WO2013118471A1 - 投写用光学系および投写型表示装置 - Google Patents

投写用光学系および投写型表示装置 Download PDF

Info

Publication number
WO2013118471A1
WO2013118471A1 PCT/JP2013/000520 JP2013000520W WO2013118471A1 WO 2013118471 A1 WO2013118471 A1 WO 2013118471A1 JP 2013000520 W JP2013000520 W JP 2013000520W WO 2013118471 A1 WO2013118471 A1 WO 2013118471A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection optical
lens group
lens
projection
Prior art date
Application number
PCT/JP2013/000520
Other languages
English (en)
French (fr)
Inventor
永利 由紀子
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201390000250.4U priority Critical patent/CN204065540U/zh
Publication of WO2013118471A1 publication Critical patent/WO2013118471A1/ja
Priority to US14/456,362 priority patent/US9001429B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto

Definitions

  • the present invention relates to a projection optical system and a projection display device, and more particularly to a projection optical system considering temperature compensation and a projection display device equipped with the projection optical system.
  • a projection display device that enlarges and projects an image displayed on a light valve during a presentation or the like has been used.
  • a transmissive liquid crystal display element As the light valve, a transmissive liquid crystal display element, a reflective liquid crystal display element, DMD (Digital Micromirror Device: registered trademark), and the like are known.
  • DMD Digital Micromirror Device: registered trademark
  • a projection display device often uses a high-output light source, which causes a temperature change in the optical system.
  • high-definition has progressed in the projection display apparatus due to the progress of the light valve, and the focus shift due to the temperature change in the optical system has become more conspicuous.
  • a large Abbe number material for example, a material with an Abbe number of 75 or more
  • Patent Documents 1 to 3 below are known as conventional techniques related to the projection optical system related to the correction of the focus shift caused by the temperature change.
  • anomalous dispersion glass having an Abbe number of 70 or more is used as a positive lens and a negative lens, and each lens is formed as a cemented lens. Describes a technique for canceling out of focus position shift.
  • Japanese Patent Application Laid-Open No. 2004-259542 discloses a projection in which a shift in focus position due to a temperature change of an anomalous dispersion lens is offset by a movement amount of the anomalous dispersion lens due to a temperature change of a lens barrel including a lens group including the anomalous dispersion lens.
  • a lens device is described.
  • Patent Document 3 at least a part of the positive lens group on the light source side is supported by a plurality of members having different linear expansion coefficients, and the lens is moved in the optical axis direction by a difference in expansion and contraction due to temperature changes of the plurality of members.
  • a technique for correcting a change in an object image distance due to a change in temperature by moving the lens to the position is described.
  • the present invention has been made in view of the above circumstances, and is capable of properly correcting a shift in focus position due to a temperature change while suppressing an increase in size of the apparatus, and capable of maintaining high optical performance even after correction. It is another object of the present invention to provide a projection display device including such a projection optical system.
  • the correction lens group including a part of the lens group of the projection optical system corrects the focus position shift due to the temperature change. It is configured to move in the optical axis direction, and satisfies the following conditional expressions (1) and (2).
  • ⁇ Bf is the amount of movement of the focus position on the reduction side when the correction lens group is moved fw / 100
  • fw is the focal length of the entire system
  • ⁇ At is the amount of change in the tangential component of astigmatism at the maximum field angle when the correction lens unit is moved by fw / 100
  • Im ⁇ is the maximum effective image circle diameter on the reduction side
  • ⁇ Bf, fw, and ⁇ At are at the wide angle end when the projection optical system is a variable magnification optical system.
  • the projection optical system of the present invention it is preferable that the following conditional expression (3) is satisfied, and it is more preferable that the following conditional expression (3 ′) is satisfied.
  • D is the distance on the optical axis from the magnifying side focal position of the optical system that combines the correction lens group to the lens on the most reduced side of the entire system, to the lens surface on the magnifying side of the correction lens group
  • fpr is the focal length of the optical system that combines the correction lens group and the lens on the most reduced side of the entire system.
  • D and fpr are at the wide angle end.
  • the projection optical system of the present invention it is preferable that the following conditional expression (4) is satisfied, and it is more preferable that the following conditional expression (4 ′) is satisfied.
  • L is the distance on the optical axis from the most enlarged lens surface to the most reduced lens surface in the entire system
  • dd is the sum of the enlargement side lens surface interval and the reduction side lens surface interval of the correction lens group
  • the projection optical system is a variable magnification optical system
  • L is the maximum value of the distance on the optical axis from the most enlarged lens surface to the most reduced lens surface in the entire system
  • dd is the minimum value of the sum of the magnification side lens surface interval and the reduction side lens surface interval of the correction lens group.
  • the projection optical system of the present invention it is preferable to include three or more positive lenses having an Abbe number of 75 or more with respect to the d-line.
  • the “lens group” and the “correction lens group” are not necessarily composed of a plurality of lenses but also include those composed of only one lens.
  • the correction lens group can be constituted by a single lens.
  • the correction lens group does not move during either zooming or focusing.
  • the projection display device has been described above as a light source, a light valve that receives light from the light source, and a projection optical system that projects an optical image by light modulated by the light valve onto a screen.
  • the projection optical system according to the present invention is provided.
  • the “enlargement side” means the projection side (screen side), and the screen side is also referred to as the enlargement side for the sake of convenience when performing reduced projection.
  • the “reduction side” means the original image display area side (light valve side), and the light valve side is also referred to as the reduction side for the sake of convenience when performing reduced projection.
  • the reduction side is telecentric
  • the bisector of the upper maximum ray and the lower maximum ray is parallel to the optical axis in the cross section of the light beam condensed at an arbitrary point on the reduction side image plane.
  • the case where it is completely telecentric that is, the case where the bisector is completely parallel to the optical axis, and includes cases where there are some errors. means.
  • the case where there is a slight error is a case where the inclination of the bisector with respect to the optical axis is within a range of ⁇ 3 °.
  • the “Im ⁇ ” can be obtained, for example, according to the specifications of the projection optical system and the specifications of the apparatus on which the projection optical system is mounted.
  • the projection optical system of the present invention is configured to correct a shift of the focus position due to a temperature change by moving a part of the lens group as a correction lens group, it is possible to prevent the apparatus from becoming large. .
  • the projection optical system of the present invention is configured so as to satisfy the conditional expressions (1) and (2), it is possible to satisfactorily correct the focus position shift while suppressing an increase in the size of the apparatus. It is possible to maintain high optical performance even after correction.
  • the projection display device includes the projection optical system according to the present invention, a compact configuration is possible, and a good projection image can be obtained even when a temperature change occurs. .
  • FIGS. 6A to 6P are graphs showing aberrations of the projection optical system according to Example 1 of the present invention.
  • FIGS. 7A to 7P are diagrams showing aberrations of the projection optical system according to Example 2 of the present invention.
  • FIGS. 9A to 9D are aberration diagrams of the projection optical system according to Example 4 of the present invention.
  • 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention. Schematic configuration diagram of a projection display device according to another embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing a configuration example of a projection optical system according to an embodiment of the present invention.
  • the projection optical system shown in FIG. 1 includes lenses L1 to L17 arranged in order from the enlargement side, and a diaphragm 3 is disposed between the lens L11 and the lens L12.
  • the image display surface 1 of the light valve is also illustrated on the assumption that the left side of the drawing is an enlargement side and the right side is a reduction side and is mounted on a projection display device.
  • the projection optical system shown in FIG. 1 is a zoom lens, and FIG. 1 shows the lens configuration at the wide-angle end.
  • the projection optical system of the present invention is not limited to a zoom lens, and can be applied to a varifocal lens and a fixed focus optical system.
  • the projection optical system of the present embodiment is configured so that the reduction side is telecentric.
  • the projection optical system of the present embodiment is configured such that a correction lens group including a part of the lens groups moves in the optical axis direction in order to correct a focus position shift due to a temperature change.
  • the entire lens system is not moved, but only a part of the lens groups is moved, so that the enlargement of the apparatus can be prevented.
  • a lens is supported by combining a plurality of members having different linear expansion coefficients as described in Patent Document 3, for example, and the expansion and contraction due to temperature changes thereof.
  • a lens that moves the lens in the optical axis direction due to the difference or another known method can be used.
  • the example shown in FIG. 1 uses a lens L12 that is a positive single lens as the correction lens group Gp.
  • the correction lens group of the present invention may be a positive lens group or a negative lens group, and may be composed of a plurality of lenses.
  • This projection optical system preferably satisfies the following conditional expression (1).
  • ⁇ Bf is the amount of movement of the focus position on the reduction side when the correction lens group is moved fw / 100
  • fw is the focal length of the entire system.
  • ⁇ Bf and fw are at the wide angle end.
  • conditional expression (1) If the lower limit of conditional expression (1) is not satisfied, the amount by which the correction lens group Gp is moved for correction increases, and the system cannot be made compact. If the upper limit of the conditional expression (1) is not satisfied, the sensitivity of the correction lens group Gp is increased, and it is difficult to perform good correction. By satisfying conditional expression (1), it is possible to satisfactorily correct the shift of the focus position at the time of temperature change while suppressing the enlargement of the apparatus.
  • This projection optical system preferably satisfies the following conditional expression (2).
  • ⁇ Bf is the amount of movement of the focus position on the reduction side when the correction lens group is moved fw / 100
  • fw is the focal length of the entire system
  • ⁇ At is the amount of change in the tangential component of astigmatism at the maximum field angle when the correction lens group is moved by fw / 100
  • Im ⁇ is the maximum effective image circle diameter on the reduction side
  • ⁇ Bf, fw, and ⁇ At are at the wide angle end when the projection optical system is a variable magnification optical system.
  • conditional expression (2) If the lower limit of the conditional expression (2) is not satisfied, the field curvature at the periphery of the imaging region when the correction lens group Gp is moved is greatly deteriorated, so that the performance of the corrected optical system is kept good. Becomes difficult. By satisfying the conditional expression (2), it is possible to keep the performance of the corrected optical system good.
  • This projection optical system preferably satisfies the following conditional expression (3).
  • D is the distance on the optical axis from the magnifying side focal position of the optical system that combines the correction lens group to the lens on the most reduced side of the entire system, to the lens surface on the magnifying side of the correction lens group
  • fpr is the focal length of the optical system that combines the correction lens group and the lens on the most reduced side of the entire system.
  • D and fpr are at the wide angle end.
  • FIG. 1 shows an optical system obtained by synthesizing the correction lens group Gp to the most reduced lens in the entire system as a rear lens group Gs.
  • D corresponds to the front focus of the rear lens group Gs.
  • fpr corresponds to the focal length of the rear lens group Gs.
  • This projection optical system preferably satisfies the following conditional expression (4). dd / L> 0.05 (4)
  • L is the distance on the optical axis from the most enlarged lens surface to the most reduced lens surface in the entire system
  • dd is the sum of the enlargement side lens surface interval and the reduction side lens surface interval of the correction lens group
  • L is the maximum value of the distance on the optical axis from the most enlarged lens surface to the most reduced lens surface in the entire system
  • dd is the minimum value of the sum of the magnification side lens surface interval and the reduction side lens surface interval of the correction lens group.
  • the enlargement side lens surface interval of the correction lens group Gp is the surface interval on the optical axis between the correction lens group Gp and the lens adjacent to the correction lens group Gp on the enlargement side, and in the example shown in FIG.
  • the reduction-side lens surface interval of the correction lens group Gp is the surface interval on the optical axis between the correction lens group Gp and the lens adjacent to the correction lens group Gp on the reduction side. In the example shown in FIG.
  • the projection optical system of the present embodiment satisfies the following conditional expressions (1 ′) to (4 ′) instead of the conditional expressions (1) to (4).
  • the projection optical system of the present embodiment includes three or more positive lenses having an Abbe number of 75 or more with respect to the d-line. By doing so, it is possible to correct chromatic aberration satisfactorily, and it is possible to deal with a light valve that has advanced in definition.
  • the correction lens group Gp is preferably composed of a single lens or a set of cemented lenses in order to simplify the apparatus configuration and reduce the size.
  • the correction lens group Gp is composed of a single lens, the load on the drive system can be reduced, which is advantageous for further downsizing.
  • the bonding agent may be deteriorated by strong light if the correction lens group Gp has a cemented lens.
  • such a problem can be avoided when the correction lens group Gp is composed of a single lens.
  • the correction lens group Gp does not move during either zooming or focusing.
  • difference by a temperature change can be performed with a simple structure, and it can contribute to size reduction and cost reduction.
  • FIG. 2 is a lens configuration diagram of the projection optical system according to the first embodiment.
  • the projection optical system of Example 1 is a zoom lens in which a first lens group G1, a second lens group G2, a third lens group G3, and a fourth lens group G4 are arranged in order from the magnification side. is there.
  • the first lens group G1 and the fourth lens group G4 are fixed so that the second lens group G2 and the third lens group G3 move to the enlargement side when zooming from the wide angle end to the telephoto end. It is configured.
  • FIG. 2 the lens arrangement at the wide-angle end and the telephoto end is shown in the upper and lower stages, respectively, and an approximate movement direction of the lens group that moves when changing from the wide-angle end to the telephoto end is indicated by an arrow between the upper and lower stages. Show.
  • the first lens group G1 includes lenses L1 to L7 in order from the enlargement side.
  • the second lens group G2 includes lenses L8 to L10 arranged in order from the magnification side.
  • the third lens group G3 includes a lens L11.
  • the fourth lens group G4 includes a stop 3, lenses L12 to L17, in order from the enlargement side.
  • Table 1 shows lens data of the projection optical system of Example 1.
  • the surface of the component on the most enlarged side is the first, and the surface number of the component is numbered so as to increase sequentially toward the reduction side.
  • I 1, 2, 3,...)
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the optical axis between the i-th surface and the i + 1-th surface.
  • the refractive index with respect to (wavelength 587.6 nm) is shown, and the ⁇ dj column shows the Abbe number of the j-th component with respect to the d-line.
  • the sign of the radius of curvature is positive when the surface shape is convex on the enlargement side and negative when the surface shape is convex on the reduction side.
  • the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the distance between the third lens group G3 and the fourth lens group G4 change during zooming. Yes, (Variable 1), (Variable 2), and (Variable 3) are respectively entered in the surface spacing columns corresponding to these.
  • Table 1 (B) shows the focal length of the entire projection optical system of Example 1, the zoom ratio at each focal length, the above (variable 1), (variable 2), (variable 3), and F number. Fno. Indicates the value of.
  • the values in Table 1 are standardized so that the focal length of the entire system at the wide-angle end is 20.00, and the focal length of the entire system at the telephoto end is 29.37.
  • the values in Table 1 are those when the projection distance is 2240.
  • the numerical values in the following tables are rounded to a predetermined digit.
  • the correction lens group Gp can be made up of only the lens L12, or can be made up of only the lens L13.
  • the lens L12 is a positive single lens
  • the lens L13 is a negative single lens.
  • Tables 5 and 6 below show the corresponding values of the conditional expressions (1) to (4) for the case where the correction lens group Gp is only the lens L12 and only the lens L13 in the projection optical system of Example 1. Indicates the associated value. Note that the projection optical system of Example 1 is configured so that both L12 and L13 do not move during both zooming and focusing.
  • FIGS. 6A to 6D show aberration diagrams of spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the wide angle end of the projection optical system according to the first embodiment. .
  • the zoom ratio of the projection optical system of Example 1 is 1.20 times, 1.35 times, and 1.47 times
  • the respective aberration diagrams are shown in FIGS. 6 (E) to 6 (H).
  • “ ⁇ 1.20”, “ ⁇ 1.35”, and “ ⁇ 1.47” described in FIG. 6 mean the zoom ratio.
  • the aberration diagrams in FIGS. 6A to 6P are based on the d-line, but in the spherical aberration diagram, the F-line (wavelength wavelength 486.1 nm) and the C-line (wavelength 656.3 nm). ) Also shows aberrations, and the lateral chromatic aberration diagram shows aberrations related to the F-line and C-line.
  • the astigmatism diagram the aberrations in the sagittal direction and the tangential direction are indicated by solid lines and broken lines.
  • Fno Described in the spherical aberration diagram. Means F number, and ⁇ described in other aberration diagrams means half angle of view.
  • the aberration diagrams in FIGS. 6A to 6P are obtained when the projection distance is 2240.
  • FIG. 3 is a lens configuration diagram of the projection optical system according to the second embodiment.
  • the projection optical system of Example 2 is a zoom lens in which a first lens group G1, a second lens group G2, a third lens group G3, and a fourth lens group G4 are arranged in order from the enlargement side. is there.
  • the first lens group G1 and the fourth lens group G4 are fixed so that the second lens group G2 and the third lens group G3 move to the enlargement side when zooming from the wide angle end to the telephoto end. It is configured.
  • the first lens group G1 includes lenses L1 to L7 in order from the enlargement side.
  • the second lens group G2 includes a lens L8 and a lens L9 arranged in order from the magnification side.
  • the third lens group G3 includes a lens L10 and a lens L11 in order from the magnification side.
  • the fourth lens group G4 includes a stop 3, lenses L12 to L17, in order from the enlargement side.
  • Table 2 shows lens data of the projection optical system of Example 2.
  • the values in Table 2 are standardized so that the focal length of the entire system at the wide-angle end is 20.00, and the focal length of the entire system at the telephoto end is 29.41.
  • FIGS. 7A to 7P show aberration diagrams of the projection optical system of Example 2.
  • FIG. The data shown in Table 2 and FIGS. 7A to 7P are obtained when the projection distance is 2240.
  • the correction lens group Gp can be made up of only the lens L12, or can be made up of only the lens L13.
  • the lens L12 is a positive single lens
  • the lens L13 is a negative single lens.
  • Tables 5 and 6 below show the corresponding values of the conditional expressions (1) to (4) when the correction lens group Gp is only the lens L12 and only the lens L13 in the projection optical system of Example 2. Indicates the associated value. Note that the projection optical system of Example 2 is configured so that both L12 and L13 do not move during both zooming and focusing.
  • FIG. 4 is a lens configuration diagram of the projection optical system according to the third embodiment.
  • the first lens group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are arranged in order from the enlargement side.
  • This is a zoom lens.
  • the first lens group G1 and the fifth lens group G5 are fixed, and the second lens group G2, the third lens group G3, and the fourth lens group G4 are enlarged when zooming from the wide angle end to the telephoto end. It is configured to move to the side.
  • FIG. 4 shows an example in which the glass block 2 assuming a filter, a prism, or the like used in the color synthesis unit or the illumination light separation unit is arranged on the reduction side of the fifth lens group G5.
  • the first lens group G1 includes lenses L1 to L5 arranged in order from the enlargement side.
  • the second lens group G2 includes a lens L6 and a lens L7 in order from the magnification side.
  • the third lens group G3 includes a lens L8 and a lens L9 arranged in order from the enlargement side.
  • the fourth lens group G4 includes a lens L10 and a lens L11 arranged in order from the enlargement side.
  • the fifth lens group G5 includes an aperture 3, and lenses L12 to L17 in order from the enlargement side.
  • Table 3 shows lens data of the projection optical system of Example 3.
  • the values in Table 3 are standardized so that the focal length of the entire system at the wide-angle end is 20.00, and the focal length of the entire system at the telephoto end is 34.91.
  • FIGS. 8A to 8P show aberration diagrams of the projection optical system of Example 3.
  • FIG. The data shown in Table 3 and FIGS. 8A to 8P are obtained when the projection distance is 9940.
  • the correction lens group Gp can be made up of only the lens L12, or can be made up of only the lens L13.
  • the lens L12 is a positive single lens
  • the lens L13 is a negative single lens.
  • Tables 5 and 6 below show the corresponding values of the conditional expressions (1) to (4) when the correction lens group Gp is only the lens L12 and only the lens L13 in the projection optical system of Example 3. Indicates the associated value. Note that the projection optical system of Example 3 is configured so that neither L12 nor L13 moves during either zooming or focusing.
  • FIG. 4 is a lens configuration diagram of the projection optical system of the projection optical system according to the fourth embodiment.
  • the projection optical system of Example 4 is a fixed focus optical system.
  • the projection optical system of Example 4 includes lenses L1 to L16 arranged in order from the enlargement side.
  • Table 4 shows lens data of the projection optical system of Example 4. The values in Table 4 are standardized so that the focal length of the entire system is 20.00.
  • FIGS. 9A to 9D show aberration diagrams of the projection optical system of Example 4.
  • FIG. Data shown in Table 4 and FIGS. 9A to 9D are obtained when the projection distance is 2330.
  • the correction lens group Gp can include only the lens L11.
  • Tables 5 and 6 show values related to the corresponding values of the conditional expressions (1) to (4) of the above-described Examples 1 to 4.
  • Tables 5 and 6 indicate “Gp: L12”.
  • the sign of D is positive when the enlargement-side focal position of the optical system synthesized from the correction lens group Gp to the most reduced lens of the entire system is located on the enlargement side with respect to the most enlargement-side lens surface of the correction lens group Gp.
  • the case of being on the reduction side is negative.
  • FIG. 10 is a schematic configuration diagram of a projection display apparatus 100 according to an embodiment of the present invention.
  • a projection display device 100 shown in FIG. 10 includes a light source 10, reflection display elements 11a to 11c as light valves corresponding to each color light, dichroic mirrors 12 and 13 for color separation, and color composition.
  • a cross dichroic prism 14, polarization separation prisms 15a to 15c, a total reflection mirror 16 for deflecting an optical path, a relay lens 17, and a projection optical system 19 according to an embodiment of the present invention are provided.
  • an integrator such as a fly eye is disposed between the light source 10 and the dichroic mirror 12, the illustration thereof is omitted in FIG.
  • the white light from the light source 10 is decomposed into three colored light beams (G light, B light, and R light) by the dichroic mirrors 12 and 13.
  • the separated color light beams pass through the polarization separation prisms 15a to 15c, enter the corresponding reflective display elements 11a to 11c, are light-modulated, and are color-synthesized by the cross dichroic prism 14, and then relayed.
  • the light enters the lens 17.
  • An optical image by the incident light is formed as an intermediate image 1A by the relay lens 17, and the optical image of the intermediate image 1A is projected on a screen (not shown) by the projection optical system 19.
  • FIG. 11 is a schematic configuration diagram of a projection display apparatus 200 according to another embodiment of the present invention.
  • a projection display device 200 shown in FIG. 11 includes a light source 20, reflective display elements 21a to 21c as light valves corresponding to each color light, and TIR (Total Internal Reflection) prisms 24a to 24 for color separation and color synthesis. 24c, the polarization separation prism 25, and the projection optical system 29 according to the embodiment of the present invention.
  • an integrator such as a fly eye is disposed between the light source 20 and the polarization separation prism 25, the illustration thereof is omitted in FIG.
  • the white light from the light source 20 passes through the polarization separation prism 25 and is then decomposed into three colored light beams (G light, B light, and R light) by the TIR prisms 24a to 24c.
  • the separated color light beams are incident on the corresponding reflective display elements 21a to 21c to be light-modulated, travel again in the reverse direction through the TIR prisms 24a to 24c, and are color-synthesized, and then transmitted through the polarization separation prism 25. Then, the light enters the projection optical system 29. An optical image by this incident light is projected on a screen (not shown) by the projection optical system 29.
  • the reflective display elements 11a to 11c and 21a to 21c for example, reflective liquid crystal display elements, DMD, and the like can be used.
  • 10 and 11 show an example in which a reflective display element is used as a light valve.
  • the light valve provided in the projection display device of the present invention is not limited to this, and a transmissive liquid crystal display element, etc.
  • a transmissive display element may be used.
  • the projection optical system of the present invention is not limited to the above examples, and various modifications can be made. It is possible to appropriately change the radius of curvature, surface interval, refractive index, and Abbe number of the lens.
  • the projection display device of the present invention is not limited to the one having the above-described configuration.
  • the light valve used and the optical member used for light beam separation or light beam synthesis are not limited to the above-described configuration, and various It is possible to change the mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

【課題】投写用光学系において、装置の大型化を抑制しながら、温度変化によるピント位置のずれを良好に補正し、補正後も高い光学性能を保持する。 【解決手段】縮小側がテレセントリックの投写用光学系において、この投写用光学系の一部のレンズ群からなる補正レンズ群(Gp)が、温度変化によるピント位置のずれを補正するために光軸方向に移動するように構成されている。下記条件式(1)、(2)を満足する。 0.5<|ΔBf/(fw/100)|<5.0 (1) |(ΔAt×fw)/(ΔBf×Imφ)|<0.12 (2) ただし、 ΔBf:補正レンズ群をfw/100移動させたときの縮小側のピント位置の移動量 fw:全系の焦点距離 ΔAt:補正レンズ群をfw/100移動させたときの最大画角の非点収差のタンジェンシャル成分の変化量 Imφ:縮小側における最大有効像円直径

Description

投写用光学系および投写型表示装置
 本発明は、投写用光学系および投写型表示装置に関し、特に、温度補償を考慮した投写用光学系およびこれを搭載した投写型表示装置に関するものである。
 従来、プレゼンテーション等の際、ライトバルブに表示した画像を拡大投写する投写型表示装置が用いられている。ライトバルブとしては、透過型液晶表示素子、反射型液晶表示素子、さらにはDMD(デジタル・マイクロミラー・デバイス:登録商標)等が知られている。ところで、投写型表示装置では高出力の光源を用いることが多く、それにより光学系内に温度変化が生じる。近年の投写型表示装置では上記ライトバルブの進歩等により高精細化が進み、光学系内の温度変化に伴うピントずれがより目立つようになってきている。また、高精細化の要請に伴い、色収差低減のためにアッベ数の大きな材料(例えばアッベ数が75以上の材料)を多用するようになってきていることも、温度変化に伴うピントずれが大きくなる要因となっている。
 温度変化に伴うピントずれの補正に関する投写用光学系関係の従来技術としては、例えば下記特許文献1~3に記載されたものが知られている。下記特許文献1には、投写型ズームレンズにおいて、アッベ数が70以上の異常分散ガラスを正レンズと負レンズとに用いて適所に配置し、それぞれが接合レンズをなすように構成し、温度変化に伴うピント位置のずれを相殺する技術が記載されている。下記特許文献2には、異常分散レンズの温度変化によるピント位置のずれを、異常分散レンズを含むレンズ群を配したレンズ鏡筒の温度変化による異常分散レンズの移動量で相殺するようにした投写レンズ装置が記載されている。下記特許文献3には、光源側の正レンズ群のうちの少なくとも一部のレンズを線膨張係数の異なる複数の部材により支持し、この複数の部材の温度変化による伸縮差でレンズを光軸方向に移動させることにより温度変化による物像距離の変化を補正する技術が記載されている。
特開2008-46259号公報 特開2011-22498号公報 特開2006-48013号公報
 しかしながら、特許文献1に記載の技術のように、レンズ材料の選択やパワーバランスにより温度変化に伴うピント位置のずれを補正すると、光学性能の高性能化を妨げる要因になる虞がある。また、特許文献2に記載の装置では、レンズ系全体を光軸方向に動かしているため、装置が大型化してしまう。特許文献3に記載の技術では、光学系の一部のみを動かすため大型化は防げるが、温度変化によるピント位置のずれを補正することにより光学性能が劣化し、近年のライトバルブの高精細化に対応できなくなる虞がある。
 本発明は、上記事情に鑑みなされたものであり、装置の大型化を抑制しながら、温度変化によるピント位置のずれを良好に補正でき、補正後も高い光学性能を保持可能な投写用光学系およびこのような投写用光学系を備えた投写型表示装置を提供することを目的とするものである。
 本発明の投写用光学系は、縮小側がテレセントリックである投写用光学系において、該投写用光学系の一部のレンズ群からなる補正レンズ群が、温度変化によるピント位置のずれを補正するために光軸方向に移動するように構成されており、下記条件式(1)、(2)を満足することを特徴とする。
   0.5<|ΔBf/(fw/100)|<5.0 … (1)
   |(ΔAt×fw)/(ΔBf×Imφ)|<0.12 … (2)
ただし、
ΔBfは補正レンズ群をfw/100移動させたときの縮小側のピント位置の移動量、
fwは全系の焦点距離、
ΔAtは補正レンズ群をfw/100移動させたときの最大画角の非点収差のタンジェンシャル成分の変化量、
Imφは縮小側における最大有効像円直径
であり、投写用光学系が変倍光学系の場合はΔBf、fw、ΔAtは広角端におけるものである。
 本発明の投写用光学系においては、下記条件式(1’)を満足することが好ましい。
   0.8<|ΔBf/(fw/100)|<2.0 … (1’)
 本発明の投写用光学系においては、下記条件式(2’)を満足することが好ましい。
   |(ΔAt×fw)/(ΔBf×Imφ)|<0.07 … (2’)
 また、本発明の投写用光学系においては、下記条件式(3)を満足することが好ましく、下記条件式(3’)を満足することがより好ましい。
   |D/fpr|<0.50 … (3)
   |D/fpr|<0.40 … (3’)
ただし、
Dは補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の拡大側焦点位置から補正レンズ群の最も拡大側のレンズ面までの光軸上の距離、
fprは補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の焦点距離
であり、投写用光学系が変倍光学系の場合はD、fprは広角端におけるものである。
 また、本発明の投写用光学系においては、下記条件式(4)を満足することが好ましく、下記条件式(4’)を満足することがより好ましい。
   dd/L>0.05 … (4)
   dd/L>0.08 … (4’)
ただし、
投写用光学系が固定焦点光学系の場合は、
Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離、
ddは補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和であり、
投写用光学系が変倍光学系の場合は、
Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離の最大値、
ddは補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和の最小値
である。
 また、本発明の投写用光学系においては、d線に対するアッベ数が75以上の正レンズを3枚以上含むことが好ましい。
 なお、上記「レンズ群」、「補正レンズ群」は、必ずしも複数のレンズから構成されるものだけではなく、1枚のレンズのみで構成されるものも含むものとする。本発明の投写用光学系においては、補正レンズ群は単レンズからなるように構成することができる。
 また、本発明の投写用光学系においては、補正レンズ群はズーミングおよびフォーカシングのいずれの際にも移動しないことが好ましい。
 本発明に係る投写型表示装置は、光源と、該光源からの光が入射するライトバルブと、該ライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用光学系として上述した本発明の投写用光学系とを備えたことを特徴とするものである。
 なお、上記「拡大側」とは、被投写側(スクリーン側)を意味し、縮小投写する場合も、便宜的にスクリーン側を拡大側と称するものとする。一方、上記「縮小側」とは、原画像表示領域側(ライトバルブ側)を意味し、縮小投写する場合も、便宜的にライトバルブ側を縮小側と称するものとする。
 なお、上記「縮小側がテレセントリック」とは、縮小側の像面の任意の点に集光する光束の断面において上側の最大光線と下側の最大光線との二等分角線が光軸と平行に近い状態を指すものであり、完全にテレセントリックな場合、すなわち前記2等分角線が光軸に対して完全に平行な場合に限るものではなく、多少の誤差がある場合をも含むものを意味する。ここで多少の誤差がある場合とは、光軸に対する前記2等分角線の傾きが±3°の範囲内の場合である。
 なお、上記「Imφ」は、例えば、投写用光学系の仕様や、投写用光学系が搭載される装置の仕様によって求めることができる。
 本発明の投写用光学系は、その一部のレンズ群を補正レンズ群として移動させて温度変化によるピント位置のずれを補正するように構成しているため、装置の大型化を防ぐことができる。また、本発明の投写用光学系は、条件式(1)、(2)を満足するように構成されているため、装置の大型化を抑制しながらピント位置のずれを良好に補正することができ、補正後も高い光学性能を保持することが可能となる。
 また、本発明に係る投写型表示装置は、本発明の投写用光学系を備えているため、コンパクトな構成が可能であり、温度変化が生じた際にも良好な投写像を得ることができる。
本発明の一実施形態に係る投写用光学系のレンズ構成を示す断面図 本発明の実施例1に係る投写用光学系のレンズ構成を示す断面図 本発明の実施例2に係る投写用光学系のレンズ構成を示す断面図 本発明の実施例3に係る投写用光学系のレンズ構成を示す断面図 本発明の実施例4に係る投写用光学系のレンズ構成を示す断面図 図6(A)~図6(P)は本発明の実施例1に係る投写用光学系の各収差図 図7(A)~図7(P)は本発明の実施例2に係る投写用光学系の各収差図 図8(A)~図8(P)は本発明の実施例3に係る投写用光学系の各収差図 図9(A)~図9(D)は本発明の実施例4に係る投写用光学系の各収差図 本発明の一実施形態に係る投写型表示装置の概略構成図 本発明の別の実施形態に係る投写型表示装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の一実施形態にかかる投写用光学系の構成例を示す断面図である。
 図1に示す投写用光学系は、拡大側から順に配列されたレンズL1~レンズL17を備えており、レンズL11とレンズL12の間には絞り3が配置されている。図1では、図の左側を拡大側、右側を縮小側とし、投写型表示装置に搭載される場合を想定して、ライトバルブの画像表示面1も合わせて図示している。
 図1に示す投写用光学系はズームレンズであり、図1では広角端におけるレンズ構成を示している。しかし、本発明の投写用光学系はズームレンズに限定されず、バリフォーカルレンズ、固定焦点光学系にも適用可能である。
 本実施形態の投写用光学系は、縮小側がテレセントリックとなるように構成されている。また、本実施形態の投写用光学系は、その一部のレンズ群からなる補正レンズ群が、温度変化によるピント位置のずれを補正するために光軸方向に移動するように構成されている。温度変化によるピント位置のずれを補正するために、レンズ系全体を移動させるのではなく、一部のレンズ群のみを移動させるようにしているため、装置の大型化を防ぐことができる。
 なお、補正レンズ群を光軸方向に移動させる機構としては、例えば上記特許文献3に記載されたような、線膨張係数の異なる複数の部材を組み合わせてレンズを支持し、これらの温度変化による伸縮差でレンズを光軸方向に移動させるものや、あるいは別の公知の方法を用いることができる。
 図1に示す例は、補正レンズ群Gpとして正の単レンズであるレンズL12を用いたものである。以下では、この例を参照しながら説明するが、本発明の補正レンズ群は正レンズ群でも負レンズ群でもよく、また複数のレンズで構成することも可能である。
 以下に、本発明の実施形態にかかる投写用光学系が有することが好ましい構成とその作用効果について述べる。なお、好ましい態様としては以下に述べる構成のうちの1つを有するものでもよく、または任意の組合せを有するものでもよい。投写用光学系に要求される事項に応じて、以下に述べる構成を適宜選択的に有することが好ましい。
 この投写用光学系は下記条件式(1)を満足することが好ましい。
   0.5<|ΔBf/(fw/100)|<5.0 … (1)
ただし、
ΔBfは補正レンズ群をfw/100移動させたときの縮小側のピント位置の移動量、
fwは全系の焦点距離、
であり、投写用光学系が変倍光学系の場合はΔBf、fwは広角端におけるものである。
 条件式(1)の下限を満たさないと、補正のために補正レンズ群Gpを移動させる量が大きくなるため、系をコンパクトにできない。条件式(1)の上限を満たさないと、補正レンズ群Gpの感度が高くなり、良好な補正をすることが難しくなる。条件式(1)を満足することで、装置の大型化を抑制しながら、温度変化時のピント位置のずれを良好に補正することができる。
 この投写用光学系は下記条件式(2)を満足することが好ましい。
   |(ΔAt×fw)/(ΔBf×Imφ)|<0.12 … (2)
ただし、
ΔBfは補正レンズ群をfw/100移動させたときの縮小側のピント位置の移動量、
fwは全系の焦点距離、
ΔAtは補正レンズ群をfw/100移動させたときの最大画角の非点収差のタンジェンシャル成分の変化量、
Imφは縮小側における最大有効像円直径
であり、投写用光学系が変倍光学系の場合はΔBf、fw、ΔAtは広角端におけるものである。
 条件式(2)の下限を満たさないと、補正レンズ群Gpを移動させたときの結像領域周辺部の像面湾曲の劣化が大きくなるため、補正後の光学系の性能を良好に保つことが困難になる。条件式(2)を満足することで、補正後の光学系の性能を良好に保つことが可能となる。
 この投写用光学系は下記条件式(3)を満足することが好ましい。
   |D/fpr|<0.50 … (3)
ただし、
Dは補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の拡大側焦点位置から補正レンズ群の最も拡大側のレンズ面までの光軸上の距離、
fprは補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の焦点距離
であり、投写用光学系が変倍光学系の場合はD、fprは広角端におけるものである。
 図1に、補正レンズ群Gpから全系の最も縮小側のレンズまでを合成した光学系を後側レンズ群Gsとして示す。拡大側を前側と考えたとき、Dはこの後側レンズ群Gsのフロントフォーカスに相当する。また、fprはこの後側レンズ群Gsの焦点距離に相当する。縮小側がテレセントリックな投写光学系において条件式(3)を満たすように構成することで、補正レンズ群Gpが瞳の近傍に配置されることになり、これにより、補正レンズ群Gpのレンズ径を小さくすることができ、系をコンパクトにできる。また、瞳の近傍は光線密度が高いため、投写型表示装置に搭載されたときに光源による温度変化が早く敏感に現れる部位である。瞳の近傍に補正機構を設けることで、温度変化によるピント位置のずれの補正を効率的に行うことができる。
 この投写用光学系は、下記条件式(4)を満足することが好ましい。
   dd/L>0.05 … (4)
ただし、
投写用光学系が固定焦点光学系の場合は、
Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離、
ddは補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和であり、
投写用光学系が変倍光学系の場合は、
Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離の最大値、
ddは補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和の最小値である。
 ここで、補正レンズ群Gpの拡大側レンズ面間隔とは、補正レンズ群Gpと、拡大側で補正レンズ群Gpと隣り合うレンズとの光軸上の面間隔であり、図1に示す例ではレンズL11の縮小側のレンズ面とレンズL12の拡大側のレンズ面との光軸上の間隔であり、図1にdaとして示す。同様に、補正レンズ群Gpの縮小側レンズ面間隔とは、補正レンズ群Gpと、縮小側で補正レンズ群Gpと隣り合うレンズとの光軸上の面間隔であり、図1に示す例ではレンズL12の縮小側のレンズ面とレンズL13の拡大側のレンズ面との光軸上の間隔であり、図1にdbとして示す。すなわち、dd=da+dbである。また、図1にLを示す。
 条件式(4)の下限を満たすことで、補正レンズ群Gpの拡大側または縮小側に補正機構を配置するための十分な空間を設けることができ、温度変化によるピント位置のずれを良好に補正することが可能となる。
 上記事情から、本実施形態の投写用光学系は、条件式(1)~(4)それぞれに代わり、下記条件式(1’)~(4’)それぞれを満足することがより好ましい。
   0.8<|ΔBf/(fw/100)|<2.0 … (1’)
   |(ΔAt×fw)/(ΔBf×Imφ)|<0.07 … (2’)
   |D/fpr|<0.40 … (3’)
   dd/L>0.08 … (4’)
 また、本実施形態の投写用光学系は、d線に対するアッベ数が75以上の正レンズを3枚以上含むことが好ましい。このようにすることで、色収差の補正を良好に行うことができ、高精細化が進んだライトバルブに対応することができる。
 また、補正レンズ群Gpは、装置構成の簡素化と小型化のためには単レンズあるいは1組の接合レンズからなることが好ましい。補正レンズ群Gpを単レンズからなるようにした場合は、駆動系の負荷をより軽くでき、より小型化に有利である。補正レンズ群Gpが瞳の近傍に配置されて投写型表示装置において高出力の光源と併用された場合、補正レンズ群Gpが接合レンズを有していると強力な光によって接合剤が劣化する虞があるが、補正レンズ群Gpを単レンズで構成した場合はこのような問題を回避することができる。
 さらに、補正レンズ群Gpはズーミングおよびフォーカシングのいずれの際にも移動しないことが好ましい。このようにすることで、温度変化によるピント位置のずれの補正を簡易な構成で行うことができ、小型化かつ低コスト化に貢献できる。
 次に、本発明の投写用光学系の具体的な実施例について説明する。
 <実施例1>
 図2に実施例1の投写用光学系のレンズ構成図を示す。実施例1の投写用光学系は、拡大側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが配されてなるズームレンズである。変倍時には、第1レンズ群G1と第4レンズ群G4が固定されており、広角端から望遠端への変倍に際して第2レンズ群G2、第3レンズ群G3が拡大側へ移動するように構成されている。
 図2では、上段、下段にそれぞれ、広角端、望遠端におけるレンズ配置を示し、広角端から望遠端へ変化する際に移動するレンズ群の概略的な移動方向を上段と下段の間に矢印で示している。
 第1レンズ群G1は、拡大側から順に、レンズL1~レンズL7が配されてなる。第2レンズ群G2は、拡大側から順に、レンズL8~レンズL10が配されてなる。第3レンズ群G3は、レンズL11からなる。第4レンズ群G4は、拡大側から順に、絞り3、レンズL12~レンズL17が配されてなる。
 表1に、実施例1の投写用光学系のレンズデータを示す。表1(A)のSiの欄には最も拡大側の構成要素の拡大側の面を1番目として縮小側に向かうに従い順次増加するように構成要素の面に面番号を付したときのi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示し、Ndjの欄には最も拡大側の構成要素を1番目として縮小側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示す。
 ただし、曲率半径の符号は、面形状が拡大側に凸の場合を正、縮小側に凸の場合を負としている。第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔は、変倍時に変化するものであり、これらに相当する面間隔の欄にはそれぞれ(可変1)、(可変2)、(可変3)と記入している。
 表1の(B)に、実施例1の投写用光学系の全系の焦点距離、各焦点距離のときのズーム比、上記(可変1)、(可変2)、(可変3)、FナンバーFno.の値を示す。なお、表1の値は、広角端における全系の焦点距離が20.00となるように規格化されたものであり、望遠端の全系の焦点距離は29.37である。また、表1の値は、投写距離が2240のときのものである。また、以降の表の数値は、所定の桁でまるめたものである。
Figure JPOXMLDOC01-appb-T000001
 実施例1の投写用光学系では、補正レンズ群GpをレンズL12のみからなるようにすることもでき、あるいはレンズL13のみからなるようにすることもできる。レンズL12は正の単レンズであり、レンズL13は負の単レンズである。後掲の表5、表6に、実施例1の投写用光学系で補正レンズ群GpをレンズL12のみ、レンズL13のみとした場合それぞれについての条件式(1)~(4)の対応値と関連する値を示す。なお、実施例1の投写用光学系では、ズーミングおよびフォーカシングのいずれの際にもL12、L13両方とも移動しないように構成されている。
 図6(A)~図6(D)に実施例1の投写用光学系の広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。同様に、実施例1の投写用光学系のズーム比1.20倍のとき、1.35倍のとき、1.47倍のときの各収差図を図6(E)~図6(H)、図6(I)~図6(L)、図6(M)~図6(P)に示す。図6に記載されている「×1.20」、「×1.35」、「×1.47」はズーム比を意味する。
 図6(A)~図6(P)の各収差図は、d線を基準としたものであるが、球面収差図では、F線(波長波長486.1nm)、C線(波長656.3nm)に関する収差も示しており、倍率色収差図では、F線、C線に関する収差を示している。また、非点収差図ではサジタル方向、タンジェンシャル方向それぞれに関する収差を実線、破線で示している。球面収差図に記載されているFno.はFナンバー、その他の収差図に記載されているωは半画角を意味する。図6(A)~図6(P)の収差図は、投写距離が2240のときのものである。
 上記の実施例1の説明で述べた各種データの記号、意味、記載方法は、特に断りがない限り以下の実施例のものについても同様である。
 <実施例2>
 図3に実施例2の投写用光学系のレンズ構成図を示す。実施例2の投写用光学系は、拡大側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが配されてなるズームレンズである。変倍時には、第1レンズ群G1と第4レンズ群G4が固定されており、広角端から望遠端への変倍に際して第2レンズ群G2、第3レンズ群G3が拡大側へ移動するように構成されている。
 第1レンズ群G1は、拡大側から順に、レンズL1~レンズL7が配されてなる。第2レンズ群G2は、拡大側から順に、レンズL8、レンズL9が配されてなる。第3レンズ群G3は、拡大側から順に、レンズL10、レンズL11が配されてなる。第4レンズ群G4は、拡大側から順に、絞り3、レンズL12~レンズL17が配されてなる。
 表2に、実施例2の投写用光学系のレンズデータを示す。表2の値は、広角端における全系の焦点距離が20.00となるように規格化されたものであり、望遠端の全系の焦点距離は29.41である。図7(A)~図7(P)にそれぞれ、実施例2の投写用光学系の各収差図を示す。表2および図7(A)~図7(P)に示すデータは投写距離が2240のときのものである。
Figure JPOXMLDOC01-appb-T000002
 実施例2の投写用光学系では、補正レンズ群GpをレンズL12のみからなるようにすることもでき、あるいはレンズL13のみからなるようにすることもできる。レンズL12は正の単レンズであり、レンズL13は負の単レンズである。後掲の表5、表6に、実施例2の投写用光学系で補正レンズ群GpをレンズL12のみ、レンズL13のみとした場合それぞれについての条件式(1)~(4)の対応値と関連する値を示す。なお、実施例2の投写用光学系では、ズーミングおよびフォーカシングのいずれの際にもL12、L13両方とも移動しないように構成されている。
 <実施例3>
 図4に実施例3の投写用光学系のレンズ構成図を示す。実施例3の投写用光学系は、拡大側から順に、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とが配されてなるズームレンズである。変倍時には、第1レンズ群G1と第5レンズ群G5が固定されており、広角端から望遠端への変倍に際して第2レンズ群G2、第3レンズ群G3、第4レンズ群G4が拡大側へ移動するように構成されている。なお、図4では、色合成部または照明光分離部に用いられるフィルタやプリズム等を想定したガラスブロック2が第5レンズ群G5の縮小側に配置されている例を示している。
 第1レンズ群G1は、拡大側から順に、レンズL1~レンズL5が配されてなる。第2レンズ群G2は、拡大側から順に、レンズL6、レンズL7が配されてなる。第3レンズ群G3は、拡大側から順に、レンズL8、レンズL9が配されてなる。第4レンズ群G4は、拡大側から順に、レンズL10、レンズL11が配されてなる。第5レンズ群G5は、拡大側から順に、絞り3、レンズL12~レンズL17が配されてなる。
 表3に、実施例3の投写用光学系のレンズデータを示す。表3の値は、広角端における全系の焦点距離が20.00となるように規格化されたものであり、望遠端の全系の焦点距離は34.91である。図8(A)~図8(P)にそれぞれ、実施例3の投写用光学系の各収差図を示す。表3および図8(A)~図8(P)に示すデータは投写距離が9940のときのものである。
Figure JPOXMLDOC01-appb-T000003
 実施例3の投写用光学系では、補正レンズ群GpをレンズL12のみからなるようにすることもでき、あるいはレンズL13のみからなるようにすることもできる。レンズL12は正の単レンズであり、レンズL13は負の単レンズである。後掲の表5、表6に、実施例3の投写用光学系で補正レンズ群GpをレンズL12のみ、レンズL13のみとした場合それぞれについての条件式(1)~(4)の対応値と関連する値を示す。なお、実施例3の投写用光学系では、ズーミングおよびフォーカシングのいずれの際にもL12、L13両方とも移動しないように構成されている。
 <実施例4>
 図4に実施例4の投写用光学系の投写用光学系のレンズ構成図を示す。実施例4の投写用光学系は、固定焦点光学系である。実施例4の投写用光学系は、拡大側から順に、レンズL1~レンズL16が配されてなる。
 表4に、実施例4の投写用光学系のレンズデータを示す。表4の値は、全系の焦点距離が20.00となるように規格化されたものである。図9(A)~図9(D)にそれぞれ、実施例4の投写用光学系の各収差図を示す。表4および図9(A)~図9(D)に示すデータは投写距離が2330のときのものである。実施例4の投写用光学系では、補正レンズ群GpをレンズL11のみからなるようにすることができる。
Figure JPOXMLDOC01-appb-T000004
 表5、表6に、上記実施例1~4の上記各条件式(1)~(4)の対応値と関連する値を示す。補正レンズ群GpをレンズL12とした場合のものを表5、表6では「Gp:L12」として示している。表中の「Gp:L13」、「Gp:L11」についても同様である。Dの符号は、補正レンズ群Gpから全系の最も縮小側のレンズまでを合成した光学系の拡大側焦点位置が補正レンズ群Gpの最も拡大側のレンズ面より拡大側にある場合を正、縮小側にある場合を負としている。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 次に、本発明に係る投写型表示装置の実施形態について、図10、図11を用いて説明する。図10は本発明の一実施形態に係る投写型表示装置100の概略構成図である。図10に示す投写型表示装置100は、光源10と、各色光に対応したライトバルブとしての反射型表示素子11a~11cと、色分解のためのダイクロイックミラー12、13と、色合成のためのクロスダイクロイックプリズム14と、偏光分離プリズム15a~15cと、光路偏向のための全反射ミラー16と、リレーレンズ17と、本発明の実施形態にかかる投写用光学系19とを備えている。なお、光源10とダイクロイックミラー12の間にはフライアイ等のインテグレータが配されているが、図10ではその図示を省略している。
 この光源10からの白色光はダイクロイックミラー12、13により3つの色光光束(G光、B光、R光)に分解される。分解後の各色光光束はそれぞれ偏光分離プリズム15a~15cを経て、各色光光束それぞれ対応する反射型表示素子11a~11cに入射して光変調され、クロスダイクロイックプリズム14により色合成された後、リレーレンズ17に入射する。この入射光による光学像がリレーレンズ17により中間像1Aとして結像され、この中間像1Aの光学像が投写用光学系19によりスクリーン(不図示)上に投写される。
 図11は本発明の別の実施形態に係る投写型表示装置200の概略構成図である。図11に示す投写型表示装置200は、光源20と、各色光に対応したライトバルブとしての反射型表示素子21a~21cと、色分解および色合成のためのTIR(Total Internal Reflection)プリズム24a~24cと、偏光分離プリズム25と、本発明の実施形態にかかる投写用光学系29とを備えている。なお、光源20と偏光分離プリズム25の間にはフライアイ等のインテグレータが配されているが、図11ではその図示を省略している。
 この光源20からの白色光は偏光分離プリズム25を経た後、TIRプリズム24a~24cにより3つの色光光束(G光、B光、R光)に分解される。分解後の各色光光束はそれぞれ対応する反射型表示素子21a~21cに入射して光変調され、再びTIRプリズム24a~24cを逆向きに進行して色合成された後、偏光分離プリズム25を透過して、投写用光学系29に入射する。この入射光による光学像が投写用光学系29によりスクリーン(不図示)上に投写される。
 なお、反射型表示素子11a~11c、21a~21cとしては、例えば反射型液晶表示素子やDMD等を用いることができる。図10および図11ではライトバルブとして反射型表示素子を用いた例を示したが、本発明の投写型表示装置が備えるライトバルブは、これに限られるものではなく、透過型液晶表示素子等の透過型表示素子を用いてもよい。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明の投写用光学系としては、上記実施例のものに限られるものではなく種々の態様の変更が可能であり、例えば各レンズの曲率半径、面間隔、屈折率、アッベ数を適宜変更することが可能である。
 また、本発明の投写型表示装置は、上記構成のものに限られるものではなく、例えば、用いられるライトバルブや、光束分離または光束合成に用いられる光学部材は、上記構成に限定されず、種々の態様の変更が可能である。

Claims (11)

  1.  縮小側がテレセントリックである投写用光学系において、
     該投写用光学系の一部のレンズ群からなる補正レンズ群が、温度変化によるピント位置のずれを補正するために光軸方向に移動するように構成されており、
     下記条件式(1)、(2)を満足することを特徴とする投写用光学系。
       0.5<|ΔBf/(fw/100)|<5.0 … (1)
       |(ΔAt×fw)/(ΔBf×Imφ)|<0.12 … (2)
    ただし、
    ΔBfは前記補正レンズ群をfw/100移動させたときの縮小側のピント位置の移動量、
    fwは全系の焦点距離、
    ΔAtは前記補正レンズ群をfw/100移動させたときの最大画角の非点収差のタンジェンシャル成分の変化量、
    Imφは縮小側における最大有効像円直径
    であり、前記投写用光学系が変倍光学系の場合はΔBf、fw、ΔAtは広角端におけるものである。
  2.  下記条件式(1’)を満足することを特徴とする請求項1記載の投写用光学系。
       0.8<|ΔBf/(fw/100)|<2.0 … (1’)
  3.  下記条件式(2’)を満足することを特徴とする請求項1または2記載の投写用光学系。
       |(ΔAt×fw)/(ΔBf×Imφ)|<0.07 … (2’)
  4.  下記条件式(3)を満足することを特徴とする請求項1から3のうちいずれか1項記載の投写用光学系。
       |D/fpr|<0.50 … (3)
    ただし、
    Dは前記補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の拡大側焦点位置から前記補正レンズ群の最も拡大側のレンズ面までの光軸上の距離、
    fprは前記補正レンズ群から全系の最も縮小側のレンズまでを合成した光学系の焦点距離
    であり、前記投写用光学系が変倍光学系の場合はD、fprは広角端におけるものである。
  5.  下記条件式(3’)を満足することを特徴とする請求項4記載の投写用光学系。
       |D/fpr|<0.40 … (3’)
  6.  下記条件式(4)を満足することを特徴とする請求項1から5のうちいずれか1項記載の投写用光学系。
       dd/L>0.05 … (4)
    ただし、
    前記投写用光学系が固定焦点光学系の場合は、
    Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離、
    ddは前記補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和であり、
    前記投写用光学系が変倍光学系の場合は、
    Lは全系における最も拡大側のレンズ面から最も縮小側のレンズ面までの光軸上の距離の最大値、
    ddは前記補正レンズ群の拡大側レンズ面間隔と縮小側レンズ面間隔との和の最小値
    である。
  7.  下記条件式(4’)を満足することを特徴とする請求項6記載の投写用光学系。
       dd/L>0.08 … (4’)
  8.  d線に対するアッベ数が75以上の正レンズを3枚以上含むことを特徴とする請求項1から7のうちいずれか1項記載の投写用光学系。
  9.  前記補正レンズ群は単レンズからなることを特徴とする請求項1から8のうちいずれか1項記載の投写用光学系。
  10.  前記補正レンズ群はズーミングおよびフォーカシングのいずれの際にも移動しないことを特徴とする請求項1から9のうちいずれか1項記載の投写用光学系。
  11.  光源と、該光源からの光が入射するライトバルブと、該ライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用光学系としての請求項1から10のうちいずれか1項記載の投写用光学系とを備えたことを特徴とする投写型表示装置。
PCT/JP2013/000520 2012-02-09 2013-01-31 投写用光学系および投写型表示装置 WO2013118471A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390000250.4U CN204065540U (zh) 2012-02-09 2013-01-31 投影用光学系统和投影型显示装置
US14/456,362 US9001429B2 (en) 2012-02-09 2014-08-11 Optical system for projection and projection-type display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025824 2012-02-09
JP2012025824 2012-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/456,362 Continuation US9001429B2 (en) 2012-02-09 2014-08-11 Optical system for projection and projection-type display apparatus

Publications (1)

Publication Number Publication Date
WO2013118471A1 true WO2013118471A1 (ja) 2013-08-15

Family

ID=48947243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000520 WO2013118471A1 (ja) 2012-02-09 2013-01-31 投写用光学系および投写型表示装置

Country Status (3)

Country Link
US (1) US9001429B2 (ja)
CN (1) CN204065540U (ja)
WO (1) WO2013118471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919054A1 (en) * 2014-03-11 2015-09-16 Ricoh Company, Ltd. Zoom lens unit, imaging device, and monitoring video camera

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352832B2 (ja) * 2015-02-25 2018-07-04 富士フイルム株式会社 投写用光学系および投写型表示装置
JP6639358B2 (ja) * 2016-08-30 2020-02-05 富士フイルム株式会社 ズームレンズ、投写型表示装置、および、撮像装置
JP6556106B2 (ja) * 2016-08-30 2019-08-07 富士フイルム株式会社 ズームレンズ、投写型表示装置、および、撮像装置
JP7019961B2 (ja) * 2017-04-20 2022-02-16 コニカミノルタ株式会社 投影光学系及び投影装置
JP7027736B2 (ja) * 2017-09-04 2022-03-02 セイコーエプソン株式会社 投写型画像表示装置
JP7152372B2 (ja) * 2019-08-30 2022-10-12 富士フイルム株式会社 結像光学系、投写型表示装置、および撮像装置
US11982798B2 (en) * 2020-11-18 2024-05-14 Coretronic Corporation Projection lens and projection apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341243A (ja) * 2001-05-11 2002-11-27 Sony Corp ズームレンズ及び撮像装置
JP2004264570A (ja) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd プロジェクタ
JP2008026864A (ja) * 2006-03-24 2008-02-07 Konica Minolta Opto Inc 投射レンズユニット
JP2008536175A (ja) * 2005-04-08 2008-09-04 パナビジョン・インターナショナル・リミテッド・パートナーシップ 簡素化したズーム構造を持つワイドレンジで広角の複合ズーム
JP2011039352A (ja) * 2009-08-14 2011-02-24 Fujifilm Corp 投写型表示装置
JP2012032717A (ja) * 2010-08-02 2012-02-16 Olympus Imaging Corp 光学装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023933A1 (fr) * 1999-09-29 2001-04-05 Nikon Corporation Systeme optique de projection
JP2004012825A (ja) * 2002-06-07 2004-01-15 Fuji Photo Optical Co Ltd 投影光学系およびそれを用いた投影露光装置
JP2006048013A (ja) 2004-06-30 2006-02-16 Tamron Co Ltd プロジェクタ光学装置
US7612951B2 (en) * 2006-03-24 2009-11-03 Konica Minolta Opto, Inc. Projection lens unit
JP4864600B2 (ja) 2006-08-11 2012-02-01 富士フイルム株式会社 投写型ズームレンズおよび投写型表示装置
WO2009107553A1 (ja) * 2008-02-29 2009-09-03 コニカミノルタオプト株式会社 拡大投影光学系及びデジタル式プラネタリウム装置
JP2011022498A (ja) 2009-07-17 2011-02-03 Fujifilm Corp 投写レンズ装置及びプロジェクタ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341243A (ja) * 2001-05-11 2002-11-27 Sony Corp ズームレンズ及び撮像装置
JP2004264570A (ja) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd プロジェクタ
JP2008536175A (ja) * 2005-04-08 2008-09-04 パナビジョン・インターナショナル・リミテッド・パートナーシップ 簡素化したズーム構造を持つワイドレンジで広角の複合ズーム
JP2008026864A (ja) * 2006-03-24 2008-02-07 Konica Minolta Opto Inc 投射レンズユニット
JP2011039352A (ja) * 2009-08-14 2011-02-24 Fujifilm Corp 投写型表示装置
JP2012032717A (ja) * 2010-08-02 2012-02-16 Olympus Imaging Corp 光学装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919054A1 (en) * 2014-03-11 2015-09-16 Ricoh Company, Ltd. Zoom lens unit, imaging device, and monitoring video camera
US9671597B2 (en) 2014-03-11 2017-06-06 Ricoh Company, Ltd. Zoom lens unit, imaging device, and monitoring video camera
US10215973B2 (en) 2014-03-11 2019-02-26 Ricoh Company, Ltd. Zoom lens unit, imaging device, and monitoring video camera

Also Published As

Publication number Publication date
US9001429B2 (en) 2015-04-07
CN204065540U (zh) 2014-12-31
US20140347740A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2013118471A1 (ja) 投写用光学系および投写型表示装置
JP5015739B2 (ja) 投影用ズームレンズおよび投写型表示装置
JP5009758B2 (ja) 投影用ズームレンズおよび投写型表示装置
US20150234159A1 (en) Zoom lens for projection and projection-type display apparatus
JP5345008B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP6797087B2 (ja) 投写用光学系及び投写型表示装置
CN201666968U (zh) 投影用变焦透镜及投影型显示装置
JP2008304765A (ja) ズームレンズ及びそれを用いた画像投影装置
JP5701970B2 (ja) 投写用ズームレンズおよび投写型表示装置
CN203870320U (zh) 投影用变焦透镜和投影型显示装置
WO2013157237A1 (ja) 投写用レンズおよび投写型表示装置
WO2014076924A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP2016050989A (ja) 投写用ズームレンズおよび投写型表示装置
WO2014076923A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013171995A1 (ja) 投写用変倍光学系および投写型表示装置
JP5781704B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5642868B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5777182B2 (ja) 投写用変倍光学系および投写型表示装置
JP2013007881A (ja) 投写用変倍光学系および投写型表示装置
JP5307655B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP5363248B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP5777191B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP2016194639A (ja) 投写用ズームレンズおよび投写型表示装置
JP2017107112A (ja) 投写用ズームレンズおよび投写型表示装置
JP5611901B2 (ja) 投写用変倍光学系および投写型表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000250.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747112

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP