結態様を示す断面図であって、図2に相当する図である。
 隣り合う底壁用ブロック27A、27Bは、図3に示すように、一方の対向面29Aに形成される凸部33Aを、他方の対向面29Bに形成される凹部34Bに挿入して連結されてよい。本変形例では、図2に示すボルト28が不要である。
 [第2変形例]
 上記実施形態では隣り合う底壁用ブロック27A、27Bの対向面29A、29Bがそれぞれ鉛直な平面であるのに対し、本変形例では対向面29A、29Bがそれぞれ水平な部分を有する点で相違する。以下、相違点を中心に説明する。
 図4は、第2変形例による隣り合う底壁用ブロックの連結態様を示す断面図であって、図2に相当する図である。
 隣り合う底壁用ブロック27A、27Bの対向面29A、29Bは、それぞれ、水平な部分36A、36Bを有してよい。互いに対向する水平な部分36A、36Bの間では、重力による溶融金属Mの流出が緩やかになる。この場合、耐熱性シール部材31は、水平な部分36A、36Bの少なくとも一方に形成される溝部37Aに支持されてよい。
 以上、本発明の実施形態及びその変形例について説明したが、本発明は、上記の実施形態等に制限されることはない。本発明の範囲を逸脱することなく、上記の実施形態等に種々の変形及び置換を加えることができる。
 本出願は、2012年2月8日出願の日本特許出願2012-024752に基づくものであり、その内容はここに参照として取り込まれる。
10 板ガラス製造装置
21 浴槽
21a 浴槽の側壁部
21b 浴槽の底壁部
26 側壁用ブロック
27 底壁用ブロック
41 断熱部材
41a 断熱部材の側壁部
41b 断熱部材の底壁部
42 空間形成部材
43 発熱体
44 ケース
44a ケースの側壁部
44b ケースの底壁部
G1 溶融ガラス
G2 ガラスリボン
M  溶融金属
S  空間

Claims (14)

  1.  溶融金属を収容する浴槽を備え、前記溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させてガラスリボンに成形する板ガラス製造装置において、
     前記浴槽がカーボン又は窒化ホウ素で形成される板ガラス製造装置。
  2.  前記浴槽はカーボンで形成され、前記浴槽の表面の露出部分の少なくとも一部は酸化防止膜で覆われている請求項1に記載の板ガラス製造装置。
  3.  前記浴槽の側方を囲む側壁部と、前記浴槽の下方に配置される底壁部とで構成される断熱部材を備える請求項1又は2に記載の板ガラス製造装置。
  4.  前記浴槽の底壁部と前記断熱部材の底壁部との間に空間を形成する空間形成部材を備える請求項3に記載の板ガラス製造装置。
  5.  前記空間に配置される発熱体を備える請求項4に記載の板ガラス製造装置。
  6.  前記断熱部材の側方を囲む側壁部と、前記断熱部材の下方を覆う底壁部とで構成される気密性を有するケースを備える請求項3~5のいずれか1項に記載の板ガラス製造装置。
  7.  浴槽内の溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させてガラスリボンに成形する工程を有する板ガラス製造方法であって、
     前記浴槽がカーボン又は窒化ホウ素で形成される板ガラス製造方法。
  8.  前記浴槽はカーボンで形成され、前記浴槽の表面の露出部分の少なくとも一部は酸化防止膜で覆われている請求項7に記載の板ガラス製造方法。
  9.  前記浴槽の外側には、前記浴槽の側方を囲む側壁部と、前記浴槽の下方に配置される底壁部とで構成される断熱部材が配置されている請求項7又は8に記載の板ガラス製造方法。
  10.  前記浴槽の底壁部と前記断熱部材の底壁部との間に空間が形成されている請求項9に記載の板ガラス製造方法。
  11.  前記空間に発熱体が配置されている請求項10に記載の板ガラス製造方法。
  12.  前記断熱部材の外側には、前記断熱部材の側方を囲む側壁部と、前記断熱部材の下方を覆う底壁部とで構成される気密性を有するケースが配置されている請求項9~11のいずれか1項に記載の板ガラス製造方法。
  13.  前記板ガラスは、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%を含有し、MgO+CaO+SrO+BaO:9~29.5%である無アルカリガラスからなる請求項7~12のいずれか1項に記載の板ガラス製造方法。
  14.  前記板ガラスは、酸化物基準の質量%表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%を含有し、MgO+CaO+SrO+BaO:9~18%である無アルカリガラスからなる請求項13に記載の板ガラス製造方法。
PCT/JP2013/050957 2012-02-08 2013-01-18 板ガラス製造装置、及び板ガラス製造方法 WO2013118564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021862A KR102051882B1 (ko) 2012-02-08 2013-01-18 판유리 제조 장치 및 판유리 제조 방법
CN201380008853.3A CN104114505B (zh) 2012-02-08 2013-01-18 平板玻璃制造装置和平板玻璃制造方法
JP2013557455A JP6070576B2 (ja) 2012-02-08 2013-01-18 板ガラス製造装置、及び板ガラス製造方法
US14/339,254 US20140331717A1 (en) 2012-02-08 2014-07-23 Plate glass production device, and plate glass production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-024752 2012-02-08
JP2012024752 2012-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/339,254 Continuation US20140331717A1 (en) 2012-02-08 2014-07-23 Plate glass production device, and plate glass production method

Publications (1)

Publication Number Publication Date
WO2013118564A1 true WO2013118564A1 (ja) 2013-08-15

Family

ID=48947333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050957 WO2013118564A1 (ja) 2012-02-08 2013-01-18 板ガラス製造装置、及び板ガラス製造方法

Country Status (6)

Country Link
US (1) US20140331717A1 (ja)
JP (1) JP6070576B2 (ja)
KR (1) KR102051882B1 (ja)
CN (1) CN104114505B (ja)
TW (1) TW201332911A (ja)
WO (1) WO2013118564A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945779B1 (ja) * 1968-10-04 1974-12-06
JPH1072237A (ja) * 1996-06-03 1998-03-17 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JP2006193402A (ja) * 2004-04-07 2006-07-27 Asahi Glass Co Ltd 板ガラスの製造装置及び製造方法
JP2011219348A (ja) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd ガラス板製造装置、及びガラス板製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584475A (en) * 1967-04-14 1971-06-15 Ppg Industries Inc Float glass tank with a particulate bottom covering
US3520669A (en) * 1967-07-14 1970-07-14 Ford Motor Co Method of and chamber for the manufacture of float glass
LU57195A1 (ja) * 1968-10-30 1970-05-04
GB2086878B (en) * 1980-10-27 1984-05-10 Central Glass Co Ltd Method of forming thin sheet glass by float process
CN1096770A (zh) * 1993-06-21 1994-12-28 秦皇岛玻璃研究院 生产1.5~19mm浮法玻璃的成型方法及装置
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
CN1942410B (zh) * 2004-04-07 2010-07-21 旭硝子株式会社 平板玻璃的制造装置及制造方法
JP4047848B2 (ja) * 2004-09-29 2008-02-13 日本バイリーン株式会社 不織布の製造方法
JP4900773B2 (ja) * 2005-11-25 2012-03-21 旭硝子株式会社 フロートガラスの製造装置及びその方法
KR101347775B1 (ko) 2009-03-03 2014-01-07 주식회사 엘지화학 유리판 제조용 플로트 배스 시스템
CN201850218U (zh) * 2010-11-11 2011-06-01 河北东旭投资集团有限公司 一种pdp浮法玻璃窑炉池底保温装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945779B1 (ja) * 1968-10-04 1974-12-06
JPH1072237A (ja) * 1996-06-03 1998-03-17 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JP2006193402A (ja) * 2004-04-07 2006-07-27 Asahi Glass Co Ltd 板ガラスの製造装置及び製造方法
JP2011219348A (ja) * 2010-03-26 2011-11-04 Nippon Electric Glass Co Ltd ガラス板製造装置、及びガラス板製造方法

Also Published As

Publication number Publication date
CN104114505A (zh) 2014-10-22
KR20140130115A (ko) 2014-11-07
JP6070576B2 (ja) 2017-02-01
KR102051882B1 (ko) 2019-12-04
JPWO2013118564A1 (ja) 2015-05-11
US20140331717A1 (en) 2014-11-13
TW201332911A (zh) 2013-08-16
TWI560157B (ja) 2016-12-01
CN104114505B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
US8925353B2 (en) Process and system for fining glass
TW201034988A (en) Float bath system for manufacturing float glass
WO2015093432A1 (ja) フロートガラス製造装置、およびフロートガラス製造方法
JP2020525748A (ja) 燃焼排気からの熱を用いて燃焼反応物を予熱するための放射復熱器を利用する統合熱回収を有する炉
WO2006085552A1 (ja) フロートバス及びフロート成形方法
JP2022104815A (ja) 熱交換装置によって形成される管路ケーシングを有する高温流体輸送管路、適切な熱交換装置及び熱交換方法
JP6070576B2 (ja) 板ガラス製造装置、及び板ガラス製造方法
JP2015105216A (ja) フロートガラス製造装置、およびフロートガラス製造方法
WO2014091814A1 (ja) 板ガラスの製造方法、および板ガラスの製造装置
WO2005063635A1 (ja) フロートバスおよびフロート成形方法
AR000122A1 (es) Procedimiento para producir una masa refractaria silicea cristalina y ladrillo refractario producidopor dicho procedimiento
WO2021117618A1 (ja) 溶融ガラスの輸送装置、ガラス物品の製造装置、及びガラス物品の製造方法
WO2013145922A1 (ja) ガラス板の製造方法
WO2013024649A1 (ja) フロートガラス製造装置、及び、これを用いたフロートガラス製造方法
JP5660622B2 (ja) ガラス板の製造装置及び方法
WO2022270555A1 (ja) ガラス物品の製造装置及び製造方法
CN113548787A (zh) 玻璃熔化炉、玻璃制造装置和玻璃制造方法
KR102153286B1 (ko) 유리판의 제조 장치 및 유리판의 제조 방법
JP2024067327A (ja) フロートガラス製造装置及びフロートガラスの製造方法
WO2015037275A1 (ja) フロートガラス製造装置およびそれを用いたフロートガラス製造方法
WO2024048298A1 (ja) ガラス物品の製造装置及び製造方法
JP2015134691A (ja) フロートガラス製造装置、およびフロートガラス製造方法
JP2015098425A (ja) ハンガー組立体およびそれを備えたフロート板ガラスの製造装置
JP2021151946A (ja) フロートガラス製造装置、及びフロートガラス製造方法
US3526493A (en) Glass melting furnace with insulating roof structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557455

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021862

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747206

Country of ref document: EP

Kind code of ref document: A1