WO2013171995A1 - 投写用変倍光学系および投写型表示装置 - Google Patents

投写用変倍光学系および投写型表示装置 Download PDF

Info

Publication number
WO2013171995A1
WO2013171995A1 PCT/JP2013/002916 JP2013002916W WO2013171995A1 WO 2013171995 A1 WO2013171995 A1 WO 2013171995A1 JP 2013002916 W JP2013002916 W JP 2013002916W WO 2013171995 A1 WO2013171995 A1 WO 2013171995A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
optical system
lens group
variable magnification
Prior art date
Application number
PCT/JP2013/002916
Other languages
English (en)
French (fr)
Inventor
賢 天野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380024862.1A priority Critical patent/CN104285174B/zh
Publication of WO2013171995A1 publication Critical patent/WO2013171995A1/ja
Priority to US14/540,279 priority patent/US9323032B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a projection variable-power optical system and a projection display apparatus, for example, a two-group projection variable-power optical system suitable for enlarging and projecting a light beam having image information from a light valve on a screen, and
  • the present invention relates to a projection display device equipped with this.
  • projection display devices using light valves such as liquid crystal display devices and DMD (digital micromirror device: registered trademark) display devices have become widespread.
  • Each of these illumination lights is modulated by corresponding to the illumination lights of the three primary colors of red), G (green), and B (blue), and the light modulated by the individual light valves is used as a color composition prism or the like.
  • variable magnification optical system capable of changing the size of a projected image on a screen
  • a variable power optical system for projection a telecentric variable power optical system in which the number of lens groups is four or five is often used. For example, 6 groups are also used.
  • a multi-group configuration is not preferable in terms of a reduction in size, weight, and cost because the configuration is complicated.
  • a zoom lens described in the following Patent Document 1 has been proposed as a zoom lens having a simple two-group configuration.
  • the zoom lens described in Patent Document 1 includes a first lens group having a negative refractive power and a second lens group having a positive refractive power arranged in order from the magnification side.
  • the lens group is configured to move in the optical axis direction.
  • Patent Document 1 is a simple and compact configuration with a two-group configuration
  • the reduction side of the projection lens is not a telecentric configuration, such as a color synthesis prism, a TIR prism, or the like. It cannot be used for a projection display device that requires the above.
  • the configuration in which the negative first lens group and the positive second lens group are arranged in order from the magnification side which is well known as a two-group zoom, as described in Patent Document 1 described above, has a relatively long back focus.
  • the second lens group which is a variable magnification group
  • the power of the first lens group cannot be increased.
  • not only the lens diameter of the first lens group has to be increased, but also the overall length of the lens system increases, and even if the configuration of two lens groups is simplified, the size and weight are reduced. In many cases, it is not suitable for cost reduction and cost reduction.
  • the two-group configuration in which the positive first lens group and the negative second lens group are arranged in order from the magnification side cannot secure a sufficient back focus for inserting a color synthesis prism, TIR prism, or the like.
  • the present invention has been made in view of the above circumstances, and while ensuring the reduction-side telecentricity, the simple configuration of the two-group configuration achieves downsizing, weight reduction, and cost reduction, and further improved optical performance. It is an object of the present invention to provide a projection variable magnification optical system and a projection display device including such a projection variable magnification optical system.
  • a projection variable magnification optical system includes, in order from the magnification side, a first lens group having a positive refractive power that moves during zooming, and a first lens group that has a positive refractive power that moves during zooming. It consists essentially of two lens groups with two lens groups, and is configured to be telecentric on the reduction side.
  • variable power optical system for projection it is preferable to satisfy the following conditional expression (1), and it is more preferable to satisfy the following conditional expression (1 ′).
  • conditional expression (1) 1.0 ⁇ Bft / fw (1) 1.2 ⁇ Bft / fw (1 ′)
  • Bft Back focus of the entire system at the telephoto end (air equivalent distance)
  • fw focal length of the entire system at the wide angle end
  • conditional expressions (2), (3), (2 ′), and (3 ′) it is preferable that at least one of the following conditional expressions (2), (3), (2 ′), and (3 ′) is satisfied.
  • any one of conditional expressions (2), (3), (2 ′), and (3 ′) may be satisfied, or any combination may be satisfied.
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • fw Focal length of the entire system at the wide angle end
  • the first lens group is substantially composed of five lenses.
  • the second and third lenses from the magnification side of the first lens group are a negative lens and a positive lens, respectively.
  • the second lens group is substantially composed of three or less lenses.
  • the first and second lenses from the reduction side of the second lens group are a positive lens and a negative lens, respectively.
  • the most magnified lens in the first lens group is an aspherical lens.
  • the most aspherical lens on the most enlarged side of the first lens group is made of a plastic material.
  • the most magnified lens in the second lens group is an aspherical lens.
  • the most aspherical lens on the most enlarged side of the second lens group is made of a plastic material.
  • a projection display apparatus is a projection variable power optical system that projects a light source, a light valve on which light from the light source is incident, and an optical image by light modulated by the light valve onto a screen.
  • the projection variable magnification optical system of the present invention described above is provided.
  • the “enlargement side” means the projection side (screen side), and the screen side is also referred to as the enlargement side for the sake of convenience when performing reduced projection.
  • the “reduction side” means the original image display area side (light valve side), and the light valve side is also referred to as the reduction side for the sake of convenience when performing reduced projection.
  • the term “consisting essentially of two lens groups” means a lens having substantially no power, an optical element other than a lens such as a diaphragm or a cover glass, a lens flange, in addition to the lens group mentioned as a constituent element. In addition, a case including a mechanism portion such as a lens barrel or a camera shake correction mechanism is also included.
  • the term “substantially” means “substantially consisting of five lenses” and “substantially consisting of three or less lenses” in the same way as described above. It is.
  • the “lens group” does not necessarily include a plurality of lenses but also includes a single lens.
  • back focus is the distance on the optical axis from the lens surface closest to the reduction side to the paraxial focal plane on the reduction side.
  • the enlargement side and the reduction side are considered as the front side and the back side, respectively.
  • the surface shape of the lens and the sign of refractive power are considered in the paraxial region for those including an aspherical surface.
  • the projection variable magnification optical system according to the present invention adopts a simple configuration of a two-group configuration, the two groups are positive lens groups, and the reduction side is telecentric, so that reduction in size, weight, and cost can be achieved. It is possible to maintain the back focus that allows the insertion of prisms, etc. while suppressing the total length of the lens system, while maintaining the telecentricity on the reduction side, and reducing the aberration fluctuation during zooming and providing good optical performance It becomes possible to hold.
  • the projection display device includes the projection variable magnification optical system according to the present invention, a simple configuration is possible, and a reduction in size, weight, and cost can be achieved. Projection performance can be realized.
  • FIGS. 6A to 6L are diagrams showing aberrations of the variable magnification optical system for projection according to Example 1 of the present invention.
  • FIGS. 9A to 9L are aberration diagrams of the projection variable-power optical system according to Example 4 of the present invention.
  • 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration example of a projection variable magnification optical system according to an embodiment of the present invention, and corresponds to a projection variable magnification optical system of Example 1 described later.
  • FIG. 1 also shows the axial light beam 4 and the off-axis light beam 5 having the maximum angle of view.
  • the upper diagram with the symbol “WIDE” in FIG. 1 shows the arrangement and configuration of each lens group at the wide-angle end, and the lower diagram with the symbol “TELE” shows each lens group at the telephoto end. Shows the arrangement and configuration.
  • the projection variable magnification optical system is mounted on, for example, a projection display device, and can be used as a projection lens for projecting image information displayed on a light valve onto a screen.
  • a projection display device In FIG. 1, the left side of the figure is the enlarged side and the right side is the reduced side, and assuming a case where it is mounted on a projection display device, a glass or filter that is used in a color synthesis unit or illumination light separation unit is assumed.
  • the block 2 and the image display surface 1 of the light valve located on the reduction side surface of the glass block 2 are also shown.
  • a light beam given image information on the image display surface 1 is incident on the projection variable optical system via the glass block 2 and is moved in the left direction of the drawing by the projection variable optical system.
  • the image is projected on a screen (not shown) arranged on the screen.
  • FIG. 1 shows an example in which the position of the reduction side surface of the glass block 2 matches the position of the image display surface 1, the present invention is not necessarily limited to this. Further, in FIG. 1, only one image display surface 1 is shown for simplification of the drawing, but in the projection display device, the light flux from the light source is separated into three primary colors by a color separation optical system, Three light valves may be arranged for primary colors so that a full color image can be displayed.
  • the projection variable magnification optical system includes, in order from the magnification side, substantially two lenses, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. It consists of groups, and the reduction side is configured to be telecentric.
  • the reduction side is telecentric refers to the maximum light beam on the upper side in the cross section of the light beam condensed at an arbitrary point on the image display surface 1 on the reduction side when the light ray is traced from the enlargement side to the reduction side.
  • the bisecting line with the lower maximum ray indicates a state that is almost parallel to the optical axis Z, and is completely telecentric, that is, the bisecting line is completely parallel to the optical axis. It is not limited to the case, but includes cases where there is some error (when there is a slight inclination with respect to the optical axis).
  • the inclination of the bisector with respect to the optical axis is within ⁇ 3 ° at both the wide-angle end and the telephoto end.
  • the bisector 6 relating to the off-axis light beam 5 is indicated by a one-dot chain line in the off-axis light beam 5.
  • the example of FIG. 1 shows a case where an aperture stop is not installed.
  • the above-mentioned idea regarding “the telescopic side on the reduction side” is a light shielding method that intentionally blocks a part of the aperture stop and a light beam in the projection variable magnification optical system.
  • the present invention is also applicable when a member is installed.
  • the first lens group G1 and the second lens group G2 move in the optical axis direction during zooming.
  • the first lens group G1 moves to the enlargement side
  • the second lens group G2 moves to the reduction side.
  • This variable power optical system for projection employs a two-group configuration consisting of two lens groups in order to simplify the structure, and these two lens groups are both positive lens groups.
  • the amount of change in focal length when the interval between the two lens groups is changed is small, so the zoom ratio can be increased.
  • the overall length of the lens system instead of increasing the overall length of the lens system, there is an advantage that it is easy to realize telecentricity while ensuring a sufficient back focus to insert a color synthesis prism, TIR prism, or the like.
  • variable power optical system for projection that does not require a relatively high variable power ratio, unlike the variable power optical system for digital cameras, etc.
  • a two-group configuration with a positive refractive power arrangement is preferable.
  • the second lens group G2 moves to the reduction side at the time of zooming from the wide angle end to the telephoto end, so that the back focus on the telephoto side becomes short, but the main lens on the reduction side.
  • the point position By controlling the point position, it is possible to maintain sufficient telecentricity over the entire zooming range while ensuring sufficient back focus that allows the insertion of a color synthesizing prism etc. even in this telephoto state.
  • the two-group configuration it is easier to control the principal point position on the reduction side by arranging positive and positive lens groups in order from the enlargement side.
  • the second lens group G2 has a positive refractive power, which is advantageous for securing telecentricity.
  • the projection variable magnification optical system satisfies the following conditional expression (1).
  • Bft Back focus of the entire system at the telephoto end
  • fw Focal length of the entire system at the wide angle end
  • Conditional expression (1) is obtained by dividing the back focus at the telephoto end by the focal length at the wide-angle end, and shows the relationship between the back focus and the principal point position on the reduction side. If the lower limit of conditional expression (1) is not reached, it becomes difficult to insert a color synthesizing prism, TIR prism, etc. between the projection variable magnification optical system and the light valve, and it becomes difficult to ensure good telecentricity. By satisfying conditional expression (1), it is possible not only to secure a sufficient back focus for inserting a color synthesis prism, a TIR prism, etc., but also to ensure good telecentricity.
  • the projection variable magnification optical system of the present embodiment satisfies at least one of the following conditional expressions (2) and (3).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • fw Focal length of the entire system at the wide angle end
  • conditional expression (2) If the lower limit of conditional expression (2) is not reached, the positive power of the first lens group G1 becomes too strong, and it becomes difficult to correct aberrations with a small number of lenses, or lenses to perform good aberration correction. Increasing the number of lenses increases the size of the entire lens system. If the upper limit of conditional expression (2) is exceeded, the positive power of the first lens group G1 becomes too weak, the amount of movement of the first lens group G1 during zooming increases, and the entire lens system increases in size. By satisfying conditional expression (2), it is possible to suppress an increase in the size of the entire lens system while performing good aberration correction.
  • Conditional expression (3) is a conditional expression for securing good telecentricity while ensuring good optical performance and a predetermined zoom ratio, and if out of this range, correction of spherical aberration and astigmatism It becomes difficult to secure a predetermined zoom ratio and sufficient back focus.
  • the first lens group G1 is preferably composed of five lenses.
  • the second lens group G2 is preferably composed of three or less lenses.
  • the preferable number of lenses in the first lens group G1 and the second lens group G2 is to realize a reduction in size, weight and cost, and good correction of various aberrations in a projection variable magnification optical system having a two-group configuration. Is the minimum number of lenses.
  • the first lens group G1 includes five lenses L11 to L15
  • the second lens group G2 includes three lenses L21 to L23.
  • the most magnified lens (lens L11 in the example of FIG. 1) of the first lens group G1 is preferably an aspheric lens, and in this case, the aspheric lens is preferably made of a plastic material. .
  • Arranging the aspherical lens on the most magnified side of the first lens group G1 is effective for correcting off-axis aberrations, particularly distortion.
  • Use of a plastic material is advantageous in terms of manufacturability and cost.
  • the second lens from the magnification side of the first lens group (lens L12 in the example of FIG. 1) and the third lens (lens L13 in the example of FIG. 1) are a negative lens and a positive lens, respectively. By doing so, it becomes easy to satisfactorily correct off-axis aberrations while ensuring a predetermined angle of view.
  • the most magnified lens (lens L21 in the example of FIG. 1) of the second lens group G2 is an aspheric lens, and in this case, the aspheric lens is made of a plastic material. Is preferred. Arranging the aspherical lens on the most enlarged side of the second lens group G2 is effective in correcting astigmatism and spherical aberration. Use of a plastic material is advantageous in terms of manufacturability and cost.
  • the first lens (lens L23 in the example of FIG. 1) and the second lens (lens L22 in the example of FIG. 1) from the reduction side of the second lens group G2 are a positive lens and a negative lens, respectively.
  • the reduction-side principal point position of the second lens group G2 is brought close to the image display surface 1 corresponding to the reduction-side image surface, thereby ensuring the back focus while having an appropriate zoom ratio. Easy to do.
  • the first lens group G1 includes, in order from the magnification side, a lens L11 that is an aspheric lens having a concave surface facing the magnification side in the paraxial region, and a lens composed of a biconcave lens.
  • L12, a lens L13 made of a biconvex lens, a lens L14 made of a positive lens, and a lens L15 made of a negative meniscus lens, and the lens L14 and the lens L15 are cemented.
  • the second lens group G2 in the example shown in FIG. 1 includes, in order from the magnification side, a lens L21 that is a positive meniscus aspheric lens having a convex surface facing the reduction side in the paraxial region, and a lens L22 made of a biconcave lens. And a lens L23 made of a biconvex lens, and the lens L22 and the lens L23 are cemented.
  • the projection variable magnification optical system according to the present embodiment can be configured with a small number of lenses of eight in the entire system by effectively disposing the aspheric lens and effectively using the cemented lens. is there.
  • each lens group of the projection variable magnification optical system of the present invention is not limited to that shown in FIG.
  • a configuration in which the second lens group G2 is composed of two lenses of a negative meniscus aspherical lens having a convex surface facing the reduction side in the paraxial region and a biconvex lens in order from the magnification side is also possible.
  • FIG. 1 shows a configuration example of the zoom lens, but the projection variable magnification optical system of the present invention is not limited to the zoom lens, and may be a varifocal lens. In the case of a varifocal lens, the drive mechanism can be further simplified.
  • the zooming optical system for projection of the present invention is a zoom lens
  • the first lens group G1 or the second lens group G2 may be used as the lens group to be moved during focusing when the projection distance varies.
  • both the first lens group G1 and the second lens group G2 may be used.
  • the intermediate image is not formed as shown in FIG.
  • variable power optical system for projection targeted by the present invention it is preferable that the distortion (distortion aberration) is suppressed to about 2% or less in the entire variable power range.
  • FIG. 10 is a schematic configuration diagram of a projection display apparatus according to an embodiment of the present invention.
  • a projection display device 100 shown in FIG. 10 includes a projection variable magnification optical system 10 according to an embodiment of the present invention, a light source 20, transmissive display elements 11a to 11c as light valves corresponding to each color light, and colors. It has dichroic mirrors 12 and 13 for separation, a cross dichroic prism 14 for color composition, condenser lenses 16a to 16c, and total reflection mirrors 18a to 18c for deflecting the optical path.
  • the projection variable magnification optical system 10 is schematically shown. Further, an integrator is disposed between the light source 20 and the dichroic mirror 12, but the illustration thereof is omitted in FIG.
  • White light from the light source 20 is decomposed into three colored light beams (G light, B light, and R light) by the dichroic mirrors 12 and 13, and then transmitted through the condenser lenses 16a to 16c, respectively.
  • the light is incident on the mold display elements 11 a to 11 c, is optically modulated, is color-combined by the cross dichroic prism 14, and then enters the projection variable magnification optical system 10.
  • the projection variable magnification optical system 10 projects an optical image of light modulated by the transmissive display elements 11a to 11c on a screen (not shown).
  • transmissive display elements 11a to 11c for example, transmissive liquid crystal display elements can be used.
  • FIG. 10 shows an example in which a transmissive display element is used as the light valve, the light valve provided in the projection display device of the present invention is not limited to this, and a reflective liquid crystal display element, DMD, or the like. Other light modulation means may be used.
  • FIG. 1 shows a lens configuration of the variable power optical system for projection according to the first embodiment.
  • the upper diagram with the symbol “WIDE” shows the lens configuration at the wide-angle end
  • the lower diagram with the symbol “TELE” shows the lens configuration at the telephoto end. is there.
  • the projection variable magnification optical system of Example 1 has a two-group configuration in which a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power are arranged in this order from the magnification side.
  • the reduction side is telecentric.
  • the first lens group G1 moves to the enlargement side
  • the second lens group G2 moves to the reduction side.
  • FIG. 2 the movement direction of these two lens groups when changing from the wide-angle end to the telephoto end is schematically indicated by arrows between the positions.
  • a glass block 2 assuming various filters, color synthesis prisms, and the like is arranged, and an image display surface 1 of the light valve is arranged so as to contact the reduction side surface of the glass block 2. ing.
  • the projection variable magnification optical system of Example 1 is configured to perform focusing when the projection distance fluctuates by moving the second lens group G2.
  • the first lens group G1 includes, in order from the enlargement side, a positive meniscus lens L11 having a convex surface facing the reduction side in the paraxial region, a lens L12 made of a biconcave lens, a lens L13 made of a biconvex lens, and a biconvex lens. And a lens L15 made of a negative meniscus lens having a convex surface facing the reduction side.
  • the lens L14 and the lens L15 are cemented.
  • the surfaces on both sides of the lens L11 are aspherical surfaces.
  • the second lens group G2 includes, in order from the magnification side, a positive meniscus lens L21 having a convex surface facing the reduction side in the paraxial region, a lens L22 made of a biconcave lens, and a lens L23 made of a biconvex lens. Yes.
  • the lens L22 and the lens L23 are cemented.
  • the surfaces on both sides of the lens L21 are aspheric.
  • Table 1 shows basic lens data of the projection variable magnification optical system of Example 1.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column is on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the sign of the radius of curvature is positive when the surface shape is convex on the enlargement side, and negative when the surface shape is convex on the reduction side, and includes the glass block 2 in the basic lens data.
  • the surface numbers of the aspheric surfaces are marked with *, and the numerical values of paraxial curvature radii are entered in the curvature radius columns of these aspheric surfaces.
  • surfaces with surface numbers 1, 2, 10, and 11 are aspherical surfaces.
  • the interval between the first lens group G1 and the second lens group G2 and the interval between the second lens group G2 and the glass block 2 are variable surface intervals that change during zooming.
  • D is added with the surface number on the enlarged side of the surface interval.
  • D9 and D14 are entered in these variable surface interval columns, respectively.
  • Table 2 shows values of the above-described variable surface intervals at the wide-angle end, the intermediate focal length state, and the telephoto end of the projection variable magnification optical system of Example 1. Each value shown in Table 2 is when the projection distance is shown outside the frame in Table 2.
  • Table 3 shows the aspheric coefficient of each aspheric surface.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric coefficient in Table 3 means “ ⁇ 10 ⁇ n ”.
  • Zd Depth of aspheric surface (the length of a perpendicular drawn from a point on the aspherical surface of height Y to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • Y Height (distance from the optical axis to the lens surface)
  • C Paraxial curvature K
  • Tables 1 to 3 are those when standardized so that the focal length of the entire system at the wide-angle end is 1.
  • the numerical values in each table are rounded to a predetermined digit.
  • FIGS. 6A to 6D show the spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) of the projection variable magnification optical system of Example 1 at the wide-angle end, respectively.
  • An aberration diagram is shown.
  • FIGS. 6E to 6H show the spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) of the variable power optical system for projection of Example 1 in the intermediate focal length state, respectively.
  • Each aberration diagram is shown.
  • 6 (I) to 6 (L) respectively show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) of the projection variable magnification optical system of Example 1 at the telephoto end. An aberration diagram is shown.
  • the aberration diagrams in FIGS. 6A to 6L are based on the d-line, but in the spherical aberration diagram, the F-line (wavelength wavelength 486.1 nm) and the C-line (wavelength 656.3 nm). ) Also shows aberrations, and the lateral chromatic aberration diagram shows aberrations related to the F-line and C-line.
  • the astigmatism diagram aberrations in the sagittal direction and the tangential direction are indicated by a solid line and a broken line, respectively.
  • the aberration diagrams in FIGS. 6A to 6L are for the projection distances added to the table of variable surface intervals.
  • FIG. 3 is a lens configuration diagram of the variable power optical system for projection according to the second embodiment.
  • the projection variable optical system of Example 2 has substantially the same configuration as the projection variable optical system of Example 1, except that the lens L14 is a positive meniscus lens having a convex surface facing the reduction side. It is different. Note that the projection variable magnification optical system of Example 2 is configured to perform focusing when the projection distance fluctuates by moving the first lens group G1.
  • Table 4 Table 4, Table 5, and Table 6 show the basic lens data, variable surface interval, and aspheric coefficient of the projection variable magnification optical system of Example 2, respectively.
  • FIGS. 7A to 7L show aberration diagrams of the projection variable magnification optical system of Example 2.
  • FIGS. 7A to 7L show aberration diagrams of the projection variable magnification optical system of Example 2.
  • FIG. 4 shows a lens configuration diagram of the projection variable magnification optical system of Example 3.
  • the projection variable magnification optical system according to the third embodiment has substantially the same configuration as the projection variable magnification optical system according to the first embodiment, except that the lens L11 has a biconcave shape in the paraxial region, and the lens L14 has the following configuration. The difference is that the lens is formed of a negative meniscus lens having a convex surface facing the enlargement side, the lens L15 is formed of a biconvex lens, and the lens L14 and the lens L15 are not cemented.
  • the projection variable magnification optical system of Example 3 is configured to perform focusing when the projection distance varies by moving the second lens group G2.
  • Table 7, Table 8, and Table 9 show the basic lens data, variable surface interval, and aspheric coefficient of the projection variable magnification optical system of Example 3, respectively.
  • FIGS. 8A to 8L show aberration diagrams of the projection variable magnification optical system of Example 3.
  • FIG. 5 is a lens configuration diagram of the variable power optical system for projection according to the fourth embodiment.
  • the projection variable optical system of the fourth embodiment has substantially the same configuration as the projection variable optical system of the first embodiment, but the second lens group G2 includes lenses L21 to L22 arranged in order from the enlargement side.
  • the lens L11 has a negative meniscus shape with a convex surface facing the reduction side in the paraxial region
  • the lens L21 has a negative meniscus shape with the convex surface facing the reduction side in the paraxial region
  • the difference is that the lens L22 is a biconvex lens.
  • the projection variable magnification optical system of Example 4 is configured such that focusing when the projection distance varies is performed by moving the first lens group G1.
  • Table 10, Table 11, and Table 12 show the basic lens data, variable surface interval, and aspheric coefficient of the projection variable magnification optical system of Example 4, respectively.
  • FIGS. 9A to 9L show aberration diagrams of the projection variable magnification optical system of Example 4.
  • Table 13 shows various values of Examples 1 to 4 and corresponding values of the conditional expressions (1) to (3).
  • Bfw in Table 13 is the back focus (air conversion distance) of the entire system at the wide angle end. Examples 1 to 4 all satisfy the conditional expressions (1) to (3).
  • the projection variable magnification optical system according to the present invention is not limited to the above examples, and various modifications can be made.
  • the radius of curvature, the surface interval, the refractive index, the Abbe number, and the aspherical coefficient of each lens can be appropriately changed.
  • the projection display device of the present invention is not limited to the one having the above-described configuration.
  • the light valve used and the optical member used for light beam separation or light beam synthesis are not limited to the above-described configuration, and various It is possible to change the mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

【課題】投写用変倍光学系において、縮小側のテレセントリック性を確保しながら、2群構成という簡易な構成で、小型化、軽量化及び低廉化を図り、良好な光学性能を有する。 【解決手段】投写用変倍光学系は、変倍の際に移動する正の屈折力を有する第1レンズ群(G1)と、変倍の際に移動する正の屈折力を有する第2レンズ群(G2)との実質的に2つのレンズ群からなり、縮小側がテレセントリックとなるように構成されている。

Description

投写用変倍光学系および投写型表示装置
 本発明は、投写用変倍光学系および投写型表示装置に関し、例えば、ライトバルブからの映像情報を有する光束をスクリーン上に拡大投写するのに好適な2群構成の投写用変倍光学系およびこれを搭載した投写型表示装置に関するものである。
 近年、液晶表示装置やDMD(デジタル・マイクロミラー・デバイス:登録商標)表示装置等のライトバルブを用いた投写型表示装置が広く普及しており、特に、このライトバルブを3つ用い、R(赤)、G(緑)、B(青)の3原色の照明光に各々対応させるようにすることでこれら各照明光を変調し、個々のライトバルブで変調された光を色合成用プリズム等で合成し、投写用レンズを介してスクリーンに画像を表示する構成をとるものが広く利用されている。
 このようなライトバルブにおいては小型化・高精細化が急激に進み、また、パソコンの普及と相俟って、このような投写型表示装置を用いてプレゼンテーションを行うことの需要も増加しており、利便性や設置性のよい態様のものが望まれているため、投写型表示装置に対して、より高性能かつより高変倍可能で、より小型・より軽量なものへの要求が高まってきている。また、これに伴い投写用レンズに関しても、より高性能かつより高変倍機能を有し、より小型・より軽量なものであることが強く望まれている。さらにまた、その一方で、投写用レンズに対する低廉化への要求も強いものがある。
 一方、光学系内に、複数のライトバルブからの変調光を合成するための色合成プリズムや、照明光と投写光の分離に用いられるTIR(Total Internal Reflection)プリズムを配設した場合、前者では色むら発生を防止するため、後者では分離効率の低下を防止するため、投写用レンズの縮小側をテレセントリックとすることが要求される。
 このような投写型表示装置に用いられる投写用レンズとしては、スクリーン上での投写画像のサイズを変えることができる変倍光学系を用いることが多い。このような投写用の変倍光学系には、従来、レンズ群の群数を4群あるいは5群としたテレセントリックな変倍光学系が多く用いられており、さらに高性能化や高変倍化などが求められる場合には、6群のものも用いられている。しかし、このような多群構成は、構成が複雑化するため小型化、軽量化および低廉化を進める上では好ましくない。
 そこで、構成がシンプルな2群構成のズームレンズとして、下記特許文献1に記載のものが提案されている。特許文献1に記載のズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とが配列されてなり、変倍に際してこれら2つのレンズ群が光軸方向に移動するように構成されたものである。
特開2010-113150号公報
 しかしながら、上記特許文献1に記載のものは、2群構成で簡易かつコンパクトな構成とはされているものの、投写用レンズの縮小側がテレセントリックな構成にされてはおらず、色合成プリズムやTIRプリズム等を必要とする投写型表示装置には用いることができない。
 さらに、上記特許文献1に記載のような、2群ズームとしてよく知られる、拡大側から順に、負の第1レンズ群、正の第2レンズ群を配置した構成は、比較的長いバックフォーカスを確保できるが、テレセントリック性を確保しようとした場合、変倍群である第2レンズ群に変倍作用を大きく持たせることができないため、第1レンズ群のパワーを強くすることができなくなる。そのため、第1レンズ群のレンズ径を大きくとらざるを得ないばかりか、レンズ系の全長が大型化してしまい、レンズ群を2つにするという構成の簡易化がなされても、小型化、軽量化、低廉化には向かないことが多い。
 逆に、拡大側から順に、正の第1レンズ群、負の第2レンズ群を配置した2群構成は、色合成プリズムやTIRプリズム等を挿入するだけの十分なバックフォーカスを確保できない。また、最も縮小側のレンズ群が負の屈折力を有するものではテレセントリック性の確保が困難である。
 本発明は上記事情に鑑みなされたものであり、縮小側のテレセントリック性を確保しながらも、2群構成という簡易な構成で、小型化、軽量化及び低廉化を図り、さらに良好な光学性能を有する投写用変倍光学系およびこのような投写用変倍光学系を備えた投写型表示装置を提供することを目的とするものである。
 本発明に係る投写用変倍光学系は、拡大側から順に、変倍の際に移動する正の屈折力を有する第1レンズ群と、変倍の際に移動する正の屈折力を有する第2レンズ群との実質的に2つのレンズ群からなり、縮小側がテレセントリックとなるように構成されていることを特徴とするものである。
 本発明に係る投写用変倍光学系においては、下記条件式(1)を満足することが好ましく、さらに下記条件式(1’)を満足することがより好ましい。
   1.0<Bft/fw … (1)
   1.2<Bft/fw … (1’)
ただし、
Bft:望遠端における全系のバックフォーカス(空気換算距離)
fw:広角端における全系の焦点距離
 また、本発明に係る投写用変倍光学系においては、下記条件式(2)、(3)、(2’)、(3’)の少なくとも一つを満足することが好ましい。なお、好ましい態様としては、条件式(2)、(3)、(2’)、(3’)のいずれか一つを満足するものでもよく、あるいは任意の組合せを満足するものでもよい。
   1.5<f1/fw<3.5 … (2)
   0.5<f2/f1<1.5 … (3)
   1.8<f1/fw<3.0 … (2’)
   0.8<f2/f1<1.3 … (3’)
ただし、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
fw:広角端における全系の焦点距離
 また、本発明に係る投写用変倍光学系においては、第1レンズ群が、実質的に5枚のレンズからなることが好ましい。
 また、本発明に係る投写用変倍光学系においては、第1レンズ群の拡大側から2、3番目のレンズが、それぞれ負レンズ、正レンズであることが好ましい。
 また、本発明に係る投写用変倍光学系においては、第2レンズ群が、実質的に3枚以下のレンズからなることが好ましい。
 また、本発明に係る投写用変倍光学系においては、記第2レンズ群の縮小側から1、2番目のレンズが、それぞれ正レンズ、負レンズであることが好ましい。
 また、本発明に係る投写用変倍光学系においては、第1レンズ群の最も拡大側のレンズが、非球面レンズであることが好ましい。その際には、第1レンズ群のこの最も拡大側の非球面レンズが、プラスチック材質からなることが好ましい。
 また、本発明に係る投写用変倍光学系においては、第2レンズ群の最も拡大側のレンズが、非球面レンズであることが好ましい。その際には、第2レンズ群のこの最も拡大側の非球面レンズが、プラスチック材質からなることが好ましい。
 本発明に係る投写型表示装置は、光源と、この光源からの光が入射するライトバルブと、このライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用変倍光学系として上述した本発明の投写用変倍光学系とを備えたことを特徴とするものである。
 なお、上記「拡大側」とは、被投写側(スクリーン側)を意味し、縮小投写する場合も、便宜的にスクリーン側を拡大側と称するものとする。一方、上記「縮小側」とは、原画像表示領域側(ライトバルブ側)を意味し、縮小投写する場合も、便宜的にライトバルブ側を縮小側と称するものとする。
 なお、上記「実質的に2つのレンズ群からなり」とは、構成要素として挙げたレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、手振れ補正機構等の機構部分等を持つ場合も含むものとする。この「実質的に」の用語は、「実質的に5枚のレンズからなる」、「実質的に3枚以下のレンズからなる」についても、その意味するところは全て上に述べたものと同様である。
 なお、上記「レンズ群」とは、必ずしも複数のレンズから構成されるものだけでなく、1枚のレンズのみで構成されるものも含むものとする。
 なお、「バックフォーカス」は、最も縮小側のレンズ面から縮小側の近軸焦点面までの光軸上の距離である。ここでは、拡大側、縮小側をそれぞれフロント側、バック側として考えるものとする。
 なお、上記レンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明に係る投写用変倍光学系は、2群構成という簡易な構成を採り、2群ともに正レンズ群とし、縮小側をテレセントリックとしているため、小型化、軽量化及び低廉化を図ることができ、レンズ系の全長を抑制しながらもプリズム等を挿入可能なバックフォーカスを確保しつつ、縮小側のテレセントリック性を保つことができ、変倍時における収差変動を小さくして良好な光学性能を保持することが可能となる。
 また、本発明に係る投写型表示装置は、本発明の投写用変倍光学系を備えているため、簡易な構成が可能で、小型化、軽量化及び低廉化を図ることができ、良好な投写性能を実現することができる。
本発明の一実施形態に係る投写用変倍光学系のレンズ構成および光線軌跡を示す断面図 本発明の実施例1に係る投写用変倍光学系のレンズ構成を示す断面図 本発明の実施例2に係る投写用変倍光学系のレンズ構成を示す断面図 本発明の実施例3に係る投写用変倍光学系のレンズ構成を示す断面図 本発明の実施例4に係る投写用変倍光学系のレンズ構成を示す断面図 図6(A)~図6(L)は本発明の実施例1に係る投写用変倍光学系の各収差図 図7(A)~図7(L)は本発明の実施例2に係る投写用変倍光学系の各収差図 図8(A)~図8(L)は本発明の実施例3に係る投写用変倍光学系の各収差図 図9(A)~図9(L)は本発明の実施例4に係る投写用変倍光学系の各収差図 本発明の一実施形態に係る投写型表示装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の一実施形態に係る投写用変倍光学系の構成例を示す断面図であり、後述の実施例1の投写用変倍光学系に対応している。なお、図1には、軸上光束4、最大画角の軸外光束5も合わせて示している。図1の「WIDE」という記号が付された上段の図は広角端における各レンズ群の配置と構成を示しており、「TELE」という記号が付された下段の図は望遠端における各レンズ群の配置と構成を示している。
 この投写用変倍光学系は、例えば投写型表示装置に搭載されて、ライトバルブに表示された画像情報をスクリーンへ投写する投写用レンズとして使用可能である。図1では、図の左側を拡大側、右側を縮小側とし、投写型表示装置に搭載される場合を想定して、色合成部または照明光分離部に用いられるフィルタやプリズム等を想定したガラスブロック2と、ガラスブロック2の縮小側の面に位置するライトバルブの画像表示面1も合わせて図示している。
 投写型表示装置においては、画像表示面1で画像情報を与えられた光束が、ガラスブロック2を介して、この投写用変倍光学系に入射され、この投写用変倍光学系により紙面左側方向に配置されるスクリーン(不図示)上に投写される。
 なお、図1では、ガラスブロック2の縮小側の面の位置と画像表示面1の位置とが一致した例を示しているが、必ずしもこれに限定されない。また、図1では図の簡略化のために1枚の画像表示面1のみを記載しているが、投写型表示装置において、光源からの光束を色分離光学系により3原色に分離し、各原色用に3つのライトバルブを配設して、フルカラー画像を表示可能とするように構成してもよい。
 本実施形態に係る投写用変倍光学系は、拡大側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2との実質的に2つのレンズ群からなり、縮小側がテレセントリックとなるように構成されている。
 なお、本発明における「縮小側がテレセントリック」とは、拡大側から縮小側へ向かって光線追跡したときに縮小側の画像表示面1の任意の点に集光する光束の断面において上側の最大光線と下側の最大光線との二等分角線が光軸Zと平行に近い状態を指すものであり、完全にテレセントリックな場合、すなわちこの二等分角線が光軸に対して完全に平行な場合に限るものではなく、多少の誤差がある場合(光軸に対して僅かな傾きがある場合)をも含むものを意味する。ここで多少の誤差がある場合(光軸に対して僅かな傾きがある場合)とは、広角端、望遠端ともに、光軸に対する上記二等分角線の傾きが±3°の範囲内の場合である。図1に示す例では、軸外光束5に関する上記二等分角線6を軸外光束5内の一点鎖線で示している。図1の例は開口絞りが設置されていない場合を示しているが、「縮小側がテレセントリック」に関する上記思想は、投写用変倍光学系に開口絞りや光束の一部を意図的に遮光する遮光部材が設置されている場合にも適用可能である。
 本投写用変倍光学系では、変倍の際には第1レンズ群G1と第2レンズ群G2が光軸方向に移動する。例えば、図1に示す例では、広角端から望遠端への変倍の際に、第1レンズ群G1は拡大側へ移動し、第2レンズ群G2は縮小側へ移動する。
 本投写用変倍光学系では、構造の簡易化のために2つのレンズ群からなる2群構成を採り、これら2つのレンズ群をともに正レンズ群としている。このような、拡大側から順に、正、正のレンズ群を配置した2群構成では、2つのレンズ群の間隔を変化させたときの焦点距離の変化量が小さいため、変倍比を大きくとれないが、その代わりにレンズ系の全長を大きくせずに、色合成プリズムやTIRプリズム等を挿入するだけの十分なバックフォーカスを確保しつつ、それによってテレセントリック性を実現しやすいという長所がある。さらにこの構成は変倍時における収差の変動を小さくできるので、変倍範囲全体に渡り諸収差が良好に補正された変倍光学系を維持することが可能である。以上より、デジタルカメラ用変倍光学系等とは異なり比較的高変倍比を必要としない投写用変倍光学系においては、本投写用変倍光学系のような、拡大側から順に、正、正の屈折力配置の2群構成は好適である。
 なお、図1に示す例では、広角端から望遠端への変倍の際に、第2レンズ群G2が縮小側へ移動するため、望遠側でのバックフォーカスが短くなるが、縮小側の主点位置を制御することで、この望遠側の状態でも色合成プリズム等を挿入可能な十分なバックフォーカスを確保しつつ、それによって変倍範囲全体に渡り良好なテレセントリック性を維持することが可能となる。2群構成において、拡大側から順に、正、正のレンズ群を配置することでこのような縮小側の主点位置の制御がより容易になる。特に、第2レンズ群G2が正の屈折力を有することで、テレセントリック性の確保に有利となる。
 十分なバックフォーカスと良好なテレセントリック性の確保をより容易にするためには、本投写用変倍光学系は、下記条件式(1)を満足することが好ましい。
   1.0<Bft/fw … (1)
ただし、
Bft:望遠端における全系のバックフォーカス
fw:広角端における全系の焦点距離
 条件式(1)は、望遠端のバックフォーカスを広角端における焦点距離で割ったものであり、バックフォーカスと縮小側の主点位置の関係を示すものである。条件式(1)の下限以下になると、投写用変倍光学系とライトバルブとの間に色合成プリズムやTIRプリズム等を挿入し難くなり、また、良好なテレセントリック性の確保が難しくなる。条件式(1)を満足することで、色合成プリズムやTIRプリズム等を挿入するだけの十分なバックフォーカスを確保できるだけでなく、良好なテレセントリック性を確保することができる。
 上記事情から、各種プリズム等を挿入するだけの十分なバックフォーカスと良好なテレセントリック性の確保をより容易にするためには、下記条件式(1’)を満足することがより好ましい。
   1.2<Bft/fw … (1’)
 また、本実施形態の投写用変倍光学系は、下記条件式(2)、(3)の少なくとも一方を満足することが好ましい。
   1.5<f1/fw<3.5 … (2)
   0.5<f2/f1<1.5 … (3)
ただし、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
fw:広角端における全系の焦点距離
 条件式(2)の下限以下になると、第1レンズ群G1の正のパワーが強くなりすぎて、少ないレンズ枚数では良好な収差補正が困難になる、あるいは、良好な収差補正を行うためにレンズ枚数を増加させるとレンズ全系が大型化する。条件式(2)の上限以上になると、第1レンズ群G1の正のパワーが弱くなりすぎて、変倍時における第1レンズ群G1の移動量が大きくなり、レンズ全系が大型化する。条件式(2)を満足することで、良好な収差補正を行いながらレンズ全系の大型化を抑制することができる。
 上記事情から、より良好な収差補正を行いながらレンズ全系の大型化をより抑制するためには、下記条件式(2’)を満足することがより好ましい。
   1.8<f1/fw<3.0 … (2’)
 条件式(3)は、良好な光学性能と所定の変倍比を確保しつつ、良好なテレセントリック性を確保するための条件式であり、この範囲から外れると、球面収差、非点収差の補正が困難となり、所定の変倍比、十分なバックフォーカスの確保が困難となる。
 上記事情から、所定の変倍比を確保しつつ、より良好な光学性能とより良好なテレセントリック性を確保するためには、下記条件式(3’)を満足することがより好ましい。
   0.8<f2/f1<1.3 … (3’)
 各レンズ群の構成としては、第1レンズ群G1は5枚のレンズからなることが好ましい。また、第2レンズ群G2は3枚以下のレンズからなることが好ましい。これら第1レンズ群G1、第2レンズ群G2における好ましいレンズ枚数は、2群構成の投写用変倍光学系において、小型化、軽量化及び低廉化および諸収差の良好な補正を実現する上での最小レンズ枚数である。例えば図1に示す例では、第1レンズ群G1はレンズL11~L15の5枚のレンズからなり、第2レンズ群G2はレンズL21~L23の3枚のレンズからなる。
 第1レンズ群G1の最も拡大側のレンズ(図1の例ではレンズL11)は、非球面レンズとすることが好ましく、その際には、この非球面レンズは、プラスチック材質で構成することが好ましい。第1レンズ群G1の最も拡大側に非球面レンズを配置することで、軸外収差、特に歪曲収差の補正に効果的となる。プラスチック材質を用いることで、製造性およびコスト面で有利となる。
 第1レンズ群の拡大側から2番目のレンズ(図1の例ではレンズL12)、3番目のレンズ(図1の例ではレンズL13)は、それぞれ負レンズ、正レンズとすることが好ましい。このようにすることで、所定の画角を確保しながらも、軸外収差を良好に補正することが容易となる。
 また、第2レンズ群G2の最も拡大側のレンズ(図1の例ではレンズL21)は、非球面レンズであることが好ましく、その際には、この非球面レンズは、プラスチック材質で構成することが好ましい。第2レンズ群G2の最も拡大側に非球面レンズを配置することで、非点収差、球面収差の補正に効果的となる。プラスチック材質を用いることで、製造性およびコスト面で有利となる。
 第2レンズ群G2の縮小側から1番目のレンズ(図1の例ではレンズL23)、2番目のレンズ(図1の例ではレンズL22)は、それぞれ正レンズ、負レンズであることが好ましい。このようにすることで、第2レンズ群G2の縮小側主点位置を縮小側の像面に相当する画像表示面1に近づけ、これによって適度な変倍比を有しながらもバックフォーカスを確保することが容易となる。
 例えば図1に示す例を詳述すると、第1レンズ群G1は、拡大側から順に、近軸領域で拡大側に凹面を向けた形状の非球面レンズであるレンズL11と、両凹レンズよりなるレンズL12と、両凸レンズよりなるレンズL13と、正レンズよりなるレンズL14と、負メニスカスレンズよりなるレンズL15とから構成され、レンズL14とレンズL15は接合されている。
 また、図1に示す例の第2レンズ群G2は、拡大側から順に、近軸領域で縮小側に凸面を向けた正メニスカス形状の非球面レンズであるレンズL21と、両凹レンズよりなるレンズL22と、両凸レンズよりなるレンズL23とから構成され、レンズL22とレンズL23は接合されている。このように、本実施形態に係る投写用変倍光学系は、非球面レンズを効果的に配置し、接合レンズを有効に利用することで、全系で8枚という少ないレンズ枚数で構成可能である。
 ただし、本発明の投写用変倍光学系の各レンズ群の構成は図1に示すものに限定されない。例えば、後述の実施例に示すように、図1に示すもののレンズL14とレンズL15の順番を入れ換えてこれらを接合しない構成も可能である。または、第2レンズ群G2が、拡大側から順に、近軸領域で縮小側に凸面を向けた負メニスカス形状の非球面レンズ、両凸レンズの2枚のレンズからなるようにした構成も可能である。
 また、図1ではズームレンズの構成例を示しているが、本発明の投写用変倍光学系は、ズームレンズに限定されず、バリフォーカルレンズであってもよい。バリフォーカルレンズの場合は、駆動機構をより簡素化することができる。
 また、本発明の投写用変倍光学系がズームレンズの場合、投写距離が変動した際のフォーカシング時に移動させるレンズ群としては、第1レンズ群G1のみでもよく、第2レンズ群G2のみでもよく、または第1レンズ群G1と第2レンズ群G2両方でもよい。
 なお、本発明の投写用変倍光学系では、図1に示すように、中間像を形成しない構成とすることが好ましい。中間像を形成しない構成とすることで、レンズ系の全長が大型化してしまうのを回避することができる。
 なお、本発明の目的とする投写用変倍光学系としては、全変倍域でディストーション(歪曲収差)が約2%以下に抑えられていることが好ましい。
 なお、上述した好ましい構成は、投写用変倍光学系に要望される事項に応じて適宜選択的に採用されることが好ましい。
 次に、本発明に係る投写型表示装置の実施形態について、図10を参照しながら説明する。図10は本発明の一実施形態に係る投写型表示装置の概略構成図である。
 図10に示す投写型表示装置100は、本発明の実施形態にかかる投写用変倍光学系10と、光源20と、各色光に対応したライトバルブとしての透過型表示素子11a~11cと、色分解のためのダイクロイックミラー12、13と、色合成のためのクロスダイクロイックプリズム14と、コンデンサレンズ16a~16cと、光路を偏向するための全反射ミラー18a~18cとを有する。なお、図10では、投写用変倍光学系10は概略的に図示している。また、光源20とダイクロイックミラー12の間にはインテグレータが配されているが、図10ではその図示を省略している。
 光源20からの白色光は、ダイクロイックミラー12、13で3つの色光光束(G光、B光、R光)に分解された後、それぞれコンデンサレンズ16a~16cを経て各色光光束にそれぞれ対応する透過型表示素子11a~11cに入射して光変調され、クロスダイクロイックプリズム14により色合成された後、投写用変倍光学系10に入射する。投写用変倍光学系10は、透過型表示素子11a~11cにより光変調された光による光学像を不図示のスクリーン上に投写する。
 透過型表示素子11a~11cとしては、例えば透過型液晶表示素子等を用いることができる。なお、図10ではライトバルブとして透過型表示素子を用いた例を示したが、本発明の投写型表示装置が備えるライトバルブは、これに限られるものではなく、反射型液晶表示素子あるいはDMD等の他の光変調手段を用いてもよい。
 次に、本発明の投写用変倍光学系の具体的な実施例について説明する。
 <実施例1>
 図1に、実施例1の投写用変倍光学系のレンズ構成を示す。図1において、「WIDE」という記号が付された上段の図は広角端におけるレンズ構成を示すものであり、「TELE」という記号が付された下段の図は望遠端におけるレンズ構成を示すものである。
 実施例1の投写用変倍光学系は、拡大側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とが配列されてなる2群構成であり、縮小側がテレセントリックとされている。変倍の際には、第1レンズ群G1は拡大側へ移動し、第2レンズ群G2は縮小側へ移動する。図2では、広角端から望遠端へ変化する際のこれら2つのレンズ群の移動方向を、各位置間の矢印で概略的に示している。第2レンズ群G2の縮小側には、各種フィルタや色合成プリズム等を想定したガラスブロック2が配置され、ガラスブロック2の縮小側の面に接するようにライトバルブの画像表示面1が配置されている。なお、実施例1の投写用変倍光学系は、投写距離が変動した際のフォーカシングは第2レンズ群G2を移動させて行うように構成されている。
 第1レンズ群G1は、拡大側から順に、近軸領域で縮小側に凸面を向けた正メニスカス形状のレンズL11と、両凹レンズよりなるレンズL12と、両凸レンズよりなるレンズL13と、両凸レンズよりなるレンズL14と、縮小側に凸面を向けた負メニスカスレンズよりなるレンズL15とから構成されている。レンズL14とレンズL15は接合されている。レンズL11の両側の面が非球面である。
 第2レンズ群G2は、拡大側から順に、近軸領域で縮小側に凸面を向けた正メニスカス形状のレンズL21と、両凹レンズよりなるレンズL22と、両凸レンズよりなるレンズL23とから構成されている。レンズL22とレンズL23は接合されている。レンズL21の両側の面が非球面である。
 表1に、実施例1の投写用変倍光学系の基本レンズデータを示す。基本レンズデータのSiの欄には最も拡大側の構成要素の拡大側の面を1番目として縮小側に向かうに従い順次増加するように構成要素の面に面番号を付したときのi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示し、Ndjの欄には最も拡大側の構成要素を1番目として縮小側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に関する屈折率を示し、νdjの欄にはj番目の構成要素のd線に関するアッベ数を示す。
 ただし、曲率半径の符号は、面形状が拡大側に凸の場合を正、縮小側に凸の場合を負としており、基本レンズデータにはガラスブロック2も含めて示している。また、非球面の面番号には*印を付しており、これら非球面の曲率半径の欄には近軸の曲率半径の数値を記入している。実施例1では、面番号が1、2、10、11の面が非球面である。
 第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2とガラスブロック2の間隔は、変倍時に変化する可変面間隔である。これら可変面間隔の欄には、Dに当該面間隔の拡大側の面番号を付して記入している。例えば、実施例1においては、これら可変面間隔の欄にはそれぞれD9、D14と記入している。
 また、表1の枠外上方に、広角端、中間焦点距離状態、望遠端それぞれにおける全系の焦点距離の値を括弧書きで示している。
 表2に、実施例1の投写用変倍光学系の広角端、中間焦点距離状態、望遠端それぞれにおける上記各可変面間隔の値を示す。表2に示す各値は、投写距離が表2の枠外上方に示すときのものである。
 表3に、各非球面の非球面係数を示す。表3の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数K、Am(m=3、4、5、…16)の値である。
Figure JPOXMLDOC01-appb-M000001
ただし、
Zd:非球面深さ(高さYの非球面上の点より非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
Y:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
K、Am:非球面係数(m=3、4、5、…16)
 なお、表1~表3に示す数値は、広角端における全系の焦点距離が1となるように規格化されたときのものである。また、各表の数値は、所定の桁でまるめたものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図6(A)~図6(D)にそれぞれ、広角端における実施例1の投写用変倍光学系の球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。図6(E)~図6(H)にそれぞれ、中間焦点距離状態における実施例1の投写用変倍光学系の球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。図6(I)~図6(L)にそれぞれ、望遠端における実施例1の投写用変倍光学系の球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。
 図6(A)~図6(L)の各収差図は、d線を基準としたものであるが、球面収差図では、F線(波長波長486.1nm)、C線(波長656.3nm)に関する収差も示しており、倍率色収差図では、F線、C線に関する収差を示している。また、非点収差図ではサジタル方向、タンジェンシャル方向に関する収差をそれぞれ実線、破線で示している。球面収差図の縦軸上方に記載のFNo.はFナンバー、その他の収差図の縦軸上方に記載のωは半画角を意味する。なお、図6(A)~図6(L)の収差図は、上記可変面間隔の表に付記した投写距離のときのものである。
 上記の実施例1の説明で述べた各種データの記号、意味、記載方法、広角端における全系の焦点距離が1となるように規格化されている点、各収差図は可変面間隔の表に付記した投写距離のときのものである点等は、特に断りがない限り以下の実施例2~4のものについても同様である。
 <実施例2>
 図3に、実施例2の投写用変倍光学系のレンズ構成図を示す。実施例2の投写用変倍光学系は、実施例1の投写用変倍光学系と略同様の構成とされているが、レンズL14が縮小側に凸面を向けた正メニスカスレンズよりなる点において相違している。なお、実施例2の投写用変倍光学系は、投写距離が変動した際のフォーカシングは第1レンズ群G1を移動させて行うように構成されている。
 表4、表5、表6にそれぞれ、実施例2の投写用変倍光学系の基本レンズデータ、可変面間隔、非球面係数を示す。図7(A)~図7(L)にそれぞれ、実施例2の投写用変倍光学系の各収差図を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <実施例3>
 図4に、実施例3の投写用変倍光学系のレンズ構成図を示す。実施例3の投写用変倍光学系は、実施例1の投写用変倍光学系と略同様の構成とされているが、レンズL11が近軸領域で両凹形状である点、レンズL14が拡大側に凸面を向けた負メニスカスレンズよりなる点、レンズL15が両凸レンズよりなる点、レンズL14とレンズL15が接合されていない点において相違している。なお、実施例3の投写用変倍光学系は、投写距離が変動した際のフォーカシングは第2レンズ群G2を移動させて行うように構成されている。
 表7、表8、表9にそれぞれ、実施例3の投写用変倍光学系の基本レンズデータ、可変面間隔、非球面係数を示す。図8(A)~図8(L)にそれぞれ、実施例3の投写用変倍光学系の各収差図を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <実施例4>
 図5に、実施例4の投写用変倍光学系のレンズ構成図を示す。実施例4の投写用変倍光学系は、実施例1の投写用変倍光学系と略同様の構成とされているが、第2レンズ群G2が拡大側から順にレンズL21~L22が配列された2枚構成である点、レンズL11が近軸領域で縮小側に凸面を向けた負メニスカス形状である点、レンズL21が近軸領域で縮小側に凸面を向けた負メニスカス形状である点、レンズL22が両凸レンズよりなる点において相違している。なお、実施例4の投写用変倍光学系は、投写距離が変動した際のフォーカシングは第1レンズ群G1を移動させて行うように構成されている。
 表10、表11、表12にそれぞれ、実施例4の投写用変倍光学系の基本レンズデータ、可変面間隔、非球面係数を示す。図9(A)~図9(L)にそれぞれ、実施例4の投写用変倍光学系の各収差図を示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表13に、上記実施例1~4の各種値と上記各条件式(1)~(3)の対応値とを示す。ただし、表13のBfwは広角端における全系のバックフォーカス(空気換算距離)である。実施例1~4全て条件式(1)~(3)を満足している。
Figure JPOXMLDOC01-appb-T000013
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明の投写用変倍光学系としては、上記実施例のものに限られるものではなく種々の態様の変更が可能であり、例えば各レンズの曲率半径、面間隔、屈折率、アッベ数、非球面係数を適宜変更することが可能である。
 また、本発明の投写型表示装置は、上記構成のものに限られるものではなく、例えば、用いられるライトバルブや、光束分離または光束合成に用いられる光学部材は、上記構成に限定されず、種々の態様の変更が可能である。

Claims (16)

  1.  拡大側から順に、変倍の際に移動する正の屈折力を有する第1レンズ群と、変倍の際に移動する正の屈折力を有する第2レンズ群との実質的に2つのレンズ群からなり、
     縮小側がテレセントリックとなるように構成されていることを特徴とする投写用変倍光学系。
  2.  下記条件式(1)を満足することを特徴とする請求項1記載の投写用変倍光学系。
       1.0<Bft/fw … (1)
    ただし、
    Bft:望遠端における全系のバックフォーカス(空気換算距離)
    fw:広角端における全系の焦点距離
  3.  下記条件式(1’)を満足することを特徴とする請求項2記載の投写用変倍光学系。
       1.2<Bft/fw … (1’)
  4.  下記条件式(2)を満足することを特徴とする請求項1から3のいずれか1項記載の投写用変倍光学系。
       1.5<f1/fw<3.5 … (2)
    ただし、
    f1:前記第1レンズ群の焦点距離
    fw:広角端における全系の焦点距離
  5.  下記条件式(2’)を満足することを特徴とする請求項4記載の投写用変倍光学系。
       1.8<f1/fw<3.0 … (2’)
  6.  下記条件式(3)を満足することを特徴とする請求項1から5のいずれか1項記載の投写用変倍光学系。
       0.5<f2/f1<1.5 … (3)
    ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
  7.  下記条件式(3’)を満足することを特徴とする請求項6記載の投写用変倍光学系。
       0.8<f2/f1<1.3 … (3’)
  8.  前記第1レンズ群が、実質的に5枚のレンズからなることを特徴とする請求項1から7のいずれか1項記載の投写用変倍光学系。
  9.  前記第1レンズ群の拡大側から2、3番目のレンズが、それぞれ負レンズ、正レンズであることを特徴とする請求項1から8のいずれか1項記載の投写用変倍光学系。
  10.  前記第2レンズ群が、実質的に3枚以下のレンズからなることを特徴とする請求項1から9のいずれか1項記載の投写用変倍光学系。
  11.  前記第2レンズ群の縮小側から1、2番目のレンズが、それぞれ正レンズ、負レンズであることを特徴とする請求項1から10のいずれか1項記載の投写用変倍光学系。
  12.  前記第1レンズ群の最も拡大側のレンズが、非球面レンズであることを特徴とする請求項1から11のいずれか1項記載の投写用変倍光学系。
  13.  前記第1レンズ群の前記非球面レンズが、プラスチック材質からなることを特徴とする請求項12記載の投写用変倍光学系。
  14.  前記第2レンズ群の最も拡大側のレンズが、非球面レンズであることを特徴とする請求項1から13のいずれか1項記載の投写用変倍光学系。
  15.  前記第2レンズ群の前記非球面レンズが、プラスチック材質からなることを特徴とする請求項14記載の投写用変倍光学系。
  16.  光源と、該光源からの光が入射するライトバルブと、該ライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用変倍光学系としての請求項1から15のいずれか1項記載の投写用変倍光学系とを備えたことを特徴とする投写型表示装置。
PCT/JP2013/002916 2012-05-16 2013-05-02 投写用変倍光学系および投写型表示装置 WO2013171995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380024862.1A CN104285174B (zh) 2012-05-16 2013-05-02 投影用变倍光学系统和投影型显示装置
US14/540,279 US9323032B2 (en) 2012-05-16 2014-11-13 Variable magnification projection optical system and projection display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-112084 2012-05-16
JP2012112084 2012-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/540,279 Continuation US9323032B2 (en) 2012-05-16 2014-11-13 Variable magnification projection optical system and projection display apparatus

Publications (1)

Publication Number Publication Date
WO2013171995A1 true WO2013171995A1 (ja) 2013-11-21

Family

ID=49583424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002916 WO2013171995A1 (ja) 2012-05-16 2013-05-02 投写用変倍光学系および投写型表示装置

Country Status (3)

Country Link
US (1) US9323032B2 (ja)
CN (1) CN104285174B (ja)
WO (1) WO2013171995A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235252A1 (ja) * 2019-05-17 2020-11-26 富士フイルム株式会社 投射レンズおよび投射装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6556106B2 (ja) * 2016-08-30 2019-08-07 富士フイルム株式会社 ズームレンズ、投写型表示装置、および、撮像装置
JP6639358B2 (ja) * 2016-08-30 2020-02-05 富士フイルム株式会社 ズームレンズ、投写型表示装置、および、撮像装置
TWI600923B (zh) * 2016-10-19 2017-10-01 大立光電股份有限公司 攝影光學鏡片系統、取像裝置及電子裝置
JP7040171B2 (ja) * 2018-03-19 2022-03-23 セイコーエプソン株式会社 投射光学系及び投射型画像表示装置
TWI684787B (zh) * 2018-07-17 2020-02-11 上暘光學股份有限公司 投影系統
CN110737069B (zh) * 2018-07-20 2021-12-28 上旸光学股份有限公司 投影系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311338A (ja) * 1994-05-16 1995-11-28 Canon Inc レトロフォーカス型レンズ
JPH08106065A (ja) * 1994-08-12 1996-04-23 Asahi Optical Co Ltd 投影装置及び投影装置のピント調整方法
JPH08106045A (ja) * 1994-08-12 1996-04-23 Asahi Optical Co Ltd 投影レンズ及び投影装置
JPH08313807A (ja) * 1995-05-17 1996-11-29 Asahi Optical Co Ltd マルチビーム記録装置
JP2005345563A (ja) * 2004-05-31 2005-12-15 Plus Vision Corp 投影レンズ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745296A (en) 1995-05-17 1998-04-28 Asahi Kogaku Kogyo Kabushiki Kaisha Multibeam recording device
JP4657624B2 (ja) * 2004-05-06 2011-03-23 日本電産コパル株式会社 ズームレンズ
JP2006078702A (ja) * 2004-09-08 2006-03-23 Canon Inc ズーム光学系
TWI274895B (en) * 2005-08-18 2007-03-01 Asia Optical Co Inc A convertible lens
JP5009571B2 (ja) * 2006-08-28 2012-08-22 富士フイルム株式会社 ズームレンズ
JP5275758B2 (ja) 2008-11-06 2013-08-28 富士フイルム株式会社 投写用ズームレンズおよび投写型表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311338A (ja) * 1994-05-16 1995-11-28 Canon Inc レトロフォーカス型レンズ
JPH08106065A (ja) * 1994-08-12 1996-04-23 Asahi Optical Co Ltd 投影装置及び投影装置のピント調整方法
JPH08106045A (ja) * 1994-08-12 1996-04-23 Asahi Optical Co Ltd 投影レンズ及び投影装置
JPH08313807A (ja) * 1995-05-17 1996-11-29 Asahi Optical Co Ltd マルチビーム記録装置
JP2005345563A (ja) * 2004-05-31 2005-12-15 Plus Vision Corp 投影レンズ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235252A1 (ja) * 2019-05-17 2020-11-26 富士フイルム株式会社 投射レンズおよび投射装置
JPWO2020235252A1 (ja) * 2019-05-17 2020-11-26
JP7113970B2 (ja) 2019-05-17 2022-08-05 富士フイルム株式会社 投射レンズおよび投射装置

Also Published As

Publication number Publication date
CN104285174B (zh) 2016-09-07
US9323032B2 (en) 2016-04-26
CN104285174A (zh) 2015-01-14
US20150070778A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5766798B2 (ja) 投写用変倍光学系および投写型表示装置
JP5513248B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5603301B2 (ja) 投写用変倍光学系および投写型表示装置
WO2014076897A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013057909A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013061535A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013171995A1 (ja) 投写用変倍光学系および投写型表示装置
WO2014076924A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5152854B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
WO2013108622A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2014076962A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2012160786A1 (ja) 投写用変倍光学系および投写型表示装置
JP2007248840A (ja) ズームレンズ及び投影装置
JP5781704B2 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013061536A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5777182B2 (ja) 投写用変倍光学系および投写型表示装置
WO2014076923A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013076931A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP2013007881A (ja) 投写用変倍光学系および投写型表示装置
JP5335626B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP5415036B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
WO2013057910A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5363248B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP5777191B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5642903B2 (ja) 投写用ズームレンズおよび投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791558

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP