WO2013057909A1 - 投写用ズームレンズおよび投写型表示装置 - Google Patents

投写用ズームレンズおよび投写型表示装置 Download PDF

Info

Publication number
WO2013057909A1
WO2013057909A1 PCT/JP2012/006555 JP2012006555W WO2013057909A1 WO 2013057909 A1 WO2013057909 A1 WO 2013057909A1 JP 2012006555 W JP2012006555 W JP 2012006555W WO 2013057909 A1 WO2013057909 A1 WO 2013057909A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
conditional expression
projection zoom
Prior art date
Application number
PCT/JP2012/006555
Other languages
English (en)
French (fr)
Inventor
賢 天野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201290000902.XU priority Critical patent/CN203930190U/zh
Publication of WO2013057909A1 publication Critical patent/WO2013057909A1/ja
Priority to US14/257,019 priority patent/US9036266B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1465Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a zoom lens, and more particularly to a projection zoom lens applied to a projection display device.
  • the present invention also relates to a projection display device equipped with such a projection zoom lens.
  • a projection lens used in such a projection display device generally has a long back focus, and an entrance pupil viewed from the reduction side (light valve side) is sufficiently far away, that is, the reduction side is telecentric. It is required to have sex.
  • the reduction side is telecentric. It is required to have sex.
  • the scaling function zoom function
  • it has a wide angle of view to meet the demand for projecting from a short distance on a large screen. It is required to be.
  • the major problems in promoting this wide angle of view are an increase in the lens diameter on the screen side and fluctuations in field curvature due to focusing when the projection distance is changed (from close to infinity). .
  • Patent Document 1 As projection zoom lenses that can cope with the above problems, those shown in Patent Documents 1 and 2 are known.
  • the zoom lens disclosed in Patent Document 1 separates the first lens group on the most magnified side into two sub-lens groups, and changes the distance between the two sub-lens groups during focusing, so that the field curvature due to focusing is reduced. It is intended to suppress fluctuations.
  • the zoom lens disclosed in Patent Document 2 suppresses fluctuations in field curvature due to focusing by moving the second lens group from the most magnified side. Further, the zoom lens disclosed in Patent Document 2 is configured to move four lens groups at the time of zooming.
  • JP 2008-257005 A JP 2011-13657
  • the zoom lenses described in Patent Documents 1 and 2 each have a field angle as small as about 60 degrees, and when the field angle is further widened, fluctuations in field curvature due to focusing cannot be suppressed.
  • the lens diameter on the screen side may be increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a projection zoom lens that can satisfactorily correct curvature of field due to focusing even when the angle of view is widened.
  • Another object of the present invention is to provide a projection display device that includes the projection zoom lens as described above and can display a high-quality image.
  • a first projection zoom lens includes: A first lens group having a negative refractive power which is substantially arranged on the most enlargement side and fixed at the time of zooming, and is disposed on the reduction side of the first lens group and fixed at the time of zooming.
  • the reduction side has a telecentric configuration, The focusing is performed by moving only the second lens group.
  • substantially ... consisting of a lens group means a lens having substantially no power other than the lens group mentioned there, and an optical element other than a lens such as a diaphragm or a cover glass. This includes cases where elements, lens flanges, lens barrels, image sensors, camera shake correction mechanisms, and other mechanisms are included.
  • the term “substantially” is also used below, but its meaning is the same as described above.
  • the above-mentioned “reduction side is telecentric” means that the bisector of the upper maximum ray and the lower maximum ray in the cross section of the light beam condensed at an arbitrary point on the reduction side image plane is the optical axis. Refers to a state close to parallel, and is not limited to a case where it is completely telecentric, that is, not only when the bisector is completely parallel to the optical axis, but also includes cases where there is some error. Means.
  • the case where there is a slight error is a case where the inclination of the bisector is within ⁇ 3 ° with respect to the optical axis.
  • a cemented lens may be used as a lens constituting each lens group. However, if the cemented lens is composed of n pieces of bonded lenses, n lenses are used. It shall be counted. Further, in the present specification, the description of “projection zoom lens of the present invention” or “projection zoom lens of the present invention” refers to a first projection zoom lens of the present invention and a later-described first zoom lens unless otherwise specified. Both of the projection zoom lens No. 2 shall be pointed out.
  • the surface shape of the lens and the sign of the refractive power are considered in the paraxial region when an aspheric surface is included.
  • the focal length of the entire system at the wide angle end is fw and the focal length of the second lens group is f2, the following conditional expression ⁇ 210.0 ⁇ f2 / fw ... (1) It is desirable to satisfy
  • conditional expression (1) in particular, the following conditional expression ⁇ 190.0 ⁇ f 2 / fw (1 ′) It is more desirable to satisfy
  • the second projection zoom lens according to the present invention is: A first lens group having a negative refractive power which is substantially arranged on the most enlargement side and fixed at the time of zooming, and is disposed on the reduction side of the first lens group and fixed at the time of zooming. A second lens group having negative refracting power, a final lens group having a positive refracting power that is disposed closest to the reduction side and is fixed during zooming, and the final lens group and the second lens.
  • the reduction side has a telecentric configuration, It is configured to perform focusing by moving only the second lens group,
  • the focal length of the entire system at the wide-angle end is fw and the focal length of the second lens unit is f2
  • the above “substantially” means as described above.
  • the plurality of lens groups that move during the zooming are substantially composed of three lens groups. Note that the meaning of “substantially” is as described above.
  • the focal length of the entire system at the wide angle end is fw and the back focus (air conversion distance) of the entire system is Bf
  • conditional expression (3) particularly the following conditional expression 1.7 ⁇ Bf / fw ⁇ 2.5 (3 ′) It is more desirable to satisfy
  • the lens on the most enlargement side of the second lens group has a concave surface facing the enlargement side, and the lens on the most reduction side of the second lens group is on the reduction side. It is desirable to have a convex surface.
  • the projection zoom lens according to the present invention has the radius of curvature of the enlargement side surface of the lens on the most enlargement side of the second lens group as R21f, and the largest in the second lens group.
  • R21f the radius of curvature of the reduction side of the lens on the enlargement side
  • R21r the radius of curvature of the reduction side of the lens on the enlargement side
  • conditional expression (4) the following conditional expression 6.0 ⁇ (R21f + R21r) / (R21f ⁇ R21r) ⁇ 60.0 (4 ′) It is more desirable to satisfy
  • the second lens group substantially includes only two lenses. This “substantially” means as described above.
  • conditional expression (5) in particular, the following conditional expression: ⁇ 1.5 ⁇ f 1 / fw ⁇ 1.0 (5 ′) It is more desirable to satisfy
  • the plurality of lens groups that are arranged between the final lens group and the second lens group and move during zooming are substantially arranged in order from the magnification side.
  • a third lens group having a positive refractive index, a fourth lens group having a positive refractive index, and a fifth lens group having a positive refractive index are desirable. The meaning of “substantially” above is as described above.
  • the fifth lens group includes at least three positive lenses, and the most magnified lens of the fifth lens group has a convex surface facing the magnification side.
  • the focal length of the entire system at the wide angle end is fw and the focal length of the fifth lens unit is f5
  • the following conditional expression 7.5 ⁇ f5 / fw ⁇ 14.5 (7) It is desirable to satisfy
  • conditional expression (7) the following conditional expression 8.0 ⁇ f5 / fw ⁇ 13.0 (7 ′) It is more desirable to satisfy
  • conditional expression (8) the following conditional expression 62.0 ⁇ 5a (8 ′) It is more desirable to satisfy
  • conditional expression 9 the following conditional expression 55.0 ⁇ 6a (9 ′) It is more desirable to satisfy
  • the radius of curvature of the enlargement side surface of the fifth lens group is the most magnified lens or lens portion is R5f
  • the reduction surface of the fifth lens group is the most enlargement side lens or lens portion.
  • conditional expression (10) the following conditional expression 3.5 ⁇ (R5f + R5r) / (R5f ⁇ R5r) ⁇ 6.5 (10 ′) It is more desirable to satisfy
  • conditional expression (11) the following conditional expression 3.5 ⁇ f6 / fw ⁇ 6.0 (11 ′) It is more desirable to satisfy
  • the projection display device of the present invention includes the projection zoom lens according to the present invention described above in addition to the light source, the light valve, and the illumination optical unit that guides the light beam from the light source to the light valve.
  • the light beam from the light source is optically modulated by the light valve and projected onto a screen by the projection zoom lens.
  • the first projection zoom lens of the present invention only the second lens group having negative refractive power disposed on the inner side (reduction side) than the first lens group fixed at the time of zooming is used.
  • the three lens groups are moved and changed in magnification, so as described above, the four lens groups are moved and changed in magnification.
  • the zoom lens described in the cited document 2 and the like it is possible to satisfactorily suppress curvature of field due to widening of the angle while simplifying the configuration.
  • the conditional expression (1) defines the ratio of the focal length of the second lens group to the focal length of the entire system at the wide-angle end.
  • the power of the lens becomes too weak, and the lens diameter on the enlargement side becomes large in securing a predetermined angle of view.
  • the second projection zoom lens of the present invention only the second lens group having a negative refractive power disposed on the inner side (reduction side) than the first lens group fixed at the time of zooming.
  • the conditional expression (2) defines the ratio of the focal length of the second lens group to the focal length of the entire system at the wide-angle end, as in the conditional expression (1).
  • This conditional expression (2) When the value falls below the lower limit, the front lens diameter becomes too large to secure a predetermined angle of view. On the contrary, if the upper limit value of the conditional expression (2) is exceeded, the negative power of the second lens group becomes too strong, the entire lens system becomes large, and the amount of movement of the lens group during focusing increases. It becomes impossible to suppress aberration fluctuations (particularly field curvature) due to distance fluctuations. If the conditional expression (2) is satisfied, the above-described problems can be prevented, the zoom lens can be miniaturized, and aberration variation due to projection distance variation can be suppressed satisfactorily.
  • the zooming is performed by moving the four lens groups as described above.
  • the zoom lens or the like described in the cited document 2 as described above it is possible to satisfactorily suppress curvature of field due to widening of the angle while simplifying the configuration.
  • the conditional expression (3) defines the ratio of the back focal length of the entire system to the focal length of the entire system at the wide angle end. If the lower limit value of the conditional expression (3) is not reached, the projection display apparatus In general, it becomes difficult to insert a glass block such as a prism disposed on the rear side (reduction side) of the projection zoom lens. On the contrary, if the upper limit value of conditional expression (3) is exceeded, the total lens length becomes large. If the conditional expression (3) is satisfied, the above-described problems can be prevented, the glass block can be easily inserted, and the total lens length can be shortened.
  • the most magnified lens in the second lens group has a concave surface facing the magnification side, and the most demagnifying lens in the second lens group is convex on the reduction side. Astigmatism can be satisfactorily corrected.
  • the zoom lens for projection in particular, when the second lens group is substantially composed of only two lenses, the astigmatism correction effect becomes more prominent.
  • the zoom lens can be reduced in weight if the second lens group is composed of two lenses, which is the minimum number capable of obtaining the astigmatism correction effect. This is also advantageous.
  • this conditional expression (5) defines the ratio of the focal length of the first lens group to the focal length of the entire system at the wide-angle end, and if the lower limit of this conditional expression (5) is exceeded, the first lens The negative power of the group becomes too weak, the lens diameter on the enlargement side becomes large, and it becomes difficult to ensure a predetermined back focus. On the other hand, if the upper limit value of conditional expression (5) is exceeded, the negative power of the first lens group becomes too strong, making it difficult to correct curvature of field and distortion.
  • the conditional expression (5) is satisfied, the above-described problems can be prevented, the zoom lens can be downsized, and field curvature and distortion can be reliably corrected.
  • a plurality of lens groups that are arranged between the final lens group and the second lens group and move during zooming are substantially arranged sequentially from the magnification side.
  • the third lens group having a positive refractive index, the fourth lens group having a positive refractive index, and the fifth lens group having a positive refractive index various aberrations can be corrected with a small number of lenses. It becomes possible.
  • the projection zoom lens according to the present invention particularly when the conditional expression (6) is satisfied, it is possible to sufficiently meet the demand for wide angle that has recently been required for the projection zoom lens.
  • the fifth lens group includes at least three positive lenses, and the most magnified lens of the fifth lens group has a convex surface facing the magnification side.
  • conditional expression (7) defines the ratio of the focal length of the fifth lens group to the focal length of the entire system at the wide-angle end, and even if it falls below the lower limit of conditional expression (7), Even if the upper limit is exceeded, it is difficult to satisfactorily correct field curvature (particularly sagittal field curvature).
  • conditional expression (7) If the conditional expression (7) is satisfied, the above-mentioned problem can be prevented and the field curvature can be corrected well over the entire zoom range. This effect becomes more conspicuous when the conditional expression (7 ') is satisfied within the range defined by the conditional expression (7).
  • this conditional expression (8) defines the average Abbe number of the positive lenses included in the fifth lens group. If the lower limit of this conditional expression is not reached, it is difficult to correct the lateral chromatic aberration well. become. If conditional expression (8) is satisfied, the above-mentioned problems can be prevented and the lateral chromatic aberration can be corrected well.
  • the conditional expression (9) defines the average Abbe number of the positive lenses included in the sixth lens group. If the lower limit of the conditional expression is not reached, it is difficult to correct the lateral chromatic aberration well. become. If conditional expression (9) is satisfied, the above-mentioned problems can be prevented and the lateral chromatic aberration can be corrected well.
  • this conditional expression (10) defines the relationship between the radius of curvature of the enlargement side surface of the lens or the most magnified side of the fifth lens group and the curvature radius of the reduction side surface. Even if the value falls below the lower limit value of 10) or exceeds the upper limit value, it becomes difficult to satisfactorily correct spherical aberration and astigmatism. If conditional expression (10) is satisfied, the above-mentioned problems can be prevented and spherical aberration and astigmatism can be corrected well.
  • conditional expression (11) defines the ratio of the focal length of the sixth lens group to the focal length of the entire system at the wide-angle end, but is below the lower limit value of conditional expression (11). Since the power of the sixth lens group becomes too strong, the back focus is shortened, and the amount of chromatic aberration of magnification increases, making it difficult to correct the chromatic aberration of magnification by other lens groups. Conversely, when the upper limit value of conditional expression (11) is exceeded, the power of the sixth lens group becomes too weak, and it becomes difficult to ensure the necessary telecentricity. If the conditional expression (11) is satisfied, the above-mentioned problems can be prevented, the lateral chromatic aberration can be corrected well, and good telecentricity can be secured.
  • the projection display device of the present invention is one to which the zoom lens of the present invention as described above is applied as a projection zoom lens. It is possible to display a high-quality image while suppressing surface curvature satisfactorily.
  • Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 1 of this invention Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 2 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 3 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 4 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 5 of this invention. Sectional drawing which shows the lens structure of the zoom lens for projection which concerns on Example 6 of this invention.
  • (A) to (L) are aberration diagrams of the projection zoom lens according to Example 1 described above.
  • (A) to (L) are aberration diagrams of the projection zoom lens according to Example 2 described above.
  • FIG. 1 is a schematic configuration diagram of a projection display device according to an embodiment of the present invention. Schematic configuration diagram of a projection display device according to another embodiment of the present invention
  • FIG. 1 shows the movement position of each lens group at the wide-angle end and the telephoto end when the zooming lens for projection according to Embodiment 1 of the present invention is operated for zooming.
  • the moving direction of the moving lens group when changing from the wide-angle end to the telephoto end is schematically indicated by arrows between the positions.
  • FIGS. 2 to 6 are cross-sectional views showing other configuration examples according to the embodiment of the present invention, and correspond to projection zoom lenses according to Examples 2 to 6 described later, respectively. Since the basic configuration of these projection zoom lenses is the same as that of the first embodiment, the embodiment of the present invention will be described below mainly using the configuration shown in FIG. 1 as an example.
  • the projection zoom lens of this embodiment can be used as a projection lens that projects image information displayed on a light valve onto a screen, for example.
  • a glass block 2 such as a color synthesis prism (including filters), and the glass block 2
  • the image display surface 1 of the light valve located on the reduction side surface is also shown.
  • a light beam given image information on the image display surface 1 is incident on the projection zoom lens via the glass block 2.
  • the projection zoom lens projects and displays an image based on the image information on a screen (not shown) arranged in the left direction of the drawing.
  • FIG. 1 shows an example in which the position of the reduction side surface of the glass block 2 and the position of the image display surface 1 coincide with each other, but the present invention is not necessarily limited to this.
  • FIG. 1 only one image display surface 1 is shown.
  • the light flux from the light source is separated into three primary colors by a color separation optical system, and three lights are used for each primary color.
  • a valve may be provided so that a full color image can be displayed.
  • the projection zoom lens according to the present embodiment includes a first lens group G1 having a negative refractive power that is disposed on the most enlargement side and fixed at the time of zooming, and a reduction side of the first lens group G1.
  • Only a plurality of lens groups hereinafter referred to as a moving lens group during zooming) disposed between G6 and the sixth lens group G6 and the second lens group G2, which are the final lens group, and move during zooming.
  • a substantial lens group and the reduction side is configured to be telecentric.
  • three lens groups arranged in order from the magnification side that is, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are provided as the zooming moving lens group.
  • the projection zoom lens is configured to perform focusing by moving only the second lens group G2.
  • the first lens group G1 is composed of four lenses (first lens L1 to fourth lens L4)
  • the second lens group G2 is composed of two lenses (fifth lens L5 and sixth lens).
  • L6 the third lens group G3 is composed of two lenses (seventh lens L7 and eighth lens L8)
  • the fourth lens group G4 is composed of one lens (ninth lens L9)
  • the lens group G5 includes five lenses (tenth lens L10 to fourteenth lens L14)
  • the sixth lens group G6 includes one lens (fifteenth lens L15).
  • each lens group of the projection zoom lens of the present invention is not necessarily limited to the example shown in FIG.
  • the fifth lens group G5 is composed of six lenses
  • the fourth lens group G4 is composed of two lenses.
  • the second lens group G2 having a negative refractive power and disposed on the reduction side with respect to the first lens group G1 fixed at the time of zooming is used.
  • the configuration of an inner focus that performs focusing by moving the lens is adopted, whereby it becomes possible to satisfactorily correct curvature of field without particularly increasing the size of the lens.
  • the zoom lens is configured such that the three lens groups G3 to G5 are moved to change the magnification. In comparison, it is possible to satisfactorily suppress curvature of field due to widening of the angle while further simplifying the configuration.
  • conditional expression (1) when the focal length of the entire system at the wide-angle end is fw and the focal length of the second lens group G2 is f2, the above-mentioned conditional expression ⁇ 210.0 ⁇ f2 / fw ... ⁇ (1)
  • conditional expression ⁇ 190.0 ⁇ f 2 / fw (1 ′) is satisfied within the range defined by the conditional expression (1). Also meets. Details of the values defined by the conditional expression (1) for each example will be specifically described later with reference to Table 19 (the same applies to conditional expressions described later).
  • the projection zoom lens of the present embodiment can achieve both a reduction in size and a wide angle.
  • the projection zoom lens according to the present embodiment has the conditional expression ⁇ 210.0 ⁇ f 2 /fw ⁇ 20.0 (2) described above. Further, within the range defined by the above conditional expression (2), in particular, the following conditional expression ⁇ 190.0 ⁇ f 2 /fw ⁇ 40.0 (2 ′) Also meets. As a result, the projection zoom lens according to the present embodiment can achieve miniaturization and can satisfactorily suppress aberration fluctuations due to projection distance fluctuations.
  • the projection zoom lens according to the present embodiment when the focal length of the entire system at the wide angle end is fw and the back focus (air conversion distance) of the entire system is Bf, the above-described conditional expression 1.5 ⁇ Bf / fw ⁇ 3.0 ... (3) In addition, the following conditional expression 1.7 ⁇ Bf / fw ⁇ 2.5 (3 ′) is satisfied within the range defined by the conditional expression (3). Also meets. Accordingly, the projection zoom lens according to the present embodiment has an effect of facilitating the insertion of the glass block 2 such as a prism disposed on the rear side (reduction side) and shortening the entire lens length.
  • the fifth lens L5 arranged closest to the magnifying side of the second lens group G2 has a concave surface facing the magnifying side.
  • the sixth lens L6 disposed on the reduction side has a convex surface facing the reduction side.
  • the above-described conditional expression 5.0 ⁇ (R21f + R21r) / (R21f ⁇ R21r) ⁇ 80.0 ...
  • the following conditional expression 6.0 ⁇ (R21f + R21r) / (R21f ⁇ R21r) ⁇ 60.0 (4 ′) is satisfied within the range defined by the conditional expression (4). Also meets.
  • the projection zoom lens according to this embodiment can satisfactorily correct astigmatism.
  • the second lens unit L2 includes only two lenses, that is, the fifth lens L5 and the sixth lens L.
  • the second lens group G2 is a portion having a large lens diameter
  • the second lens group G2 is composed of two lenses, which is the minimum number that can provide an astigmatism correction effect, thereby reducing the weight of the zoom lens. This is advantageous in terms of conversion.
  • the projection zoom lens according to the present embodiment when the focal length of the entire system at the wide-angle end is fw and the focal length of the first lens group G1 is f1, the above-described conditional expression ⁇ 2.0 ⁇ f1 / fw ⁇ -0.8 ... (5) Further, within the range defined by the above conditional expression (5), in particular, the following conditional expression: ⁇ 1.5 ⁇ f 1 / fw ⁇ 1.0 (5 ′) Also meets. Accordingly, the projection zoom lens according to the present embodiment can be sufficiently reduced in size, and can reliably correct curvature of field and distortion.
  • the projection zoom lens according to the present embodiment a plurality of lens groups that are arranged between the final lens group G6 and the second lens group G2 and move during zooming are arranged in order from the enlargement side.
  • the third lens group G3 has a positive refractive index
  • the fourth lens group G4 has a positive refractive index
  • the fifth lens group G5 has a positive refractive index.
  • the projection zoom lens according to the present embodiment when the total angle of view at the wide-angle end is 2 ⁇ , the above-described conditional expression 70 ° ⁇ 2 ⁇ (6) Meet. As a result, the projection zoom lens according to the present embodiment can sufficiently meet the demand for wide angle that has recently been required for the projection zoom lens.
  • the fifth lens group G5 includes three positive lenses, that is, an eleventh lens L11, a thirteenth lens L13, and a fourteenth lens L14, and the fifth lens group.
  • the tenth lens L10 which is the most magnified lens of G5, has a convex surface directed toward the magnification side.
  • the focal length of the entire system at the wide angle end is fw and the focal length of the fifth lens group G5 is f5
  • conditional expression 8.0 ⁇ f5 / fw ⁇ 13.0 (7 ′) is satisfied in the range defined by the conditional expression (7). Also meets.
  • the projection zoom lens according to the present embodiment can satisfactorily correct field curvature (particularly sagittal curvature) over the entire zoom range.
  • the average Abbe number of the positive lens included in the fifth lens group G5, that is, the eleventh lens L11, the thirteenth lens L13, and the fourteenth lens L14 with respect to the d-line is ⁇ 5a.
  • conditional expression 60.0 ⁇ 5a (8)
  • conditional expression 62.0 ⁇ 5a (8 ′) is satisfied within the range defined by the conditional expression (8). Also meets. Accordingly, the projection zoom lens according to the present embodiment can satisfactorily correct lateral chromatic aberration.
  • the average Abbe number with respect to the d line of the positive lens included in the sixth lens group G6, that is, the Abbe number with respect to the d line of the fifteenth lens L15 in this example is ⁇ 6a.
  • Conditional expression 50.0 ⁇ 6a (9) Further, within the range defined by the conditional expression (9), the following conditional expression 55.0 ⁇ 6a (9 ′) also meets. Thereby, the projection zoom lens according to the present embodiment can satisfactorily correct the lateral chromatic aberration from this point. In the present embodiment, since both of the conditional expressions (8 ′) and (9 ′) are satisfied, the lateral chromatic aberration can be corrected particularly well.
  • the projection zoom lens according to this embodiment is described above when the radius of curvature of the enlargement side surface of the fifth lens group G5, that is, the tenth lens L10, is R5f and the radius of curvature of the reduction side surface is R5r.
  • Conditional expression 2.5 ⁇ (R5f + R5r) / (R5f ⁇ R5r) ⁇ 7.0 (10)
  • conditional expression 3.5 ⁇ (R5f + R5r) / (R5f ⁇ R5r) ⁇ 6.5 (10 ′) is satisfied within the range defined by the conditional expression (10). Also meets. Accordingly, the projection zoom lens according to the present embodiment can satisfactorily correct spherical aberration and astigmatism.
  • the biconvex lens 10a and the biconcave lens 10b joined to each other on the most enlarged side of the fifth lens group G5 are the “lens portion” described above. Therefore, the reduction side surface in this case is the reduction side surface of the biconcave lens 10b.
  • the projection zoom lens according to the present embodiment when the focal length of the entire system at the wide-angle end is fw and the focal length of the sixth lens group G6 is f6, the conditional expression 3.0 ⁇ f6 / fw ⁇ 7 described above. ... (11) Further, within the range defined by the conditional expression (11), the following conditional expression 3.5 ⁇ f6 / fw ⁇ 6.0 (11 ′) also meets.
  • the projection zoom lens according to the present embodiment can satisfactorily correct the lateral chromatic aberration, and can secure good telecentricity.
  • the projection zoom lens according to the present embodiment as shown in the example shown in FIG. 1, it is possible to use an aspherical surface in which each lens surface is a spherical surface. In this case, the cost is reduced. Is advantageous.
  • the projection zoom lens according to the present embodiment can be configured to use an aspherical surface, and in this case, aberration correction can be performed more favorably.
  • the projection zoom lens that is the object of the present invention is preferably an optical system having an F number smaller than 3.0 in the entire zoom range.
  • the distortion disortion aberration
  • FIGS. 14 is a schematic configuration diagram showing a part of a projection display apparatus according to an embodiment of the present invention
  • FIG. 15 is a schematic configuration diagram showing a part of a projection display apparatus according to another embodiment of the present invention. It is.
  • the 14 includes an illumination optical system (illumination optical unit) 10 having a light modulation function and the projection zoom lens 19 according to the above-described embodiment.
  • the illumination optical system 10 includes light-transmitting liquid crystal panels 11a, 11b, and 11c that are light valves, dichroic mirrors 12 and 13 for color separation, and light beam combining optics that combines light beams that have passed through the transmission liquid crystal panels 11a to 11c.
  • a cross dichroic prism 14 as a system, condenser lenses 16a, 16b, and 16c, a light source 17 that emits a white light beam, and mirrors 18a, 18b, and 18c are configured.
  • an integrator such as a fly eye disposed between the light source 17 and the dichroic mirror 12 is omitted.
  • the white light beam emitted from the light source 17 is color-separated into three types of color light beams (G light, B light, R light) by the dichroic mirrors 12 and 13, and the liquid crystal panels 11a to 11a corresponding to the respective colors. 11c is incident on each.
  • the light beams of the respective colors incident on the liquid crystal panels 11a to 11c are optically modulated based on the respective color image signals in the respective liquid crystal panels 11a to 11c.
  • the modulated color light beams are color-combined by the cross dichroic prism 14 and then projected onto a screen (not shown) by the projection zoom lens 19. As a result, a full-color image of each color light beam is projected and displayed on the screen.
  • the light valve is not limited to the transmissive liquid crystal display panels 11a to 11c described above, and other reflective liquid crystal display panels or light modulation means such as a DMD can be appropriately employed.
  • a projection display apparatus includes reflective display elements 21a to 21c as light valves corresponding to each color light, and TIR (Total Internal Reflection) for color separation and color synthesis.
  • the illumination optical system 20 includes prisms 24a to 24c, a polarization separation prism 25, and the projection zoom lens 19 according to the above-described embodiment.
  • a light source 27 that emits a light beam that is modulated on the basis of each color image signal in each of the reflective display elements 21a to 21c is disposed in front of the polarization separation prism 25.
  • the white light beam emitted from the light source 27 passes through the polarization separation prism 25 and is then decomposed into three color light (G light, B light, R light) light beams by the TIR prisms 24a to 24c.
  • the separated color light beams are incident on the corresponding reflective display elements 21a to 21c to be optically modulated, and again travel through the TIR prisms 24a to 24c in the reverse direction to be color-combined, and then pass through the polarization separation prism 25. Then, the light enters the projection zoom lens 29. Therefore, an optical image by this incident light is projected and displayed on a screen (not shown) by the projection zoom lens 29.
  • the reflective display elements 11a to 11c and 21a to 21c for example, reflective liquid crystal display elements, DMD, and the like can be used.
  • 14 and 15 show an example in which a reflective display element is used as a light valve.
  • the light valve provided in the projection display device of the present invention is not limited to this, and a transmissive liquid crystal display element, etc.
  • a transmissive display element may be used.
  • FIG. 1 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the first embodiment. Note that the detailed description of FIG. 1 is as described above, and therefore, the redundant description is omitted here unless particularly necessary.
  • the projection zoom lens of Example 1 includes, in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • the projection zoom lens has a telecentric configuration on the reduction side, and on the reduction side of the sixth lens group G6, an image display surface 1 of a light valve composed of a transmissive liquid crystal display panel and the like and a color synthesis prism (infrared cut filter, A glass block 2 such as a low-pass filter is included.
  • the first lens group G1, the second lens group G2, and the sixth lens group G6 that is the final lens group are fixed, and the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are It is configured to move.
  • the moving locus when the moving lens groups G3, G4, and G5 move from the wide-angle end to the telephoto end is schematically shown by arrows.
  • the first lens group G1 is arranged in order from the magnifying side.
  • the first lens L1 is a positive meniscus lens having a convex surface on the magnifying side
  • the second lens is a negative meniscus lens having a concave surface on the reduction side.
  • L2 a third lens L3 made of a negative meniscus lens having a concave surface facing the reduction side
  • a fourth lens L4 made of a biconcave lens.
  • the second lens group G2 is arranged in order from the magnifying side, and is a fifth lens L5 made of a negative meniscus lens having a concave surface on the magnifying side and a sixth meniscus lens made of a positive meniscus lens having a convex surface on the reducing side. It consists of a lens L6.
  • the third lens group G3 includes a seventh lens L7 made of a plano-convex lens having a convex surface facing the reduction side and an eighth lens L8 made of a positive meniscus lens having a convex surface facing the magnification side, which are arranged in order from the magnification side. It is composed of
  • the fourth lens group G4 includes a ninth lens L9 made of a biconvex lens.
  • the fifth lens group G5 is arranged in order from the enlargement side.
  • the tenth lens L10 is a negative meniscus lens having a concave surface facing the reduction side.
  • the eleventh lens L11 is a biconvex lens.
  • the twelfth lens is a biconcave lens.
  • the lens includes a lens L12, a thirteenth lens L13 made of a biconvex lens, and a fourteenth lens L14 made of a biconvex lens.
  • the twelfth lens L12 and the thirteenth lens L13 are cemented.
  • the sixth lens group G6 includes a fifteenth lens L15 made of a biconvex lens.
  • FIG. 13 shows light ray trajectories at the wide-angle end and the telephoto end of the projection zoom lens according to the first embodiment.
  • Table 1 shows basic lens data of the projection zoom lens of Example 1.
  • the glass block 2 is also shown.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the d-line (wavelength 587.6 nm) of the j-th (j 1, 2, 3,.
  • the ⁇ dj column indicates the Abbe number of the j-th component with respect to the d-line.
  • the values of the radius of curvature R and the surface spacing D in Table 1 are values normalized by setting the focal length of the entire projection zoom lens system at the wide angle end to 1.0. In Table 1, values rounded to a predetermined digit are shown. The sign of the radius of curvature is positive when the surface shape is convex on the enlargement side and negative when the surface shape is convex on the reduction side.
  • the interval and the interval between the fifth lens group G5 and the sixth lens group G6 are variable intervals that change at the time of zooming.
  • “D” is a surface on the front side of the interval. Numbers are given and described as D12, D16, D18, D27.
  • Table 2 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end when the zoom lens for projection of Example 1 is zoomed, and the values of the variable intervals D12, D16, D18, and D27. Show. These numerical values are also values normalized by setting the focal length of the entire system at the wide-angle end to 1.0, and these are values when the projection distance is 124.569 (also normalized values). In Table 2, the F number Fno. The total angle of view 2 ⁇ (in degrees) is also shown.
  • Table 3 also shows the values of the surface distances D8 and D12 when the projection zoom lens of Example 1 performs focusing when the projection distances are 62.285 and 373.708.
  • the surface distance D8 is the distance between the first lens group G1 and the second lens group G2
  • the surface distance D12 is the distance between the second lens group G2 and the third lens group G3. Values at the end, intermediate focus position, and telephoto end are shown.
  • These surface spacing values are also normalized values with the focal length of the entire system at the wide angle end set to 1.0, and the above two projection distances are also normalized values.
  • Table 3 The manner of description in Table 3 described above is the same in Tables 6, 9, 12, 15 and 18 described later. However, the two projection distances are values specific to each embodiment.
  • Table 19 shows the values of the conditions defined by the conditional expressions (1) to (11) (that is, the part of the character expression), and the values of the conditions that are used to calculate them, in each of the first to sixth embodiments. Show about.
  • the projection zoom lens of Example 1 satisfies the conditional expression (1) and further the conditional expression (1 ') described above, and thus can achieve both reduction in size and widening of the angle. The same applies to Examples 2 to 6 described in detail later.
  • the zoom lens for projection of Example 1 satisfies the conditional expression (2) and further the conditional expression (2 ′) described above, thereby achieving downsizing and variation in the projection distance. It is possible to satisfactorily suppress the fluctuation of aberration due to. The same applies to Examples 2 to 6 described in detail later.
  • the projection zoom lens of Example 1 satisfies the conditional expression (3) and further the conditional expression (3 ′) described above, and therefore the rear side (reduction side) of the projection zoom lens.
  • the glass block 2 such as a prism disposed in the lens is easily inserted, and the total length of the lens is shortened. The same applies to Examples 2 to 6 described in detail later.
  • the projection zoom lens of Example 1 satisfies the conditional expression (4) and further the conditional expression (4 ′) described above, so that astigmatism can be corrected well. Become. The same applies to Examples 2 to 6 described in detail later.
  • the zoom lens for projection of Example 1 satisfies the conditional expression (5) and further the conditional expression (5 ′) described above. Surface curvature and distortion can be reliably corrected. The same applies to Examples 2 to 6 described in detail later.
  • the zoom lens for projection of Example 1 satisfies the conditional expression (8) and further the conditional expression (8 ′) described above, so that the lateral chromatic aberration can be corrected well. Become. The same applies to Examples 2 to 6 described in detail later.
  • the projection zoom lens of Example 1 satisfies the conditional expression (9) and further the conditional expression (9 ′) described above, so that the lateral chromatic aberration can be corrected well. Become. The same applies to Examples 2 to 6 described in detail later.
  • the zoom lens for projection of Example 1 satisfies the conditional expression (10) and further the conditional expression (10 ′) described above, so that spherical aberration and astigmatism are excellent. Can be corrected.
  • FIGS. 7A to 7D respectively show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the wide-angle end of the projection zoom lens of Example 1.
  • the figure is shown.
  • (E) to (H) in the same figure respectively show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the intermediate focal position of the projection zoom lens of Example 1.
  • the figure is shown.
  • (I) to (L) in the same figure respectively show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the telephoto end of the projection zoom lens of Example 1. Indicates.
  • the aberration diagrams in FIGS. 7A to 7L are based on the d-line, but in the spherical aberration diagram, the F-line (wavelength wavelength 486.1 nm) and the C-line (wavelength 656.3 nm). Are also shown, and the chromatic aberration diagram for magnification shows aberrations for the F-line and C-line.
  • aberrations in the sagittal direction and the tangential direction are indicated by a solid line and a broken line, respectively.
  • F described above the vertical axis of the spherical aberration diagram indicates the F number
  • ⁇ described above the vertical axis of the other aberration diagrams indicates the half angle of view.
  • Example 1 The symbols, meanings, and description methods of the lens group arrangement diagram, table, and aberration diagram of Example 1 described above are basically the same for the following Examples 2 to 6 unless otherwise specified.
  • the lens group arrangement diagram (FIG. 1) of Example 1 described above is at the wide-angle end and the telephoto end, and the aberration diagram is at the wide-angle end, the intermediate focal position, and the telephoto end. The same applies to 2-6.
  • FIG. 2 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the second embodiment.
  • the projection zoom lens of Example 2 has substantially the same configuration as the projection zoom lens of Example 1 described above, except that the fifth lens L5 of the second lens group G2 is a biconcave lens. The difference is that the sixth lens L6 of the second lens group G2 is formed of a biconvex lens, and the seventh lens L7 of the third lens group G3 is formed of a positive meniscus lens having a convex surface directed toward the reduction side.
  • Table 4 shows basic lens data of the projection zoom lens of Example 2.
  • Table 5 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D12, D16, D18, and D27 when the zoom lens for projection of Example 2 is zoomed. . These numerical values are values when the projection distance is 124.553.
  • Table 5 shows the F number Fno. Of the projection zoom lens of Example 2. The total angle of view 2 ⁇ is also shown.
  • Table 6 shows the values of the surface distances D8 and D12 when the projection zoom lens of Example 2 performs focusing when the projection distances are 62.277 and 373.660.
  • FIGS. 8A to 8L show aberration diagrams of the projection zoom lens of Example 2, respectively.
  • FIG. 3 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the third embodiment.
  • the projection zoom lens of Example 3 has substantially the same configuration as the projection zoom lens of Example 1 described above, except that the fifth lens L5 of the second lens group G2 is a biconcave lens.
  • the sixth lens L6 of the second lens group G2 is composed of a biconvex lens
  • the seventh lens L7 of the third lens group G3 is composed of a positive meniscus lens having a convex surface facing the reduction side
  • the fifth lens L5 and the fifth lens L5 6 lens L6 is different in that it is cemented.
  • Table 7 shows basic lens data of the projection zoom lens of Example 3.
  • Table 8 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D11, D15, D17, and D26 when the projection zoom lens of Example 3 is zoomed. . These numerical values are values when the projection distance is 124.547.
  • Table 8 shows the F number Fno. Of the projection zoom lens of Example 3. The total angle of view 2 ⁇ is also shown.
  • Table 9 shows the values of the surface distances D8 and D11 when the projection zoom lens of Example 3 performs focusing for the projection distances of 62.274 and 373.642.
  • FIGS. 9A to 9L show aberration diagrams of the projection zoom lens of Example 3, respectively.
  • FIG. 4 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens of Example 4.
  • the projection zoom lens of Example 4 has substantially the same configuration as the projection zoom lens of Example 1 described above, except that the seventh lens L7 of the third lens group G3 is a biconvex lens, and The difference is that the fifth lens L5 and the sixth lens L6 are cemented.
  • Table 10 shows basic lens data of the projection zoom lens of Example 4.
  • Table 11 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D11, D15, D17, and D26 when the zoom lens for projection of Example 4 is zoomed. . These numerical values are values when the projection distance is 129.727.
  • Table 11 shows the F number Fno. Of the projection zoom lens of Example 4. The total angle of view 2 ⁇ is also shown.
  • Table 12 shows the values of the surface distances D8 and D11 when the projection zoom lens of Example 4 performs focusing when the projection distances are 64.864 and 389.182.
  • FIGS. 10A to 10L show aberration diagrams of the projection zoom lens of Example 4, respectively.
  • FIG. 5 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the fifth embodiment.
  • the projection zoom lens of Example 5 has substantially the same configuration as the projection zoom lens of Example 1 described above, but the seventh lens L7 of the third lens group G3 has a convex surface directed toward the reduction side.
  • a point made of a positive meniscus lens, a point in which a biconvex lens L10a and a biconcave lens L10b joined to each other are used as an alternative to the tenth lens L10 (see FIG. 1) of the fifth lens group G5, and the fifth lens group
  • the G5 eleventh lens L11 is composed of a positive meniscus lens having a convex surface directed toward the reduction side.
  • Table 13 shows basic lens data of the projection zoom lens of Example 5.
  • Table 14 shows the focal length f of the entire system at the wide angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D12, D16, D18, and D28 when the projection zoom lens of Example 5 is zoomed. . These numerical values are values when the projection distance is 122.350.
  • Table 14 shows the F number Fno. Of the projection zoom lens of Example 5. The total angle of view 2 ⁇ is also shown.
  • Table 15 shows the values of the surface distances D8 and D12 when the projection zoom lens of Example 5 performs focusing when the projection distances are 61.175 and 367.049.
  • FIGS. 11A to 11L show respective aberration diagrams of the projection zoom lens of Example 5.
  • FIG. 11A to 11L show respective aberration diagrams of the projection zoom lens of Example 5.
  • FIG. 6 shows the arrangement of lens groups at the wide-angle end and the telephoto end of the projection zoom lens according to the sixth embodiment.
  • the projection zoom lens of Example 6 has substantially the same configuration as the projection zoom lens of Example 1 described above, except that the seventh lens L7 of the third lens group G3 is a biconvex lens, and A difference is that a biconcave lens L9a and a biconvex lens L9b are used as an alternative to the ninth lens L9 (see FIG. 1) of the fourth lens group G4.
  • Table 16 shows basic lens data of the projection zoom lens of Example 6.
  • Table 17 shows the focal length f of the entire system at the wide-angle end, the intermediate focal position, and the telephoto end, and the values of the variable intervals D12, D16, D20, and D29 when the projection zoom lens of Example 6 is zoomed. . These numerical values are values when the projection distance is 122.333.
  • Table 17 shows the F number Fno. Of the projection zoom lens of Example 6. The total angle of view 2 ⁇ is also shown.
  • Table 18 shows the values of the surface distances D8 and D12 when the projection zoom lens of Example 6 performs focusing when the projection distances are 61.166 and 366.998.
  • FIGS. 12A to 12L show aberration diagrams of the projection zoom lens of Example 6.
  • the projection zoom lens according to the present invention is not limited to the above examples, and various modifications can be made. It is possible to appropriately change the radius of curvature, the surface spacing, the refractive index, and the Abbe number.
  • the projection display device of the present invention is not limited to the above-described configuration.
  • the light valve used and the optical member used for light beam separation or light beam synthesis are not limited to the above-described configuration. Various modifications can be made.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 投写用ズームレンズにおいて、画角を広角化しても、フォーカシングによる像面湾曲を良好に補正可能とする。 実質的に、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群(G1)と、この第1レンズ群(G1)よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群(G2)と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する最終レンズ群(G6)と、この最終レンズ群(G6)と前記第2レンズ群(G2)との間に配置されて変倍の際に移動する3つのレンズ群(G3、G4およびG5)とから投写用ズームレンズを構成する。その上で、縮小側をテレセントリックな構成とし、また第2レンズ群(G2)のみを移動させてフォーカシングを行う構成する。

Description

投写用ズームレンズおよび投写型表示装置
 本発明はズームレンズに関し、特に、投写型表示装置に適用される投写用ズームレンズに関するものである。
 また本発明は、そのような投写用ズームレンズを備えた投写型表示装置に関するものである。
 近時、透過型あるいは反射型の液晶表示装置や、DMD表示装置等のライトバルブを用いた投写型表示装置が広く普及してきている。その種の投写型表示装置に用いられる投写レンズには、一般に、長いバックフォーカスを有することや、縮小側(ライトバルブ側)から見た入射瞳が十分に遠方に位置すること、すなわち縮小側がテレセントリック性を有することが要求される。また、装置の携帯性や設置条件への適応性を考慮して変倍機能(ズーム機能)を有していること、さらには、大型スクリーンに近距離から投写する要望に応えるために広画角であることが要求される。
 この広画角化を進めるに当たり大きな問題となってくるのが、スクリーン側のレンズ径の大型化と、投写距離を変えたとき(至近から無限遠まで)のフォーカシングによる像面湾曲の変動である。
 従来、上記の問題に対応できるようにした投写用ズームレンズとして、特許文献1や2に示されたものが知られている。特許文献1に示されたズームレンズは、最も拡大側に有る第1レンズ群を2つのサブレンズ群に分離し、フォーカシング時に両サブレンズ群の間隔を変化させることによって、フォーカシングによる像面湾曲の変動を抑えるようにしたものである。一方、特許文献2に示されたズームレンズは、最も拡大側から2つ目のレンズ群を移動させることによって、フォーカシングによる像面湾曲の変動を抑えるようにしたものである。また、この特許文献2に示されたズームレンズは、変倍時には4つのレンズ群を移動させるように構成されている。
特開2008-257005号公報 特開2011-13657号公報
 しかし、特許文献1、2に記載されたズームレンズはいずれも画角が60度程度と小さい上、更なる広画角化を図った場合には、フォーカシングによる像面湾曲の変動を抑え切れなくなる可能性があるだけでなく、スクリーン側のレンズ径の大型化を招くこともある。
 本発明は上記の事情に鑑みてなされたものであり、画角を広角化しても、フォーカシングによる像面湾曲を良好に補正し得る投写用ズームレンズを提供することを目的とする。
 また本発明は、上述のような投写用ズームレンズを備えて、高画質の画像を表示できる投写型表示装置を提供することを目的とする。
 本発明による第1の投写用ズームレンズは、 
 実質的に、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群と、この第1レンズ群よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する最終レンズ群と、この最終レンズ群と前記第2レンズ群との間に配置されて変倍の際に移動する3つのレンズ群とからなり、
 縮小側がテレセントリックな構成とされ、
 前記第2レンズ群のみを移動させてフォーカシングを行うように構成されていることを特徴とするものである。
 ここで、上記の「実質的に・・・レンズ群とからなり」とは、そこに挙げられたレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分等を持つ場合も含むものとする。この「実質的に」との用語は以下でも用いられているが、その意味するところは全て上に述べたものと同じである。
 また、上記の「縮小側がテレセントリック」とは、縮小側の像面の任意の点に集光する光束の断面において上側の最大光線と下側の最大光線との二等分角線が光軸と平行に近い状態を指すものであり、完全にテレセントリックな場合、すなわち前記二等分角線が光軸に対して完全に平行な場合に限るものではなく、多少の誤差がある場合をも含むものを意味する。ここで多少の誤差がある場合とは、光軸に対する前記二等分角線の傾きが±3°の範囲内の場合である。
 また、本発明の投写用ズームレンズにおいて、各レンズ群を構成するレンズには接合レンズが用いられてもよいが、接合レンズはn枚の貼り合わせで構成されていれば、n枚のレンズとして数えるものとする。また、本明細書における「本発明の投写用ズームレンズ」あるいは「本発明による投写用ズームレンズ」との記載は、特にことわりがなければ本発明による第1の投写用ズームレンズおよび、後述する第2の投写用ズームレンズの双方を指すものとする。
 また、本発明の投写用ズームレンズにおけるレンズの面形状、屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 なお、本発明による第1の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、第2レンズ群の焦点距離をf2としたとき、下記条件式
 -210.0<f2 /fw・・・(1)
を満たしていることが望ましい。
 さらには、上記条件式(1)が規定する範囲の中で、特に下記条件式
 -190.0<f2 /fw・・・(1’)
を満たしていることがより望ましい。
 一方、本発明による第2の投写用ズームレンズは、
 実質的に、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群と、この第1レンズ群よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する最終レンズ群と、この最終レンズ群と前記第2レンズ群との間に配置されて変倍の際に移動する複数のレンズ群とからなり、
 縮小側がテレセントリックな構成とされ、
 前記第2レンズ群のみを移動させてフォーカシングを行うように構成され、
 広角端における全系の焦点距離をfw、第2レンズ群の焦点距離をf2としたとき、下記条件式
 -210.0<f2 /fw<-20.0・・・(2)
を満たしていることを特徴とするものである。上記の「実質的に」が意味するところは、先に説明した通りである。
 なお、この第2の投写用ズームレンズにおいては、上記条件式(2)が規定する範囲の中で、特に下記条件式
 -190.0<f2 /fw<-40.0・・・(2’)
を満たしていることがより望ましい。
 また、本発明による第2の投写用ズームレンズにおいては、前記変倍の際に移動する複数のレンズ群が、実質的に3つのレンズ群から構成されていることが望ましい。なお、上記の「実質的に」が意味するところは、先に説明した通りである。
 また本発明の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、全系のバックフォーカス(空気換算距離)をBfとしたとき、下記条件式
 1.5<Bf /fw <3.0・・・(3)
を満たしていることが望ましい。なおこのバックフォーカスは、拡大側を物体側、縮小側を像側と考えたときのものである。
 さらには、上記条件式(3)が規定する範囲の中で、特に下記条件式
 1.7<Bf /fw <2.5・・・(3’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいては、前記第2レンズ群の最も拡大側のレンズが拡大側に凹面を向けたものであり、該第2レンズ群の最も縮小側のレンズが縮小側に凸面を向けたものであることが望ましい。
 そして、そのような2枚のレンズが適用される場合、本発明の投写用ズームレンズは、第2レンズ群の最も拡大側に有るレンズの拡大側面の曲率半径をR21f、第2レンズ群の最も拡大側に有るレンズの縮小側面の曲率半径をR21rとしたとき、下記条件式
 5.0<(R21f+R21r)/(R21f-R21r)<80.0・・・(4)
を満たしていることが望ましい。
 さらには、上記条件式(4)が規定する範囲の中で、特に下記条件式
 6.0<(R21f+R21r)/(R21f-R21r)<60.0・・・(4’)
を満たしていることがより望ましい。
 また本発明の投写用ズームレンズにおいては、前記第2レンズ群が、実質的に2枚のレンズのみで構成されていることが望ましい。この「実質的に」が意味するところは、先に説明した通りである。
 また本発明の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、第1レンズ群の焦点距離をf1としたとき、下記条件式
 -2.0<f1 /fw <-0.8・・・(5)
を満たしていることが望ましい。
 さらには、上記条件式(5)が規定する範囲の中で、特に下記条件式
 -1.5<f1 /fw <-1.0・・・(5’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいて、最終レンズ群と第2レンズ群との間に配置されて変倍の際に移動する複数のレンズ群は実質的に、拡大側から順に配置された、正の屈折率を有する第3レンズ群、正の屈折率を有する第4レンズ群、および正の屈折率を有する第5レンズ群であることが望ましい。上記の「実質的に」が意味するところは、先に説明した通りである。
 また、本発明の投写用ズームレンズにおいては、広角端での全画角を2ωとしたとき、下記条件式
 70°≦2ω・・・(6)
を満たしていることが望ましい。
 また、本発明の投写用ズームレンズにおいては、前記第5レンズ群が少なくとも3枚の正レンズを含んで構成され、該第5レンズ群の最も拡大側のレンズが拡大側に凸面を向けたものとされ、その上で、広角端における全系の焦点距離をfw、第5レンズ群の焦点距離をf5としたとき、下記条件式
 7.5<f5 /fw <14.5・・・(7)
を満たしていることが望ましい。
 さらには、上記条件式(7)が規定する範囲の中で、特に下記条件式
 8.0<f5 /fw <13.0・・・(7’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいては、第5レンズ群に含まれる正レンズのd線に対するアッベ数の平均をν5aとしたとき、下記条件式
 60.0<ν5a ・・・(8)
を満たしていることが望ましい。
 さらには、上記条件式(8)が規定する範囲の中で、特に下記条件式
 62.0<ν5a ・・・(8’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいては、第6レンズ群に含まれる正レンズのd線に対するアッベ数の平均をν6aとしたとき、下記条件式
 50.0<ν6a ・・・(9)
を満たしていることが望ましい。
 さらには、上記条件式(9)が規定する範囲の中で、特に下記条件式
 55.0<ν6a ・・・(9’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいては、第5レンズ群の最も拡大側のレンズまたはレンズ部の拡大側面の曲率半径をR5f、第5レンズ群の最も拡大側のレンズまたはレンズ部の縮小側面の曲率半径をR5rとしたとき、下記条件式
 2.5<(R5f+R5r)/(R5f-R5r)<7.0・・・(10)
を満たしていることが望ましい。ここで上記の「レンズ部」とは、第5レンズ群の最も拡大側に特に接合レンズが配置されている場合において、それらの接合レンズ全体を指すものである。
 さらには、上記条件式(10)が規定する範囲の中で、特に下記条件式
 3.5<(R5f+R5r)/(R5f-R5r)<6.5・・・(10’)
を満たしていることがより望ましい。
 また、本発明の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、第6レンズ群の焦点距離をf6としたとき、下記条件式
 3.0<f6 /fw <7.0・・・(11)
を満たしていることが望ましい。
 さらには、上記条件式(11)が規定する範囲の中で、特に下記条件式
 3.5<f6 /fw <6.0・・・(11’)
を満たしていることがより望ましい。
 他方、本発明の投写型表示装置は、光源と、ライトバルブと、前記光源からの光束を前記ライトバルブへ導く照明光学部とに加えて、以上説明した本発明による投写用ズームレンズを備え、前記光源からの光束を前記ライトバルブで光変調し、前記投写用ズームレンズによりスクリーンに投写する構成を有することを特徴とするものである。
 本発明の第1の投写用ズームレンズによれば、変倍の際に固定されている第1レンズ群よりも内側(縮小側)に配置された負の屈折力を有する第2レンズ群のみを移動させてフォーカシングを行うインナーフォーカスの構成としたことにより、レンズを特に大型化しなくても像面湾曲を良好に補正することが可能になる。
 また、本発明の第1の投写用ズームレンズによれば、3つのレンズ群を移動させて変倍する構成としたので、前述したように4つのレンズ群を移動させて変倍するようにした引用文献2に記載のズームレンズ等と比べれば、構成をより簡素化しながらも、広角化に伴う像面湾曲を良好に抑制することができる。
 また、本発明の第1の投写用ズームレンズにおいて特に前記条件式(1)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(1)は広角端における全系の焦点距離に対する第2レンズ群の焦点距離の比を規定したものであり、この条件式の下限値を下回ると、第2レンズ群の負のパワーが弱くなり過ぎて、所定の画角を確保する上で拡大側のレンズ径が大きくなってしまう。条件式(1)が満たされている場合は、上記の不具合を防止して、ズームレンズの小型化と広角化を両立させることができる。
 以上の効果は、条件式(1)が規定する範囲の中で特に前記条件式(1’)が満足されている場合は、より顕著なものとなる。
 一方、本発明の第2の投写用ズームレンズにおいても、変倍の際に固定されている第1レンズ群よりも内側(縮小側)に配置された負の屈折力を有する第2レンズ群のみを移動させてフォーカシングを行うインナーフォーカスの構成としたことにより、レンズを特に大型化しなくても像面湾曲を良好に補正することが可能になる。
 また、本発明の第2の投写用ズームレンズにおいては、前記条件式(2)が満たされていることにより下記の効果が得られる。すなわち、この条件式(2)は前記条件式(1)と同様に、広角端における全系の焦点距離に対する第2レンズ群の焦点距離の比を規定したものであり、この条件式(2)の下限値を下回ると、所定の画角を確保するために前玉径が大きくなり過ぎる。反対にこの条件式(2)の上限値を超えると、第2レンズ群の負のパワーが強くなり過ぎて、レンズ全系が大きくなると共に、フォーカシング時のレンズ群の移動量が大きくなり、投写距離変動による収差の変動(特に像面湾曲)が抑制できなくなる。条件式(2)が満たされていれば、上記の不具合を防止して、ズームレンズを小型化すると共に、投写距離変動による収差の変動を良好に抑制可能となる。
 以上の効果は、条件式(2)が規定する範囲の中で特に前記条件式(2’)が満足されている場合は、より顕著なものとなる。
 また、本発明の第2の投写用ズームレンズにおいて、特に変倍の際に移動する複数のレンズが3つのレンズ群とされた場合は、前述したように4つのレンズ群を移動させて変倍するようにした引用文献2に記載のズームレンズ等と比べれば、構成をより簡素化しながらも、広角化に伴う像面湾曲を良好に抑制することができる。
 また、本発明の投写用ズームレンズにおいて特に前記条件式(3)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(3)は広角端における全系の焦点距離に対する全系のバックフォーカスの比を規定したものであり、この条件式(3)の下限値を下回ると、投写型表示装置において一般に投写用ズームレンズの後側(縮小側)に配置されるプリズム等のガラスブロックを挿入することが困難になる。反対に条件式(3)の上限値を超えると、レンズ全長が大きくなってしまう。条件式(3)が満たされていれば、上記の不具合を防止して、ガラスブロックの挿入を容易にするとともに、レンズ全長を短く抑える効果が得られる。
 以上の効果は、条件式(3)が規定する範囲の中で特に前記条件式(3’)が満足されている場合は、より顕著なものとなる。
 また、本発明の投写用ズームレンズにおいて特に、第2レンズ群の最も拡大側のレンズが拡大側に凹面を向けたものであり、該第2レンズ群の最も縮小側のレンズが縮小側に凸面を向けたものである場合は、非点収差を良好に補正することが可能になる。
 以上の効果は、第2レンズ群の最も拡大側のレンズおよび最も縮小側のレンズが上述の通りのものとされた上で、さらに前記条件式(4)が満足されている場合はより顕著なものとなり、さらに、この条件式(4)が規定する範囲の中で特に前記条件式(4’)が満足されている場合は、より一層顕著なものとなる。
 また、本発明の投写用ズームレンズにおいて特に第2レンズ群が、実質的に2枚のレンズのみで構成されている場合は、非点収差の補正効果がより顕著なものとなる。そして、一般に第2レンズ群はレンズ径が大きい部分であるので、この第2レンズ群が、非点収差補正効果が得られる最小枚数である2枚で構成されていれば、ズームレンズの軽量化の点でも有利となる。
 また、本発明の投写用ズームレンズにおいて特に前記条件式(5)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(5)は広角端における全系の焦点距離に対する第1レンズ群の焦点距離の比を規定したものであり、この条件式(5)の下限値を下回ると、第1レンズ群の負のパワーが弱くなり過ぎて、拡大側のレンズ径が大きくなると共に、所定のバックフォーカスを確保することが困難になる。反対に条件式(5)の上限値を超えると、第1レンズ群の負のパワーが強くなり過ぎて、像面湾曲や歪曲収差の補正が困難になる。条件式(5)が満たされている場合は、上記の不具合を防止して、ズームレンズを小型化し、かつ像面湾曲や歪曲収差を確実に補正可能となる。
 以上の効果は、条件式(5)が規定する範囲の中で特に前記条件式(5’)が満足されている場合は、より顕著なものとなる。
 また、本発明の投写用ズームレンズにおいて、特に、最終レンズ群と第2レンズ群との間に配置されて変倍の際に移動する複数のレンズ群が実質的に、拡大側から順に配置された、正の屈折率を有する第3レンズ群、正の屈折率を有する第4レンズ群、および正の屈折率を有する第5レンズ群である場合は、少ないレンズ枚数で諸収差を良好に補正可能となる。
 さらに、本発明の投写用ズームレンズにおいて、特に前記条件式(6)が満たされている場合は、近時、投写用ズームレンズに求められている広角化の要求に十分応えることができる。
 また本発明の投写用ズームレンズにおいて、特に、第5レンズ群が少なくとも3枚の正レンズを含んで構成され、該第5レンズ群の最も拡大側のレンズが拡大側に凸面を向けたものとされ、その上で前記条件式(7)が満足されている場合は、以下の効果が得られる。
 すなわち、まず第5レンズ群に3枚以上の正レンズが使用されているので、テレセントリック性を良好なものとすることができ、その上、広角レンズでは大きく取り難いバックフォーカスを適切に確保することも可能になる。また、第5レンズ群の最も拡大側のレンズとして拡大側に凸面を向けたものが用いられていることにより、球面収差や非点収差を良好に補正可能となる。一方条件式(7)は、広角端における全系の焦点距離に対する第5レンズ群の焦点距離の比を規定したものであるが、この条件式(7)の下限値を下回っても、さらには上限値を超えても、像面湾曲(特にサジタル像面の湾曲)を良好に補正することが困難になる。条件式(7)が満足されていれば、上記の不具合を防止して、全変倍域に亘って像面湾曲を良好に補正可能となる。この効果は、条件式(7)が規定する範囲の中で特に前記条件式(7’)が満足されている場合は、より顕著なものとなる。
 また本発明の投写用ズームレンズにおいて、特に前記条件式(8)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(8)は第5レンズ群に含まれる正レンズのアッベ数の平均を規定したものであり、この条件式の下限値を下回ると、倍率色収差を良好に補正することが困難になる。条件式(8)が満たされていれば、上記の不具合を防止して、倍率色収差を良好に補正可能となる。
 以上の効果は、条件式(8)が規定する範囲の中で特に前記条件式(8’)が満足されている場合は、より顕著なものとなる。
 また本発明の投写用ズームレンズにおいて、特に前記条件式(9)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(9)は第6レンズ群に含まれる正レンズのアッベ数の平均を規定したものであり、この条件式の下限値を下回ると、倍率色収差を良好に補正することが困難になる。条件式(9)が満たされていれば、上記の不具合を防止して、倍率色収差を良好に補正可能となる。
 以上の効果は、条件式(9)が規定する範囲の中で特に前記条件式(9’)が満足されている場合は、より顕著なものとなる。
 また本発明の投写用ズームレンズにおいて、特に前記条件式(10)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(10)は、第5レンズ群の最も拡大側のレンズまたはレンズ部の拡大側面の曲率半径と、縮小側面の曲率半径との関係を規定したものであり、この条件式(10)の下限値を下回っても、またその上限値を超えても、球面収差や非点収差を良好に補正することが困難になる。条件式(10)が満たされていれば、上記の不具合を防止して、球面収差や非点収差を良好に補正可能となる。
 以上の効果は、条件式(10)が規定する範囲の中で特に前記条件式(10’)が満足されている場合は、より顕著なものとなる。
 また本発明の投写用ズームレンズにおいて、特に前記条件式(11)が満たされている場合は、下記の効果を奏することができる。すなわち、この条件式(11)は、広角端における全系の焦点距離に対する第6レンズ群の焦点距離の比を規定したものであるが、この条件式(11)の下限値を下回っている場合は第6レンズ群のパワーが強くなり過ぎて、バックフォーカスが短くなるばかりか、倍率色収差の発生量が大きくなり、他のレンズ群による倍率色収差の補正が困難になる。逆に条件式(11)の上限値を超えている場合は、第6レンズ群のパワーが弱くなり過ぎて、必要なテレセントリック性を確保することが困難になる。条件式(11)が満たされていれば、上記の不具合を防止して、倍率色収差を良好に補正でき、また良好なテレセントリック性を確保できるようになる。
 以上の効果は、条件式(11)が規定する範囲の中で特に前記条件式(11’)が満足されている場合は、より顕著なものとなる。
 他方、本発明の投写型表示装置は、投写用ズームレンズとして以上述べた通りの本発明のズームレンズが適用されたものであるので、画角の広角化の要求に応えることができ、また像面湾曲を良好に抑制して高画質の画像を表示可能となる。
本発明の実施例1に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例2に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例3に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例4に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例5に係る投写用ズームレンズのレンズ構成を示す断面図 本発明の実施例6に係る投写用ズームレンズのレンズ構成を示す断面図 (A)~(L)は上記実施例1に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例2に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例3に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例4に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例5に係る投写用ズームレンズの各収差図 (A)~(L)は上記実施例6に係る投写用ズームレンズの各収差図 上記実施例1に係る投写用ズームレンズにおける光線軌跡を示す図 本発明の一実施形態に係る投写型表示装置の概略構成図 本発明の別の実施形態に係る投写型表示装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。まず、図1を参照して、本発明の一実施形態に係る投写用ズームレンズについて説明する。この図1は、本発明の実施例1に係る投写用ズームレンズを変倍操作させたときの広角端および望遠端における、各レンズ群の移動位置を示すものである。なお同図では、広角端から望遠端へ変化する際の移動するレンズ群の移動方向を、各位置間の矢印で概略的に示している。
 他方、図2~図6は、本発明の実施形態に係る別の構成例を示す断面図であり、それぞれ後述の実施例2~6に係る投写用ズームレンズに対応している。これらの投写用ズームレンズの基本的な構成は実施例1のものと同様であるので、以下では、主に図1に示す構成を例に取って本発明の実施形態について説明する。
 本実施形態の投写用ズームレンズは、例えばライトバルブに表示された画像情報をスクリーンへ投写する投写レンズとして使用可能である。図1では、図の左側を拡大側、右側を縮小側とし、投写型表示装置に搭載される場合を想定して、色合成プリズム(フィルタ類を含む)等のガラスブロック2と、ガラスブロック2の縮小側の面に位置するライトバルブの画像表示面1も合わせて図示している。
 投写型表示装置においては、画像表示面1で画像情報を与えられた光束が、ガラスブロック2を介してこの投写用ズームレンズに入射する。そして、この投写用ズームレンズにより、紙面左側方向に配置される図示外のスクリーン上に、上記画像情報に基づく画像が投写表示される。
 なお図1では、ガラスブロック2の縮小側の面の位置と画像表示面1の位置とが一致した例を示しているが、必ずしもこれに限定されない。また図1には、1枚の画像表示面1のみを記載しているが、投写型表示装置において、光源からの光束を色分離光学系により3原色に分離し、各原色用に3つのライトバルブを配設して、フルカラー画像を表示できるように構成してもよい。
 本実施形態に係る投写用ズームレンズは、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群G1と、この第1レンズ群G1よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群G2と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する第6レンズ群G6と、最終レンズ群であるこの第6レンズ群G6と第2レンズ群G2との間に配置されて変倍の際に移動する複数のレンズ群(以下、変倍時移動レンズ群という)のみを実質的なレンズ群として有し、縮小側がテレセントリックとなるように構成されている。
 本実施形態では上記の変倍時移動レンズ群として、拡大側から順に配置された3つのレンズ群すなわち、第3レンズ群G3、第4レンズ群G4および第5レンズ群G5が設けられている。
 そしてこの投写用ズームレンズは、第2レンズ群G2のみを移動させてフォーカシングを行うように構成されている。
 図1に示す例では、第1レンズ群G1は4枚のレンズ(第1レンズL1~第4レンズL4)からなり、第2レンズ群G2は2枚のレンズ(第5レンズL5および第6レンズL6)からなり、第3レンズ群G3は2枚のレンズ(第7レンズL7および第8レンズL8)からなり、第4レンズ群G4は1枚のレンズ(第9レンズL9)からなり、第5レンズ群G5は5枚のレンズ(第10レンズL10~第14レンズL14)からなり、第6レンズ群G6は1枚のレンズ(第15レンズL15)からなる。
 ただし、本発明の投写用ズームレンズの各レンズ群を構成するレンズの枚数は、必ずしも図1に示す例に限定されるものではない。例えば後述する実施例5の投写用ズームレンズでは第5レンズ群G5が6枚のレンズから構成され、実施例6の投写用ズームレンズでは第4レンズ群G4が2枚のレンズから構成されている。
 本実施形態の投写用ズームレンズにおいては、上述した通り、変倍の際に固定されている第1レンズ群G1よりも縮小側に配置された負の屈折力を有する第2レンズ群G2のみを移動させてフォーカシングを行うインナーフォーカスの構成が採用されており、それにより、レンズを特に大型化しなくても像面湾曲を良好に補正することが可能になる。
 また、本実施形態の投写用ズームレンズにおいては、3つのレンズ群G3~G5を移動させて変倍する構成としたので、4つのレンズ群を移動させて変倍するようにしたズームレンズ等と比べれば、構成をより簡素化しながらも、広角化に伴う像面湾曲を良好に抑制することができる。
 また本実施形態の投写用ズームレンズは、広角端における全系の焦点距離をfw、第2レンズ群G2の焦点距離をf2としたとき、前述した条件式
 -210.0<f2 /fw・・・(1)
を満たしており、さらには、上記条件式(1)が規定する範囲の中で、特に下記条件式
 -190.0<f2 /fw・・・(1’)
も満たしている。なお、上記条件式(1)が規定する値の実施例毎の詳細は、後に表19を参照して具体的に説明する(後述する条件式についても同様)。
 上記の条件式(1)さらには条件式(1’)を満足する構成としたことにより本実施形態の投写用ズームレンズは、小型化と広角化を両立できるものとなる。
 また本実施形態の投写用ズームレンズは、前述した条件式
 -210.0<f2 /fw<-20.0・・・(2)
を満たしており、さらには、上記条件式(2)が規定する範囲の中で、特に下記条件式
 -190.0<f2 /fw<-40.0・・・(2’)
も満たしている。それにより本実施形態の投写用ズームレンズは、小型化を達成し、また投写距離変動による収差の変動を良好に抑制できるものとなる。
 また本実施形態の投写用ズームレンズは、広角端における全系の焦点距離をfw、全系のバックフォーカス(空気換算距離)をBfとしたとき、前述した条件式
 1.5<Bf /fw <3.0・・・(3)
を満たしており、さらには上記条件式(3)が規定する範囲の中で、特に下記条件式
 1.7<Bf /fw <2.5・・・(3’)
も満たしている。それにより本実施形態の投写用ズームレンズは、その後側(縮小側)に配置されるプリズム等のガラスブロック2の挿入を容易にするとともに、レンズ全長を短く抑える効果を奏する。
 また、本実施形態の投写用ズームレンズにおいては、第2レンズ群G2の最も拡大側に配置された第5レンズL5が拡大側に凹面を向けたものとされ、該第2レンズ群G2の最も縮小側に配置された第6レンズL6が縮小側に凸面を向けたものとされている。それにより本実施形態の投写用ズームレンズは、非点収差を良好に補正可能となっている。
 また本実施形態においては、上記第5レンズL5の拡大側面の曲率半径をR21f、縮小側面の曲率半径をR21rとしたとき、前述した条件式
 5.0<(R21f+R21r)/(R21f-R21r)<80.0・・・(4)
を満たしており、さらには、上記条件式(4)が規定する範囲の中で、特に下記条件式
 6.0<(R21f+R21r)/(R21f-R21r)<60.0・・・(4’)
も満たしている。それにより本実施形態の投写用ズームレンズは、非点収差を良好に補正できるものとなる。
 また本実施形態の投写用ズームレンズにおいては、第2レンズ群L2が2枚のレンズのみ、つまり第5レンズL5および第6レンズLから構成されている。一般に第2レンズ群G2はレンズ径が大きい部分であるので、この第2レンズ群G2が、非点収差補正効果が得られる最小枚数である2枚で構成されていることにより、ズームレンズの軽量化の点で有利となる。
 また本実施形態の投写用ズームレンズにおいては、広角端における全系の焦点距離をfw、第1レンズ群G1の焦点距離をf1としたとき、前述した条件式
 -2.0<f1 /fw <-0.8・・・(5)
を満たしており、さらには、上記条件式(5)が規定する範囲の中で、特に下記条件式
 -1.5<f1 /fw <-1.0・・・(5’)
も満たしている。それにより本実施形態の投写用ズームレンズは、十分な小型化が可能で、かつ像面湾曲や歪曲収差を確実に補正できるものとなる。
 また、本実施形態の投写用ズームレンズにおいては、最終レンズ群G6と第2レンズ群G2との間に配置されて変倍の際に移動する複数のレンズ群が、拡大側から順に配置された、正の屈折率を有する第3レンズ群G3、正の屈折率を有する第4レンズ群G4、および正の屈折率を有する第5レンズ群G5とされている。それにより本実施形態の投写用ズームレンズは、少ないレンズ枚数で諸収差を良好に補正できるものとなる。
 また、本実施形態の投写用ズームレンズは、広角端での全画角を2ωとしたとき、前述した条件式
 70°≦2ω・・・(6)
を満たしている。それにより本実施形態の投写用ズームレンズは、近時、投写用ズームレンズに求められている広角化の要求に十分応えることができる。
 また、本実施形態の投写用ズームレンズにおいては、第5レンズ群G5が3枚の正レンズつまり第11レンズL11、第13レンズL13および第14レンズL14を含んで構成され、該第5レンズ群G5の最も拡大側のレンズである第10レンズL10が拡大側に凸面を向けたものとされている。その上でこの投写用ズームレンズは、広角端における全系の焦点距離をfw、第5レンズ群G5の焦点距離をf5としたとき、前述した条件式
 7.5<f5 /fw <14.5・・・(7)
を満たしており、さらには、上記条件式(7)が規定する範囲の中で、特に下記条件式
 8.0<f5 /fw <13.0・・・(7’)
も満たしている。それにより本実施形態の投写用ズームレンズは、全変倍域に亘って像面湾曲(特にサジタル像面の湾曲)を良好に補正可能となる。
 また、本実施形態の投写用ズームレンズにおいては、第5レンズ群G5に含まれる正レンズ、つまり第11レンズL11、第13レンズL13および第14レンズL14のd線に対するアッベ数の平均をν5aとしたとき、前述した条件式
 60.0<ν5a ・・・(8)
を満たしており、さらには、上記条件式(8)が規定する範囲の中で、特に下記条件式
 62.0<ν5a ・・・(8’)
も満たしている。それにより本実施形態の投写用ズームレンズは、倍率色収差を良好に補正可能となる。
 また、本実施形態の投写用ズームレンズは、第6レンズ群G6に含まれる正レンズのd線に対するアッベ数の平均、つまり本例では第15レンズL15のd線に対するアッベ数をν6aとしたとき、前述した条件式
 50.0<ν6a ・・・(9)
を満たしており、さらには、上記条件式(9)が規定する範囲の中で、特に下記条件式
 55.0<ν6a ・・・(9’)
も満たしている。それにより本実施形態の投写用ズームレンズは、この点からも倍率色収差を良好に補正可能となる。本実施形態では、上記条件式(8’)および(9’)が共に満たされているので、倍率色収差を特に良好に補正可能となる。
 また、本実施形態の投写用ズームレンズは、第5レンズ群G5の最も拡大側のレンズつまり第10レンズL10の拡大側面の曲率半径をR5f、縮小側面の曲率半径をR5rとしたとき、前述した条件式
 2.5<(R5f+R5r)/(R5f-R5r)<7.0・・・(10)
を満たしており、さらには、上記条件式(10)が規定する範囲の中で、特に下記条件式
 3.5<(R5f+R5r)/(R5f-R5r)<6.5・・・(10’)
も満たしている。それにより本実施形態の投写用ズームレンズは、球面収差や非点収差を良好に補正可能となる。
 なお、以上は実施例2~6においても同様であるが、特に実施例5においては第5レンズ群G5の最も拡大側に、互いに接合された両凸レンズ10aおよび両凹レンズ10bが前述の「レンズ部」として配設されているので、この場合の縮小側面は両凹レンズ10bの縮小側面となる。
 また、本実施形態の投写用ズームレンズは、広角端における全系の焦点距離をfw、第6レンズ群G6の焦点距離をf6としたとき、前述した条件式
 3.0<f6 /fw <7.0・・・(11)
を満たしており、さらには、上記条件式(11)が規定する範囲の中で、特に下記条件式
 3.5<f6 /fw <6.0・・・(11’)
も満たしている。それにより本実施形態の投写用ズームレンズは、倍率色収差を良好に補正可能で、また良好なテレセントリック性を確保できるようになる。
 なお、本実施形態の投写用ズームレンズにおいては、図1に示す例のように、各レンズ面を全て球面とした非球面を用いない構成が可能であり、このようにした場合は、コスト面で有利となる。勿論、本実施形態の投写用ズームレンズにおいて、非球面を用いる構成も可能であり、その場合はより良好に収差補正を行うことができる。
 なお、本発明の目的とする投写用ズームレンズとしては、全変倍域でFナンバーが3.0よりも小さな光学系であることが好ましい。また、本発明の目的とする投写用ズームレンズとしては、全変倍域でディストーション(歪曲収差)が約2%以下に抑えられていることが好ましい。
 次に、本発明に係る投写型表示装置の実施形態について、図14および図15を用いて説明する。図14は本発明の一実施形態に係る投写型表示装置の一部を示す概略構成図であり、図15は本発明の別の施形態に係る投写型表示装置の一部を示す概略構成図である。
 図14に示す投写型表示装置は、光変調機能を備えた照明光学系(照明光学部)10と、上述した実施形態に係る投写用ズームレンズ19とを有している。照明光学系10は、ライトバルブである透過型液晶パネル11a、11b、11cと、色分解のためのダイクロイックミラー12および13と、透過型液晶パネル11a~11cを通った光束を合成する光束合成光学系としてのクロスダイクロイックプリズム14と、コンデンサレンズ16a、16bおよび16cと、白色光束を発する光源17と、ミラー18a、18bおよび18cとを備えて構成されている。なお図14では、光源17とダイクロイックミラー12との間に配されたフライアイ等のインテグレータを省略してある。
 上記の構成において、光源17から発せられた白色光束は、ダイクロイックミラー12および13により3種類の色の光束(G光、B光、R光)に色分解され、各色に対応する液晶パネル11a~11cそれぞれに入射する。
 液晶パネル11a~11cに入射した各色光束は、それぞれの液晶パネル11a~11cにおいて各色画像信号に基づいて光変調される。変調された各色光束は、クロスダイクロイックプリズム14により色合成された後、投写用ズームレンズ19により不図示のスクリーンに投写される。それにより該スクリーンに、上記各色光束によるフルカラー画像が投写表示される。
 なおライトバルブとしては、上述した透過型の液晶表示パネル11a~11cに限らず、その他の反射型液晶表示パネルや、あるいはDMD等の光変調手段も適宜採用することが可能である。
 一方、図15に示す他の実施形態に係る投写型表示装置は、各色光に対応したライトバルブとしての反射型表示素子21a~21cと、色分解および色合成のためのTIR(Total Internal Reflection)プリズム24a~24cと、偏光分離プリズム25を有する照明光学系20と、上述した実施形態に係る投写用ズームレンズ19とを備えている。また偏光分離プリズム25の前段には、反射型表示素子21a~21cにおいてそれぞれ各色画像信号に基づいて変調される光束を発する光源27が配設されている。
 上記光源27から発せられた白色光束は偏光分離プリズム25を経た後、TIRプリズム24a~24cにより3つの色光(G光、B光、R光)光束に分解される。分解後の各色光束はそれぞれ対応する反射型表示素子21a~21cに入射して光変調され、再びTIRプリズム24a~24cを逆向きに進行して色合成された後、偏光分離プリズム25を透過して投写用ズームレンズ29に入射する。そこで、この入射光による光学像が投写用ズームレンズ29によって、図示外のスクリーン上に投写表示される。
 なお、反射型表示素子11a~11c、21a~21cとしては、例えば反射型液晶表示素子やDMD等を用いることができる。図14および図15ではライトバルブとして反射型表示素子を用いた例を示したが、本発明の投写型表示装置が備えるライトバルブは、これに限られるものではなく、透過型液晶表示素子等の透過型表示素子を用いてもよい。
 次に、本発明の投写用ズームレンズの具体的な実施例について説明する。なお、以下に述べる実施例1~6の投写用ズームレンズは、一例として全て6群構成のものである。
 <実施例1>
 図1に、実施例1の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。なお、図1についての詳細な説明は上述した通りであるので、ここでは特に必要の無い限り重複した説明は省略する。
 実施例1の投写用ズームレンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とが配置されてなる6群構成のものである。そしてこの投写用ズームレンズは縮小側がテレセントリックな構成とされ、第6レンズ群G6の縮小側には、透過型液晶表示パネル等からなるライトバルブの画像表示面1および色合成プリズム(赤外線カットフィルタやローパスフィルタ等のフィルタを含む)等のガラスブロック2が配置されている。
 変倍時には、第1レンズ群G1と第2レンズ群G2と、最終レンズ群である第6レンズ群G6とは固定され、第3レンズ群G3、第4レンズ群G4および第5レンズ群G5が移動する構成とされている。なお図1には、上記の移動するレンズ群G3、G4およびG5が広角端から望遠端に移動するときの移動軌跡を矢印で概略的に示してある。
 第1レンズ群G1は、拡大側から順に配置された、拡大側に凸面を向けた正のメニスカスレンズよりなる第1レンズL1と、縮小側に凹面を向けた負のメニスカスレンズよりなる第2レンズL2と、縮小側に凹面を向けた負のメニスカスレンズよりなる第3レンズL3と、両凹レンズよりなる第4レンズL4とから構成されている。また第2レンズ群G2は、拡大側から順に配置された、拡大側に凹面を向けた負のメニスカスレンズよりなる第5レンズL5と、縮小側に凸面を向けた正のメニスカスレンズよりなる第6レンズL6とから構成されている。
 第3レンズ群G3は、拡大側から順に配置された、縮小側に凸面を向けた平凸レンズよりなる第7レンズL7と、拡大側に凸面を向けた正のメニスカスレンズよりなる第8レンズL8とから構成されている。第4レンズ群G4は、両凸レンズよりなる第9レンズL9から構成されている。
 第5レンズ群G5は、拡大側から順に配置された、縮小側に凹面を向けた負のメニスカスレンズよりなる第10レンズL10と、両凸レンズよりなる第11レンズL11と、両凹レンズよりなる第12レンズL12と、両凸レンズよりなる第13レンズL13と、両凸レンズよりなる第14レンズL14とから構成されている。なお第12レンズL12と第13レンズL13とは接合されている。そして第6レンズ群G6は、両凸レンズよりなる第15レンズL15から構成されている。
 この実施例1の投写用ズームレンズにおいて、上記第12レンズL12および第13レンズL13以外の全てのレンズは、接合されていない単レンズからなる。また、全てのレンズ面が球面とされ、非球面レンズは用いられていないので、コストの面で有利である。
 なお図13に、この実施例1の投写用ズームレンズの広角端および望遠端における光線軌跡を示す。
 表1に、実施例1の投写用ズームレンズの基本レンズデータを示す。ここでは、ガラスブロック2も含めて示している。表1において、Siの欄には最も拡大側に有る構成要素の拡大側の面を1番目として縮小側に向かうに従い順次増加するように構成要素に面番号を付したときのi番目(i=1、2、3、…)の面番号を示す。Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。また、Ndjの欄には最も拡大側の構成要素を1番目として縮小側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。
 なお表1の曲率半径Rおよび面間隔Dの値は、広角端における投写用ズームレンズの全系の焦点距離を1.0として規格化した値である。また表1中では、所定の桁でまるめた数値を記載している。また曲率半径の符号は、面形状が拡大側に凸の場合を正、縮小側に凸の場合を負としている。
 そして面間隔Dのうち、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔は、変倍時に変化する可変間隔であり、これらの間隔に相当する欄にはそれぞれ、「D」に当該間隔の前側の面番号を付してD12、D16、D18、D27と記載している。
 以上は、後述する表4、7、10、13および16においても同様である。なお、上述した4つの可変レンズ群間隔について、「D」の後に続く数字は各実施例における構成要素の数に応じて変わっているが、当該間隔の前側の面番号を付して示しているのはどの表でも同じである。
 また表2に、実施例1の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、上記可変間隔D12、D16、D18およびD27の値を示す。これらの数値も、広角端における全系の焦点距離を1.0として規格化した値であり、そしてこれらは投写距離が124.569(同様に規格化した値)の場合の値である。またこの表2には、実施例1のFナンバーFno.および全画角2ω(単位は度)を併せて示してある。
 以上述べた表2の記載の仕方は、後述する表5、8、11、14および17においても同様である。
 また表3に、実施例1の投写用ズームレンズがフォーカシングする際の面間隔D8およびD12の値を、投写距離が62.285と373.708の場合について示してある。上記面間隔D8は第1レンズ群G1と第2レンズ群G2との間隔、面間隔D12は第2レンズ群G2と第3レンズ群G3との間隔であり、ここでは上記2つの場合について、広角端、中間焦点位置、望遠端における値をそれぞれ示している。これらの面間隔の値も、広角端における全系の焦点距離を1.0として規格化した値であり、また上記2つの投写距離も同様に規格化した値である。
 以上述べた表3の記載の仕方は、後述する表6、9、12、15および18においても同様である。ただし、2通りの投写距離は実施例毎に固有の値である。また各々実施例3、4について示している表9および表12では、第5レンズL5と第6レンズL6とが接合されていることから、第2レンズ群G2と第3レンズ群G3との間隔は面間隔D11と示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ここで表19に、前記条件式(1)~(11)が規定する条件(つまり文字式の部分)の値、およびそれらを算出する前提となる条件の値を、実施例1~6の各々について示す。ここに示される通り、実施例1の投写用ズームレンズは、前述した条件式(1)さらには条件式(1’)も満足しているので、小型化と広角化を両立できるものとなる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、前述した条件式(2)さらには条件式(2’)も満足しているので、小型化を達成し、また投写距離変動による収差の変動を良好に抑制可能となる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、前述した条件式(3)さらには条件式(3’)も満足しているので、投写用ズームレンズの後側(縮小側)に配置されるプリズム等のガラスブロック2の挿入を容易にするとともに、レンズ全長を短く抑える効果を奏する。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、前述した条件式(4)さらには条件式(4’)も満足しているので、非点収差を良好に補正できるものとなる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、前述した条件式(5)さらには条件式(5’)も満足しているので、十分な小型化が可能で、かつ像面湾曲や歪曲収差を確実に補正できるものとなる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、前述した条件式(6)を満足しているので、近時、投写用ズームレンズに求められている広角化の要求に十分応えることができる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、先に述べた条件式(7)さらには条件式(7’)も満足しているので、全変倍域に亘って像面湾曲(特にサジタル像面の湾曲)を良好に補正可能となる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、先に述べた条件式(8)さらには条件式(8’)も満足しているので、倍率色収差を良好に補正可能となる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、先に述べた条件式(9)さらには条件式(9’)も満足しているので、倍率色収差を良好に補正可能となる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、先に述べた条件式(10)さらには条件式(10’)も満足しているので、球面収差や非点収差を良好に補正可能となる。以上は、後に詳述する実施例2~6においても同様である。
 また表19に示される通り、実施例1の投写用ズームレンズは、先に述べた条件式(11)さらには条件式(11’)も満足しているので、倍率色収差を良好に補正可能で、また良好なテレセントリック性を確保できるようになる。以上は、後に詳述する実施例2~6においても同様である。
 ここで図7の(A)~(D)にそれぞれ、実施例1の投写用ズームレンズの広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。また同図の(E)~(H)にそれぞれ、実施例1の投写用ズームレンズの中間焦点位置における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。また同図の(I)~(L)にそれぞれ、実施例1の投写用ズームレンズの望遠端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。
 図7の(A)~(L)の各収差図は、d線を基準としたものであるが、球面収差図では、F線(波長波長486.1nm)、C線(波長656.3nm)に関する収差も示しており、倍率色収差図では、F線、C線に関する収差を示している。また、非点収差図ではサジタル方向、タンジェンシャル方向に関する収差をそれぞれ実線、破線で示している。球面収差図の縦軸上方に記載のFはFナンバー、その他の収差図の縦軸上方に記載のωは半画角を意味する。
 上述した実施例1のレンズ群配置図、表および収差図の記号、意味、記載方法は、特に断りがない限り、以下の実施例2~6のものについても基本的に同様である。また、上述した実施例1のレンズ群配置図(図1)が広角端、望遠端におけるものである点、そして収差図が広角端、中間焦点位置、望遠端におけるものである点も、実施例2~6において同様である。
 <実施例2>
 図2に、実施例2の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例2の投写用ズームレンズは、前述した実施例1の投写用ズームレンズと略同様の構成とされているが、第2レンズ群G2の第5レンズL5が両凹レンズよりなる点、同じく第2レンズ群G2の第6レンズL6が両凸レンズよりなる点、そして第3レンズ群G3の第7レンズL7が縮小側に凸面を向けた正のメニスカスレンズよりなる点において相違している。
 表4に、実施例2の投写用ズームレンズの基本レンズデータを示す。また表5に、実施例2の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D12、D16、D18およびD27の値を示す。これらの数値は、投写距離が124.553の場合の値である。この表5には、実施例2の投写用ズームレンズのFナンバーFno.および全画角2ωを併せて示してある。
 また表6に、実施例2の投写用ズームレンズがフォーカシングする際の面間隔D8およびD12の値を、投写距離が62.277と373.660の場合について示してある。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 一方図8の(A)~(L)にそれぞれ、実施例2の投写用ズームレンズの各収差図を示す。
 <実施例3>
 図3に、実施例3の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例3の投写用ズームレンズは、前述した実施例1の投写用ズームレンズと略同様の構成とされているが、第2レンズ群G2の第5レンズL5が両凹レンズよりなる点、同じく第2レンズ群G2の第6レンズL6が両凸レンズよりなる点、第3レンズ群G3の第7レンズL7が縮小側に凸面を向けた正のメニスカスレンズよりなる点、そして第5レンズL5と第6レンズL6とが接合されている点において相違している。
 表7に、実施例3の投写用ズームレンズの基本レンズデータを示す。また表8に、実施例3の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D11、D15、D17およびD26の値を示す。これらの数値は、投写距離が124.547の場合の値である。この表8には、実施例3の投写用ズームレンズのFナンバーFno.および全画角2ωを併せて示してある。
 また表9に、実施例3の投写用ズームレンズがフォーカシングする際の面間隔D8およびD11の値を、投写距離が62.274と373.642の場合について示してある。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 一方図9の(A)~(L)にそれぞれ、実施例3の投写用ズームレンズの各収差図を示す。
 <実施例4>
 図4に、実施例4の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例4の投写用ズームレンズは、前述した実施例1の投写用ズームレンズと略同様の構成とされているが、第3レンズ群G3の第7レンズL7が両凸レンズよりなる点、そして第5レンズL5と第6レンズL6とが接合されている点において相違している。
 表10に、実施例4の投写用ズームレンズの基本レンズデータを示す。また表11に、実施例4の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D11、D15、D17およびD26の値を示す。これらの数値は、投写距離が129.727の場合の値である。この表11には、実施例4の投写用ズームレンズのFナンバーFno.および全画角2ωを併せて示してある。
 また表12に、実施例4の投写用ズームレンズがフォーカシングする際の面間隔D8およびD11の値を、投写距離が64.864と389.182の場合について示してある。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 一方図10の(A)~(L)にそれぞれ、実施例4の投写用ズームレンズの各収差図を示す。
 <実施例5>
 図5に、実施例5の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例5の投写用ズームレンズは、前述した実施例1の投写用ズームレンズと略同様の構成とされているが、第3レンズ群G3の第7レンズL7が縮小側に凸面を向けた正のメニスカスレンズよりなる点、第5レンズ群G5の第10レンズL10(図1参照)に代わるものとして、互いに接合された両凸レンズL10aおよび両凹レンズL10bが用いられた点、そして第5レンズ群G5の第11レンズL11が縮小側に凸面を向けた正のメニスカスレンズよりなる点において相違している。
 表13に、実施例5の投写用ズームレンズの基本レンズデータを示す。また表14に、実施例5の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D12、D16、D18およびD28の値を示す。これらの数値は、投写距離が122.350の場合の値である。この表14には、実施例5の投写用ズームレンズのFナンバーFno.および全画角2ωを併せて示してある。
 また表15に、実施例5の投写用ズームレンズがフォーカシングする際の面間隔D8およびD12の値を、投写距離が61.175と367.049の場合について示してある。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 一方図11の(A)~(L)にそれぞれ、実施例5の投写用ズームレンズの各収差図を示す。
 <実施例6>
 図6に、実施例6の投写用ズームレンズの広角端、望遠端におけるレンズ群の配置を示す。この実施例6の投写用ズームレンズは、前述した実施例1の投写用ズームレンズと略同様の構成とされているが、第3レンズ群G3の第7レンズL7が両凸レンズよりなる点、そして第4レンズ群G4の第9レンズL9(図1参照)に代わるものとして、両凹レンズL9aおよび両凸レンズL9bが用いられた点において相違している。
 表16に、実施例6の投写用ズームレンズの基本レンズデータを示す。また表17に、実施例6の投写用ズームレンズが変倍する際の広角端、中間焦点位置、望遠端における全系の焦点距離fと、可変間隔D12、D16、D20およびD29の値を示す。これらの数値は、投写距離が122.333の場合の値である。この表17には、実施例6の投写用ズームレンズのFナンバーFno.および全画角2ωを併せて示してある。
 また表18に、実施例6の投写用ズームレンズがフォーカシングする際の面間隔D8およびD12の値を、投写距離が61.166と366.998の場合について示してある。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 一方図12の(A)~(L)にそれぞれ、実施例6の投写用ズームレンズの各収差図を示す。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明の投写用ズームレンズは、上記実施例のものに限られることなく種々の態様の変更が可能であり、例えば各レンズの曲率半径、面間隔、屈折率、アッベ数を適宜変更することが可能である。
 また、本発明の投写型表示装置も前述した構成のものに限られるものではなく、例えば、用いられるライトバルブや、光束分離または光束合成に用いられる光学部材は、既述の構成に限定されず、種々の態様の変更が可能である。

Claims (17)

  1.  実質的に、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群と、この第1レンズ群よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する最終レンズ群と、この最終レンズ群と前記第2レンズ群との間に配置されて変倍の際に移動する3つのレンズ群とからなり、
     縮小側がテレセントリックな構成とされ、
     前記第2レンズ群のみを移動させてフォーカシングを行うように構成されていることを特徴とする投写用ズームレンズ。
  2.  下記条件式(1)を満たすことを特徴とする請求項1記載の投写用ズームレンズ。
     -210.0<f2 /fw・・・(1)
    ただし、
     fw:広角端における全系の焦点距離
     f2:第2レンズ群の焦点距離
  3.  下記条件式(1’)を満たすことを特徴とする請求項2記載の投写用ズームレンズ。
     -190.0<f2 /fw・・・(1’)
  4.  実質的に、最も拡大側に配置されて変倍の際に固定されている負の屈折力を有する第1レンズ群と、この第1レンズ群よりも縮小側に配置されて変倍時に固定されている負の屈折力を有する第2レンズ群と、最も縮小側に配置されて変倍の際に固定されている正の屈折力を有する最終レンズ群と、この最終レンズ群と前記第2レンズ群との間に配置されて変倍の際に移動する複数のレンズ群とからなり、
     縮小側がテレセントリックな構成とされ、
     前記第2レンズ群のみを移動させてフォーカシングを行うように構成され、
     下記条件式(2)を満たすことを特徴とする投写用ズームレンズ。
     -210.0<f2 /fw<-20.0・・・(2)
    ただし、
     fw:広角端における全系の焦点距離
     f2:第2レンズ群の焦点距離
  5.  下記条件式(2’)を満たすことを特徴とする請求項4記載の投写用ズームレンズ。
     -190.0<f2 /fw<-40.0・・・(2’)
  6.  前記変倍の際に移動する複数のレンズ群が、実質的に3つのレンズ群から構成されていることを特徴とする請求項4または5記載の投写用ズームレンズ。
  7.  下記条件式(3)を満たすことを特徴とする請求項1から6のうちいずれか1項記載の投写用ズームレンズ。
     1.5<Bf /fw <3.0・・・(3)
    ただし、
     fw:広角端における全系の焦点距離
     Bf:全系のバックフォーカス(空気換算距離)
  8.  下記条件式(3’)を満たすことを特徴とする請求項7記載の投写用ズームレンズ。
     1.7<Bf /fw <2.5・・・(3’)
  9.  前記第2レンズ群の最も拡大側のレンズが拡大側に凹面を向けたものであり、該第2レンズ群の最も縮小側のレンズが縮小側に凸面を向けたものであることを特徴とする請求項1から8のうちいずれか1項記載の投写用ズームレンズ。
  10.  下記条件式(4)を満たすことを特徴とする請求項9記載の投写用ズームレンズ。
     5.0<(R21f+R21r)/(R21f-R21r)<80.0・・・(4)
    ただし、
     R21f:第2レンズ群の最も拡大側に有るレンズの拡大側面の曲率半径
     R21r:第2レンズ群の最も拡大側に有るレンズの縮小側面の曲率半径
  11.  下記条件式(4’)を満たすことを特徴とする請求項10記載の投写用ズームレンズ。
     6.0<(R21f+R21r)/(R21f-R21r)<60.0・・・(4’)
  12.  前記第2レンズ群が、実質的に2枚のレンズのみで構成されていることを特徴とする請求項1から11のうちいずれか1項記載の投写用ズームレンズ。
  13.  下記条件式(5)を満たすことを特徴とする請求項1から12のうちいずれか1項記載の投写用ズームレンズ。
     -2.0<f1 /fw <-0.8・・・(5)
    ただし、
     fw:広角端における全系の焦点距離
     f1:第1レンズ群の焦点距離
  14.  下記条件式(5’)を満たすことを特徴とする請求項13記載の投写用ズームレンズ。
     -1.5<f1 /fw <-1.0・・・(5’)
  15.  前記変倍の際に移動するレンズ群が実質的に、拡大側から順に配置された、正の屈折率を有する第3レンズ群、正の屈折率を有する第4レンズ群、および正の屈折率を有する第5レンズ群であることを特徴とする請求項1から14のうちいずれか1項記載の投写用ズームレンズ。
  16.  下記条件式(6)を満たすことを特徴とする請求項1から15のうちいずれか1項記載の投写用ズームレンズ。
     70°≦2ω・・・(6)
    ただし、
     2ω:広角端での全画角
  17.  光源と、ライトバルブと、前記光源からの光束を前記ライトバルブへ導く照明光学部と、請求項1から16のうちいずれか1項記載の投写用ズームレンズとを備え、前記光源からの光束を前記ライトバルブで光変調し、前記投写用ズームレンズによりスクリーンに投写する構成を有することを特徴とする投写型表示装置。
PCT/JP2012/006555 2011-10-20 2012-10-12 投写用ズームレンズおよび投写型表示装置 WO2013057909A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290000902.XU CN203930190U (zh) 2011-10-20 2012-10-12 投影用变焦镜头和投影型显示设备
US14/257,019 US9036266B2 (en) 2011-10-20 2014-04-21 Zoom lens for projection and projection-type display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-230294 2011-10-20
JP2011230294 2011-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/257,019 Continuation US9036266B2 (en) 2011-10-20 2014-04-21 Zoom lens for projection and projection-type display apparatus

Publications (1)

Publication Number Publication Date
WO2013057909A1 true WO2013057909A1 (ja) 2013-04-25

Family

ID=48140578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006555 WO2013057909A1 (ja) 2011-10-20 2012-10-12 投写用ズームレンズおよび投写型表示装置

Country Status (3)

Country Link
US (1) US9036266B2 (ja)
CN (1) CN203930190U (ja)
WO (1) WO2013057909A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170219806A1 (en) * 2012-12-28 2017-08-03 Takashi Kubota Image display device
US10451857B2 (en) 2012-12-28 2019-10-22 Ricoh Company, Ltd. Projection zoom lens

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584089B2 (ja) * 2015-02-23 2019-10-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6693526B2 (ja) * 2015-09-18 2020-05-13 株式会社ニコン 変倍光学系、光学装置、撮像装置
CN108780213B (zh) * 2016-03-16 2020-10-23 富士胶片株式会社 变焦透镜及摄像装置
CN106199937B (zh) * 2016-08-30 2018-08-03 中山联合光电科技股份有限公司 一种光学系统
US10197778B2 (en) * 2016-10-11 2019-02-05 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN106597644B (zh) * 2016-12-30 2022-05-17 杭州朗奥光学科技有限公司 一种高清投影镜头
JP2018194750A (ja) * 2017-05-19 2018-12-06 富士フイルム株式会社 ズームレンズおよび撮像装置
JP7081418B2 (ja) * 2018-09-19 2022-06-07 セイコーエプソン株式会社 投写光学系および投写型画像表示装置
CN111538147B (zh) * 2020-04-13 2022-04-15 苏州德创测控科技有限公司 可变工作距的小景深远心光学镜头
CN111679399A (zh) * 2020-06-10 2020-09-18 浙江舜宇光学有限公司 光学成像镜头
CN118891561A (zh) * 2022-03-23 2024-11-01 索尼集团公司 变焦透镜和成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357771A (ja) * 2001-03-27 2002-12-13 Fuji Photo Optical Co Ltd 広角ズームレンズおよびこれを用いた投写型表示装置
JP2010122326A (ja) * 2008-11-17 2010-06-03 Fujinon Corp 投写用ズームレンズおよび投写型表示装置
JP2010282159A (ja) * 2009-06-08 2010-12-16 Fujifilm Corp 投写用ズームレンズおよび投写型表示装置
JP2011013657A (ja) * 2009-06-05 2011-01-20 Fujifilm Corp 投写用ズームレンズおよび投写型表示装置
JP2013003371A (ja) * 2011-06-17 2013-01-07 Fujifilm Corp 投写用変倍光学系および投写型表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1214341A (en) 1968-06-06 1970-12-02 Rank Organisation Ltd Improvements in or relating to objectives of variable focal length
GB1323221A (en) 1971-03-31 1973-07-11 Rank Organisation Ltd Objectives of variable focal length
US6580564B2 (en) 2001-03-27 2003-06-17 Fuji Photo Optical Co., Ltd. Wide-angle zoom lens and projection-type display unit using it
JP5063165B2 (ja) 2007-04-06 2012-10-31 キヤノン株式会社 ズームレンズ及び画像投射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357771A (ja) * 2001-03-27 2002-12-13 Fuji Photo Optical Co Ltd 広角ズームレンズおよびこれを用いた投写型表示装置
JP2010122326A (ja) * 2008-11-17 2010-06-03 Fujinon Corp 投写用ズームレンズおよび投写型表示装置
JP2011013657A (ja) * 2009-06-05 2011-01-20 Fujifilm Corp 投写用ズームレンズおよび投写型表示装置
JP2010282159A (ja) * 2009-06-08 2010-12-16 Fujifilm Corp 投写用ズームレンズおよび投写型表示装置
JP2013003371A (ja) * 2011-06-17 2013-01-07 Fujifilm Corp 投写用変倍光学系および投写型表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170219806A1 (en) * 2012-12-28 2017-08-03 Takashi Kubota Image display device
US10234662B2 (en) * 2012-12-28 2019-03-19 Ricoh Company, Ltd. Image display device
US10451857B2 (en) 2012-12-28 2019-10-22 Ricoh Company, Ltd. Projection zoom lens

Also Published As

Publication number Publication date
US9036266B2 (en) 2015-05-19
US20140247504A1 (en) 2014-09-04
CN203930190U (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5766798B2 (ja) 投写用変倍光学系および投写型表示装置
WO2013057909A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5766889B2 (ja) 投写用ズームレンズおよび投写型表示装置
CN203870320U (zh) 投影用变焦透镜和投影型显示装置
JP5599954B2 (ja) 投写用ズームレンズおよび投写型表示装置
US9995917B2 (en) Projection zoom lens and projection type display device
WO2013157237A1 (ja) 投写用レンズおよび投写型表示装置
US20140226219A1 (en) Projection zoom lens and projection type display device
WO2014076924A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2014076923A1 (ja) 投写用ズームレンズおよび投写型表示装置
CN104285174B (zh) 投影用变倍光学系统和投影型显示装置
US8976454B2 (en) Variable-magnification projection optical system and projection display device
CN204903852U (zh) 投影用变焦透镜以及投影型显示装置
WO2013061536A1 (ja) 投写用ズームレンズおよび投写型表示装置
WO2012160786A1 (ja) 投写用変倍光学系および投写型表示装置
US8964301B2 (en) Zoom lens for projection and projection-type display apparatus
WO2012114755A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP5415036B2 (ja) 投写型可変焦点レンズおよび投写型表示装置
JP5777191B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5727669B2 (ja) 投写用ズームレンズおよび投写型表示装置
CN204178042U (zh) 投影用变焦透镜和投影型显示装置
JP5611901B2 (ja) 投写用変倍光学系および投写型表示装置
JP5244498B2 (ja) 投写型可変焦点レンズおよび投写型表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000902.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP