WO2013115195A1 - 化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法 - Google Patents

化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法 Download PDF

Info

Publication number
WO2013115195A1
WO2013115195A1 PCT/JP2013/051928 JP2013051928W WO2013115195A1 WO 2013115195 A1 WO2013115195 A1 WO 2013115195A1 JP 2013051928 W JP2013051928 W JP 2013051928W WO 2013115195 A1 WO2013115195 A1 WO 2013115195A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
curable composition
polymer
cured film
Prior art date
Application number
PCT/JP2013/051928
Other languages
English (en)
French (fr)
Inventor
伊藤 昌宏
薫 鶴岡
桑名 保宏
雄介 永井
都 福田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147021274A priority Critical patent/KR20140120894A/ko
Priority to EP13743801.6A priority patent/EP2810962A4/en
Priority to CN201380007260.5A priority patent/CN104080822B/zh
Publication of WO2013115195A1 publication Critical patent/WO2013115195A1/ja
Priority to US14/296,606 priority patent/US20140287200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/22Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/46Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having at least one of the nitrogen atoms, not being part of nitro or nitroso groups, further bound to other hetero atoms
    • C07C323/47Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having at least one of the nitrogen atoms, not being part of nitro or nitroso groups, further bound to other hetero atoms to oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • C08F220/346Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links and further oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • C08F28/04Thioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/26Removing halogen atoms or halogen-containing groups from the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L41/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a compound having liquid repellency and capable of becoming lyophilic upon irradiation with ultraviolet rays, a polymer having liquid repellency, a curable composition, a coating composition, an article having a cured film, and a lyophilic region.
  • the present invention relates to an article having a pattern of a lyophobic region and a liquid repellent region, and a manufacturing method thereof.
  • the functional thin film is obtained by patterning a material having desired characteristics at a desired position.
  • a material having desired characteristics For example, in a thin film transistor, a cured film having liquid repellency is formed on the surface of a substrate, and the surface of the cured film is partially irradiated with ultraviolet rays to lyophilic the portion irradiated with the ultraviolet rays, so that the parent of the cured film is obtained.
  • an electrode composition is selectively adhered to a liquefied portion to form an electrode. This method is attracting attention as a method capable of easily forming an electrode having a desired pattern with fewer steps than a method using photolithography.
  • the following materials have been proposed as materials for forming a cured film having liquid repellency that can be made lyophilic when irradiated with ultraviolet rays.
  • a material containing a photocatalyst (such as titanium dioxide) and a binder (such as organopolysiloxane) (Patent Document 1).
  • a composition containing a low molecular weight fluorine-containing compound that can be decomposed and removed by irradiation with ultraviolet rays Patent Document 2.
  • Patent Document 3 Polyimide having a hydrophobic group in the side chain
  • Patent Document 4 Polyimide having a thiol ester bond in the main chain
  • the photocatalyst remains in the cured film.
  • the article having a functional thin film is a thin film transistor, a semiconductor element, or the like
  • the cured film becomes an insulating film, so the photocatalyst remaining in the insulating film adversely affects the characteristics (insulating properties, etc.) of the insulating film.
  • the fluorine-containing compound is uniformly dispersed in the cured film because the fluorine-containing compound has a relatively low molecular weight.
  • the fluorine-containing compound is not unevenly distributed on the surface of the cured film (the side opposite to the substrate). Therefore, the liquid repellency on the surface of the cured film may be insufficient.
  • the obtained cured film may have insufficient insulating properties.
  • the polyimide absorbs ultraviolet rays having a relatively long wavelength (for example, ultraviolet rays having a wavelength of 300 nm or more). Therefore, when a light source usually used as an ultraviolet light source such as a high-pressure mercury lamp (i-line 365 nm), a YAG laser (third harmonic wave 355 nm) or the like is used, the sensitivity is insufficient. Recently, a material having a dielectric constant lower than that of polyimide may be required.
  • An object of the present invention is to provide a compound and a polymer that have good liquid repellency, can be decomposed in a molecule by irradiation with ultraviolet rays having a wavelength of 300 nm or more, and can decompose a residue containing a fluoroalkyl group.
  • INDUSTRIAL APPLICABILITY The present invention provides a curable composition and a coating composition that have good insulation and liquid repellency, and can form a cured film having liquid repellency that can be sufficiently lyophilic even when irradiated with ultraviolet rays having a wavelength of 300 nm or longer.
  • the purpose is to provide goods.
  • An object of this invention is to provide the articles
  • An object of this invention is to provide the articles
  • the present invention relates to a compound having the following constitutions [1] to [15], a polymer, a curable composition, a coating composition, an article having a cured film, a lyophilic region and a liquid repellent region.
  • a polymer having the following constitutions [1] to [15]
  • a curable composition having a curable composition
  • a coating composition an article having a cured film, a lyophilic region and a liquid repellent region.
  • An article having a pattern and a method for manufacturing the same are provided.
  • m1 A compound represented by the following formula (m1).
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 2 is a divalent organic group having no single bond or fluorine atom
  • Cf is a fluoroalkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 2 to 20 carbon atoms having an etheric oxygen atom between carbon atoms
  • X is an oxygen atom, a sulfur atom, a nitrogen atom or NH
  • m is 1 when X is an oxygen atom, a sulfur atom or NH
  • n is an integer from 0 to 4
  • k is 0 or 1
  • Z is R 4 R 5 C ⁇ CR 3 —CO—
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or a methyl group.
  • R 2 is a single bond, — (CH 2 ) w0 — (where w0 is an integer of 1 to 6), —C 6 H 4 —, —C 6 H 4 O (CH 2 ) w1 ⁇ (where w1 is an integer of 0 to 10), —C 6 H 4 COO (CH 2 ) w2 — (where w2 is an integer of 0 to 10), — (CH 2 ) w3 COO (CH 2 ) w4 — (where w3 is an integer of 1 to 10, and w4 is an integer of 0 to 10), —CH 2 O (CH 2 ) w5 — (where w5 is 0 to 10 Or the compound of [1], wherein —CH (CH 3 ) O (CH 2 ) w6 — (wherein w6 is an integer of 0 to 10).
  • a curable composition comprising the polymer of [3] or [4].
  • the fluorine-containing polyarylene prepolymer (A) is any one of a compound (x1) having a crosslinkable functional group and a phenolic hydroxyl group and a compound (x2) having a crosslinkable functional group and a fluorine atom-substituted aromatic ring Or both, the compound (y) represented by the following formula (y), and the compound (z) having 3 or more phenolic hydroxyl groups were subjected to a condensation reaction in the presence of a dehydrohalogenating agent.
  • the curable composition according to any one of [5] to [8], which is a prepolymer having a crosslinkable functional group and an ether bond.
  • c is an integer of 0 to 3
  • a is an integer of 0 to 3
  • b is an integer of 0 to 3
  • Rf 1 is a fluoroalkyl group having 8 or less carbon atoms
  • Rf 2 is a fluoroalkyl group having 8 or less carbon atoms
  • Rf 2 is plural, a plurality of Rf 2 May be the same or different
  • F in the aromatic ring represents that all the hydrogen atoms of the aromatic ring are substituted with fluorine atoms.
  • a coating composition comprising the curable composition according to any one of [5] to [9] and a solvent (E).
  • An article comprising a substrate and a cured film obtained by curing the curable composition of any one of [5] to [9] on the surface of the substrate.
  • the article according to [12] wherein at least one selected from the group consisting of an electrode, a semiconductor layer, a conductor layer, a transistor material, and a resin layer is further formed on the surface of the lyophilic region.
  • a method for producing an article having a pattern of a lyophilic region and a liquid repellent region wherein a film of the curable composition according to any one of [5] to [9] is formed on the surface of a substrate Then, the film of the curable composition is cured to form a cured film, and then the surface of the cured film is partially irradiated with ultraviolet rays to form a pattern of a lyophilic region and a liquid repellent region on the surface of the cured film.
  • a method for producing an article having a pattern of a lyophilic region and a liquid repellent region wherein [15] A method for producing an article having a pattern of a lyophilic region and a liquid repellent region, wherein a film of the curable composition according to any one of [5] to [9] is formed on the surface of a substrate Then, the surface of the film of the curable composition is partially irradiated with ultraviolet rays to form a pattern of a lyophilic region and a liquid repellent region on the surface of the film, and then the curable composition is cured. A method for producing an article having a pattern of a lyophilic region and a liquid repellent region.
  • coating which have favorable insulation and liquid repellency, and can form the cured film which has liquid repellency which can fully be made lyophilic even if irradiated with the ultraviolet-ray with a wavelength of 300 nm or more A composition can be provided.
  • item which has a cured film with favorable insulation and liquid repellency can be provided.
  • item can be provided.
  • a compound represented by the formula (m1) is referred to as a compound (m1).
  • the polymer having the unit (u1) based on the compound (m1) is also referred to as “polymer (C)”.
  • the fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group is hereinafter also referred to as “prepolymer (A)”
  • the compound (B) having a crosslinkable functional group and having no fluorine atom is referred to as “compound (B)”.
  • liquid repellency is a general term for water repellency and oil repellency.
  • lyophilic is a general term for hydrophilicity and lipophilicity.
  • “Liquidification” in the present specification means that the liquid repellency is changed to relatively lyophilic, specifically, the contact angle with water or an organic solvent is reduced.
  • the “fluoroalkyl group” is a group in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the “perfluoroalkyl group” means that all of the hydrogen atoms of the alkyl group are fluorine. A group substituted by an atom.
  • the “methacryloyl (oxy) group” in the present specification is a general term for a methacryloyl group and a methacryloyloxy group. The same applies to the “acryloyl (oxy) group”.
  • the “(meth) acryloyl group” in this specification is a general term for an acryloyl group and a methacryloyl group. The same applies to the “(meth) acryloyloxy group”.
  • the “unit” in the present specification is a repeating unit derived from the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by polymerization, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • the “monomer” in the present specification is a compound having a functional group capable of being polymerized by a radical.
  • the “crosslinkable functional group” in the present specification is a functional group that can be polymerized by a radical.
  • the crosslinkable functional group include a carbon-carbon unsaturated double bond that can be polymerized by a radical, a carbon-carbon unsaturated triple bond that can be polymerized by a radical, a ring that is opened by a radical, and a group containing these.
  • the unsaturated double bond and the unsaturated triple bond may be those existing inside the molecular chain (hereinafter also referred to as “internal olefin type”), or those existing at the end of the molecule (hereinafter referred to as “terminal”).
  • the terminal olefin type is preferable from the viewpoint of high reactivity.
  • Internal olefin types also include the presence of unsaturated double bonds in some of the aliphatic rings, such as cycloolefins.
  • the terminal olefin type crosslinkable functional group is preferably an alkenyl group having 4 or less carbon atoms or an alkynyl group having 4 or less carbon atoms.
  • crosslinkable functional group examples include vinyl, allyl, isopropenyl, 3-butenyl, methacryloyl, methacryloyloxy, acryloyl, acryloyloxy, vinyloxy, allyloxy, and trifluorovinyl.
  • crosslinkable functional group a vinyl film, allyl group, ethynyl group, vinyloxy group, allyloxy group, acryloyl group, acryloyloxy group, methacryloyl group and One or more crosslinkable functional groups selected from the group consisting of methacryloyloxy groups are preferred.
  • the number average molecular weight (Mn) in this specification is a polystyrene equivalent molecular weight obtained by measuring with gel permeation chromatography using a calibration curve prepared using a standard polystyrene sample with a known molecular weight.
  • the compound of this invention is a compound represented by a formula (m1), ie, a compound (m1). Note that the boundary between R 2 and Cf in the formula (m1) is determined so that the carbon number of Cf is the smallest. In other words, when R 2 is not a single bond, R 2 is a divalent organic group and is an organic group determined to have the maximum carbon number under the condition that it does not have a fluorine atom.
  • Compound (m1) has a cis-trans isomer due to an oxime double bond.
  • the compound (m1) in the present invention is not limited to those shown in the above formula, and may be only a cis isomer, only a trans isomer, or a mixture of both.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group, and an alkyl group having 1 to 6 carbon atoms is preferable from the viewpoint of good solubility of the compound (m1).
  • R 2 is a single bond or a divalent organic group having no fluorine atom.
  • the divalent organic group for R 2 includes — (CH 2 ) w0 — (where w0 is an integer of 1 to 6), —C 6 H 4 —, —C 6 H 4 O (CH 2 ).
  • w1 ⁇ (where w1 is an integer of 0 to 10), —C 6 H 4 COO (CH 2 ) w2 — (where w2 is an integer of 0 to 10), — (CH 2 ) w3 COO (CH 2 ) w4 — (where w3 is an integer of 1 to 10, and w4 is an integer of 0 to 10), —CH 2 O (CH 2 ) w5 — (where w5 is 0 to 10 And —CH (CH 3 ) O (CH 2 ) w6 — (wherein w6 is an integer of 0 to 10).
  • —C 6 H 4 —, —C 6 H 4 O (CH 2 ) w1 —, and —C 6 H 4 COO (CH 2 ) w2 — are preferable.
  • a single bond — (CH 2 ) w0 —, — (CH 2 ) w3 COO (CH 2 ) w4 —, —CH 2 O (CH 2 ) w5- , -CH (CH 3 ) O (CH 2 ) w6 -are preferred.
  • W0 is preferably an integer of 1 to 3
  • w1 is preferably an integer of 0 to 4, and an integer of 0 to 2 is particularly preferable from the viewpoint of easy production.
  • w2 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w3 is preferably an integer of 0 to 6, and particularly preferably an integer of 1 to 3 from the viewpoint of easy production.
  • w4 is preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w5 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w6 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • Cf is a C 1-20 fluoroalkyl group or a C 2-20 fluoroalkyl group having an etheric oxygen atom between carbon atoms.
  • Cf may be linear or branched, and a halogen atom other than fluorine, such as a chlorine atom, may be bonded to a carbon atom in addition to a hydrogen atom.
  • the terminal group bonded to R 2 is, for example, a difluoromethylene group, a fluoromethylene group, a bis (trifluoromethyl) methylene group, a fluoro (trifluoromethyl) methylene group, a (trifluoromethyl) methylene group, methyl (Trifluoromethyl) methylene group, fluoro (methyl) methylene group and the like can be mentioned.
  • the trifluoromethyl group is an example of a side chain group having a fluorine atom
  • the methyl group is an example of a side chain group having no fluorine atom.
  • the carbon number of the Cf group is preferably from 2 to 20, more preferably from 2 to 15, and particularly preferably from 4 to 8, from the viewpoints of excellent liquid repellency and good compatibility with other monomers. Further, the number of carbon atoms in the Cf group is preferably 6 or less, more preferably 2 to 6 and particularly preferably 4 to 6 from the viewpoint of low environmental load.
  • the number of fluorine atoms in the Cf group is 80% or more with respect to the total number of fluorine atoms, hydrogen atoms, and halogen atoms other than fluorine atoms, because the liquid repellency of the surface of the cured film becomes better.
  • the Cf group may be linear or branched.
  • Cf group examples include —CF 3 , —CF 2 CF 3 , —CF (CF 3 ) 2 , —CH (CF 3 ) 2 , —CF 2 CHF 2 , — (CF 2 ) 2 CF 3 ,-(CF 2 ) 3 CF 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 , — (CF 2 ) 9 CF 3 , — (CF 2 ) 11 CF 3 , — (CF 2 ) 15 CF 3 , —CF (CF 3 ) O (CF 2 ) 5 CF 3 , —CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CF 2 O (CF 2 CF 2 O) CF 3 , —CF 2 O (CF 2 CF 2 O) CF 3 , —CF 2 O
  • X is an oxygen atom, a sulfur atom, a nitrogen atom or NH, and is preferably an oxygen atom, a sulfur atom or NH from the viewpoint of easy production of the polymer (C) (the polymer (C) is difficult to gel). Is more preferable from the viewpoint of easy availability, and a sulfur atom is particularly preferable from the viewpoint of easy production of the compound (m1). m is 1 when X is an oxygen atom, sulfur atom or NH, and is 2 when X is a nitrogen atom, and the polymer (C) is easy to produce (the polymer (C) From the point of being difficult to gel), 1 is preferable.
  • n is an integer of 0 to 4, preferably an integer of 0 to 2, particularly preferably 0 or 1, from the viewpoint of availability of raw materials and ease of synthesis.
  • k is 0 or 1, and 1 is particularly preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • the positional relationship between X and O in —O—Ph—X— (where Ph is a phenylene group) is preferably a para positional relationship from the viewpoint of availability of raw materials.
  • Z is R 4 R 5 C ⁇ CR 3 —CO—.
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or a methyl group. From the viewpoint of high reactivity, R 3 is a hydrogen atom or a methyl group, and R 4 and R 5 are a hydrogen atom. preferable. That is, Z is preferably an acryloyl group or a methacryloyl group.
  • Compound (a1) can be produced by a known production method. For example, when X is a sulfur atom, n is 0, and k is 1, it can be produced by reacting HO—C 6 H 4 —SH with Br—C 6 H 4 —CO—CH 2 —R 1 .
  • the polymer (C) which is the polymer of the present invention is a polymer having units based on the compound (m1) of the present invention (hereinafter also referred to as “unit (u1)”).
  • the polymer (C) is a unit having a crosslinkable functional group and not having a Cf group (hereinafter also referred to as “unit (u2)”) from the viewpoint of the hardness and solvent resistance of the water-repellent film. Furthermore, it is preferable to have.
  • the polymer (C) may have units other than the unit (u1) and the unit (u2) (hereinafter also referred to as “unit (u3)”).
  • the unit (u1), the unit (u2), and the unit (u3) in the polymer (C) may be bonded in a random manner or in a block shape.
  • the fluorine content of the polymer (C) is preferably 5 to 60% by mass, particularly preferably 8 to 40% by mass.
  • the fluorine content is not less than the lower limit of the above range, the liquid repellency on the surface of the cured film becomes better. Adhesiveness of a cured film and the layer adjacent to this becomes favorable as it is below the upper limit of the said range.
  • the number average molecular weight (Mn) of the polymer (C) is preferably 1,000 to 50,000, particularly preferably 3,000 to 20,000.
  • the number average molecular weight (Mn) is not less than the lower limit of the above range, the polymer (C) is sufficiently transferred to the surface of the cured film, so that better liquid repellency can be expressed. If it is not more than the upper limit of the above range, the compatibility with the prepolymer (A) in the curable composition will be good, and a cured film having no defects can be formed.
  • the unit (u1) is a unit derived from the compound (m1) formed by polymerization of the compound (m1). Since the carbon-carbon unsaturated double bond in the Z group of the compound (m1) (the same group as the crosslinkable functional group) is lost by polymerization, the unit (u1) does not have a crosslinkable functional group.
  • the proportion of the unit (u1) in the polymer (C) is preferably 10 to 90% by mass, more preferably 15 to 90% by mass, further preferably 20 to 90% by mass, and particularly preferably 50 to 90% by mass.
  • the ratio of the unit (u1) is not less than the lower limit of the above range, the liquid repellency on the surface of the cured film becomes better.
  • the amount is not more than the upper limit of the above range, the polymer (C) is easily dissolved in the solvent (E) of the coating composition.
  • the unit (u2) is a unit having a crosslinkable functional group and not having a Cf group.
  • the crosslinkable functional group of the unit (u2) reacts with the crosslinkable functional group of the prepolymer (A) or the compound (B) described later, and is a cured film having high hardness and excellent solvent resistance together with these. Form.
  • the number of crosslinkable functional groups in the unit (u2) is preferably one from the viewpoint of availability of raw materials and ease of synthesis.
  • the crosslinkable functional group in the unit (u2) is preferably a (meth) acryloyl (oxy) group from the viewpoint of high reactivity with the crosslinkable functional group of the prepolymer (A) or the compound (B).
  • the crosslinkable functional group of the compound (B) and the crosslinkable functional group of the polymer (C) which coexist in the curable composition may be the same or different.
  • the crosslinkable functional group of the unit (u2) is the polymerizable functional group possessed by the monomer. Absent. Therefore, the crosslinkable functional group of the unit (u2) is usually a crosslinkable functional group introduced into the copolymer by modification or the like after polymerizing the monomer to obtain a copolymer.
  • the crosslinkable functional group of the unit (u2) is preferably introduced by various modification methods in which a copolymer having a reactive functional group is reacted with a compound having a crosslinkable functional group.
  • a known method can be appropriately used. Specifically, a compound having a reactive functional group by copolymerizing a compound having a polymerizable functional group and a reactive functional group (hereinafter also referred to as “compound (m4)”) with the compound (m1) (hereinafter referred to as a “functional functional group”).
  • a compound having a functional group that reacts with the reactive functional group of unit (u4) and a crosslinkable functional group hereinafter referred to as “compound (a2)”.
  • compound (a2) a compound having a functional group that reacts with the reactive functional group of unit (u4) and a crosslinkable functional group
  • ) ") Is preferably reacted to obtain a polymer (C) having units (u2).
  • the unit (u2) is a unit generated by the reaction between the unit (u4) formed by polymerization of the compound (m4) and the compound (a2).
  • Examples of the reactive functional group include a hydroxyl group, an epoxy group, and a carboxy group.
  • examples of the functional group that reacts with the reactive functional group include a carboxy group, an isocyanate group, and acyl chloride.
  • examples of the functional group that reacts with the reactive functional group include a carboxy group.
  • examples of the functional group that reacts with the reactive functional group include a hydroxyl group and an epoxy group.
  • modification method include the following methods (i) to (vi).
  • IIii A method of reacting a copolymer obtained by copolymerizing a monomer having a hydroxyl group with a compound having an acyl chloride group and a crosslinkable functional group.
  • (Iv) A method of reacting a copolymer having a hydroxyl group and a crosslinkable functional group with a copolymer obtained by copolymerizing an acid anhydride having a polymerizable functional group.
  • (V) A method of reacting a copolymer obtained by copolymerizing a monomer having a carboxy group with a compound having an epoxy group and a crosslinkable functional group.
  • (Vi) A method of reacting a compound obtained by copolymerizing a monomer having an epoxy group with a compound having a carboxy group and a crosslinkable functional group.
  • the compound (a2) When the compound (a2) is reacted with the copolymer having the unit (u4), it may be reacted with all of the reactive functional groups of the copolymer, or may be reacted with a part of the reactive functional groups of the copolymer. May be. In the latter case, the obtained polymer (C) has units (u4) derived from the compound (m4).
  • the polymer (C) used for the curable composition may have a unit (u4). When there is a possibility that the reactive functional group of the unit (u4) may adversely affect the curable composition, a functional group that reacts with the reactive functional group is added to the reactive functional group of the unit (u4).
  • the reactive functional group can be converted to an inactive group by reacting a compound having no crosslinkable functional group (hereinafter also referred to as “compound (b2)”).
  • Examples of the compound (b2) include ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, t-butyl isocyanate, hexyl isocyanate, cyclohexyl isocyanate, dodecyl isocyanate, octadecyl isocyanate, phenyl isocyanate, acetyl chloride, propionyl chloride, butyryl chloride, Isobutyl chloride, pivaloyl chloride, isovaleryl chloride, valeryl chloride, 3,3-dimethylbutyryl chloride, hexanoyl chloride, heptanoyl chloride, 2-ethylhexanoyl chloride, oct
  • Examples of the compound (m4) include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like in the methods (i), (ii) and (iii).
  • maleic anhydride, itaconic anhydride, citraconic anhydride, phthalic anhydride and the like can be mentioned.
  • (meth) acrylic acid and the like can be mentioned.
  • examples of the method (vi) include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl acrylate, and the like.
  • Examples of the compound (a2) include maleic anhydride, itaconic anhydride, citraconic anhydride, phthalic anhydride and the like in the method (i).
  • Examples of the method (ii) include 2- (meth) acryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate and the like.
  • (meth) acryloyl chloride, 3-butenoyl chloride and the like can be mentioned.
  • Examples of the method (iv) include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • Examples of the method (v) include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl acrylate, and the like.
  • (meth) acrylic acid and the like can be mentioned.
  • the unit (u2) is a unit obtained by reacting a compound having an isocyanate group and a crosslinkable functional group with a unit derived from a monomer having a hydroxyl group, or an acyl chloride group in a unit derived from a monomer having a hydroxyl group. And a unit obtained by reacting a compound having a crosslinkable functional group is preferred.
  • the unit derived from one or more monomers selected from the group consisting of 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate includes (meth) acryloyl chloride, 2-methacryloyloxyethyl isocyanate and A unit formed by reacting one or more compounds selected from the group consisting of 2-acryloyloxyethyl isocyanate is particularly preferred. The reactivity with the prepolymer (A) is improved.
  • the polymer (C) may have a unit (u3) which is a unit other than the unit (u1) and the unit (u2) as necessary, as long as the effect of improving the liquid repellency is not impaired.
  • a unit (u4) or a unit (u5) these units are regarded as a unit (u3).
  • the unit (u3) is formed in the polymer (C) by polymerizing a compound having a polymerizable functional group and not having a Cf group.
  • This polymerizable compound may be the compound (m4) or a compound other than the compound (m4).
  • this polymerizable compound including the compound (m4) is referred to as a compound (m3).
  • the unit (u3) is a unit formed in the polymer (C) by polymerizing the compound (m3). As described above, both the unit (u4) and the unit (u5) are units (u3). It is a unit included in the category.
  • hydrocarbon olefins examples include acid esters, (meth) acrylamides, aromatic vinyl compounds, chloroolefins, conjugated dienes, and fluorine-containing monomers other than compound (m1).
  • one type may be used alone, or two or more types may be used in combination.
  • the compound (m3) include acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethyl- n-hexyl (meth) acrylate, n-octyl (meth) acrylate, n-dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, (1,1-di
  • acrylic acid methacrylic acid, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, n-octyl ( Preference is given to meth) acrylate, n-dodecyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, 3- (2H-benzotriazol-2-yl) -4-hydroxyphenethyl methacrylate and styrene.
  • the proportion of the unit (u2) in the polymer (C) is preferably 1 to 90% by mass, more preferably 1 to 85% by mass, further preferably 1 to 80% by mass, particularly preferably 1 to 60% by mass. Most preferred is ⁇ 50 mass%.
  • the proportion of the unit (u2) is at least the lower limit of the above range, the reaction with the prepolymer (A) and the compound (B) becomes good.
  • the amount is not more than the upper limit of the above range, the liquid repellency on the surface of the cured film becomes better.
  • the proportion of the unit (u3) in the polymer (C) is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the lower limit is preferably 0% by mass.
  • the content of the unit (u1) is such an amount that the fluorine content in the polymer (C) is within the above preferred range, and the balance Is preferably a unit (u2).
  • the content of the unit (u1) is such an amount that the fluorine content in the polymer (C) is within the above preferred range. It is preferable that the unit (u3) is in the above-mentioned preferable ratio range and the balance is the unit (u2).
  • the polymer (C) can be produced by polymerizing monomers to obtain a copolymer, and performing the above-described modification as necessary.
  • the polymerization of the monomer is preferably performed in a solvent.
  • a polymerization initiator is preferably used, and a chain transfer agent is preferably used as necessary.
  • a polymerization inhibitor is preferably used as necessary.
  • Solvents include alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, etc.), ketones (acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, etc.), cellosolves (2-methoxyethanol).
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • Examples of the polymerization initiator include known organic peroxides, inorganic peroxides, azo compounds and the like. Organic peroxides and inorganic peroxides can also be used as redox catalysts in combination with a reducing agent. A polymerization initiator may be used individually by 1 type, and may use 2 or more types together. Examples of the organic peroxide include benzoyl peroxide, lauroyl peroxide, isobutyryl peroxide, tert-butyl hydroperoxide, tert-butyl- ⁇ -cumyl peroxide and the like.
  • Examples of the inorganic peroxide include ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, percarbonate and the like.
  • Examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 Examples include '-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and the like.
  • Examples of the chain transfer agent include known mercaptans and alkyl halides.
  • a chain transfer agent may be used individually by 1 type, and may use 2 or more types together.
  • Examples of mercaptans include n-butyl mercaptan, n-dodecyl mercaptan, tert-butyl mercaptan, ethyl thioglycolate, 2-ethylhexyl thioglycolate, 2-mercaptoethanol and the like.
  • Examples of the halogenated alkyls include chloroform, carbon tetrachloride, carbon tetrabromide and the like.
  • polymerization inhibitor examples include known polymerization inhibitors. Specific examples of the polymerization inhibitor include 2,6-di-tert-butyl-p-cresol.
  • the same solvent as described above can be used. However, a solvent that may react with the compound (a2) is not used. Polymerization of the monomer is performed in a solvent, and subsequently the compound (a2) is added and reacted to obtain the polymer (C).
  • the modification of the copolymer may be performed in the presence of a catalyst or a neutralizing agent.
  • a catalyst or a neutralizing agent for example, when a compound having an isocyanate group and a crosslinkable functional group is reacted with a copolymer having a hydroxyl group, a tin compound or the like can be used as a catalyst.
  • the tin compound include dibutyltin dilaurate, dibutyltin di (maleic acid monoester), dioctyltin dilaurate, dioctyltin di (maleic acid monoester), and dibutyltin diacetate.
  • a tin compound may be used individually by 1 type, and may use 2 or more types together.
  • a basic catalyst When a copolymer having a hydroxyl group is reacted with a compound having an acyl chloride group and a crosslinkable functional group, a basic catalyst can be used.
  • the basic catalyst include triethylamine, pyridine, dimethylaniline, tetramethylurea and the like.
  • a basic catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the polymer (C) of the present invention contains a unit (u1) based on the compound (m1). Since the compound (m1) has a Cf group, the compound (m1) and the polymer (C) have good liquid repellency. Therefore, the surface of the cured film obtained by curing the curable composition containing the polymer (C) repels water or oil, and even if water, oil, etc. adheres once, the adhered matter can be easily removed from the surface. Can be removed.
  • the deposit is not limited to a liquid, but may be a solid having an adhesive surface.
  • the polymer (C) has the property of imparting the property of reducing the adhesion to the surface of the cured film obtained by curing the curable composition and the property of facilitating the removal of the deposit.
  • the polymer (C) is useful as a non-adhesion imparting agent blended in the curable composition.
  • oily substances such as sebum (especially fingerprints) adhere to the surface of the cured film, the deposits can be easily removed. Even when the characteristics are used, a surface with partially reduced characteristics can be formed as described above.
  • the compound (m1) is obtained by replacing R 1 of the formula (I) with “R 2 —Cf group” in “New O-oxime photoinitiator” described in JP-A-2000-080068, and replacing R 5 with [Z -(OCH 2 CH 2 ) n- (OC 6 H 4 ) k- ] m Since the compound is replaced with an X-group, the photocatalyst and the like are similar to the “new O-oxime photoinitiator” described in the publication. Even if it does not exist, decomposition occurs in the molecule by irradiation with ultraviolet rays having a wavelength of 350 to 370 nm, and a decomposition residue containing a Cf group can be eliminated.
  • the Cf group present in the side chain is easily detached by irradiation with ultraviolet rays. Therefore, by partially irradiating the surface of the cured film obtained by curing the curable composition containing the polymer (C), the liquid repellency of the irradiated part of the cured film surface is reduced. And can be made lyophilic relative to the portion not irradiated with ultraviolet rays. As will be described later, a portion of the cured film obtained by curing the curable composition containing the polymer (C) is irradiated with ultraviolet rays through a photomask having a pattern on the surface of the cured film, whereby the portion irradiated with the ultraviolet rays is parent. A surface having a pattern of a liquid repellent region and a lyophilic region that has been liquefied and not irradiated with ultraviolet rays can be obtained.
  • the curable composition of this invention is a composition containing a polymer (C). As will be described later, it is a film made of a cured product obtained by thermosetting or photocuring the curable composition of the present invention. Therefore, the curable composition of the present invention is a thermosetting composition or a photocurable composition. It is preferable that the curable composition of this invention further contains a radical polymerization initiator (D) from a sclerosing
  • D radical polymerization initiator
  • the prepolymer (A) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group, a fluorine atom, and a crosslinkable functional group.
  • the curable composition contains the prepolymer (A)
  • the dielectric constant of the cured film can be lowered.
  • the crosslinkable functional group of the prepolymer (A) does not substantially react during the production of the prepolymer (A), and causes a radical polymerization reaction by applying external energy in the presence of the radical polymerization initiator (D). Cause cross-linking or chain extension between the prepolymer (A) molecules. Moreover, it reacts with the crosslinkable functional group of the compound (B) or the polymer (C), and forms a cured film together with these.
  • the crosslinkable functional group in the prepolymer (A) is a vinyl group because the reactivity at the production of the prepolymer (A) is low and the reactivity in the presence of the radical polymerization initiator (D) is good. An ethynyl group is preferred.
  • Examples of the linking group in the polyarylene structure include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group (—SO 2 —), and the like.
  • a polymer having a structure in which aromatic rings are bonded with a linking group having an ether bond (—O—) is referred to as “fluorinated polyarylene ether prepolymer”. Since the fluorine-containing polyarylene ether prepolymer has an etheric oxygen atom, the molecular structure is flexible and the flexibility of the cured film is favorable.
  • the prepolymer (A) preferably includes a fluorine-containing polyarylene ether prepolymer, and particularly preferably comprises only a fluorine-containing polyarylene ether prepolymer.
  • Specific examples of the linking group having an ether bond include an ether bond (—O—) consisting only of an etheric oxygen atom, an alkylene group containing an etheric oxygen atom in the carbon chain, and the like.
  • the prepolymer (A) has a fluorine atom. Having fluorine atoms is preferable as a material for forming the insulating film because the dielectric constant and dielectric loss of the cured film tend to be low. When the dielectric constant and dielectric loss of the insulating film are low, a delay in signal propagation speed can be suppressed, and an element having excellent electrical characteristics can be obtained. In addition, when fluorine atoms are contained, the water absorption rate of the cured film is lowered, so that it is possible to suppress changes in the bonding state of the bonding electrode, the surrounding wiring portion, etc., or to suppress metal alteration (such as rust). Excellent. The effect is great in terms of improving the reliability of the element.
  • prepolymer (A) in the present invention include any one of the compound (x1) having a crosslinkable functional group and a phenolic hydroxyl group and the compound (x2) having a crosslinkable functional group and a fluorine atom-substituted aromatic ring, or Obtained by subjecting both a compound (y) represented by the following formula (y) and a compound (z) having three or more phenolic hydroxyl groups to a condensation reaction in the presence of a dehydrohalogenating agent, And a prepolymer having a crosslinkable functional group and an ether bond (hereinafter also referred to as “prepolymer (A1)”).
  • c is an integer of 0 to 3
  • a is an integer of 0 to 3
  • b is an integer of 0 to 3
  • Rf 1 is a fluoroalkyl group having 8 or less carbon atoms
  • Rf 2 is a fluoroalkyl group having 8 or less carbon atoms
  • Rf 2 is plural, a plurality of Rf 2 May be the same or different
  • F in the aromatic ring represents that all the hydrogen atoms of the aromatic ring are substituted with fluorine atoms.
  • Preferred examples of the compound (y) include a being 0 or 1, b being 0 or 1, c being 0 or 1, Rf 1 being CF 3 , Rf 2 being CF 3 and the like. Among them, perfluorobenzene, perfluoro Toluene and perfluorobiphenyl are preferred.
  • Examples of the compound (z) include 1,3,5-trihydroxybenzene, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 4- [4- [1,1-bis (4 -Hydroxyphenyl) ethyl]]- ⁇ , ⁇ -dimethylbenzylphenol, with 1,3,5-trihydroxybenzene and tris (4-hydroxyphenyl) ethane being preferred.
  • the prepolymer (A1) increases the free volume of the polymer by introducing a branched structure into the polymer chain and making the molecular structure three-dimensional by using the compound (z) having three or more phenolic hydroxyl groups.
  • a reduction in density that is, a reduction in dielectric constant is achieved.
  • a linear polymer having an aromatic ring tends to cause molecular orientation due to stacking of aromatic rings, but the cured product according to the present invention can suppress molecular orientation by introducing a branched structure. As a result, birefringence is reduced.
  • the prepolymer (A1) can be produced by either or both of the following methods (i) and (ii).
  • the prepolymer (A1) is produced using both (i) and (ii)
  • the compound (y), the compound (z), the compound (x1) and the compound (x2) are dehalogenated.
  • the condensation reaction is carried out in the presence of a hydrogenation agent.
  • the condensation reaction may be performed in a single step or in multiple steps. Moreover, after reacting a specific compound preferentially among reaction raw materials, you may react with another compound subsequently.
  • the condensation reaction is performed in multiple stages, the intermediate product obtained in the middle may be separated from the reaction system and purified, and then used for the subsequent reaction (condensation reaction).
  • the raw material compounds may be charged all at once, may be charged continuously, or may be charged intermittently.
  • the condensation reaction is a reaction in which the phenoxy group derived from the phenolic hydroxyl group is bonded to the fluorine atom of the compound (y) as in the reaction represented by the following formula (1).
  • An ether bond is formed by a reaction mechanism or the like in which a carbon atom is attacked and then a fluorine atom is eliminated.
  • the reaction represented by the following formula (2) can be carried out by the reaction represented by the following formula (2). Skeletons can be generated.
  • the prepolymer (A1) having no dioxin skeleton is preferable from the viewpoint that the molecular structure is flexible and the cured film has good flexibility. That is, it is preferable that the compound (z) and / or (x1) does not have two phenolic hydroxyl groups in the ortho positional relationship.
  • the compound (x1) used in the production method (i) is preferably a compound (x11) having one phenolic hydroxyl group and a compound (x12) having two phenolic hydroxyl groups.
  • the compound (x11) include phenols having a reactive double bond such as 4-hydroxystyrene; ethynyl such as 3-ethynylphenol, 4-phenylethynylphenol and 4- (4-fluorophenyl) ethynylphenol. Phenols are mentioned. These may be used alone or in combination of two or more.
  • the compound (x12) include bis (2,2′-bis (phenylethynyl) -5,5′-dihydroxybiphenyl, 2,2′-bis (phenylethynyl) -4,4′-dihydroxybiphenyl, etc. (Phenylethynyl) dihydroxybiphenyls; and dihydroxydiphenylacetylenes such as 4,4′-dihydroxytolane and 3,3′-dihydroxytolane. These may be used alone or in combination of two or more.
  • the compound (x2) used in the production method (ii) is preferably a compound having a crosslinkable functional group and a perfluoroaromatic ring such as perfluorophenyl or perfluorobiphenyl.
  • a perfluoroaromatic ring such as perfluorophenyl or perfluorobiphenyl.
  • Specific examples include pentafluorostyrene, pentafluorobenzyl acrylate, pentafluorobenzyl methacrylate, pentafluorophenyl acrylate, pentafluorophenyl methacrylate, perfluorostyrene, pentafluorophenyl trifluorovinyl ether, 3- (pentafluorophenyl) pentafluoropropene- Fluorine-containing aryls having a reactive double bond such as 1; fluorine-containing arylacetylenes such as pentafluorophenylacetylene and nonaflu
  • Fluorine diarylacetylenes may be mentioned. These may be used alone or in admixture of two or more. Since the crosslinking reaction proceeds at a relatively low temperature and the resulting prepolymer cured product has high heat resistance, the compound (x2) includes fluorine-containing aryls having a double bond and fluorine-containing aryl having a triple bond. Acetylenes are preferred.
  • the dehydrohalogenating agent used when producing the prepolymer (A1) basic compounds are preferable, and alkali metal carbonates, hydrogen carbonates or hydroxides are particularly preferable. Specific examples include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • the amount of the dehydrohalogenating agent is required to be 1 or more times in molar ratio with respect to the total number of moles of the phenolic hydroxyl group of the compound (z) and the compound (x1). 1.1 to 3 times is preferable.
  • the molar ratio is required to be 1 or more, preferably 1.1 to 3 times the number of moles of the phenolic hydroxyl group of the compound (z).
  • the condensation reaction is preferably performed in a polar solvent.
  • polar solvents include amides such as N, N-dimethylacetamide, N, N-dimethylformamide, and N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; diethyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether
  • amides such as N, N-dimethylacetamide, N, N-dimethylformamide, and N-methylpyrrolidone
  • sulfoxides such as dimethyl sulfoxide
  • sulfones such as sulfolane
  • diethyl ether diethyl ether, tetrahydrofuran, dioxane
  • ethers such as diethylene glycol diethyl ether and triethylene glycol dimethyl ether are preferred.
  • the polar solvent contains toluene, xylene, benzene, tetrahydrofuran, benzotrifluoride, xylene hexafluoride, etc. as long as the solubility of the resulting prepolymer (A1) is not reduced and the condensation reaction is not adversely affected. May be. By containing these, the polarity (dielectric constant) of the solvent changes, and the reaction rate can be controlled.
  • the condensation reaction conditions are preferably 10 to 200 ° C. and 1 to 80 hours. More preferred is 20 to 180 ° C. for 2 to 60 hours, and particularly preferred is 50 to 160 ° C. for 3 to 24 hours.
  • the amount of the compound (z) used is preferably 0.1 to 1 times, particularly preferably 0.3 to 0.6 times in terms of a molar ratio to the compound (y).
  • the amount of compound (x1) to be used is preferably 0.1 to 2 times, particularly preferably 0.2 to 1.5 times in terms of the molar ratio to compound (y).
  • the amount of compound (z) to be used is preferably 0.5 to 2 times, particularly preferably 0.6 to 1.5 times in terms of molar ratio to compound (y).
  • the amount of compound (x2) to be used is preferably 0.1 to 2 times, particularly preferably 0.2 to 1.5 times in terms of molar ratio to compound (y). It is preferable that the amount of each used be in this range because the obtained prepolymer (A1) has both a low dielectric constant and high heat resistance.
  • the production method (i) or (ii) can be appropriately selected according to the physical properties such as heat resistance, relative dielectric constant, birefringence, flexibility and the like of the cured product obtained after curing.
  • the produced prepolymer (A1) generally tends to have a low relative dielectric constant and birefringence value of a cured product obtained by curing. That is, in order to obtain a cured product having a low relative dielectric constant and low birefringence value, it is preferable to produce the prepolymer (A1) by the production method (ii).
  • the prepolymer (A1) is purified by a method such as neutralization, reprecipitation, extraction or filtration after the condensation reaction or solution.
  • the purification is preferably performed in a state where a polar solvent that is preferably used at the time of production is present or in a state where it is dissolved or dispersed in the solvent (E) described later, because it is more efficient.
  • metals such as potassium and sodium derived from dehydrohalogenating agents and free halogen atoms may cause malfunction of transistors and corrosion of wiring. It is preferable to sufficiently purify.
  • Preferred examples of the prepolymer (A1) include fluorine-containing aromatic compounds (perfluoro (1,3,5-triphenylbenzene), perfluorobiphenyl, etc.) and phenolic compounds (1,3,5-trihydroxybenzene). 1,1,1-tris (4-hydroxyphenyl) ethane) and a crosslinkable functional group-containing aromatic compound (pentafluorostyrene, acetoxystyrene, chloromethylstyrene, pentafluorophenylacetylene, etc.)
  • a hydrogenation agent potassium carbonate etc.
  • the number average molecular weight (Mn) of the prepolymer (A) is preferably 1,000 to 100,000, particularly preferably 5,000 to 50,000.
  • Mn number average molecular weight
  • the content of the prepolymer (A) in the curable composition in the present invention is preferably 10 to 99.99% by mass, more preferably 20 to 99.95% by mass, further preferably 30 to 70% by mass, ⁇ 70% by weight is particularly preferred. If it is at least the lower limit of the above range, the dielectric constant of the cured film will be sufficiently low. Moreover, since it becomes easy to harden
  • the content of the prepolymer (A) is 20 to 90 parts by mass in the total (100 parts by mass) of the prepolymer (A) and the compound (B). 30 to 85 parts by mass is more preferable, and 40 to 80 parts by mass is particularly preferable.
  • the compound (B) is a compound having a number average molecular weight (Mn) of 140 to 5,000, a crosslinkable functional group, and no fluorine atom. By including the compound (B) in the curable composition, a cured film having high hardness can be formed.
  • the number average molecular weight (Mn) of the compound (B) is preferably from 200 to 3,000, particularly preferably from 250 to 2,500.
  • the number average molecular weight (Mn) is not less than the lower limit of the above range, the compound (B) is hardly volatilized by heating.
  • the amount is not more than the upper limit of the above range, the viscosity of the compound (B) is kept low, and a uniform curable composition is easily obtained when mixed with the prepolymer (A).
  • the number of crosslinkable functional groups of the compound (B) is preferably 2 or more, more preferably 2 to 20, and particularly preferably 2 to 8 in view of cross-linking between molecules.
  • the crosslinkable functional group of the compound (B) does not have a fluorine atom, and the step in which the crosslinkable functional group of the prepolymer (A) causes a radical polymerization reaction and the group that causes a reaction in the same step are preferable.
  • the crosslinkable functional group of the compound (B) at least the crosslinkable functional groups react to cause crosslinking or chain extension. Moreover, it reacts with the crosslinkable functional group of the prepolymer (A) or the polymer (C), and forms a cured film together with these.
  • the crosslinkable functional group of the compound (B) is preferably a (meth) acryloyl (oxy) group from the viewpoint of high reactivity and easy availability, and an acryloyl (oxy) group from the viewpoint of higher reactivity. Particularly preferred.
  • the crosslinkable functional group may have 2 or more types in one molecule.
  • the prepolymer (A), the compound (B), and the polymer (C) may each have two or more types of crosslinkable functional groups in one molecule.
  • the crosslinkable functional groups in the prepolymer (A), the compound (B) and the polymer (C) which coexist in the curable composition may be the same or different.
  • the compound (B) include dipentaerythritol triacrylate triundecylate, dipentaerythritol pentaacrylate monoundecylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone-modified tris- (2-acryloxyethyl) Isocyanurate, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxy Bisphenol A dimethacrylate, propoxylated bisphenol A diacrylate, propoxylated bisphenol A dimethacrylate 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacryl
  • polyester acrylate compound obtained by modifying both ends of a condensate of dihydric alcohol and dibasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., product name: Aronix (M-6100, M-6200, M-6250, M-6500): Compound obtained by modifying the hydroxyl terminal of the condensate of polyhydric alcohol and polybasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., product name: Aronix (M-7100, M-7300K, M -8030, M-8060, M-8100, M-8530, M-8560, M-9050)). These can be obtained from commercial products.
  • the compound (B) used in the present invention includes ethoxylated isocyanuric acid triacrylate, 1,10-decanediol diacrylate, 1,9-nonanediol diacrylate, 1, from the viewpoint of availability and reactivity.
  • the content is preferably 10 to 80 parts by mass in the total (100 parts by mass) of the prepolymer (A) and the compound (B). 15 to 70 parts by mass is more preferable, and 20 to 60 parts by mass is particularly preferable.
  • the content is not less than the lower limit of the above range, it is easy to cure at a low temperature, so that the solvent resistance of the cured film is sufficiently improved. It can be applied to a low temperature process using a substrate having low heat resistance.
  • a base material is a large area, the curvature of a base material can be prevented. If it is below the upper limit of the above range, the dielectric constant of the cured film will be sufficiently low.
  • the polymer (C) in the curable composition is the polymer of the present invention described above.
  • the liquid repellency of the surface of the cured film is improved.
  • the content of the polymer (C) in the curable composition in the present invention is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass. .
  • the content is not less than the lower limit of the above range, the surface of the cured film is excellent in liquid repellency. The film physical property of a cured film becomes it favorable that it is below the upper limit of the said range.
  • the content of the polymer (C) is the prepolymer (A) and the compound (B). Is preferably 0.1 to 20 parts by mass, particularly preferably 0.2 to 15 parts by mass with respect to the total (100 parts by mass).
  • the curable composition of the present invention may be thermosetting or photocurable.
  • the curable composition includes the thermal polymerization initiator (D1) as the radical polymerization initiator (D), and in the case of photocurability, the photopolymerization initiator (D2) is included.
  • the photocurable curable composition can be used as a negative photosensitive material.
  • thermal-polymerization initiator (D1) A well-known thing can be used as a thermal-polymerization initiator (D1). Specific examples include 2,2'-azobisisobutyronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide and the like. From the viewpoint of decomposition temperature, 2,2'-azobisisobutyronitrile and benzoyl peroxide are preferable.
  • a thermal polymerization initiator (D1) may be used individually by 1 type, and may use 2 or more types together.
  • the content thereof is preferably from 0.1 to 20% by mass, particularly preferably from 1 to 15% by mass.
  • the content is not less than the lower limit of the above range, it is easy to cure at a low temperature, so that the solvent resistance of the cured film is sufficiently improved.
  • the storage stability of a curable composition becomes it favorable that it is below the upper limit of the said range.
  • a well-known thing can be used as a photoinitiator (D2).
  • Specific examples include oxime ester derivatives (1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)] (for example, product name: IRGACURE OXE01, manufactured by Ciba Specialty Chemicals) Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime) (for example, product name: IRGACURE, manufactured by Ciba Specialty Chemicals) OXE02)), ⁇ -aminoalkylphenone compounds (product name: IRGACURE 369, product name: IRGACURE 907, etc., manufactured by Ciba Specialty Chemicals), acylphosphine oxide compounds (product name: DAROCUR TPO, manufactured by Ciba Specialty Chemicals) etc) And the like.
  • the content thereof is preferably 0.1 to 20% by mass, particularly preferably 1 to 15% by mass.
  • the content is not less than the lower limit of the above range, it is easy to cure at a low temperature, so that the solvent resistance of the cured film is sufficiently improved.
  • the storage stability of a curable composition becomes it favorable that it is below the upper limit of the said range.
  • additive For curable compositions, stabilizers (ultraviolet absorbers, antioxidants, thermal polymerization inhibitors, etc.) and surfactants (leveling agents, antifoaming agents, suspending agents, dispersants, etc.) as necessary. Additives selected from various additives well known in the coating field such as plasticizers and thickeners can be blended within a range that does not impair the effects of the present invention.
  • an adhesive improver such as a silane coupling agent
  • an adhesion improver is included in the curable composition, the adhesion between the cured film made of the curable composition and a layer adjacent thereto is improved. Even if it is a method of applying an adhesion improver to the adjacent layers in advance, the adhesion can be improved.
  • the curable composition of the present invention contains an additive
  • its content is preferably 0.0001 to 30% by mass, particularly preferably 0.0001 to 20% by mass.
  • Combination 1 A curable composition comprising the following prepolymer (A), compound (B), polymer (C) and thermal polymerization initiator (D1).
  • Prepolymer (A) A prepolymer obtained by condensing perfluorobiphenyl, 1,3,5-trihydroxybenzene and acetoxystyrene. The content of the prepolymer (A) in the curable composition is 30 to 70 parts by mass.
  • the compound (B) is 20 to 60 parts by mass.
  • Polymer (C) one or more of units (u1-1) to (u1-4) described later as units (u1), units (u2-1) described later as units (u2), units ( A polymer comprising at least one of units (u3-1) to (u3-9) described later as u3).
  • the content of the polymer (C) in the curable composition is 0.1 to 5 parts by mass.
  • Thermal polymerization initiator (D1) one or more selected from the group consisting of benzoyl peroxide and 2,2′-azobisisobutyronitrile.
  • the content of the thermal polymerization initiator (D1) in the curable composition is 1 to 15 parts by mass.
  • Combination 2 A curable composition comprising the following prepolymer (A), compound (B), polymer (C) and photopolymerization initiator (D2).
  • Prepolymer (A) A prepolymer obtained by condensing perfluorobiphenyl, 1,3,5-trihydroxybenzene and acetoxystyrene. The content of the prepolymer (A) in the curable composition is 30 to 70 parts by mass.
  • the compound (B) is 20 to 60 parts by mass.
  • the content of the polymer (C) in the curable composition is 0.1 to 5 parts by mass.
  • Photopolymerization initiator (D2) IRGACURE OX01 (Ciba Specialty Chemicals), IRGACURE OX02 (Ciba Specialty Chemicals), IRGACURE 369 (Ciba Specialty Chemicals), IRGACURE 907 (Ciba Specialty Chemicals), DAROCUR TPO One or more selected from the group consisting of (manufactured by Ciba Specialty Chemicals).
  • the content of the photopolymerization initiator (D2) in the curable composition is 1 to 15 parts by mass.
  • the coating composition of this invention contains the said curable composition and solvent (E).
  • the coating composition forms a film of the curable composition by coating the coating composition on the surface of a substrate to form a coating film, and removing the solvent (E) from the coating film. Used for.
  • the solvent (E) is removed by evaporating the solvent (E). Therefore, the solvent (E) needs to have a lower boiling point than the components in the curable composition. Since the compound having the lowest boiling point among the components (A) to (D) is usually the compound (B), when the curable composition contains the compound (B), a solvent having a lower boiling point than this is used. (E) is used.
  • the compound (B) it is preferable to use a compound having a boiling point sufficiently higher than that of the solvent (E) used.
  • membrane of the said curable composition which does not contain the solvent (E) formed by removing a solvent (E) from the coating film of a coating composition is also called “dry film” below.
  • the dry film is an uncured film of the curable composition.
  • membrane is also called “cured film” below.
  • solvent (E) known ones can be used.
  • examples include ketone solvents, ester solvents, ether solvents, amide solvents, and aromatic solvents.
  • Specific examples include propylene glycol monomethyl ether acetate (hereinafter also referred to as “PGMEA”), mesitylene, N, N-dimethylacetamide, cyclohexanone, tetrahydrofuran and the like can be mentioned.
  • PGMEA propylene glycol monomethyl ether acetate
  • the content of the solvent (E) in the coating composition is preferably 1 to 99.995% by mass, more preferably 30 to 99.99% by mass, and particularly preferably 50 to 90% by mass in the coating composition. .
  • Combination 3 A coating composition comprising the preferred combination 1 of the curable composition and the following solvent (E).
  • Solvent (E) One or more selected from the group consisting of PGMEA and cyclohexanone. The content in the coating composition is 50 to 90% by mass.
  • Combination 4 A coating composition comprising the preferred combination 2 of the curable composition and the solvent (E) described in the preferred combination 3 of the coating composition.
  • the curable composition of the present invention is a curable composition containing a prepolymer (A), a compound (B), a polymer (C) and a radical polymerization initiator (D), it is 250 ° C. or lower (preferably It can be sufficiently cured by heating at 200 ° C. or less. Therefore, it can be used in a process (low temperature process) in which the upper limit of the heating temperature is 250 ° C. or less. Further, a cured film having excellent solvent resistance, a low dielectric constant, and good surface liquid repellency can be formed.
  • the article having the cured film of the present invention is an article having a substrate and a cured film obtained by curing the curable composition of the present invention on the surface of the substrate.
  • the “cured film obtained by curing the curable composition of the present invention on the surface of the substrate” means a form in which the cured film is directly formed on the surface of the substrate, and an arbitrary layer is formed on the surface of the substrate. And a form in which a cured film is formed on the arbitrary layer.
  • Examples of the material for the substrate include plastic, glass, and silicon. It is preferable to use plastics such as polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, and polyimide because of excellent mechanical flexibility.
  • the thickness of the cured film can be appropriately set according to the application, and is usually about 0.1 to 100 ⁇ m, preferably 0.2 to 50 ⁇ m.
  • the method for producing an article having a cured film of the present invention is a method having the following steps (I) to (II).
  • “Apply the coating composition of the present invention to the surface of the substrate to form a coating film, remove the solvent (E), and form a dry film” means that a dry film is directly formed on the surface of the substrate. And a form in which an arbitrary layer is formed on the surface of the substrate and a dry film is formed on the surface.
  • process (I) becomes the following processes.
  • the application method is not particularly limited as long as a uniform coating film can be formed.
  • a spin coating method, an ink jet method, and a slit coating method are preferable.
  • heating is preferred from the point that defects in the coating are less likely to occur.
  • the heating temperature is preferably from 30 to 200 ° C, particularly preferably from 40 to 150 ° C.
  • thermosetting When curing is performed by heating (thermosetting), a coating composition is formed on the surface of the substrate to form a coating film, and a heating step (pre-baking) for the purpose of removing the solvent (E) is performed. Next, a cured film is obtained by performing a heating process (curing process).
  • the heating process for curing can also serve as the heating process for removing the solvent.
  • the heating temperature in the heating step (prebaking) is preferably 40 to 200 ° C, particularly preferably 60 to 200 ° C.
  • the heating temperature in the heating step (curing step) is preferably from 100 to 200 ° C., particularly preferably from 120 to 200 ° C.
  • the heating time in the heating step (pre-baking) is preferably 1 to 10 minutes, particularly preferably 1 to 5 minutes.
  • the heating time of the heating step (curing step) is preferably 1 to 10 minutes, particularly preferably 1 to 5 minutes.
  • the heating temperature of 200 ° C. or lower means that the temperature of the article subjected to heating does not exceed 200 ° C.
  • the set temperature of a heating device such as a hot plate or oven may be set to 200 ° C. or lower.
  • the coating composition is applied to the surface of the substrate to form a coating film, and a heating step (pre-baking) is performed for the purpose of removing the solvent (E). Then, light is irradiated (exposure), and a cured film is obtained by performing a heating process (curing process) as necessary.
  • the light to be irradiated for curing is not particularly limited as long as the photopolymerization initiator (D2) contained in the curable composition has a wavelength with sensitivity.
  • the light used for curing is ultraviolet light (wavelength 200 to 400 nm, preferably 300 to 400 nm), but is not limited thereto.
  • the heating temperature in the heating step (pre-baking) in the case of photocuring is preferably 30 to 100 ° C, particularly preferably 40 to 100 ° C.
  • the heating temperature in the heating step (curing step) is preferably 60 to 200 ° C, particularly preferably 100 to 200 ° C.
  • the heating time in the heating step (pre-baking) is preferably 1 to 20 minutes, particularly preferably 1 to 10 minutes.
  • the heating time in the heating step (curing step) is preferably 1 to 20 minutes, particularly preferably 1 to 10 minutes.
  • the irradiated portion is cured by selectively irradiating (exposing) light using a photomask or a laser. Therefore, after the exposure, development (a step of removing the unexposed portion by dissolving or dispersing in a solvent) is performed, the unexposed portion is removed, and the residual solvent in the cured portion is removed to obtain a microprocessed cured film. . If necessary, a heating step (curing step) may be performed after development. In this case, the residual solvent can be removed by the heating step (curing step). Moreover, you may perform a heating process (post-exposure bake) as needed after exposure and before development.
  • a heating process post-exposure bake
  • the heating temperature in the heating step is preferably 60 to 200 ° C, particularly preferably 100 to 200 ° C.
  • the heating time in the heating step (post-exposure baking) is preferably 1 to 20 minutes, particularly preferably 1 to 10 minutes.
  • the article having the pattern of the lyophilic region and the liquid repellent region of the present invention is a method of irradiating the cured film with ultraviolet rays to make the irradiated portion lyophilic, and irradiating the dried film with ultraviolet rays. It is manufactured by any of the methods of making a part lyophilic and then curing the dry film to form a cured film. That is, the former method forms a dry film on the surface of the substrate, cures the dry film to form a cured film, and then partially irradiates the surface of the cured film with ultraviolet rays to form a surface on the cured film.
  • a dry film is formed on the surface of the substrate, and a pattern of lyophilic regions and lyophobic regions is formed on the surface of the dry film by partially irradiating the surface of the dry film with ultraviolet rays. Then, the dry film is cured.
  • an article having a pattern of a lyophilic region and a liquid repellent region by performing the following step (II ⁇ ) or step (II ⁇ ) as step (II) following the step (I). can be manufactured. That is, the lyophilic region and the liquid repellent region can be patterned by performing the step (II ⁇ ) or the step (II ⁇ ). (II ⁇ ) After heating the dried film obtained in the step (I) or irradiating the dried film with light to form a cured film, the surface of the cured film is partially irradiated with ultraviolet rays to form a surface of the cured film. And obtaining an article having a pattern of a lyophilic region and a liquid repellent region.
  • step (II ⁇ ) The surface of the dried film obtained in the step (I) is partially irradiated with ultraviolet rays to form a pattern of lyophilic regions and lyophobic regions on the surface of the dried film, and then the pattern A step of obtaining an article having a pattern of a lyophilic region and a liquid-repellent region on the surface of the cured film by heating or irradiating the dried film formed with the pattern with light.
  • Conditions (temperature, time) for heating the dried film in the step (II ⁇ ) or irradiating the dried film with light to form a cured film, heating the dried film with the pattern in the step (II ⁇ ), or drying with the pattern formed The conditions (light, temperature, time) for irradiating the film with light are as described above in the step (II).
  • a portion that has not been irradiated with ultraviolet rays is referred to as a lyophobic region
  • a portion that has become lyophilic by irradiation with ultraviolet rays is referred to as a lyophilic region.
  • the surface of the dried film or cured film is irradiated with ultraviolet rays through a photomask, or the surface of the dried film or cured film is lasered. And a method of selectively irradiating with ultraviolet rays using.
  • a light source capable of irradiating ultraviolet light having a wavelength of 300 nm or more such as a high pressure mercury lamp (i-line 365 nm), a YAG laser (third harmonic wave 355 nm), or the like can be used. Note that since the surface of the dried film or the cured film can be lyophilic even by ultraviolet light having a wavelength of less than 300 nm, a light source capable of irradiating ultraviolet light having a wavelength of less than 300 nm may be used.
  • a degradation residue containing a Cf group may be removed.
  • it can be removed by heating or vacuum conditions.
  • a functional thin film can be formed on the surface of the lyophilic region.
  • Examples of functional thin film include electrodes (thin film transistors, organic EL elements), semiconductor layers (thin film transistors, organic EL elements), conductor layers (printed circuit boards, multilayer wiring, touch panels, solar cells), transistor materials, resin layers, and the like. Can be mentioned. Since the cured film is insulating, a thin film transistor in which the functional thin film is an electrode is preferable.
  • Examples of the semiconductor layer include an organic semiconductor, an oxide semiconductor, and a silicon semiconductor.
  • Examples of the resin layer include phenolic resin, urea resin, melamine resin, acrylic resin, epoxy resin, polyurethane, polyester, silicone resin, thermosetting resin such as polyimide, photocurable resin, prepolymer (A), and the like.
  • organic thin film transistor Organic thin film transistor
  • an example of the organic thin film transistor will be described with reference to the drawings.
  • an aspect of the functional thin film of this invention it is not limited to the following organic thin-film transistor.
  • FIG. 1 is a cross-sectional view showing an example of an organic thin film transistor.
  • the organic thin film transistor 10 includes: a base material 12; a gate electrode 14 formed on the surface of the base material 12; a gate insulating film 16 (cured film) that covers the gate electrode 14 and the surface of the base material 12; Source electrode 18 and drain electrode 20 (functional thin film) selectively formed on the surface; source electrode 18 and drain electrode 20, and organic semiconductor layer 22 formed on the surface of gate insulating film 16 between the electrodes;
  • a base material 12 includes: a base material 12; a gate electrode 14 formed on the surface of the base material 12; a gate insulating film 16 (cured film) that covers the gate electrode 14 and the surface of the base material 12; Source electrode 18 and drain electrode 20 (functional thin film) selectively formed on the surface; source electrode 18 and drain electrode 20, and organic semiconductor layer 22 formed on the surface of gate insulating film 16 between the electrodes;
  • a gate insulating film 16 cured film
  • the material of the base material 12 includes the above-described materials, and the preferred mode of the base material 12 is the same.
  • the gate electrode 14, the source electrode 18 and the drain electrode 20 are formed of a conductor.
  • Conductors include silicon, doped silicon, platinum, gold, silver, copper, chromium, aluminum, calcium, barium, indium tin oxide, indium zinc oxide, zinc oxide, carbon black, fullerenes, carbon nanotubes, polythiophene , Polyethylenedioxythiophene, polystyrene sulfonic acid, polyaniline, polypyrrole, polyfluorene and the like.
  • a conductor may be used individually by 1 type and may use 2 or more types together.
  • the materials of the gate electrode 14, the source electrode 18, and the drain electrode 20 may be the same or different.
  • the gate insulating film 16 is made of a cured film, and is formed by forming a dry film on the surfaces of the gate electrode 14 and the base material 12 and curing it.
  • the film thickness of the gate insulating film 16 is preferably 1 nm to 10 ⁇ m, more preferably 2 nm to 5 ⁇ m, and particularly preferably 5 nm to 1 ⁇ m. If the thickness of the gate insulating film 16 is equal to or greater than the lower limit of the above range, a leakage current is unlikely to occur between the gate electrode 14 and the source electrode 18. If it is below the upper limit of the said range, a drive voltage will be suppressed.
  • Examples of the material of the organic semiconductor layer 22 include known low molecular compounds, oligomers, polymers, and the like.
  • Examples of the low molecular weight compound include pentacene, rubrene, phthalocyanine, perylene, fullerene, and derivatives thereof.
  • Examples of the oligomer include oligothiophene and derivatives thereof.
  • Polymers include poly-p-phenylene vinylene (PPV), polyfluorene, fluorene-benzothiadiazole copolymer, fluorene-triphenylamine copolymer, fluorene-dithiophene copolymer, polythiophene, polyaniline, polyacetylene, polypyrrole, these And the like.
  • the thickness of the organic semiconductor layer 22 is preferably 5 nm to 100 ⁇ m, more preferably 10 nm to 10 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the leakage current is reduced by forming the gate insulating film 16 using the curable composition of the present invention. Further, since the gate insulating film 16 can be thinned, the element can be miniaturized and the driving voltage of the transistor can be lowered. Further, the organic thin film transistor 10 has a good liquid repellency on the surface of the gate insulating film 16, so that the molecules in the organic semiconductor layer 22 provided on the gate insulating film 16 are easily oriented, and the top site of carriers. The effect that the polar group which becomes becomes difficult to exist on the surface, moisture in the air, etc. is difficult to be adsorbed. Therefore, the electron mobility in the organic thin film transistor 10 is increased, and the stability and reliability are improved.
  • An article having a functional thin film is produced by a method having the step (I), the step (II ⁇ ) or the step (II ⁇ ), and the following step (III).
  • the functional thin film-forming composition is selectively attached to the surface of the lyophilic region (the portion of the cured film which has been irradiated with ultraviolet rays).
  • the composition for forming a functional thin film is a composition for forming an electrode, a semiconductor layer, a conductor layer, a transistor material, and a resin layer.
  • composition for an electrode a composition for a semiconductor layer, a composition for a conductor layer
  • a composition for a transistor material also referred to as “a composition for a transistor material, a composition for forming a resin layer”.
  • a composition for functional thin film formation when a functional thin film is an electrode, the coating liquid containing the conductor mentioned above or the precursor of this conductor is mentioned, for example.
  • “Selectively attach a functional thin film-forming composition to the surface of the lyophilic region (the portion of the cured film irradiated with ultraviolet rays) to form a functional thin film” is selective to the surface of the cured film. Both the form in which the functional thin film is directly formed and the form in which an arbitrary layer is selectively formed on the surface of the cured film and the cured film is formed on the surface of the arbitrary layer are included.
  • a functional thin film forming composition When a functional thin film forming composition is applied to the surface of a cured film having a pattern composed of a lyophilic region and a liquid repellent region, the functional thin film forming composition selectively adheres to the lyophilic region. It does not adhere to the liquid repellent area. Therefore, a functional thin film (electrode or the like) having a predetermined pattern can be easily formed only on the surface of the lyophilic region of the cured film.
  • a well-known method as a method of making the composition for functional thin film adhering to the surface of the lyophilic area
  • a functional thin film may be further formed on the surface of the liquid repellent region of the cured film.
  • the liquid repellent area is made lyophilic by exposing the entire surface without a photomask, and then the functional thin film is formed to form the functional thin film.
  • a functional thin film may be formed by applying a composition for use.
  • Examples of the method for forming the gate electrode 14 include sputtering, vacuum deposition, spin coating, spray coating, printing, and inkjet.
  • the coating composition of the present invention is applied to the surfaces of the gate electrode 14 and the substrate 12, the solvent (E) is removed, and a dry film 15 is formed.
  • the structure derived from the prepolymer (A) is gathered on the base 12 side, and the Cf group is unevenly distributed on the opposite side of the base 12. That is, the surface of the dry film 15 becomes a liquid repellent region 15b having liquid repellency.
  • Reference numeral 15 c in the figure denotes an internal region other than the surface of the gate insulating film 16.
  • UV ultraviolet rays
  • An insulating film 16 (cured film) is formed.
  • the lyophilic region 16a and the lyophobic region 16b are not clearly separated from the inner region 16c under the surface showing the surface characteristics but are continuous in the thickness direction. It is speculated that the concentration of the Cf group is changed.
  • UV ultraviolet rays
  • the following composition for an organic semiconductor layer can be applied to the surface of the gate insulating film 16 between the electrodes.
  • Example 1 is a synthesis example.
  • Examples 2-1 to 2-4, Examples 3-1 to 3-20, Examples 4-1 to 4-20, and Examples 5-1 to 5-20 are examples. It is.
  • the contact angle on the surface of the cured film was measured by a droplet method under the condition of 25 ° C. using a product name: contact angle meter CA-A manufactured by Kyowa Interface Science Co., Ltd. About 1 ⁇ L of PGMEA was dropped on the cured film, and the contact angle was measured.
  • Example 1 (Production of prepolymer (A1-1)) A 10 L (liter) glass four-necked flask equipped with a Dimroth condenser, thermocouple thermometer, and mechanical stirrer was combined with perfluorobiphenyl (650 g), 1,3,5-trihydroxybenzene (117 g), and N, N-dimethyl Acetamide (hereinafter also referred to as “DMAc”) (6,202 g) was charged. The mixture was heated on an oil bath with stirring, and sodium carbonate (575 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, the mixture was cooled to 0 ° C.
  • DMAc N, N-dimethyl Acetamide
  • Example 2-1 (Production of Compound (m1-1))
  • the reaction represented by the following formula was performed. 17.7 g of 4-hydroxybenzenethiol and 20.0 g of 4′-bromopropiophenone were dissolved in 151 g of DMAc to obtain a solution. While the solution was stirred at 80 ° C., 25.9 g of potassium carbonate was added to the solution. The mixture was stirred at 80 ° C. for 12 hours to obtain a solution of compound (a1-1). Subsequently, the obtained solution of the compound (a1-1) was poured into water, and the precipitate was vacuum-dried to obtain 24.0 g of the compound (a1-1).
  • Example 2-2 (Production of Compound (m1-2))
  • the reaction represented by the following formula was performed. 20.2 g of the compound (a1-1) obtained in Example 2-1 and 9.7 g of triethylamine were dissolved in 89 g of THF to obtain a solution. While stirring the solution at 0 ° C., 9.0 g of compound (b1-2) was added dropwise to the solution. The mixture was further stirred at 0 ° C. for 1 hour and then at room temperature for 3.5 hours to obtain a solution of compound (c1-2). Next, the obtained solution of the compound (c1-2) was poured into water and extracted three times with ethyl acetate. The organic phase was dried under vacuum to obtain 26.6 g of compound (c1-2).
  • Example 2-3 (Production of Compound (m1-3)) Dissolve 3.5 g of succinic anhydride, 13.7 g of 1H, 1H, 2H, 2H-perfluorooctanol, 1.1 g of 4-dimethylaminopyridine, and 5.4 g of triethylamine in 106 g of dichloromethane to obtain a solution. It was. The solution was stirred at room temperature for 17 hours to obtain a solution of compound (e1-2). Next, the solution of the obtained compound (e1-2) was washed 3 times with 1N hydrochloric acid and once with water. The organic phase was dried in vacuo to obtain 15.7 g of compound (e1-2).
  • the reaction represented by the following formula was performed. 5.1 g of the compound (d1-2) obtained in Example 2-2 and 2.7 g of diisopropylcarbodiimide were dissolved in 30 g of THF to obtain a solution. While the solution was stirred at 0 ° C., a solution of 9.7 g of compound (e1-2) dissolved in 10 g of THF was added dropwise. The mixture was further stirred at 0 ° C. for 1 hour and then at room temperature for 19 hours to obtain a solution of the compound (m1-3). The solvent was removed from the solution with an evaporator and then vacuum-dried to obtain 9.7 g of the compound (m1-3). The compound (m1-3) was identified by 1 H-NMR and 19 F-NMR.
  • Example 2-4 (Production of Compound (m1-4)) 5 g of succinic anhydride, 18.6 g of 2,2-difluoro-2 (1,1,2,2-tetrafluoro-2- (2-perfluoroethoxy) ethanol, 1.5 g of 4-dimethylaminopyridine, triethylamine was dissolved in 113 g of dichloromethane to obtain a solution, which was stirred at room temperature for 17 hours to obtain a solution of the compound (e1-3), and then the obtained compound (e1-3) ) Was washed three times with 1N hydrochloric acid and once with water, and the organic phase was dried under vacuum to obtain 21.4 g of compound (e1-3).
  • the reaction represented by the following formula was performed. 12 g of the compound (d1-2) obtained in Example 2-2 and 5.6 g of diisopropylcarbodiimide were dissolved in 81 g of THF to obtain a solution. While the solution was stirred at 0 ° C., a solution prepared by dissolving 17.5 g of the compound (e1-3) in 20 g of THF was added dropwise. The mixture was further stirred at 0 ° C. for 1 hour and then at room temperature for 19 hours to obtain a solution of the compound (m1-4). The solvent was removed from the solution with an evaporator and then vacuum-dried to obtain 21 g of compound (m1-4). The compound (m1-4) was identified by 1 H-NMR and 19 F-NMR.
  • Example 3-1 (Production of polymer (C-1)) In 20.0 g of 2-butanone, 9.8 g of compound (m1-1) and 1.5 g of 2-hydroxyethyl methacrylate, 0.34 g of n-dodecyl mercaptan and 2,2′-azobis (4 -Methoxy-2,4-dimethylvaleronitrile) (product name: V-70, manufactured by Wako Pure Chemical Industries, Ltd.) was allowed to react at 50 ° C. for 24 hours.
  • Example 3-2 (Production of polymer (C-2)) In 2.7 g of 2-butanone, 1.0 g of compound (m1-2) and 0.15 g of 2-hydroxyethyl methacrylate, 0.33 g of n-octadecyl mercaptan and 2,2′-azobis (2 , 4-dimethylvaleronitrile) (product name: V-65, manufactured by Wako Pure Chemical Industries, Ltd.) in the presence of 0.005 g, the mixture was reacted at 50 ° C. for 24 hours.
  • Example 3-3 (Production of polymer (C-3)) In 2.7 g of 2-butanone, 1.0 g of compound (m1-2), 0.12 g of 2-hydroxyethyl methacrylate and 0.02 g of methacrylic acid, 0.33 g of n-octadecyl mercaptan and 2 , 2′-azobis (2,4-dimethylvaleronitrile) (product name: V-65, manufactured by Wako Pure Chemical Industries, Ltd.) in the presence of 0.004 g, was reacted at 50 ° C. for 24 hours.
  • Example 3-4 (Production of polymer (C-4)) In 2.7 g of 2-butanone, 1.0 g of compound (m1-2), 0.12 g of 2-hydroxyethyl methacrylate and 2- (1H-benzo [d] [1,2,3] triazole- 0.07 g of 1-carboxyamido) ethyl methacrylate, 0.03 g of n-octadecyl mercaptan and 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., product name: V-65 ) In the presence of 0.004 g for 24 hours at 50 ° C.
  • Example 3-5 (Production of polymer (C-5)) In 2.2 g of 2-butanone, 0.8 g of compound (m1-3) and 0.13 g of 2-hydroxyethyl methacrylate, 0.03 g of n-octadecyl mercaptan and 2,2′-azobis (2 , 4-dimethylvaleronitrile) (product name: V-65, manufactured by Wako Pure Chemical Industries, Ltd.) in the presence of 0.004 g, the mixture was reacted at 50 ° C. for 24 hours.
  • Example 3-6 (Production of polymer (C-6)) In 2.2 g of 2-butanone, 0.8 g of compound (m1-3), 0.08 g of 2-hydroxyethyl methacrylate and 2- (1H-benzo [d] [1,2,3] triazole- 0.11 g of 1-carboxyamido) ethyl methacrylate, 0.02 g of n-octadecyl mercaptan and 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., product name: V-65 ) In the presence of 0.003 g for 24 hours at 50 ° C.
  • Example 3-7 (Production of polymer (C-7)) Except for changing 0.11 g of 2- (1H-benzo [d] [1,2,3] triazole-1-carboxyamido) ethyl methacrylate to 0.13 g of RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.) In the same manner as in Example 3-6, 0.93 g of a powdery polymer (C-7) having units (u1-3), units (u2-1) and units (u3-3) of the following formula was obtained. It was. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 1.
  • Example 3-8 (Production of polymer (C-8)) Except that 0.11 g of 2- (1H-benzo [d] [1,2,3] triazole-1-carboxamido) ethyl methacrylate was changed to 0.09 g of SA (manufactured by Shin-Nakamura Chemical Co., Ltd.) In the same manner as in 3-6, 0.82 g of a powdery polymer (C-8) having units (u1-3), units (u2-1) and units (u3-4) of the following formula was obtained. . The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 1.
  • Example 3-9 (Production of polymer (C-9))
  • Example 3-6 except that 0.11 g of 2- (1H-benzo [d] [1,2,3] triazole-1-carboxamido) ethyl methacrylate was changed to 0.07 g of octyl acrylate.
  • 0.82 g of a powdery polymer (C-9) having units (u1-3), units (u2-1) and units (u3-5) of the following formula was obtained.
  • the fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 1.
  • Example 3-10 (Production of polymer (C-10))
  • Example 3-6 except that 0.11 g of 2- (1H-benzo [d] [1,2,3] triazole-1-carboxamido) ethyl methacrylate was changed to 0.096 g of decyl acrylate.
  • 0.95 g of a powdery polymer (C-10) having units (u1-3), units (u2-1) and units (u3-6) of the following formula was obtained.
  • the fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 1.
  • Example 3-11 (Production of polymer (C-11)) In 2.4 g of 2-butanone, 0.9 g of compound (m1-4) and 0.10 g of 2-hydroxyethyl methacrylate, 0.03 g of n-octadecyl mercaptan and 2,2′-azobis (2 , 4-dimethylvaleronitrile) (product name: V-65, manufactured by Wako Pure Chemical Industries, Ltd.) in the presence of 0.004 g, the mixture was reacted at 50 ° C. for 24 hours.
  • Example 3-12 (Production of polymer (C-12)) In 2.1 g of 2-butanone 0.7 g of compound (m1-4) and 0.18 g of 2-hydroxyethyl methacrylate, 0.03 g of n-octadecyl mercaptan and 0.004 g of V-65 In the presence, the reaction was carried out at 50 ° C. for 24 hours. After cooling to room temperature (20-25 ° C.), add 0.19 g of 2-acryloyloxyethyl isocyanate, 0.0008 g of dibutyltin dilaurate and 0.010 g of 2,6-di-tert-butyl-p-cresol. The mixture was reacted at 40 ° C.
  • Example 3-13 (Production of polymer (C-13)) In 2.3 g of 2-butanone, 0.9 g of compound (m1-4), 0.03 g of 2-hydroxyethyl methacrylate and 0.06 g of styrene, 0.03 g of n-octadecyl mercaptan and V- The reaction was allowed to proceed at 50 ° C. for 24 hours in the presence of 0.004 g of 65.
  • Example 3-14 (Production of polymer (C-14)) In 2.3 g of 2-butanone, 0.8 g of compound (m1-4), 0.03 g of 2-hydroxyethyl methacrylate and 0.14 g of styrene, 0.04 g of n-octadecyl mercaptan and V- The reaction was allowed to proceed at 50 ° C. for 24 hours in the presence of 0.005 g of 65.
  • Example 3-15 (Production of polymer (C-15)) Except that 0.06 g of styrene was changed to 0.10 g of hexyl methacrylate, in the same manner as in Example 3-13, the unit (u1-4), the unit (u2-1) and the unit (u3- 0.67 g of a powdery polymer (C-15) having 8) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 3-16 (Production of polymer (C-16)) Except that 0.14 g of styrene was changed to 0.22 g of hexyl methacrylate, the same as unit 3-14, unit (u1-4), unit (u2-1) and unit (u3- 0.57 g of a powdery polymer (C-16) having 8) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 3-17 (Production of polymer (C-17)) Except that 0.06 g of styrene was changed to 0.15 g of dodecyl methacrylate, in the same manner as in Example 3-13, the unit (u1-4), the unit (u2-1) and the unit (u3- 0.70 g of a powdery polymer (C-17) having 9) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 3-18 (Production of polymer (C-18)) Except that 0.14 g of styrene was changed to 0.33 g of dodecyl methacrylate, in the same manner as in Example 3-14, units (u1-4), units (u2-1) and units (u3- 0.11 g of a powdery polymer (C-18) having 9) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 3-19 (Production of polymer (C-19)) Except that 0.06 g of styrene was changed to 0.19 g of RUVA-93, in the same manner as in Example 3-13, the unit (u1-4), unit (u2-1) and the unit (u3) described later were used. -3) 0.89 g of a powdery polymer (C-19) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 3-20 (Production of polymer (C-20)) Except that 0.14 g of styrene was changed to 0.42 g of RUVA-93, in the same manner as in Example 3-14, the unit (u1-4), unit (u2-1) and the unit (u3) described later were used. -3) 1.11 g of a powdery polymer (C-20) was obtained. The fluorine content and number average molecular weight (Mn) were measured, and the results are shown in Table 2.
  • Example 4-1 Manufacture of coating composition
  • 1.2 g of prepolymer (A1-1), 0.8 g of dipentaerythritol hexaacrylate (number average molecular weight (Mn): 578) as compound (B), polymer prepared in Example 3-1 (C— 0.01 g of 1) and 0.2 g of benzoyl peroxide which is a thermal polymerization initiator (D1) were dissolved in 8.0 g of PGMEA to produce a coating composition (1).
  • Example 4-2 to Example 4-20 Manufacture of coating composition
  • the coating composition (2) to (20) was produced.
  • Example 5-1 to Example 5-20 Manufacture of articles having a cured film
  • the coating compositions produced in Examples 4-1 to 4-20 on a glass substrate manufactured by Corning, length x width 50 mm x 50 mm, thickness 0.725 mm), 1,000 revolutions per minute, Spin coating was performed in 30 seconds to obtain a coating film.
  • the glass substrate with a coating film was heated for 90 seconds using a hot plate at 60 ° C. to form a dry film having a thickness of 1 ⁇ m.
  • the surface of the dried film was partially irradiated with ultraviolet rays (i-line 365 nm) through a mask pattern.
  • ultraviolet rays i-line 365 nm
  • the product name MA-8 manufactured by SUSS was used, and the irradiation condition was 1 J / cm 2 .
  • ultraviolet rays having a wavelength of 350 nm or less are not irradiated.
  • the glass substrate with a dry film on which the pattern was formed was heated for 30 minutes using an oven at 150 ° C. to cure the dry film on which the pattern was formed.
  • the PGMEA contact angle of the part irradiated with ultraviolet rays and the PGMEA contact angle of the part not irradiated with ultraviolet rays were measured. The results are shown in Tables 3 and 4.
  • the polymer (C) of the present invention was decomposed in the molecule by irradiation with ultraviolet rays having a wavelength of 300 nm or more, and a decomposition residue containing a fluoroalkyl group could be eliminated. Moreover, the article which has a pattern of a lyophilic area
  • R 2 is - (CH 2) w3 COO ( CH 2) w4 -
  • a curable composition comprising a polymer having a unit based on a compound (m1) (C) is, ultraviolet rays not irradiated
  • the PGMEA contact angle of the part increased, and the difference in PGMEA contact angle (of Examples 5-5 to 5-20) between the lyophilic region and the liquid repellent region became significant. That is, a pattern having a larger difference in liquid repellency between the lyophilic region and the liquid repellent region could be formed.
  • cured film made of the curable composition of the present invention include electrical insulating films, chemical or physical protective films, non-adhesive films, and the like in various electronic devices (semiconductor devices and the like).
  • interlayer insulating films for flexible devices protective films for flexible devices, gate insulating films for organic thin film transistors, gate insulating films for oxide thin film transistors, capacitor insulating films, gate insulating films for memory transistors, semiconductor passivation, semiconductor elements

Abstract

 絶縁性、撥液性が良好であり、波長300nm以上の紫外線を照射しても充分に親液化し得る撥液性を有する硬化膜を形成できる硬化性組成物;該硬化性組成物を硬化させて得た硬化膜を有する物品およびその製造方法を提供する。 下式(m1)で表される化合物に基づく単位(u1)を有する重合体を含む硬化性組成物を用いて硬化膜を形成する。 R=水素原子、メチル基等;R=2価の有機基等;Cf=炭素数1~20のフルオロアルキル基等;X=O、S、N、NH;m=1~2;n=0~4;k=0~1;Z=(メタ)アクリロイル基等。

Description

化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
 本発明は、撥液性を有しかつ紫外線の照射によって親液化し得る化合物、撥液性を有する重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびそれらの製造方法に関する。
 半導体素子、ディスプレイ、発光素子等の分野において、多くの機能性薄膜が実用化されている。機能性薄膜は、所望の特性を有する材料を所望の位置に配置させてパターン化したものである。たとえば、薄膜トランジスタにおいて、基材の表面に撥液性を有する硬化膜を形成し、該硬化膜の表面に部分的に紫外線を照射することによって紫外線を照射した部分を親液化し、硬化膜の親液化された部分に電極用組成物を選択的に付着させ、電極を形成する製造方法が提案されている。該方法は、フォトリソグラフィによる方法に比べ、少ない工程で簡便に所望のパターンの電極を形成できる方法として注目されている。
 紫外線の照射によって親液化し得る撥液性を有する硬化膜を形成する材料としては、たとえば、下記の材料が提案されている。
 (1)光触媒(二酸化チタン等)およびバインダ(オルガノポリシロキサン等)を含む材料(特許文献1)。
 (2)紫外線の照射によって分解、除去し得る低分子量の含フッ素化合物を含む組成物(特許文献2)。
 (3)側鎖に疎水性基を有するポリイミド(特許文献3)。
 (4)主鎖にチオールエステル結合を有するポリイミド(特許文献4)。
特許第4300012号公報 国際公開第2005/054256号 特開2005-310962号公報 国際公開第2008/133300号
 (1)の材料を用いて撥液性を有する硬化膜を形成した場合、光触媒が該硬化膜に残存したままとなる。機能性薄膜を有する物品が薄膜トランジスタ、半導体素子等の場合、硬化膜は絶縁膜となるため、絶縁膜に残存する光触媒が、絶縁膜の特性(絶縁性等)に悪影響を及ぼす。
 (2)の含フッ素化合物を含む組成物を用いて撥液性を有する硬化膜を形成した場合、含フッ素化合物が比較的低分子量のため、該硬化膜中に含フッ素化合物が均一に分散して、含フッ素化合物が硬化膜の表面(基材と反対側)に偏在しない。そのため、硬化膜の表面の撥液性が不充分となる場合がある。また、得られた硬化膜は、絶縁特性が不充分な場合がある。
 (3)、(4)のポリイミドを用いて撥液性を有する硬化膜を形成した場合、ポリイミドが比較的長波長側の紫外線(たとえば、波長300nm以上の紫外線)を吸収する。そのため、高圧水銀灯(i線365nm)、YAGレーザ(3倍波355nm)等の紫外線の光源として通常よく用いられる光源を用いた場合、感度が不充分となる。また、最近では、ポリイミドよりも低誘電率の材料が求められることがある。
 本発明は、撥液性が良好であり、波長300nm以上の紫外線の照射によって分子内において分解が起こり、フルオロアルキル基を含む分解残基が脱離できる、化合物および重合体を提供することを目的とする。
 本発明は、絶縁性および撥液性が良好であり、波長300nm以上の紫外線を照射しても充分に親液化し得る撥液性を有する硬化膜を形成できる、硬化性組成物および塗布用組成物を提供することを目的とする。
 本発明は、絶縁性および撥液性が良好な硬化膜を有する物品を提供することを目的とする。
 本発明は、絶縁性が良好であり、かつ親液性領域と撥液性領域とのパターンを有する物品およびその製造方法を提供することを目的とする。
 本発明は、以下の[1]~[15]の構成を有する化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法を提供する。
[1]下式(m1)で表される化合物。
Figure JPOXMLDOC01-appb-C000003
 ただし、
 Rは、水素原子、炭素数1~6のアルキル基またはフェニル基であり、
 Rは、単結合またはフッ素原子を有しない2価の有機基であり、
 Cfは、炭素数1~20のフルオロアルキル基、または炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキル基であり、
 Xは、酸素原子、硫黄原子、窒素原子またはNHであり、
 mは、Xが酸素原子、硫黄原子またはNHである場合には1であり、Xが窒素原子である場合には2であり、
 nは、0~4の整数であり、
 kは、0または1であり、
 Zは、RC=CR-CO-であり、
 R、RおよびRは、それぞれ独立に水素原子またはメチル基である。
[2]前記Rが、単結合、-(CHw0-(ただし、w0は1~6の整数である。)、-C-、-CO(CHw1-(ただし、w1は0~10の整数である。)、-CCOO(CHw2-(ただし、w2は0~10の整数である。)、-(CHw3COO(CHw4-(ただし、w3は1~10の整数であり、w4は0~10の整数である。)、-CHO(CHw5-(ただし、w5は0~10の整数である。)、または-CH(CH)O(CHw6-(ただし、w6は0~10の整数である。)である、[1]の化合物。
[3]前記[1]または[2]の化合物に基づく単位(u1)を有する重合体。
[4]架橋性官能基を有し、かつCf基を有しない単位(u2)をさらに有する、[3]の重合体。
[5]前記[3]または[4]の重合体を含むことを特徴とする硬化性組成物。
[6]ラジカル重合開始剤(D)をさらに含む、[5]の硬化性組成物。
[7]架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)をさらに含む、[5]または[6]の硬化性組成物。
[8]数平均分子量が140~5,000であり、架橋性官能基を有し、フッ素原子を有しない化合物(B)をさらに含む、[7]の硬化性組成物。
[9]前記含フッ素ポリアリーレンプレポリマー(A)が、架橋性官能基およびフェノール性水酸基を有する化合物(x1)ならびに架橋性官能基およびフッ素原子置換芳香環を有する化合物(x2)のいずれか一方または両方と、下式(y)で表される化合物(y)と、フェノール性水酸基を3個以上有する化合物(z)とを、脱ハロゲン化水素剤の存在下に縮合反応させて得られた、架橋性官能基およびエーテル結合を有するプレポリマーである、[5]~[8]のいずれかの硬化性組成物。
Figure JPOXMLDOC01-appb-C000004
 ただし、cは、0~3の整数であり、aは、0~3の整数であり、bは、0~3の整数であり、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、芳香環内のFは、該芳香環の水素原子が全てフッ素原子で置換されていることを表す。
[10]前記[5]~[9]のいずれかの硬化性組成物と溶剤(E)とを含むことを特徴とする塗布用組成物。
[11]基材と、基材の表面に[5]~[9]のいずれかの硬化性組成物を硬化させて得た硬化膜を有することを特徴とする物品。
[12]硬化膜の表面に親液性領域と撥液性領域とのパターンを有する物品であって、該撥液性領域が[5]~[9]のいずれかの硬化性組成物を硬化させて得た硬化膜からなることを特徴とする物品。
[13]前記親液性領域の表面に電極、半導体層、導体層、トランジスタ材料および樹脂層からなる群から選択される1種以上がさらに形成された、[12]の物品。
[14]親液性領域と撥液性領域とのパターンを有する物品を製造する方法であって、基材の表面に[5]~[9]のいずれかの硬化性組成物の膜を形成し、前記硬化性組成物の膜を硬化させ硬化膜とし、次いで前記硬化膜の表面に部分的に紫外線を照射して、前記硬化膜の表面に親液性領域と撥液性領域とのパターンを形成することを特徴とする親液性領域と撥液性領域とのパターンを有する物品の製造方法。
[15]親液性領域と撥液性領域とのパターンを有する物品を製造する方法であって、基材の表面に[5]~[9]のいずれかの硬化性組成物の膜を形成し、前記硬化性組成物の膜の表面に部分的に紫外線を照射して該膜の表面に親液性領域と撥液性領域とのパターンを形成し、次いで前記硬化性組成物を硬化させることを特徴とする親液性領域と撥液性領域とのパターンを有する物品の製造方法。
 本発明によれば、撥液性が良好であり、波長300nm以上の紫外線の照射によって分子内において分解が起こり、フルオロアルキル基を含む分解残基が脱離できる、化合物および重合体を提供できる。
 本発明によれば、絶縁性および撥液性が良好であり、波長300nm以上の紫外線を照射しても充分に親液化し得る撥液性を有する硬化膜を形成できる、硬化性組成物および塗布用組成物を提供できる。
 本発明によれば、絶縁性および撥液性が良好な硬化膜を有する物品を提供できる。
 本発明によれば、絶縁性が良好であり、かつ親液性領域と撥液性領域とのパターンを有する物品および該物品の効率的な製造方法を提供できる。
有機薄膜トランジスタの一例を示す断面図である。 有機薄膜トランジスタの製造工程の一例を示す断面図である。 有機薄膜トランジスタの製造工程の一例を示す断面図である。
 本明細書においては、式(m1)で表される化合物を化合物(m1)と記す。他の式で表される化合物も同様に記す。また、化合物(m1)に基づく単位(u1)を有する重合体を以下「重合体(C)」ともいう。架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を以下「プレポリマー(A)」ともいい、架橋性官能基を有し、フッ素原子を有しない化合物(B)を「化合物(B)」ともいう。
 本明細書における「撥液性」とは、撥水性および撥油性の総称である。
 本明細書における「親液性」とは、親水性および親油性の総称である。
 本明細書における「親液化」とは、撥液性が相対的に親液性に変化することであり、具体的には水または有機溶媒との接触角が小さくなることである。
 本明細書における「フルオロアルキル基」とは、アルキル基の水素原子の一部または全てがフッ素原子に置換された基であり、「ペルフルオロアルキル基」とは、アルキル基の水素原子の全てがフッ素原子に置換された基である。
 本明細書における「メタクリロイル(オキシ)基」とは、メタクリロイル基およびメタクリロイルオキシ基の総称である。「アクリロイル(オキシ)基」も同様である。
 本明細書における「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基の総称である。「(メタ)アクリロイルオキシ基」も同様である。
 本明細書における「単位」とは、単量体が重合することによって形成された該単量体に由来する繰り返し単位である。単位は、重合によって直接形成された単位であってもよく、重合体を処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 本明細書における「単量体」とは、ラジカルによって重合し得る官能基を有する化合物である。
 本明細書における「架橋性官能基」とは、ラジカルによって重合し得る官能基である。
 架橋性官能基としては、ラジカルによって重合し得る炭素-炭素不飽和二重結合、ラジカルによって重合し得る炭素-炭素不飽和三重結合、ラジカルによって開環する環、これらを含む基等が挙げられる。不飽和二重結合および不飽和三重結合は、分子鎖の内部に存在するもの(以下、「内部オレフィン型」とも記す。)であってもよく、分子の末端に存在するもの(以下、「末端オレフィン型」とも記す。)であってもよく、反応性が高い点から、末端オレフィン型が好ましい。内部オレフィン型は、シクロオレフィン類のように脂肪族環の一部に不飽和二重結合が存在することも含む。末端オレフィン型の架橋性官能基としては、炭素数4以下のアルケニル基、炭素数4以下のアルキニル基が好ましい。
 架橋性官能基としては、具体的には、ビニル基、アリル基、イソプロペニル基、3-ブテニル基、メタクリロイル基、メタクリロイルオキシ基、アクリロイル基、アクリロイルオキシ基、ビニルオキシ基、アリルオキシ基、トリフルオロビニル基、トリフルオロビニルオキシ基、エチニル基、1-オキソシクロペンタ-2,5-ジエン-3-イル基およびオキシラン環が挙げられる。架橋性官能基としては、反応性が高く、架橋密度の高い硬化膜が得られやすい点から、ビニル基、アリル基、エチニル基、ビニルオキシ基、アリルオキシ基、アクリロイル基、アクリロイルオキシ基、メタクリロイル基およびメタクリロイルオキシ基からなる群からなる群から選択される1種以上の架橋性官能基が好ましい。
 本明細書における数平均分子量(Mn)は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィで測定することによって得られるポリスチレン換算分子量である。
[式(m1)で表される化合物]
 本発明の化合物は、式(m1)で表される化合物、すなわち化合物(m1)である。なお、式(m1)におけるRとCfの境界は、Cfの炭素数が最も少なくなるように定める。言い換えると、Rが単結合でない場合、Rは2価の有機基であってかつフッ素原子を有しないという条件の下において最大の炭素数となるように定めた有機基である。
Figure JPOXMLDOC01-appb-C000005
 化合物(m1)には、オキシムの二重結合によるシス-トランス異性体が存在する。本発明における化合物(m1)は、上記式に示すものに限定はされず、シス体のみであってもよく、トランス体のみであってもよく、両方の混合物であってもよい。
 Rは、水素原子、炭素数1~6のアルキル基またはフェニル基であり、化合物(m1)の溶解性が良好な点から、炭素数1~6のアルキル基が好ましい。
 Rは、単結合またはフッ素原子を有しない2価の有機基である。Rの2価の有機基としては、-(CHw0-(ただし、w0は1~6の整数である。)、-C-、-CO(CHw1-(ただし、w1は0~10の整数である。)、-CCOO(CHw2-(ただし、w2は0~10の整数である。)、-(CHw3COO(CHw4-(ただし、w3は1~10の整数であり、w4は0~10の整数である。)、-CHO(CHw5-(ただし、w5は0~10の整数である。)、-CH(CH)O(CHw6-(ただし、w6は0~10の整数である。)が挙げられる。波長300nm以上の紫外線を吸収しやすい点からは、-C-、-CO(CHw1-、-CCOO(CHw2-が好ましい。また、Cf基を含む分解残基が除去しやすい点からは、単結合、-(CHw0-、-(CHw3COO(CHw4-、-CHO(CHw5-、-CH(CH)O(CHw6-が好ましい。なお、w0は1~3の整数が好ましく、w1は0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w2は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w3は、0~6の整数が好ましく、製造しやすい点から1~3の整数が特に好ましい。w4は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w5は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w6は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。
 Cfは、炭素数1~20のフルオロアルキル基、または炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキル基である。Cfは直鎖状であっても分岐を有していてもよく、炭素原子には水素原子以外に塩素原子などのフッ素以外のハロゲン原子が結合していてもよい。
 Cfにおいて、Rと結合する末端の基は、たとえば、ジフルオロメチレン基、フルオロメチレン基、ビス(トリフルオロメチル)メチレン基、フルオロ(トリフルオロメチル)メチレン基、(トリフルオロメチル)メチレン基、メチル(トリフルオロメチル)メチレン基、フルオロ(メチル)メチレン基などが挙げられる。なお、この例示におけるトリフルオロメチル基はフッ素原子を有する側鎖基の一例であり、メチル基はフッ素原子を有しない側鎖基の一例である。
 Cf基の炭素数は、撥液性に優れるとともに、他の単量体との相溶性が良好である点から、2~20が好ましく、2~15がより好ましく、4~8が特に好ましい。また、Cf基の炭素数は、環境負荷が低くなる点からは、6以下が好ましく、2~6がより好ましく、4~6が特に好ましい。
 Cf基は、硬化膜の表面の撥液性がより良好となる点から、フッ素原子と水素原子とフッ素原子以外のハロゲン原子との合計数に対してフッ素原子の数が80%以上であることが好ましく、100%であること、すなわち、炭素数1~20のペルフルオロアルキル基、または炭素原子間にエーテル性酸素原子を有する炭素数2~20のペルフルオロアルキル基が特に好ましい。
 Cf基は、直鎖状であってもよく、分岐状であってもよい。
 Cf基としては、具体的には、-CF、-CFCF、-CF(CF、-CH(CF、-CFCHF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CF11CF、-(CF15CF、-CF(CF)O(CFCF、-CFOCFCFOCFCF、-CFO(CFCFO)CF(ただし、pは1~8の整数である。)、-CF(CF)O(CFCF(CF)O)13(ただし、qは1~4の整数である。)、-CF(CF)O(CFCF(CF)O)(ただし、rは0~5の整数である。)が挙げられる。
 Xは、酸素原子、硫黄原子、窒素原子またはNHであり、重合体(C)を製造しやすい(重合体(C)がゲル化しにくい)点から、酸素原子、硫黄原子、NHが好ましく、原料を入手しやすい点から、酸素原子、硫黄原子がより好ましく、化合物(m1)を製造しやすい点から、硫黄原子が特に好ましい。
 mは、Xが酸素原子、硫黄原子またはNHである場合には1であり、Xが窒素原子である場合には2であり、重合体(C)を製造しやすい(重合体(C)がゲル化しにくい)点から、1が好ましい。
 nは、0~4の整数であり、原料の入手性と合成の簡便さの点から、0~2の整数が好ましく、0または1が特に好ましい。
 kは、0または1であり、原料の入手性と合成の簡便さの点から、1が特に好ましい。-O-Ph-X-(ただし、Phはフェニレン基である。)におけるXとOとの位置関係は、原料の入手容易性の点から、パラ位置関係が好ましい。
 Zは、RC=CR-CO-である。
 R、RおよびRは、それぞれ独立に水素原子またはメチル基であり、反応性が高い点から、Rが水素原子またはメチル基で、RおよびRが水素原子であることが好ましい。すなわち、Zとしてはアクリロイル基またはメタクリロイル基が好ましい。
(化合物(m1)の製造方法)
 化合物(m1)の製造方法としては、下式で表される反応を行う方法が挙げられる。化合物(a1)のHO-を、3級アミンの存在下に化合物(b1)を用いてエステル化し、化合物(c1)を得る。次いで、亜硝酸エステルを用いてオキシム化し、化合物(d1)を得る。次いで、化合物(d1)の-OHを、カルボジイミドの存在下に化合物(e1)を用いてエステル化し、化合物(m1)を得る。
Figure JPOXMLDOC01-appb-C000006
 化合物(a1)は、公知の製造方法によって製造できる。たとえば、Xが硫黄原子、nが0、kが1の場合、HO-C-SHとBr-C-CO-CH-Rとを反応させることによって製造できる。
[重合体(C)]
 本発明の重合体である重合体(C)は、本発明の化合物(m1)に基づく単位(以下、「単位(u1)」とも記す。)を有する重合体である。
 重合体(C)は、撥水性膜の硬度、耐溶剤性等の点から、架橋性官能基を有し、かつCf基を有しない単位(以下、「単位(u2)」とも記す。)をさらに有することが好ましい。
 重合体(C)は、単位(u1)および単位(u2)以外単位(以下、「単位(u3)」とも記す。)を有していてもよい。
 なお、重合体(C)中の単位(u1)、単位(u2)、単位(u3)はランダム状に結合していてもブロック状に結合していてもよい。
 重合体(C)のフッ素含有量は、5~60質量%が好ましく、8~40質量%が特に好ましい。フッ素含有量が上記範囲の下限値以上であると、硬化膜の表面における撥液性がより良好となる。上記範囲の上限値以下であると、硬化膜とこれに隣接する層との密着性が良好となる。
 重合体(C)の数平均分子量(Mn)は、1,000~50,000が好ましく、3,000~20,000が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であると、重合体(C)が硬化膜の表面に充分に移行するため、より良好な撥液性を発現できる。上記範囲の上限値以下であると、硬化性組成物中のプレポリマー(A)との相溶性が良好となり、欠陥のない硬化膜を形成できる。
(単位(u1))
 単位(u1)は、化合物(m1)が重合することによって形成された化合物(m1)に由来する単位である。化合物(m1)のZ基(架橋性官能基と同種の基)における炭素-炭素不飽和二重結合は、重合によって失われるため、単位(u1)は、架橋性官能基を有しない。
 重合体(C)における単位(u1)の割合は、10~90質量%が好ましく、15~90質量%がより好ましく、20~90質量%がさらに好ましく、50~90質量%が特に好ましい。単位(u1)の割合が上記範囲の下限値以上であると、硬化膜の表面における撥液性がより良好となる。上記範囲の上限値以下であると、重合体(C)が塗布用組成物の溶剤(E)に溶けやすい。
(単位(u2))
 単位(u2)は、架橋性官能基を有し、かつCf基を有しない単位である。
 単位(u2)の架橋性官能基は、後述するプレポリマー(A)や化合物(B)の架橋性官能基と反応し、これらと一体となって硬度が高く、耐溶剤性に優れた硬化膜を形成する。
 単位(u2)における架橋性官能基の数は、原料の入手性と合成の簡便さの点から、1個が好ましい。
 単位(u2)における架橋性官能基としては、プレポリマー(A)や化合物(B)の架橋性官能基との反応性が高い点から、(メタ)アクリロイル(オキシ)基が好ましい。硬化性組成物中に共存する、化合物(B)の架橋性官能基と、重合体(C)の架橋性官能基とは、同一であってもよく、異なっていてもよい。
 単量体が有する重合性官能基(架橋性官能基と同種の基)は重合により失われるため、単位(u2)の架橋性官能基は、単量体が有していた重合性官能基ではない。したがって、単位(u2)の架橋性官能基は、通常、単量体を重合して共重合体を得た後に、該共重合体に変性等で導入された架橋性官能基である。
 単位(u2)の架橋性官能基は、反応性官能基を有する共重合体に、架橋性官能基を有する化合物を反応させる各種変性方法によって導入することが好ましい。該変性方法としては、公知の方法を適宜用いることができる。具体的には、重合性官能基および反応性官能基を有する化合物(以下、「化合物(m4)」とも記す。)を化合物(m1)と共重合させて反応性官能基を有する単位(以下、「単位(u4)」とも記す。)を有する共重合体を得た後、単位(u4)の反応性官能基と反応する官能基と架橋性官能基とを有する化合物(以下、「化合物(a2)」とも記す。)とを反応させて、単位(u2)を有する重合体(C)を得る方法が好ましい。単位(u2)は、化合物(m4)の重合により形成された単位(u4)と化合物(a2)との反応によって生じる単位である。
 反応性官能基としては、水酸基、エポキシ基、カルボキシ基等が挙げられる。反応性官能基が水酸基の場合、反応性官能基と反応する官能基は、カルボキシ基、イソシアネート基、塩化アシル等が挙げられる。反応性官能基がエポキシ基の場合、反応性官能基と反応する官能基は、カルボキシ基等が挙げられる。反応性官能基がカルボキシ基の場合、反応性官能基と反応する官能基は、水酸基、エポキシ基等が挙げられる。
 具体的な変性方法としては、たとえば、下記の方法(i)~(vi)が挙げられる。
 (i)水酸基を有する単量体を共重合して得られた共重合体に、架橋性官能基を有する酸無水物を反応させる方法。
 (ii)水酸基を有する単量体を共重合して得られた共重合体に、イソシアネート基および架橋性官能基を有する化合物を反応させる方法。
 (iii)水酸基を有する単量体を共重合して得られた共重合体に、塩化アシル基および架橋性官能基を有する化合物を反応させる方法。
 (iv)重合性官能基を有する酸無水物を共重合して得られた共重合体に、水酸基および架橋性官能基を有する化合物を反応させる方法。
 (v)カルボキシ基を有する単量体を共重合させて得られた共重合体に、エポキシ基および架橋性官能基を有する化合物を反応させる方法。
 (vi)エポキシ基を有する単量体を共重合して得られた共重合体に、カルボキシ基および架橋性官能基を有する化合物を反応させる方法。
 単位(u4)を有する共重合体に化合物(a2)を反応させる場合、共重合体の反応性官能基の全てに反応させてもよく、共重合体の反応性官能基の一部に反応させてもよい。後者の場合、得られた重合体(C)は、化合物(m4)に由来する単位(u4)を有する。硬化性組成物に用いる重合体(C)は、単位(u4)を有していてもよい。また、単位(u4)の反応性官能基が硬化性組成物に好ましくない影響を与えるおそれがある場合は、単位(u4)の反応性官能基に、該反応性官能基と反応する官能基を有し、架橋性官能基を有しない化合物(以下、「化合物(b2)」とも記す。)を反応させて、反応性官能基を不活性な基に変換することもできる。
 化合物(b2)として、たとえば、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、t-ブチルイソシアネート、ヘキシルイソシアネート、シクロヘキシルイソシアネート、ドデシルイソシアネート、オクタデシルイソシアネート、フェニルイソシアネート、アセチルクロリド、プロピオニルクロリド、ブチリルクロリド、イソブチルクロリド、ピバロイルクロリド、イソバレリルクロリド、バレリルクロリド、3,3-ジメチルブチリルクロリド、ヘキサノイルクロリド、ヘプタノイルクロリド、2-エチルヘキサノイルクロリド、オクタノイルクロリド、ノナノイルクロリド、デカノイルクロリド、ラウロイルクロリドが挙げられ、エチルイソシアネート、プロピルイソシアネート、アセチルクロリドおよびプロピオニルクロリドが好ましい。
 なお、反応性官能基を不活性な基に変換した単位を以下「単位(u5)」ともいう。
 化合物(m4)としては、方法(i)、(ii)、(iii)においては、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。方法(iv)においては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水フタル酸等が挙げられる。方法(v)においては、(メタ)アクリル酸等が挙げられる。方法(vi)においては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアクリレート等が挙げられる。
 化合物(a2)としては、方法(i)においては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水フタル酸等が挙げられる。方法(ii)においては、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。方法(iii)においては、(メタ)アクリロイルクロリド、3-ブテノイルクロリド等が挙げられる。方法(iv)においては、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。方法(v)においては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアクリレート等が挙げられる。方法(vi)においては、(メタ)アクリル酸等が挙げられる。
 単位(u2)としては、水酸基を有する単量体に由来する単位にイソシアネート基および架橋性官能基を有する化合物を反応させた単位、または、水酸基を有する単量体に由来する単位に塩化アシル基および架橋性官能基を有する化合物を反応させた単位が好ましい。2-ヒドロキシエチル(メタ)アクリレートおよび4-ヒドロキシブチル(メタ)アクリレートからなる群から選択される1種以上の単量体に由来する単位に、塩化(メタ)アクリロイル、2-メタクリロイルオキシエチルイソシアネートおよび2-アクリロイルオキシエチルイソシアネートからなる群から選択される1種以上の化合物を反応させて形成された単位が特に好ましい。プレポリマー(A)との反応性が良好になる。
(単位(u3))
 重合体(C)は、撥液性の向上効果を損なわない範囲で、必要に応じて、単位(u1)および単位(u2)以外の単位である単位(u3)を有していてもよい。重合体(C)が単位(u4)または単位(u5)を有する場合は、これらの単位は単位(u3)とみなす。
 単位(u3)は、重合性官能基を有しかつCf基を有しない化合物を重合させることによって、重合体(C)中に形成される。この重合性化合物は化合物(m4)であってもよく、化合物(m4)以外の化合物であってもよい。以下この重合性化合物を、化合物(m4)を含めて、化合物(m3)と記す。単位(u3)は、化合物(m3)を重合させることによって、重合体(C)中に形成される単位であり、前記のように単位(u4)および単位(u5)はいずれも単位(u3)の範疇に含まれる単位である。
 単位(u3)を与える化合物(m3)としては、化合物(m4)以外に、炭化水素系オレフィン類、ビニルエーテル類、イソプロペニルエーテル類、アリルエーテル類、ビニルエステル類、アリルエステル類、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、芳香族ビニル化合物、クロロオレフィン類、共役ジエン類、化合物(m1)以外の含フッ素単量体等が挙げられる。化合物(m3)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 化合物(m3)の具体例としては、アクリル酸、メタクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチル-n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(1,1-ジメチル-3-オキソブチル)(メタ)アクリルレート、2-アセトアセトキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート(たとえば、新中村化学社製、製品名:SA)、3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェネチルメタクリレート(たとえば、大塚化学社製、製品名:RUVA-93)、2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチル(メタ)アクリレート、スチレン、(メタ)アクリルアミド、N-ビニルアセトアミド、N-ビニルホルムアミド、N-(1,1-ジメチル-3-オキソブチル)(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N,N-ビス(メトキシメチル)(メタ)アクリルアミド等が挙げられ、入手しやすさの点から、アクリル酸、メタクリル酸、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート、3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェネチルメタクリレートおよびスチレンが好ましい。
 重合体(C)における単位(u2)の割合は、1~90質量%が好ましく、1~85質量%がより好ましく、1~80質量%がさらに好ましく、1~60質量%が特に好ましく、3~50質量%が最も好ましい。単位(u2)の割合が上記範囲の下限値以上であると、プレポリマー(A)や化合物(B)との反応が良好になる。上記範囲の上限値以下であると、硬化膜の表面における撥液性がより良好となる。
 重合体(C)における単位(u3)の割合は、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が特に好ましい。下限は0質量%が好ましい。単位(u3)の割合が上記範囲の上限値以下であると、単位(u1)および単位(u2)の充分な割合を確保でき、硬化膜の表面における撥液性や硬化性組成物の硬化性を損なわない。
 重合体(C)が単位(u1)と単位(u2)とからなる場合には、単位(u1)の含有量は重合体(C)におけるフッ素含有量が前記好ましい範囲となる量であり、残部が単位(u2)であることが好ましい。
 重合体(C)が単位(u1)、単位(u2)および単位(u3)からなる場合には、単位(u1)の含有量が重合体(C)におけるフッ素含有量が前記好ましい範囲となる量であり、単位(u3)が上述の好ましい割合の範囲であり、残部が単位(u2)であることが好ましい。
(重合体(C)の製造方法)
 重合体(C)は、単量体を重合して共重合体を得て、必要に応じて上述の変性を行うことによって製造できる。
 単量体の重合は、溶媒中で行うことが好ましい。また、単量体の重合において、重合開始剤を用いることが好ましく、必要に応じて連鎖移動剤を用いることが好ましい。単量体の保存時には、必要に応じて重合禁止剤を用いることが好ましい。
 溶媒としては、アルコール類(エタノール、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール等)、ケトン類(アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノン等)、セルソルブ類(2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等)、カルビトール類(2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等)、エステル類の(メチルアセテート、エチルアセテート、n-ブチルアセテート、エチルラクテート、n-ブチルラクテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールジアセテート、グリセリントリアセテート等)、エーテル類(ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル等)等が挙げられる。溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合開始剤としては、公知の有機過酸化物、無機過酸化物、アゾ化合物等が挙げられる。有機過酸化物および無機過酸化物は、還元剤と組み合わせて、レドックス系触媒として用いることもできる。重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機過酸化物としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、イソブチリルペルオキシド、tert-ブチルヒドロペルオキシド、tert-ブチル-α-クミルペルオキシド等が挙げられる。
 無機過酸化物としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過酸化水素、過炭酸塩等が挙げられる。
 アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等が挙げられる。
 連鎖移動剤としては、公知のメルカプタン類、ハロゲン化アルキル類等が挙げられる。連鎖移動剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 メルカプタン類としては、n-ブチルメルカプタン、n-ドデシルメルカプタン、tert-ブチルメルカプタン、チオグリコール酸エチル、チオグリコール酸2-エチルヘキシル、2-メルカプトエタノール等が挙げられる。
 ハロゲン化アルキル類としては、クロロホルム、四塩化炭素、四臭化炭素等が挙げられる。
 重合禁止剤としては、公知の重合禁止剤が挙げられる。
 重合禁止剤の具体例としては、2,6-ジ-tert-ブチル-p-クレゾール等が挙げられる。
 共重合体を変性する場合も前記と同様の溶媒を用いることができる。ただし、化合物(a2)と反応するおそれのある溶媒を用いない。単量体の重合を溶媒中で行い、引き続き化合物(a2)を添加して反応させ、重合体(C)を得ることができる。
 共重合体の変性は、触媒や中和剤の存在下に行ってもよい。たとえば、水酸基を有する共重合体に、イソシアネート基および架橋性官能基を有する化合物を反応させる場合、触媒として錫化合物等を用いることができる。錫化合物としては、ジブチル錫ジラウレート、ジブチル錫ジ(マレイン酸モノエステル)、ジオクチル錫ジラウレート、ジオクチル錫ジ(マレイン酸モノエステル)、ジブチル錫ジアセテート等が挙げられる。錫化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 水酸基を有する共重合体に、塩化アシル基および架橋性官能基を有する化合物を反応させる場合、塩基性触媒を用いることができる。塩基性触媒としては、トリエチルアミン、ピリジン、ジメチルアニリン、テトラメチル尿素等が挙げられる。塩基性触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の重合体(C)は、化合物(m1)に基づく単位(u1)を含む。化合物(m1)はCf基を有するため、該化合物(m1)および重合体(C)は撥液性が良好である。したがって、重合体(C)を含む硬化性組成物を硬化させて得た硬化膜の表面は、水や油を弾き、また、いったん水、油等が付着しても、付着物を表面から容易に除去できる。付着物は液体に限られず、付着性の表面を有する固体であってもよい。重合体(C)は、硬化性組成物を硬化させて得た硬化膜の表面に付着性を低下させる特性や付着物の除去を容易にする特性を与える性質を有する。重合体(C)は、硬化性組成物に配合される非付着性付与剤として有用である。たとえば、硬化膜の表面に皮脂等の油性物質(特に指紋等)が付着した場合、付着物を容易に除去できる。該特性を利用する場合においても、上述したように部分的にその特性が低下した表面を形成できる。
 また、該化合物(m1)は特開2000-080068号公報に記載された「新規O-オキシム光開始剤」における式(I)のRをR-Cf基に置き換え、Rを[Z-(OCHCH-(OC-]X-基に置き換えた化合物であるため、該公報に記載された「新規O-オキシム光開始剤」同様、光触媒等が存在しなくても、波長350~370nmの紫外線の照射によって分子内において分解が起こり、Cf基を含む分解残基が脱離できる。すなわち、重合体(C)は、紫外線の照射によって側鎖に存在するCf基が脱離しやすい。そのため、重合体(C)を含む硬化性組成物を硬化させて得た硬化膜の表面に部分的に紫外線を照射することによって、硬化膜の表面の紫外線を照射した部分の撥液性を低下させ、紫外線が照射されなかった部分に対して相対的に親液性とすることができる。後述するように、重合体(C)を含む硬化性組成物を硬化させて得た硬化膜の表面にパターンを有するフォトマスクを介して、紫外線を照射することによって、紫外線を照射した部分を親液化し、紫外線が照射されなかった撥液性領域と親液性領域とのパターンを有する表面とすることができる。
[硬化性組成物]
 本発明の硬化性組成物は、重合体(C)を含む組成物である。後述するように、本発明の硬化性組成物を熱硬化または光硬化させた硬化物からなる膜である。したがって、本発明の硬化性組成物は、熱硬化性の組成物または光硬化性の組成物である。
 本発明の硬化性組成物は、硬化性の点からラジカル重合開始剤(D)をさらに含むことが好ましい。硬化膜の耐溶剤性、誘電率等の点からは、プレポリマー(A)をさらに含む硬化性組成物であることが好ましい。硬化膜の硬度の点からは、さらに化合物(B)を含むことが好ましい。
(プレポリマー(A))
 プレポリマー(A)は、複数の芳香族環が単結合または連結基を介して結合しているポリアリーレン構造を有するとともに、フッ素原子を有し、かつ架橋性官能基を有する。硬化性組成物がプレポリマー(A)を含むことによって、硬化膜の誘電率を低くできる。
 プレポリマー(A)の架橋性官能基は、プレポリマー(A)の製造時には実質上反応を起こさず、ラジカル重合開始剤(D)の存在下で、外部エネルギーを与えることによってラジカル重合反応を生じ、プレポリマー(A)分子間の架橋または鎖延長を引き起こす。また、化合物(B)や重合体(C)の架橋性官能基とも反応し、これらと一体となって硬化膜を形成する。プレポリマー(A)における架橋性官能基としては、プレポリマー(A)の製造時の反応性が低く、ラジカル重合開始剤(D)の存在下での反応性が良好である点から、ビニル基、エチニル基が好ましい。
 ポリアリーレン構造における連結基としては、エーテル結合(-O-)、スルフィド結合(-S-)、カルボニル基(-CO-)、スルホニル基(-SO-)等が挙げられる。プレポリマー(A)のうち、芳香族環同士がエーテル結合(-O-)を有する連結基で結合されている構造を有するポリマーを「含フッ素ポリアリーレンエーテルプレポリマー」という。該含フッ素ポリアリーレンエーテルプレポリマーは、エーテル性酸素原子を有するため、分子構造が柔軟性を有し、硬化膜の可とう性が良好であり、好ましい。プレポリマー(A)としては、含フッ素ポリアリーレンエーテルプレポリマーを含むことが好ましく、含フッ素ポリアリーレンエーテルプレポリマーのみからなることが特に好ましい。
 該エーテル結合を有する連結基の具体例としては、エーテル性酸素原子のみからなるエーテル結合(-O-)、炭素鎖中にエーテル性酸素原子を含むアルキレン基等が挙げられれる。
 プレポリマー(A)は、フッ素原子を有する。フッ素原子を有すると、硬化膜の誘電率および誘電損失が低くなりやすいため、絶縁膜を形成する材料として好ましい。絶縁膜の誘電率および誘電損失が低いと、信号伝播速度の遅延を抑制でき、電気特性に優れた素子が得られる。また、フッ素原子を有すると、硬化膜の吸水率が低くなるため、接合電極、その周辺の配線部分等における接合状態の変化が抑制できる点、または金属の変質(錆等)が抑制できる点に優れる。素子の信頼性向上という点で効果が大きい。
 本発明におけるプレポリマー(A)の具体例としては、架橋性官能基およびフェノール性水酸基を有する化合物(x1)ならびに架橋性官能基およびフッ素原子置換芳香環を有する化合物(x2)のいずれか一方または両方と、下式(y)で表される化合物(y)と、フェノール性水酸基を3個以上有する化合物(z)とを、脱ハロゲン化水素剤の存在下に縮合反応させて得られた、架橋性官能基およびエーテル結合を有するプレポリマー(以下、「プレポリマー(A1)」ともいう。)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 ただし、cは、0~3の整数であり、aは、0~3の整数であり、bは、0~3の整数であり、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、芳香環内のFは、該芳香環の水素原子が全てフッ素原子で置換されていることを表す。
 化合物(y)の好ましい例としては、aが0または1、bが0または1、cが0または1、RfがCF、RfがCF等が挙げられ、なかでもペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロビフェニルが好ましい。
 化合物(z)としては、たとえば、1,3,5-トリヒドロキシベンゼン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、4-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]]-α,α-ジメチルベンジルフェノールが挙げられ、1,3,5-トリヒドロキシベンゼンおよびトリス(4-ヒドロキシフェニル)エタンが好ましい。
 プレポリマー(A1)は、フェノール性水酸基を3個以上有する化合物(z)を用いることにより、ポリマー鎖に分岐構造を導入し、分子構造を三次元化することにより、ポリマーの自由体積を増大させて低密度化、すなわち低誘電率化が達成される。また、一般的に、芳香環を有する直鎖状ポリマーは芳香環のスタッキングによる分子の配向が起き易いが、本発明にかかる硬化物では分岐構造を導入することにより分子の配向が抑えられ、その結果、複屈折が小さくなる。
 プレポリマー(A1)は、下記(i)または(ii)の方法のいずれか一方または両方で製造することができる。
 (i)化合物(y)と、化合物(z)と、化合物(x1)と、を脱ハロゲン化水素剤の存在下に縮合反応させる方法。
 (ii)化合物(y)と、化合物(z)と、化合物(x2)と、を脱ハロゲン化水素剤の存在下に縮合反応させる方法。
 なお、前記(i)および(ii)の両方でプレポリマー(A1)を製造する場合は、化合物(y)と、化合物(z)と、化合物(x1)および化合物(x2)と、を脱ハロゲン化水素剤の存在下に縮合反応させる。
 なお、前記(i)または(ii)の方法のいずれにおいても、縮合反応は一段階で全てを反応させてもよく、多段階に分けて反応させてもよい。また、反応原料のうち特定の化合物を先に優先的に反応させた後に、引き続いて他の化合物を反応させてもよい。縮合反応を多段階に分けて行う場合に、途中で得られた中間生成物は、反応系から分離し精製した後に、後続の反応(縮合反応)に用いてもよい。反応の場において原料化合物は一括で投入されてもよく、連続的に投入されてもよく、間歇的に投入されてもよい。
 前記プレポリマー(A1)の製造方法において、縮合反応は、下式(1)で表される反応のように、フェノール性水酸基から誘導されるフェノキシ基が、化合物(y)のフッ素原子が結合した炭素原子を攻撃し、次いでフッ素原子が脱離する反応機構等によりエーテル結合が生成する。また、化合物(z)および/または(x1)がオルト位置関係にある2個のフェノール性水酸基を有する場合には、同様の反応機構等により、下式(2)で表される反応により、ジオキシン骨格が生成する可能性がある。分子構造が柔軟性を有し、硬化膜の可とう性が良好な点からは、ジオキシン骨格を有しないプレポリマー(A1)が好ましい。すなわち、化合物(z)および/または(x1)は、オルト位置関係にある2個のフェノール性水酸基を有しないことが好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 製造方法(i)で用いられる化合物(x1)としては、フェノール性水酸基を1個有する化合物(x11)およびフェノール性水酸基を2個有する化合物(x12)が好ましい。
 化合物(x11)の具体例としては、4-ヒドロキシスチレン等の反応性二重結合を有するフェノール類;3-エチニルフェノール、4-フェニルエチニルフェノール、4-(4-フルオロフェニル)エチニルフェノール等のエチニルフェノール類が挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。
 化合物(x12)の具体例としては、2,2’-ビス(フェニルエチニル)-5,5’-ジヒドロキシビフェニル、2,2’-ビス(フェニルエチニル)-4,4’-ジヒドロキシビフェニル等のビス(フェニルエチニル)ジヒドロキシビフェニル類;4,4’-ジヒドロキシトラン、3,3’-ジヒドロキシトラン等のジヒドロキシジフェニルアセチレン類が挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。
 製造方法(ii)で用いられる化合物(x2)としては、架橋性官能基と、ペルフルオロフェニル、ペルフルオロビフェニル等のペルフルオロ芳香環とを有する化合物が好ましい。具体例としては、ペンタフルオロスチレン、ペンタフルオロベンジルアクリレート、ペンタフルオロベンジルメタクリレート、ペンタフルオロフェニルアクリレート、ペンタフルオロフェニルメタクリレート、ペルフルオロスチレン、ペンタフルオロフェニルトリフルオロビニルエーテル、3-(ペンタフルオロフェニル)ペンタフルオロプロペン-1等の反応性二重結合を有する含フッ素アリール類;ペンタフルオロフェニルアセチレン、ノナフルオロビフェニルアセチレン等の含フッ素アリールアセチレン類;フェニルエチニルペンタフルオロベンゼン、フェニルエチニルノナフルオロビフェニル、デカフルオロトラン等の含フッ素ジアリールアセチレン類が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。比較的低温で架橋反応が進行し、かつ得られるプレポリマー硬化物の耐熱性が高くなることから、化合物(x2)としては、二重結合を有する含フッ素アリール類、三重結合を有する含フッ素アリールアセチレン類が好ましい。
 プレポリマー(A1)を製造する際に用いられる脱ハロゲン化水素剤としては、塩基性化合物が好ましく、アルカリ金属の炭酸塩、炭酸水素塩または水酸化物が特に好ましい。具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 脱ハロゲン化水素剤の使用量は、製造方法(i)においては、化合物(z)および化合物(x1)のフェノール性水酸基の合計モル数に対し、モル比で1倍以上の量が必要であり、1.1~3倍が好ましい。製造方法(ii)においては、化合物(z)のフェノール性水酸基のモル数に対し、モル比で1倍以上の量が必要であり、1.1~3倍が好ましい。
 前記製造方法(i)および(ii)において、縮合反応は、極性溶媒中で行うことが好ましい。極性溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類;スルホラン等のスルホン類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類等の非プロトン性の極性溶媒が好ましい。
 極性溶媒中には、生成するプレポリマー(A1)の溶解性を低下させず、縮合反応に悪影響を及ぼさない範囲で、トルエン、キシレン、ベンゼン、テトラヒドロフラン、ベンゾトリフルオライド、キシレンヘキサフルオライド等が含有されていてもよい。これらを含有することにより、溶媒の極性(誘電率)が変化し、反応速度をコントロールすることが可能である。
 縮合反応条件は、10~200℃で1~80時間が好ましい。20~180℃で2~60時間がより好ましく、50~160℃で3~24時間が特に好ましい。
 製造方法(i)において、化合物(z)の使用量は、化合物(y)に対するモル比で0.1~1倍が好ましく、0.3~0.6倍が特に好ましい。化合物(x1)の使用量は、化合物(y)に対するモル比で0.1~2倍が好ましく、0.2~1.5倍が特に好ましい。
 製造方法(ii)において、化合物(z)の使用量は、化合物(y)に対するモル比で0.5~2倍が好ましく、0.6~1.5倍が特に好ましい。化合物(x2)の使用量は、化合物(y)に対するモル比で0.1~2倍が好ましく、0.2~1.5倍が特に好ましい。
 それぞれの使用量がこの範囲にあると、得られたプレポリマー(A1)が低い誘電率値と高い耐熱性を併せ持つので好ましい。
 プレポリマー(A1)の製造方法は、硬化後に得られる硬化物の耐熱性、比誘電率、複屈折、可とう性等の物性に応じて、製造方法(i)または(ii)を適宜選択できる。たとえば、製造方法(ii)を用いる場合、製造されたプレポリマー(A1)は、硬化させて得られる硬化物の比誘電率および複屈折値が一般に低くなる傾向にある。すなわち、比誘電率および複屈折値が低い硬化物を得るためには、製造方法(ii)によってプレポリマー(A1)を製造することが好ましい。
 プレポリマー(A1)は、縮合反応後または溶液化後に、中和、再沈殿、抽出、ろ過等の方法で精製される。精製は、製造時において好ましく使用される極性溶媒が存在する状態または後述する溶剤(E)に溶解もしくは分散された状態で行った方が、効率がよいので好ましい。各種電子素子における絶縁膜および多層配線における絶縁膜としての用途において、脱ハロゲン化水素剤に由来するカリウム、ナトリウム等の金属および遊離したハロゲン原子はトランジスタの動作不良や配線の腐食等を引き起こす原因となる可能性があるので充分に精製することが好ましい。
 プレポリマー(A1)の好適な例としては、含フッ素芳香族化合物(ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロビフェニル等)と、フェノール系化合物(1,3,5-トリヒドロキシベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン等)と、架橋性官能基含有芳香族化合物(ペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレン、ペンタフルオロフェニルアセチレン等)とを、脱ハロゲン化水素剤(炭酸カリウム等)の存在下で反応させて得られるポリマーが挙げられる。
 プレポリマー(A)の数平均分子量(Mn)は、1,000~100,000が好ましく、5,000~50,000が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であると、硬化膜の可とう性が低下しにくい。上記範囲の上限値以下であると、硬化性組成物の精製が容易である。
 本発明における硬化性組成物中のプレポリマー(A)の含有量は、10~99.99質量%が好ましく、20~99.95質量%がより好ましく、30~70質量%がさらに好ましく、50~70質量%が特に好ましい。上記範囲の下限値以上であると、硬化膜の誘電率が充分に低くなる。また、上記範囲の上限値以下であると、低温で硬化しやすくなるため、硬化膜の耐溶剤性が充分に向上できる。
 硬化性組成物が化合物(B)を含む場合は、プレポリマー(A)の含有量は、プレポリマー(A)と化合物(B)との合計(100質量部)のうち、20~90質量部が好ましく、30~85質量部がより好ましく、40~80質量部が特に好ましい。
(化合物(B))
 化合物(B)は、数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有しない化合物である。硬化性組成物に化合物(B)を含ませることによって、硬度が高い硬化膜を形成できる。
 化合物(B)の数平均分子量(Mn)は、200~3,000が好ましく、250~2,500が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であると、加熱によって化合物(B)が揮発しにくい。上記範囲の上限値以下であると、化合物(B)の粘度が低く抑えられ、プレポリマー(A)と混合したときに均一な硬化性組成物が得られやすい。
 化合物(B)の架橋性官能基は、分子間を架橋できる点から、2個以上が好ましく、2~20個がより好ましく、2~8個が特に好ましい。
 化合物(B)の架橋性官能基は、フッ素原子を有さず、プレポリマー(A)の架橋性官能基がラジカル重合反応を生じる工程と、同工程で反応を生じる基が好ましい。
 化合物(B)の架橋性官能基は、少なくとも架橋性官能基同士が反応して架橋または鎖延長を引き起こす。また、プレポリマー(A)や重合体(C)の架橋性官能基と反応し、これらと一体となって硬化膜を形成する。
 化合物(B)の架橋性官能基としては、反応性が高く、入手が容易である点から、(メタ)アクリロイル(オキシ)基が好ましく、反応性がより高い点から、アクリロイル(オキシ)基が特に好ましい。また、架橋性官能基は、1分子中に2種以上を有していてもよい。
 なお、プレポリマー(A)、化合物(B)および重合体(C)は、それぞれ1分子中に2種以上の架橋性官能基を有していてもよい。また、硬化性組成物中に共存するプレポリマー(A)、化合物(B)および重合体(C)における架橋性官能基は、同一であってもよく、異なっていてもよい。
 化合物(B)の具体例としては、ジペンタエリスリトールトリアクリレートトリウンデシレート、ジペンタエリスリトールペンタアクリレートモノウンデシレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジメタクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、1,4-ブタンジオールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、アクリル酸2-(2-ビニロキシエトキシ)エチル、メタクリル酸2-(2-ビニロキシエトキシ)エチル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、下式(B-1)で表されるエトキシ化ペンタエリスリトールテトラアクリレート、下式(B-2)で表されるプロポキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールメタクリレート、下式(B-3)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 化合物(B)としては、ポリエステルアクリレート(二価アルコールと二塩基酸との縮合物の両末端をアクリル酸で修飾した化合物:東亞合成社製、製品名:アロニックス(M-6100、M-6200、M-6250、M-6500);多価アルコールと多塩基酸との縮合物の水酸基末端をアクリル酸で修飾した化合物:東亞合成社製、製品名:アロニックス(M-7100、M-7300K、M-8030、M-8060、M-8100、M-8530、M-8560、M-9050))も利用できる。これらは市販品から入手できる。
 本発明に用いる化合物(B)としては、入手のしやすさおよび反応性の点から、エトキシ化イソシアヌル酸トリアクリレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、トリシクロデカンジメタノールジアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートが好ましい。
 本発明の硬化性組成物が化合物(B)を含有する場合、その含有量は、プレポリマー(A)と化合物(B)との合計(100質量部)のうち、10~80質量部が好ましく、15~70質量部がより好ましく、20~60質量部が特に好ましい。含有量が上記範囲の下限値以上であると、低温で硬化しやすくなるため、硬化膜の耐溶剤性が充分に向上する。耐熱性が低い基材を用いた低温プロセスに適用できる。また、基材が大面積である場合には、基材の反りを防止できる。上記範囲の上限値以下であると、硬化膜の誘電率が充分に低くなる。
(硬化性組成物における重合体(C))
 硬化性組成物における重合体(C)は、上述した本発明の重合体である。硬化性組成物に重合体(C)を含ませることによって、硬化膜の表面の撥液性が良好になる。
 本発明における硬化性組成物中の重合体(C)の含有量は、0.01~20質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%が特に好ましい。含有量が上記範囲の下限値以上であると、硬化膜の表面が撥液性に優れる。上記範囲の上限値以下であると、硬化膜の膜物性が良好になる。
 本発明の硬化性組成物がプレポリマー(A)またはプレポリマー(A)と化合物(B)とを含有する場合、重合体(C)の含有量は、プレポリマー(A)と化合物(B)との合計(100質量部)に対して、0.1~20質量部が好ましく、0.2~15質量部が特に好ましい。
(ラジカル重合開始剤(D))
 本発明の硬化性組成物は熱硬化性であっても、光硬化性であってもよい。熱硬化性の場合は、硬化性組成物に、ラジカル重合開始剤(D)として熱重合開始剤(D1)を含ませ、光硬化性の場合は光重合開始剤(D2)を含ませる。光硬化性の硬化性組成物は、ネガ型の感光性材料として用いることができる。
 熱重合開始剤(D1)としては、公知のものを用いることができる。具体例としては、2,2’-アゾビスイソブチロニトリル、ベンゾイルペルオキシド、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジ-tert-ブチルペルオキシド、ジクミルペルオキシド等が挙げられる。分解温度の点から、2,2’-アゾビスイソブチロニトリル、ベンゾイルペルオキシドが好ましい。熱重合開始剤(D1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の硬化性組成物が熱重合開始剤(D1)を含有する場合、その含有量は、0.1~20質量%が好ましく、1~15質量%が特に好ましい。含有量が上記範囲の下限値以上であると、低温で硬化しやすくなるため、硬化膜の耐溶剤性が充分に向上する。上記範囲の上限値以下であると、硬化性組成物の貯蔵安定性が良好になる。
 光重合開始剤(D2)としては、公知のものを用いることができる。具体例としては、オキシムエステル誘導体(1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)](たとえば、チバスペシャリティケミカルズ社製、製品名:IRGACURE OXE01)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)(たとえば、チバスペシャリティケミカルズ社製、製品名:IRGACURE OXE02)等)、α-アミノアルキルフェノン系化合物(チバスペシャリティケミカルズ社製の製品名:IRGACURE 369、製品名:IRGACURE 907等)、アシルホスフィンオキシド系化合物(チバスペシャリティケミカルズ社製、製品名:DAROCUR TPO等)等が挙げられる。発生するラジカルの反応性の点から、IRGACURE OXE01、IRGACURE OXE02が好ましい。
 本発明の硬化性組成物が光重合開始剤(D2)を含有する場合、その含有量は、0.1~20質量%が好ましく、1~15質量%が特に好ましい。含有量が上記範囲の下限値以上であると、低温で硬化しやすくなるため、硬化膜の耐溶剤性が充分に向上する。上記範囲の上限値以下であると、硬化性組成物の貯蔵安定性が良好になる。
(添加剤)
 硬化性組成物には、必要に応じて安定剤類(紫外線吸収剤、酸化防止剤、熱重合防止剤等)、界面活性剤類(レベリング剤、消泡剤、沈殿防止剤、分散剤等)、可塑剤、増粘剤等のコーティング分野で周知の各種添加剤の中から選択される添加剤を、本発明の効果を損なわない範囲で配合できる。
 硬化膜が、製造工程途中で除去されずに最終製品において機能する部材として残る材料(たとえば、層間絶縁膜等)である場合に、硬化性組成物に、接着性向上剤(シランカップリング剤等)を添加してもよい。硬化性組成物に接着性向上剤を含ませると、該硬化性組成物からなる硬化膜と、これに隣接する層との接着性が向上する。該隣接する層にあらかじめ接着性向上剤を塗布する方法であっても、接着性を向上できる。
 本発明の硬化性組成物が添加剤を含有する場合、その含有量は、0.0001~30質量%が好ましく、0.0001~20質量%が特に好ましい。
(硬化性組成物の好ましい組み合わせ)
 組み合わせ1:下記のプレポリマー(A)、化合物(B)、重合体(C)および熱重合開始剤(D1)からなる硬化性組成物。
 プレポリマー(A):ペルフルオロビフェニル、1,3,5-トリヒドロキシベンゼンおよびアセトキシスチレンを縮合させたプレポリマー。硬化性組成物中のプレポリマー(A)の含有量が30~70質量部。
 化合物(B):エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレートおよびトリシクロデカンジメタノールジアクリレートからなる群から選択される1種以上。プレポリマー(A)と化合物(B)との合計(100質量部)のうち、化合物(B)が20~60質量部。
 重合体(C):単位(u1)として後述する単位(u1-1)~(u1-4)のうちの1種以上と、単位(u2)として後述する単位(u2-1)と、単位(u3)として後述する単位(u3-1)~(u3-9)のうちの1種以上とからなる重合体。硬化性組成物中の重合体(C)の含有量が0.1~5質量部。
 熱重合開始剤(D1):ベンゾイルパーオキシドおよび2,2’-アゾビスイソブチロニトリルからなる群から選択される1種以上。硬化性組成物中の熱重合開始剤(D1)の含有量が1~15質量部。
 組み合わせ2:下記のプレポリマー(A)、化合物(B)、重合体(C)および光重合開始剤(D2)からなる硬化性組成物。
 プレポリマー(A):ペルフルオロビフェニル、1,3,5-トリヒドロキシベンゼンおよびアセトキシスチレンを縮合させたプレポリマー。硬化性組成物中のプレポリマー(A)の含有量が30~70質量部。
 化合物(B):エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレートおよびトリシクロデカンジメタノールジアクリレートからなる群から選択される1種以上。プレポリマー(A)と化合物(B)との合計(100質量部)のうち、化合物(B)が20~60質量部。
 重合体(C):単位(u1)として後述する単位(u1-1)~(u1-4)のうちの1種以上と、単位(u2)として後述する単位(u2-1)と、単位(u3)として後述する単位(u3-1)~(u3-9)のうちの1種以上とからなる重合体。硬化性組成物中の重合体(C)の含有量が0.1~5質量部。
 光重合開始剤(D2):IRGACURE OXE01(チバスペシャルティケミカルズ社製)、IRGACURE OXE02(チバスペシャルティケミカルズ社製)、IRGACURE 369(チバスペシャルティケミカルズ社製)、IRGACURE 907(チバスペシャルティケミカルズ社製)、DAROCUR TPO(チバスペシャルティケミカルズ社製)からなる群から選択される1種以上。硬化性組成物中の光重合開始剤(D2)の含有量が1~15質量部。
[塗布用組成物]
 本発明の塗布用組成物は、上記硬化性組成物と溶剤(E)とを含む。塗布用組成物は、該塗布用組成物を基材の表面に塗布して塗膜を形成し、該塗膜から溶剤(E)を除去することにより、上記硬化性組成物の膜を形成するために使用される。通常、溶剤(E)の除去は、溶剤(E)を蒸発させることによって行う。したがって、溶剤(E)は、硬化性組成物中の成分よりも低沸点であることが必要である。上記(A)~(D)の成分のうち最も低沸点の化合物は、通常、化合物(B)であるので、硬化性組成物が化合物(B)を含む場合は、これよりも低沸点の溶剤(E)が使用される。逆に、化合物(B)としては、使用される溶剤(E)よりも充分に高い沸点を有する化合物を使用することが好ましい。
 なお、塗布用組成物の塗膜から溶剤(E)を除去することにより形成される、溶剤(E)を含まない上記硬化性組成物の膜を以下「乾燥膜」ともいう。乾燥膜は未硬化の上記硬化性組成物の膜である。また、乾燥膜の硬化性組成物を硬化させることにより形成される硬化した硬化性組成物の膜を以下「硬化膜」ともいう。
 溶剤(E)としては、公知のものを用いることができる。ケトン系溶剤、エステル系溶剤、エーテル系溶剤、アミド系溶剤、芳香族系溶剤等が挙げられ、具体例としては、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」ともいう。)、メシチレン、N,N-ジメチルアセトアミド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。
 塗布用組成物中の溶剤(E)の含有量は、塗布用組成物中に1~99.995質量%が好ましく、30~99.99質量%がより好ましく、50~90質量%が特に好ましい。
(塗布用組成物の好ましい組み合わせ)
 本発明の塗布用組成物としては、以下の組み合わせが好ましい。
 組み合わせ3:上記硬化性組成物の好ましい組み合わせ1と、以下の溶剤(E)からなる塗布用組成物。
 溶剤(E):PGMEAおよびシクロヘキサノンからなる群から選択される1種以上。塗布用組成物中の含有量が50~90質量%。
 組み合わせ4:上記硬化性組成物の好ましい組み合わせ2と、上記塗布用組成物の好ましい組み合わせ3に記載の溶剤(E)からなる塗布用組成物。
 また、本発明の硬化性組成物がプレポリマー(A)、化合物(B)、重合体(C)およびラジカル重合開始剤(D)を含む硬化性組成物である場合、250℃以下(好ましくは200℃以下)の加熱で充分に硬化できる。よって、加熱温度の上限値が250℃以下である工程(低温プロセス)で用いることができる。また、耐溶剤性に優れ、低誘電率であり、かつ表面の撥液性が良好である硬化膜を形成できる。
[硬化膜を有する物品]
 本発明の硬化膜を有する物品は、基材と、基材の表面に本発明の硬化性組成物を硬化させて得た硬化膜とを有する物品である。
 「基材の表面に本発明の硬化性組成物を硬化させて得た硬化膜」とは、基材の表面に硬化膜を直接形成した形態、および基材の表面に任意の層を形成し、該任意の層の上に硬化膜を形成した形態の両方を含む。
(基材)
 基材の材料としては、プラスチック、ガラス、シリコン等が挙げられる。ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド等のプラスチックを用いると、機械的な柔軟性に優れるので好ましい。
(硬化膜)
 硬化膜の厚さは、用途に応じて適宜設定でき、通常、0.1~100μm程度であり、0.2~50μmが好ましい。
[硬化膜を有する物品の製造方法]
 本発明の硬化膜を有する物品の製造方法は、下記の工程(I)~(II)を有する方法である。
 (I)基材の表面に本発明の塗布用組成物を塗布して塗膜を形成し、溶剤(E)を除去し、乾燥膜を形成する工程。
 (II)前記工程(I)で得られた乾燥膜を加熱または乾燥膜に光照射して硬化膜を形成する工程。
 「基材の表面に本発明の塗布用組成物を塗布して塗膜を形成し、溶剤(E)を除去し、乾燥膜を形成する」とは、基材の表面に乾燥膜を直接形成する形態、および基材の表面に任意の層が形成し、その表面に乾燥膜を形成する形態の両方を含む。
 なお、塗布用組成物を使用せずに硬化性組成物を用いる場合には、工程(I)は以下の工程になる。
 (I)基材の表面に本発明の硬化性組成物を塗布して塗膜を形成し、乾燥膜を形成する工程。
(工程(I))
 塗布方法としては、均一な塗膜が形成できる方法であれば特に限定されない。たとえば、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、スリットコート法、スクリーン印刷法、ラングミュア・ブロジェット法またはグラビアコート法等が挙げられる。生産性の点から、スピンコート法、インクジェット法、スリットコート法が好ましい。
 塗膜中の溶剤(E)を除去する方法としては、公知の方法が挙げられ、加熱、減圧、加熱と減圧が挙げられる。塗膜に欠陥が生じにくい点から、加熱が好ましい。加熱温度は30~200℃が好ましく、40~150℃が特に好ましい。
(工程(II))
 硬化を加熱して行う場合(熱硬化)は、基材の表面に塗布用組成物を塗布して塗膜を形成し、溶剤(E)の除去を目的とした加熱工程(プリベーク)を行い、次に加熱工程(キュア工程)を行うことによって硬化膜を得る。熱硬化の場合は、硬化のための加熱工程が、溶剤除去のための加熱工程を兼ねることができる。加熱工程(プリベーク)の加熱温度は40~200℃が好ましく、60~200℃が特に好ましい。加熱工程(キュア工程)の加熱温度は100~200℃が好ましく、120~200℃が特に好ましい。加熱工程(プリベーク)の加熱時間は1~10分が好ましく、1~5分が特に好ましい。加熱工程(キュア工程)の加熱時間は1~10分が好ましく、1~5分が特に好ましい。なお、加熱温度が200℃以下とは、加熱に供される物品の温度が200℃を超えないことを意味する。実質的には、ホットプレートやオーブン等の加熱装置の設定温度を200℃以下とすればよい。
 硬化を光照射して行う場合(光硬化)は、基材の表面に塗布用組成物を塗布して塗膜を形成し、溶剤(E)の除去を目的とした加熱工程(プリベーク)を行い、次に光を照射(露光)し、必要に応じて加熱工程(キュア工程)を行うことによって硬化膜を得る。硬化させるために照射する光は、硬化性組成物に含まれる光重合開始剤(D2)が感度を有する波長の光であればよく、特に限定されない。通常、硬化に使用する光は紫外線(波長200~400nm、好ましくは300~400nm)であるが、これに限定されない。なお、重合体(C)における単位(u1)の側鎖において分解が起こる波長の光および該波長の光に感度を有する光重合開始剤(D2)を用いないことが好ましい。
 光硬化で行う場合の加熱工程(プリベーク)の加熱温度は30~100℃が好ましく、40~100℃が特に好ましい。加熱工程(キュア工程)の加熱温度は60~200℃が好ましく、100~200℃が特に好ましい。加熱工程(プリベーク)の加熱時間は1~20分が好ましく、1~10分が特に好ましい。加熱工程(キュア工程)の加熱時間は1~20分が好ましく、1~10分が特に好ましい。
 フォトリソグラフィによる微細加工を行う場合は、フォトマスクまたはレーザを用いて光を選択的に照射(露光)することによって、照射した部分(露光部)を硬化させる。したがって、露光後に現像(未露光部を溶剤に溶解ないし分散させて除去する工程)を行って、未露光部を除去し、硬化部の残存溶剤を取り除くことによって微細加工された硬化膜が得られる。必要に応じて現像後に加熱工程(キュア工程)を行ってもよい。この場合は、該加熱工程(キュア工程)で残存溶剤を取り除くことができる。また、露光後かつ現像前に必要に応じて加熱工程(露光後ベーク)を行ってもよい。加熱工程(露光後ベーク)の加熱温度は60~200℃が好ましく、100~200℃が特に好ましい。加熱工程(露光後ベーク)の加熱時間は1~20分が好ましく、1~10分が特に好ましい。
[親液性領域と撥液性領域とのパターンを有する物品の製造方法]
 本発明の親液性領域と撥液性領域とのパターンを有する物品は、硬化膜に紫外線を照射して照射部分を親液性表面とする方法、および、乾燥膜に紫外線を照射して照射部分を親液性化し、その後に乾燥膜を硬化させて硬化膜とする方法、のいずれかによって製造される。
 すなわち、前者の方法は、基材の表面に乾燥膜を形成し、該乾燥膜を硬化させ硬化膜とし、次いで該硬化膜の表面に部分的に紫外線を照射して、前記硬化膜の表面に親液性領域と撥液性領域とのパターンを形成する方法である。後者の方法は、基材の表面に乾燥膜を形成し、該乾燥膜の表面に部分的に紫外線を照射して該乾燥膜の表面に親液性領域と撥液性領域とのパターンを形成し、次いで該乾燥膜を硬化させる方法である。
 具体的には、上記工程(I)に続いて、工程(II)として下記の工程(IIα)または工程(IIβ)を行うことにより、親液性領域と撥液性領域とのパターンを有する物品を製造することができる。すなわち、工程(IIα)または工程(IIβ)を行うことで、親液性領域と撥液性領域のパターニングを行うことができる。
 (IIα)前記工程(I)で得られた乾燥膜を加熱または乾燥膜に光照射して硬化膜を形成した後、該硬化膜の表面に部分的に紫外線を照射して、硬化膜の表面に親液性領域と撥液性領域とのパターンを有する物品を得る工程。
 (IIβ)前記工程(I)で得られた乾燥膜の表面に部分的に紫外線を照射して、乾燥膜の表面に親液性領域と撥液性領域とのパターンを形成した後、該パターンを形成した乾燥膜を加熱または該パターンを形成した乾燥膜に光照射して硬化させ、硬化膜の表面に親液性領域と撥液性領域とのパターンを有する物品を得る工程。
 工程(IIα)における、乾燥膜を加熱または乾燥膜に光照射して硬化膜を形成する条件(温度、時間)、工程(IIβ)における、パターンを形成した乾燥膜を加熱またはパターンを形成した乾燥膜に光照射して硬化させる条件(光、温度、時間)は、工程(II)において上述した通りである。
 なお、以下、紫外線が照射されなかった部分を撥液性領域、紫外線の照射によって親液化した部分を親液性領域と記す。
 親液性領域と撥液性領域とからなるパターンを形成する方法としては、乾燥膜または硬化膜の表面にフォトマスクを介して紫外線を照射する方法、または、乾燥膜または硬化膜の表面にレーザを用いて選択的に紫外線を照射する方法が挙げられる。
 紫外線の光源としては、高圧水銀灯(i線365nm)、YAGレーザ(3倍波355nm)等の波長300nm以上の紫外線を照射し得る光源を用いることができる。なお、乾燥膜または硬化膜の表面は波長300nm未満の紫外線によっても親液化できるため、波長300nm未満の紫外線を照射し得る光源を用いても構わない。
 工程(IIα)または工程(IIβ)の後、Cf基を含む分解残基を除去してもよい。たとえば、加熱または真空条件で除去することが挙げられる。
[機能性薄膜を有する物品]
 本発明の親液性領域と撥液性領域とのパターンを有する物品においては、親液性領域の表面に機能性薄膜を形成することができる。
 機能性薄膜の態様としては、電極(薄膜トランジスタ、有機EL素子)、半導体層(薄膜トランジスタ、有機EL素子)、導体層(プリント回路基板、多層配線、タッチパネル、太陽電池)、トランジスタ材料、樹脂層等が挙げられる。硬化膜が絶縁性であることから、機能性薄膜が電極である薄膜トランジスタが好ましい。
 半導体層としては、有機半導体、酸化物半導体、シリコン半導体が挙げられる。
 樹脂層としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエステル、シリコーン樹脂、ポリイミド等の熱硬化性樹脂または光硬化性樹脂、プレポリマー(A)等が挙げられる。
(有機薄膜トランジスタ)
 以下、有機薄膜トランジスタの一例を、図面を参照しながら説明する。なお、本発明の機能性薄膜の態様としては、下記の有機薄膜トランジスタに限定はされるものではない。
 図1は、有機薄膜トランジスタの一例を示す断面図である。
 有機薄膜トランジスタ10は、基材12と;基材12の表面に形成されたゲート電極14と;ゲート電極14および基材12の表面を覆うゲート絶縁膜16(硬化膜)と;ゲート絶縁膜16の表面に選択的に形成されたソース電極18およびドレイン電極20(機能性薄膜)と;ソース電極18およびドレイン電極20、ならびに該電極間のゲート絶縁膜16の表面に形成された有機半導体層22とを有する。
 基材12の材料としては、上述した材料が挙げられ、基材12の好ましい態様も同様である。
 ゲート電極14、ソース電極18およびドレイン電極20は、導電体によって形成される。導電体としては、シリコン、ドーピングを行ったシリコン、白金、金、銀、銅、クロム、アルミニウム、カルシウム、バリウム、酸化インジウムスズ、酸化インジウム亜鉛、酸化亜鉛、カーボンブラック、フラーレン類、カーボンナノチューブ、ポリチオフェン、ポリエチレンジオキシチオフェン、ポリスチレンスルホン酸、ポリアニリン、ポリピロール、ポリフルオレン等が挙げられる。導電体は、1種を単独で用いてもよく、2種以上を併用してもよい。ゲート電極14、ソース電極18およびドレイン電極20の材料は、それぞれ同じであってもよく、異なっていてもよい。
 ゲート絶縁膜16は硬化膜からなり、ゲート電極14および基材12の表面に乾燥膜を形成してそれを硬化させることにより形成される。
 ゲート絶縁膜16の膜厚(ゲート電極14が存在しない部分における厚さt)は、1nm~10μmが好ましく、2nm~5μmがより好ましく、5nm~1μmが特に好ましい。ゲート絶縁膜16の膜厚が上記範囲の下限値以上であれば、ゲート電極14とソース電極18との間に漏れ電流が生じにくい。上記範囲の上限値以下であれば、駆動電圧が抑えられる。
 有機半導体層22の材料としては、公知の低分子化合物、オリゴマー、ポリマー等が挙げられる。
 低分子化合物としては、ペンタセン、ルブレン、フタロシアニン、ペリレン、フラーレン、これらの誘導体等が挙げられる。
 オリゴマーとしては、オリゴチオフェン、その誘導体等が挙げられる。
 ポリマーとしては、ポリ-p-フェニレンビニレン(PPV)、ポリフルオレン、フルオレン-ベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、フルオレン-ジチオフェン共重合体、ポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、これらの誘導体等が挙げられる。
 有機半導体層22の膜厚は、5nm~100μmが好ましく、10nm~10μmがより好ましく、10nm~1μmが特に好ましい。
 有機薄膜トランジスタ10においては、本発明の硬化性組成物を用いてゲート絶縁膜16を形成することによって、リーク電流が低減される。また、ゲート絶縁膜16の薄膜化が可能となるため、素子の小型化が実現でき、また、トランジスタの駆動電圧を下げることができる。
 また、有機薄膜トランジスタ10は、ゲート絶縁膜16の表面が良好な撥液性を有するため、該ゲート絶縁膜16の上に設けられた有機半導体層22中の分子が配向しやすい、キャリアのトップサイトとなる極性基が表面に存在しにくい、空気中の水分等が吸着されにくい等の効果が得られる。したがって、有機薄膜トランジスタ10における電子移動度が高くなり、安定性および信頼性が向上する。
[機能性薄膜を有する物品の製造方法]
 機能性薄膜を有する物品は、上記工程(I)、工程(IIα)または工程(IIβ)、下記の工程(III)を有する方法で製造される。
 (III)前記工程(IIα)または工程(IIβ)の後、前記親液性領域(硬化膜の紫外線を照射した部分)の表面に機能性薄膜形成用組成物を選択的に付着させ、機能性薄膜を形成する工程。
 機能性薄膜形成用組成物としては、電極、半導体層、導体層、トランジスタ材料、樹脂層を形成する組成物であり、以下、「電極用組成物、半導体層用組成物、導体層用組成物、トランジスタ材料用組成物、樹脂層形成用組成物」ともいう。
 機能性薄膜形成用組成物としては、たとえば、機能性薄膜が電極である場合には、上述した導電体または該導電体の前駆体を含む塗工液が挙げられる。
 「前記親液性領域(硬化膜の紫外線を照射した部分)の表面に機能性薄膜形成用組成物を選択的に付着させ、機能性薄膜を形成する」とは、硬化膜の表面に選択的に機能性薄膜を直接形成する形態、および硬化膜の表面に選択的に任意の層を形成し、該任意の層の表面に硬化膜を形成する形態の両方を含む。
 親液性領域と撥液性領域とからなるパターンを有する硬化膜の表面に機能性薄膜形成用組成物を塗布すると、機能性薄膜形成用組成物は、親液性領域に選択的に付着し、撥液性領域には付着しない。よって、硬化膜の親液性領域の表面のみに、所定パターンの機能性薄膜(電極等)を容易に形成できる。なお、硬化膜の親液性領域の表面に付着した機能性薄膜形成用組成物を、機能性薄膜とする方法としては、公知の方法を用いればよい。
 硬化膜の撥液性領域の表面に、機能性薄膜をさらに形成してもよい。その際には、機能性薄膜の製膜性を向上させるために、フォトマスクなしの全面を露光することで撥液性領域を親液化し、次いで機能性薄膜を形成するための機能性薄膜形成用組成物を塗布し、機能性薄膜を形成してもよい。
(有機薄膜トランジスタの製造方法)
 以下、有機薄膜トランジスタの製造方法の一例を、図面を参照しながら説明する。なお、本発明の機能性薄膜を有する物品の製造方法は、上述の工程(I)、工程(IIα)または工程(IIβ)、工程(III)を有する方法であればよく、下記の有機薄膜トランジスタの製造方法に限定はされない。
 工程(I):
 図2に示すように、ゲート電極14が表面に形成された基材12を用意する。
 ゲート電極14の形成方法としては、スパッタリング、真空蒸着、スピンコート、スプレーコート、印刷、インクジェット等が挙げられる。
 次いで、ゲート電極14および基材12の表面に本発明の塗布用組成物を塗布し、溶剤(E)を除去し、乾燥膜15を形成する。なお、乾燥膜15においては、基材12の側にプレポリマー(A)由来の構造が集まり、基材12と反対側にCf基が偏在すると考えている。すなわち、乾燥膜15の表面は、撥液性を有する撥液性領域15bとなる。図中の符号15cはゲート絶縁膜16の表面以外の内部領域を示す。
 工程(IIβ):
 図2に示すように、工程(I)で得られた乾燥膜15の表面にフォトマスク(図示略)またはレーザ(図示略)を用いて部分的に紫外線(UV)を照射し、乾燥膜15の表面のCf基の少なくとも一部を脱離させて親液性領域(図示略)を形成する。このようにして、親液性領域(図示略)と撥液性領域15bとからなるパターンを形成する。なお、乾燥膜15において、親液性領域(図示略)および撥液性領域15bは、それら表面特性を示す表面の下の内部領域15cと明確に層が分かれているのではなく、厚さ方向に連続的にCf基の濃度が変化していると推測される。
 図2に示すように、パターンが形成された乾燥膜15を加熱またはパターンが形成された乾燥膜15に光照射して、親液性領域16aと撥液性領域16bとからなるパターンを有するゲート絶縁膜16(硬化膜)を形成する。なお、ゲート絶縁膜16において、親液性領域16aおよび撥液性領域16bは、それら表面特性を示す表面の下の内部領域16cと明確に層が分かれているのではなく、厚さ方向に連続的にCf基の濃度が変化していると推測される。
 工程(III): 
 親液性領域16aと撥液性領域16bとからなるパターンを有するゲート絶縁膜16(硬化膜)の表面に、導電体または該導電体の前駆体を含む塗工液を塗布すると、塗工液は、親液性領域16aに選択的に付着し、撥液性領域16bには付着しない。よって、図2に示すように、ゲート絶縁膜16の親液性領域16aの上のみに、所定パターンのソース電極18およびドレイン電極20を容易に形成できる。
 塗工液の塗布方法としては、インクジェット、ディスペンサー、印刷等が挙げられる。
 工程(IV):
 図3に示すように、少なくともソース電極18とドレイン電極20と間のゲート絶縁膜16の撥液性領域16bに、紫外線(UV)を照射し、ゲート絶縁膜16の表面のCf基の少なくとも一部を脱離させて親液性領域16aに変換する。電極間のゲート絶縁膜16の表面を親液性領域16aに変換することによって、下記の有機半導体層用組成物を電極間のゲート絶縁膜16の表面に塗布できるようになる。
 工程(V):
 図3に示すように、ソース電極18およびドレイン電極20、ならびに該電極間のゲート絶縁膜16の表面に、有機半導体層用組成物を塗布し、加熱等の公知の方法によって有機半導体層22を形成する。また、有機半導体の前駆体からなる層を形成し、その後、光や熱を加えることで該前駆体を有機半導体に変換する方法を用いてもよい。前駆体としては、シリルエチン置換ペンタセンやテトラビシクロポルフィリン誘導体が挙げられる。該前駆体は、加熱によってペンタセンやテトラベンゾポルフィリン誘導体に変換できる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 例1は合成例であり、例2-1~例2-4、例3-1~例3-20、例4-1~例4-20および例5-1~例5-20は実施例である。
(PGMEA接触角)
 硬化膜の表面における接触角の測定は、協和界面科学社製の製品名:接触角計CA-Aを用い、25℃の条件下、液滴法で行った。硬化膜の上に、約1μLのPGMEAを滴下して接触角を測定した。
[例1]
(プレポリマー(A1-1)の製造)
 ジムロートコンデンサ、熱電対温度計、メカニカルスターラの付いた10L(リットル)ガラス製4つ口フラスコに、ペルフルオロビフェニル(650g)、1,3,5-トリヒドロキシベンゼン(117g)、およびN,N-ジメチルアセトアミド(以下、「DMAc」ともいう。)(6,202g)を仕込んだ。撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(575g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、撹拌をしながら0℃に冷却し、4-アセトキシスチレン(200g)、および水酸化カリウム(532g)を添加し、0℃で24時間撹拌した後、0.5N塩酸水の約10Lに徐々に滴下し、再沈殿を行った。沈殿をろ過後、さらに純水で2回洗浄した。その後、60℃で12時間真空乾燥を行って白色粉末状のプレポリマー(A1-1)(800g)を得た。プレポリマー(A1-1)の数平均分子量(Mn)は10,000であった。
[例2-1]
(化合物(m1-1)の製造)
 下式で表される反応を行った。4-ヒドロキシベンゼンチオールの17.7gと4’-ブロモプロピオフェノンの20.0gをDMAcの151gに溶解し、溶液を得た。該溶液を80℃で撹拌しながら、該溶液に炭酸カリウムの25.9gを添加した。80℃で12時間撹拌し、化合物(a1-1)の溶液を得た。次いで、得られた化合物(a1-1)の溶液を水に投入し、沈殿物を真空乾燥して化合物(a1-1)の24.0gを得た。
 化合物(a1-1)の20.0gとトリエチルアミンの19.0gをテトラヒドロフラン(以下、「THF」ともいう。)の100gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、該溶液に化合物(b1-1)の9.3gを滴下して加えた。さらに0℃で1時間撹拌し、化合物(c1-1)の溶液を得た。次いで、得られた化合物(c1-1)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(c1-1)の28.0gを得た。
 化合物(c1-1)の25.0gと亜硝酸イソアミルの15.0gと35質量%塩酸水溶液の12.5gをTHFの125gに溶解し、溶液を得た。該溶液を室温で3日間撹拌し、化合物(d1-1)の溶液を得た。次いで、得られた化合物(d1-1)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(d1-1)の25.0gを得た。
 無水フタル酸の7.5g、1H,1H,2H,2H-ペルフルオロオクタノールの20.0g、4-ジメチルアミノピリジンの8.9g、トリエチルアミンの7.5gを、ジクロロメタンの200gに溶解し、溶液を得た。該溶液を室温で5時間撹拌し、化合物(e1-1)の溶液を得た。次いで、得られた化合物(e1-1)の溶液を1N塩酸で3回、水で1回洗浄した。有機相を真空乾燥して化合物(e1-1)の25.0gを得た。
 化合物(d1-1)の7.5gとジイソプロピルカルボジイミドの3.3gをTHFの50gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、化合物(e1-1)の13.5gをTHFの13gに溶解した溶液を滴下して加えた。さらに0℃で1時間撹拌した後、室温で5時間撹拌し、化合物(m1-1)の溶液を得た。該溶液からエバポレータで溶媒を除去した後、真空乾燥して化合物(m1-1)の18gを得た。
 化合物(m1-1)の同定は、H-NMRおよび19F-NMRにより行った。
 化合物(m1-1)のNMRスペクトル;
 H‐NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):2.11(s、3H)、2.54(m、2H)、4.60(t、J=6.3、2H)、5.88(m、1H)、6.12(m、1H)、6.46(m、1H)、7.19(m、5H)、7.86(m、7H)。
 19F‐NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):-126.6(m、2F)、-124.0(m、4F)、-123.3(m、2F)、-122.3(m、2F)、-114.0(m、2F)、-81.2(m、3F)。
Figure JPOXMLDOC01-appb-C000011
[例2-2]
(化合物(m1-2)の製造)
 下式で表される反応を行った。例2-1で得た化合物(a1-1)の20.2gとトリエチルアミンの9.7gをTHFの89gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、該溶液に化合物(b1-2)の9.0gを滴下して加えた。さらに0℃で1時間撹拌した後、室温で3.5時間撹拌し、化合物(c1-2)の溶液を得た。次いで、得られた化合物(c1-2)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(c1-2)の26.6gを得た。
 化合物(c1-2)の20.0gと亜硝酸イソアミルの10.9gと35質量%塩酸水溶液の5.0gをTHFの107gに溶解し、溶液を得た。該溶液を室温で1日間撹拌し、化合物(d1-2)の溶液を得た。次いで、得られた化合物(d1-2)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(d1-2)の14.2gを得た。
 化合物(d1-2)の10.0gとジイソプロピルカルボジイミドの5.5gをTHFの70gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、化合物(e1-1)の21.8gをTHFの20gに溶解した溶液を滴下して加えた。さらに0℃で1時間撹拌した後、室温で20時間撹拌し、化合物(m1-2)の懸濁液を得た。該懸濁液をろ過し、得られた溶液からエバポレータで溶媒を除去した後、真空乾燥して化合物(m1-2)の15.0gを得た。
 化合物(m1-2)の同定は、H-NMRおよび19F-NMRにより行った。
 化合物(m1-2)のNMRスペクトル;
 H‐NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):2.11(s、3H)、2.28(s、3H)、2.54(m、2H)、4.60(t、J=6.3、2H)、5.88(s、1H)、6.38(s、1H)、7.20(m、5H)、7.86(m、7H)。
 19F‐NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):-126.6(m、2F)、-124.0(m、4F)、-123.3(m、2F)、-122.3(m、2F)、-114.0(m、2F)、-81.2(m、3F)。
Figure JPOXMLDOC01-appb-C000012
[例2-3]
(化合物(m1-3)の製造)
 無水コハク酸の3.5g、1H,1H,2H,2H-ペルフルオロオクタノールの13.7g、4-ジメチルアミノピリジンの1.1g、トリエチルアミンの5.4gを、ジクロロメタンの106gに溶解し、溶液を得た。該溶液を室温で17時間撹拌し、化合物(e1-2)の溶液を得た。次いで、得られた化合物(e1-2)の溶液を1N塩酸で3回、水で1回洗浄した。有機相を真空乾燥して化合物(e1-2)の15.7gを得た。
 下式で表される反応を行った。例2-2で得た化合物(d1-2)の5.1gとジイソプロピルカルボジイミドの2.7gをTHFの30gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、化合物(e1-2)の9.7gをTHFの10gに溶解した溶液を滴下して加えた。さらに0℃で1時間撹拌した後、室温で19時間撹拌し、化合物(m1-3)の溶液を得た。該溶液からエバポレータで溶媒を除去した後、真空乾燥して化合物(m1-3)の9.7gを得た。
 化合物(m1-3)の同定は、H-NMRおよび19F-NMRにより行った。
 化合物(m1-3)のNMRスペクトル;
 H‐NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):2.11(s、3H)、2.28(s、3H)、2.54(m、2H)、2.80(m、4H)、4.60(t、J=6.3、2H)、5.88(s、1H)、6.38(s、1H)、7.19(m、4H)、7.55(m、2H)、7.98(m、2H)。
 19F‐NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):-126.6(m、2F)、-124.0(m、4F)、-123.3(m、2F)、-122.3(m、2F)、-114.0(m、2F)、-81.2(m、3F)。
Figure JPOXMLDOC01-appb-C000013
[例2-4]
(化合物(m1-4)の製造)
 無水コハク酸の5g、2,2-ジフルオロ-2(1,1,2,2-テトラフルオロ-2-(2-ペルフルオロエトキシ)エタノールの18.6g、4-ジメチルアミノピリジンの1.5g、トリエチルアミンの7.6gを、ジクロロメタンの113gに溶解し、溶液を得た。該溶液を室温で17時間撹拌し、化合物(e1-3)の溶液を得た。次いで、得られた化合物(e1-3)の溶液を1N塩酸で3回、水で1回洗浄した。有機相を真空乾燥して化合物(e1-3)の21.4gを得た。
 下式で表される反応を行った。例2-2で得た化合物(d1-2)の12gとジイソプロピルカルボジイミドの5.6gをTHFの81gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、化合物(e1-3)の17.5gをTHFの20gに溶解した溶液を滴下して加えた。さらに0℃で1時間撹拌した後、室温で19時間撹拌し、化合物(m1-4)の溶液を得た。該溶液からエバポレータで溶媒を除去した後、真空乾燥して化合物(m1-4)の21gを得た。
 化合物(m1-4)の同定は、H-NMRおよび19F-NMRにより行った。
 化合物(m1-4)のNMRスペクトル;
 H‐NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):2.27(s、3H)、2.88(m、7H)、4.76(t、J=9.9、2H)、5.88(s、1H)、6.34(s、1H)、7.30(m、4H)、7.65(m、2H)、8.03(m、2H)。
 19F‐NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):-88.1(m、6F)、-86.4(m、3F)、-76.6(m、2F)。
Figure JPOXMLDOC01-appb-C000014
[例3-1]
(重合体(C-1)の製造)
 2-ブタノンの20.0g中にて、化合物(m1-1)の9.8gおよび2-ヒドロキシエチルメタクリレートの1.5gを、n-ドデシルメルカプタンの0.34gおよび2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-70)の0.05gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの1.7g、ジブチル錫ジラウレートの0.007gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.084gを加え、40℃で24時間反応させて下式の単位(u1-1)および単位(u2-1)を有する重合体(C-1)の2-ブタノン溶液を得た。得られた重合体(C-1)の2-ブタノン溶液をヘキサンに投入し、沈殿物を真空乾燥して粉末状の重合体(C-1)の10.1gを得た。重合体(C-1)におけるフッ素含有量は22.3質量%、数平均分子量(Mn)は8,000であった。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000015
[例3-2]
(重合体(C-2)の製造)
 2-ブタノンの2.7g中にて、化合物(m1-2)の1.0gおよび2-ヒドロキシエチルメタクリレートの0.15gを、n-オクタデシルメルカプタンの0.33gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.005gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.17g、ジブチル錫ジラウレートの0.0007gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.008gを加え、40℃で24時間反応させて下式の単位(u1-2)および単位(u2-1)を有する重合体(C-2)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-2)の1.18gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000016
[例3-3]
(重合体(C-3)の製造)
 2-ブタノンの2.7g中にて、化合物(m1-2)の1.0g、2-ヒドロキシエチルメタクリレートの0.12gおよびメタクリル酸の0.02gを、n-オクタデシルメルカプタンの0.33gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.13g、ジブチル錫ジラウレートの0.0005gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.007gを加え、40℃で24時間反応させて下式の単位(u1-2)、単位(u2-1)および単位(u3-1)を有する重合体(C-3)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-3)の0.99gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000017
[例3-4]
(重合体(C-4)の製造)
 2-ブタノンの2.7g中にて、化合物(m1-2)の1.0g、2-ヒドロキシエチルメタクリレートの0.12gおよび2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.07gを、n-オクタデシルメルカプタンの0.03gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.13g、ジブチル錫ジラウレートの0.0005gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.007gを加え、40℃で24時間反応させて下式の単位(u1-2)、単位(u2-1)および単位(u3-2)を有する重合体(C-4)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-4)の1.06gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000018
[例3-5]
(重合体(C-5)の製造)
 2-ブタノンの2.2g中にて、化合物(m1-3)の0.8gおよび2-ヒドロキシエチルメタクリレートの0.13gを、n-オクタデシルメルカプタンの0.03gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.14g、ジブチル錫ジラウレートの0.0006gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.007gを加え、40℃で24時間反応させて下式の単位(u1-3)および単位(u2-1)を有する重合体(C-5)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-5)の0.89gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000019
[例3-6]
(重合体(C-6)の製造)
 2-ブタノンの2.2g中にて、化合物(m1-3)の0.8g、2-ヒドロキシエチルメタクリレートの0.08gおよび2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.11gを、n-オクタデシルメルカプタンの0.02gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.003gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.08g、ジブチル錫ジラウレートの0.0003gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.004gを加え、40℃で24時間反応させて下式の単位(u1-3)、単位(u2-1)および単位(u3-2)を有する重合体(C-6)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-6)の0.86gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-C000020
[例3-7]
(重合体(C-7)の製造)
 2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.11gを、RUVA-93(大塚化学社製)の0.13gに変更した以外は、例3-6と同様にして、下式の単位(u1-3)、単位(u2-1)および単位(u3-3)を有する粉末状の重合体(C-7)の0.93gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-C000021
[例3-8]
(重合体(C-8)の製造)
 2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.11gを、SA(新中村化学社製)の0.09gに変更した以外は、例3-6と同様にして、下式の単位(u1-3)、単位(u2-1)および単位(u3-4)を有する粉末状の重合体(C-8)の0.82gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-C000022
[例3-9]
(重合体(C-9)の製造)
 2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.11gを、オクチルアクリレートの0.07gに変更した以外は、例3-6と同様にして、下式の単位(u1-3)、単位(u2-1)および単位(u3-5)を有する粉末状の重合体(C-9)の0.82gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-C000023
[例3-10]
(重合体(C-10)の製造)
 2-(1H-ベンゾ[d][1,2,3]トリアゾール-1-カルボキシアミド)エチルメタクリレートの0.11gを、デシルアクリレートの0.096gに変更した以外は、例3-6と同様にして、下式の単位(u1-3)、単位(u2-1)および単位(u3-6)を有する粉末状の重合体(C-10)の0.95gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
[例3-11]
(重合体(C-11)の製造)
 2-ブタノンの2.4g中にて、化合物(m1-4)の0.9gおよび2-ヒドロキシエチルメタクリレートの0.10gを、n-オクタデシルメルカプタンの0.03gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.11g、ジブチル錫ジラウレートの0.0004gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.006gを加え、40℃で24時間反応させて後述の単位(u1-4)および単位(u2-1)を有する重合体(C-11)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-11)の0.82gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表2に示した
[例3-12]
(重合体(C-12)の製造)
 2-ブタノンの2.1g中にて、化合物(m1-4)の0.7gおよび2-ヒドロキシエチルメタクリレートの0.18gを、n-オクタデシルメルカプタンの0.03gおよびV-65の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.19g、ジブチル錫ジラウレートの0.0008gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.010gを加え、40℃で24時間反応させて後述の単位(u1-4)および単位(u2-1)を有する重合体(C-12)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-12)の0.93gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表2に示した。
[例3-13]
(重合体(C-13)の製造)
 2-ブタノンの2.3g中にて、化合物(m1-4)の0.9g、2-ヒドロキシエチルメタクリレートの0.03gおよびスチレンの0.06gを、n-オクタデシルメルカプタンの0.03gおよびV-65の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.03g、ジブチル錫ジラウレートの0.0001gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.001gを加え、40℃で24時間反応させて後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-7)を有する重合体(C-13)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-13)の0.62gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表2に示した。
[例3-14]
(重合体(C-14)の製造)
 2-ブタノンの2.3g中にて、化合物(m1-4)の0.8g、2-ヒドロキシエチルメタクリレートの0.03gおよびスチレンの0.14gを、n-オクタデシルメルカプタンの0.04gおよびV-65の0.005gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.04g、ジブチル錫ジラウレートの0.0001gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.002gを加え、40℃で24時間反応させて後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-7)を有する重合体(C-14)の2-ブタノン溶液を得た。例3-1と同様にして、粉末状の重合体(C-14)の0.57gを得て、フッ素含有量および数平均分子量(Mn)を測定した。結果を表2に示した。
[例3-15]
(重合体(C-15)の製造)
 スチレンの0.06gを、ヘキシルメタクリレートの0.10gに変更した以外は、例3-13と同様にして、後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-8)を有する粉末状の重合体(C-15)の0.67gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
[例3-16]
(重合体(C-16)の製造)
 スチレンの0.14gを、ヘキシルメタクリレートの0.22gに変更した以外は、例3-14と同様にして、後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-8)を有する粉末状の重合体(C-16)の0.57gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
[例3-17]
(重合体(C-17)の製造)
 スチレンの0.06gを、ドデシルメタクリレートの0.15gに変更した以外は、例3-13と同様にして、後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-9)を有する粉末状の重合体(C-17)の0.70gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
[例3-18]
(重合体(C-18)の製造)
 スチレンの0.14gを、ドデシルメタクリレートの0.33gに変更した以外は、例3-14と同様にして、後述の単位(u1-4)、単位(u2-1)および後述の単位(u3-9)を有する粉末状の重合体(C-18)の0.11gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
[例3-19]
(重合体(C-19)の製造)
 スチレンの0.06gを、RUVA-93の0.19gに変更した以外は、例3-13と同様にして、後述の単位(u1-4)、単位(u2-1)および前述の単位(u3-3)を有する粉末状の重合体(C-19)の0.89gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
[例3-20]
(重合体(C-20)の製造)
 スチレンの0.14gを、RUVA-93の0.42gに変更した以外は、例3-14と同様にして、後述の単位(u1-4)、単位(u2-1)および前述の単位(u3-3)を有する粉末状の重合体(C-20)の1.11gを得た。フッ素含有量および数平均分子量(Mn)を測定し、結果を表2に示した。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-T000027
[例4-1]
(塗布用組成物の製造)
 プレポリマー(A1-1)の1.2g、化合物(B)であるジペンタエリスリトールヘキサアクリレート(数平均分子量(Mn):578)の0.8g、例3-1で製造した重合体(C-1)の0.01gおよび熱重合開始剤(D1)であるベンゾイルペルオキシドの0.2gを、PGMEAの8.0gに溶解させ、塗布用組成物(1)を製造した。
[例4-2~例4-20]
(塗布用組成物の製造)
 化合物(B)としてジトリメチロールプロパンヘキサアクリレートを使用し、重合体として(C-2)~(C-20)を使用した以外は例4-1と同様にして、塗布用組成物(2)~(20)を製造した。
[例5-1~例5-20]
(硬化膜を有する物品の製造)
 ガラス基材(コーニング社製、縦×横は50mm×50mm、厚さは0.725mm)の上に例4-1~例4-20で製造した塗布用組成物を毎分1,000回転、30秒にてスピンコートし、塗膜を得た。次いで、該塗膜付きガラス基材を60℃のホットプレートを用いて90秒加熱し、膜厚1μmの乾燥膜を形成した。
 乾燥膜の表面に、マスクパターンを介して紫外線(i線365nm)を部分的に照射した。紫外線の照射は、SUSS社製の製品名:MA-8を用い、照射条件は1J/cmとした。該装置および条件では、波長350nm以下の紫外線は照射されない。
 次いで、パターンが形成された乾燥膜付きガラス基材を150℃のオーブンを用いて30分加熱し、パターンが形成された乾燥膜を硬化させた。
 紫外線が照射された部分のPGMEA接触角および紫外線が照射されなかった部分のPGMEA接触角を測定した。結果を表3および4に示した。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 本発明の重合体(C)は、波長300nm以上の紫外線の照射によって分子内で分解が起こり、フルオロアルキル基を含む分解残渣が脱離できた。
 また、本発明の重合体(C)を含む硬化性組成物を用いて、親液性領域と撥液性領域とのパターンを有する物品を製造できた。
 特に、Rが-(CHw3COO(CHw4-である化合物(m1)に基づく単位を有する重合体(C)を含む硬化性組成物を用いた場合、紫外線が照射されなかった部分のPGMEA接触角が大きくなり、親液性領域と撥液性領域との(例5-5~5-20の)PGMEA接触角の差が著しくなった。すなわち、より親液性領域と撥液性領域との撥液性の差が大きなパターンを形成することができた。
 本発明の硬化性組成物からなる硬化膜の用途としては、各種電子素子(半導体素子等)等における、電気的絶縁膜、化学的ないし物理的保護膜、非付着性膜等が挙げられる。具体的には、フレキシブルデバイス用層間絶縁膜、フレキシブルデバイスの保護膜、有機薄膜トランジスタのゲート絶縁膜、酸化物薄膜トランジスタのゲート絶縁膜、キャパシタ絶縁膜、メモリトランジスタのゲート絶縁膜、半導体のパッシベーション、半導体素子の保護膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層、再配線用絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜、カラーフィルタ用保護膜、半導体素子等の樹脂ポスト、カラーフィルタ等の隔壁等が挙げられる。
 なお、2012年1月31日に出願された日本特許出願2012-018086号および2012年3月26日に出願された日本特許出願2012-069928号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 有機薄膜トランジスタ
 12 基材
 14 ゲート電極
 15 乾燥膜
 15b 撥液性領域
 15c 内部領域
 16 ゲート絶縁膜
 16a 親液性領域
 16b 撥液性領域
 16c 内部領域
 18 ソース電極
 20 ドレイン電極
 22 有機半導体層

Claims (15)

  1.  下式(m1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     ただし、
     Rは、水素原子、炭素数1~6のアルキル基またはフェニル基であり、
     Rは、単結合またはフッ素原子を有しない2価の有機基であり、
     Cfは、炭素数1~20のフルオロアルキル基、または炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキル基であり、
     Xは、酸素原子、硫黄原子、窒素原子またはNHであり、
     mは、Xが酸素原子、硫黄原子またはNHである場合には1であり、Xが窒素原子である場合には2であり、
     nは、0~4の整数であり、
     kは、0または1であり、
     Zは、RC=CR-CO-であり、
     R、RおよびRは、それぞれ独立に水素原子またはメチル基である。
  2.  前記Rが、単結合、-(CHw0-(ただし、w0は1~6の整数である。)、-C-、-CO(CHw1-(ただし、w1は0~10の整数である。)、-CCOO(CHw2-(ただし、w2は0~10の整数である。)、-(CHw3COO(CHw4-(ただし、w3は1~10の整数であり、w4は0~10の整数である。)、-CHO(CHw5-(ただし、w5は0~10の整数である。)、または-CH(CH)O(CHw6-(ただし、w6は0~10の整数である。)である、請求項1に記載の化合物。
  3.  請求項1または2に記載の化合物に基づく単位(u1)を有する重合体。
  4.  架橋性官能基を有し、かつCf基を有しない単位(u2)をさらに有する、請求項3に記載の重合体。
  5.  請求項3または4に記載の重合体を含むことを特徴とする硬化性組成物。
  6.  ラジカル重合開始剤(D)をさらに含む、請求項5に記載の硬化性組成物。
  7.  架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)をさらに含む、請求項5または6に記載の硬化性組成物。
  8.  数平均分子量が140~5,000であり、架橋性官能基を有し、フッ素原子を有しない化合物(B)をさらに含む、請求項7に記載の硬化性組成物。
  9.  前記含フッ素ポリアリーレンプレポリマー(A)が、架橋性官能基およびフェノール性水酸基を有する化合物(x1)ならびに架橋性官能基およびフッ素原子置換芳香環を有する化合物(x2)のいずれか一方または両方と、下式(y)で表される化合物(y)と、フェノール性水酸基を3個以上有する化合物(z)とを、脱ハロゲン化水素剤の存在下に縮合反応させて得られた、架橋性官能基およびエーテル結合を有するプレポリマーである、請求項5~8のいずれか一項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
     ただし、cは、0~3の整数であり、aは、0~3の整数であり、bは、0~3の整数であり、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、Rfは、炭素数8以下のフルオロアルキル基であり、Rfが複数の場合、複数のRfは同一であってもよく異なっていてもよく、芳香環内のFは、該芳香環の水素原子が全てフッ素原子で置換されていることを表す。
  10.  請求項5~9のいずれか一項に記載の硬化性組成物と溶剤(E)とを含むことを特徴とする塗布用組成物。
  11.  基材と、基材の表面に請求項5~9のいずれか一項に記載の硬化性組成物を硬化させて得た硬化膜を有することを特徴とする物品。
  12.  硬化膜の表面に親液性領域と撥液性領域とのパターンを有する物品であって、該撥液性領域が請求項5~9のいずれか一項に記載の硬化性組成物を硬化させて得た硬化膜からなることを特徴とする物品。
  13.  前記親液性領域の表面に電極、半導体層、導体層、トランジスタ材料および樹脂層からなる群から選択される1種以上がさらに形成された、請求項12に記載の物品。
  14.  親液性領域と撥液性領域とのパターンを有する物品を製造する方法であって、基材の表面に請求項5~9のいずれか一項に記載の硬化性組成物の膜を形成し、前記硬化性組成物の膜を硬化させ硬化膜とし、次いで前記硬化膜の表面に部分的に紫外線を照射して、前記硬化膜の表面に親液性領域と撥液性領域とのパターンを形成することを特徴とする親液性領域と撥液性領域とのパターンを有する物品の製造方法。
  15.  親液性領域と撥液性領域とのパターンを有する物品を製造する方法であって、基材の表面に請求項5~9のいずれか一項に記載の硬化性組成物の膜を形成し、前記硬化性組成物の膜の表面に部分的に紫外線を照射して該膜の表面に親液性領域と撥液性領域とのパターンを形成し、次いで前記硬化性組成物を硬化させることを特徴とする親液性領域と撥液性領域とのパターンを有する物品の製造方法。
PCT/JP2013/051928 2012-01-31 2013-01-29 化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法 WO2013115195A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021274A KR20140120894A (ko) 2012-01-31 2013-01-29 화합물, 중합체, 경화성 조성물, 도포용 조성물, 그리고 경화막을 갖는 물품, 친액성 영역과 발액성 영역의 패턴을 갖는 물품 및 그 제조 방법
EP13743801.6A EP2810962A4 (en) 2012-01-31 2013-01-29 COMPOUND, POLYMER, HARDENING COMPOSITION, COATING COMPOSITION, ARTICLES WITH A HARDENED FILM, ARTICLES WITH A PATTERN FROM LYOPHILIC REGIONS AND LYOPHOBIC REGIONS, AND METHOD OF PRODUCTION THEREOF
CN201380007260.5A CN104080822B (zh) 2012-01-31 2013-01-29 化合物、聚合物、固化性组合物、涂布用组合物、以及具有固化膜的物品、具有亲液性区域和拒液性区域的图案的物品及其制造方法
US14/296,606 US20140287200A1 (en) 2012-01-31 2014-06-05 Compound, polymer, curable composition, coating composition, article having cured film, article having pattern of liquid-philic region and liquid repellent region, and process for producing it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-018086 2012-01-31
JP2012018086 2012-01-31
JP2012-069928 2012-03-26
JP2012069928 2012-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/296,606 Continuation US20140287200A1 (en) 2012-01-31 2014-06-05 Compound, polymer, curable composition, coating composition, article having cured film, article having pattern of liquid-philic region and liquid repellent region, and process for producing it

Publications (1)

Publication Number Publication Date
WO2013115195A1 true WO2013115195A1 (ja) 2013-08-08

Family

ID=48905230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051928 WO2013115195A1 (ja) 2012-01-31 2013-01-29 化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法

Country Status (7)

Country Link
US (1) US20140287200A1 (ja)
EP (1) EP2810962A4 (ja)
JP (1) JPWO2013115195A1 (ja)
KR (1) KR20140120894A (ja)
CN (1) CN104080822B (ja)
TW (1) TW201335228A (ja)
WO (1) WO2013115195A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016330A1 (ja) * 2013-08-02 2015-02-05 ダイキン工業株式会社 不飽和基を有する新規化合物及びこの化合物を含む組成物
WO2016063943A1 (ja) * 2014-10-24 2016-04-28 旭硝子株式会社 隔壁用硬化性組成物、隔壁、隔壁の製造方法、隔壁の修復方法、修復された隔壁、および光学素子
US10066108B2 (en) 2013-08-02 2018-09-04 Daikin Industries, Ltd. Composition including fluorine-containing polymer comprising at least one type of group selected from group comprising polymerizable functional groups and cross-linkable functional groups; and coated article

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099451A (ko) * 2011-11-18 2014-08-12 아사히 가라스 가부시키가이샤 경화성 조성물, 도포용 조성물, 경화막, 레이저 가공 방법 및 다층 배선 구조체의 제조 방법
US20140370451A1 (en) * 2013-06-18 2014-12-18 Tokyo Ohka Kogyo Co., Ltd. Heating apparatus and heating method
US10669376B2 (en) * 2016-03-31 2020-06-02 Nissan Chemical Corporation Cured film-forming composition
WO2018151073A1 (ja) * 2017-02-14 2018-08-23 日産化学工業株式会社 配線形成方法
US10544260B2 (en) 2017-08-30 2020-01-28 Ppg Industries Ohio, Inc. Fluoropolymers, methods of preparing fluoropolymers, and coating compositions containing fluoropolymers
CN112166133B (zh) * 2018-05-30 2022-05-10 Dic株式会社 (甲基)丙烯酸酯化合物、固化性组合物、固化物及物品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108837A (ja) * 1983-11-17 1985-06-14 Fuji Photo Film Co Ltd 酸プレカ−サ−
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2004212900A (ja) * 2003-01-08 2004-07-29 Dainippon Printing Co Ltd パターン形成体の製造方法
WO2005054256A1 (ja) 2003-12-04 2005-06-16 Asahi Glass Company, Limited 含フッ素化合物、撥水性組成物および薄膜
JP2005310962A (ja) 2003-06-02 2005-11-04 Ricoh Co Ltd 積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示装置
JP2008203782A (ja) * 2007-02-22 2008-09-04 Fujifilm Corp パターン形成材料
WO2008133300A1 (ja) 2007-04-25 2008-11-06 Nissan Chemical Industries, Ltd. ポリイミド前駆体及びポリイミド並びに画像形成下層膜塗布液
JP4300012B2 (ja) 2002-10-16 2009-07-22 大日本印刷株式会社 多層配線基板
JP2011132215A (ja) * 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011161434A (ja) * 2010-01-13 2011-08-25 Kawamura Institute Of Chemical Research 撥水性及び親水性の領域を有するパターン化膜、及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152332B2 (ja) * 2008-07-03 2013-02-27 旭硝子株式会社 感光性組成物、隔壁、カラーフィルタ及び有機el素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108837A (ja) * 1983-11-17 1985-06-14 Fuji Photo Film Co Ltd 酸プレカ−サ−
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP4300012B2 (ja) 2002-10-16 2009-07-22 大日本印刷株式会社 多層配線基板
JP2004212900A (ja) * 2003-01-08 2004-07-29 Dainippon Printing Co Ltd パターン形成体の製造方法
JP2005310962A (ja) 2003-06-02 2005-11-04 Ricoh Co Ltd 積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示装置
WO2005054256A1 (ja) 2003-12-04 2005-06-16 Asahi Glass Company, Limited 含フッ素化合物、撥水性組成物および薄膜
JP2008203782A (ja) * 2007-02-22 2008-09-04 Fujifilm Corp パターン形成材料
WO2008133300A1 (ja) 2007-04-25 2008-11-06 Nissan Chemical Industries, Ltd. ポリイミド前駆体及びポリイミド並びに画像形成下層膜塗布液
JP2011132215A (ja) * 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011161434A (ja) * 2010-01-13 2011-08-25 Kawamura Institute Of Chemical Research 撥水性及び親水性の領域を有するパターン化膜、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2810962A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016330A1 (ja) * 2013-08-02 2015-02-05 ダイキン工業株式会社 不飽和基を有する新規化合物及びこの化合物を含む組成物
JP5673885B1 (ja) * 2013-08-02 2015-02-18 ダイキン工業株式会社 不飽和基を有する新規化合物及びこの化合物を含む組成物
US10066108B2 (en) 2013-08-02 2018-09-04 Daikin Industries, Ltd. Composition including fluorine-containing polymer comprising at least one type of group selected from group comprising polymerizable functional groups and cross-linkable functional groups; and coated article
WO2016063943A1 (ja) * 2014-10-24 2016-04-28 旭硝子株式会社 隔壁用硬化性組成物、隔壁、隔壁の製造方法、隔壁の修復方法、修復された隔壁、および光学素子
JPWO2016063943A1 (ja) * 2014-10-24 2017-08-03 旭硝子株式会社 隔壁用硬化性組成物、隔壁、隔壁の製造方法、隔壁の修復方法、修復された隔壁、および光学素子
CN107113937A (zh) * 2014-10-24 2017-08-29 旭硝子株式会社 分隔壁用固化性组合物、分隔壁、分隔壁的制造方法、分隔壁的修复方法、经修复的分隔壁、以及光学元件
JP2020182948A (ja) * 2014-10-24 2020-11-12 Agc株式会社 隔壁の修復方法、修復された隔壁、および光学素子

Also Published As

Publication number Publication date
CN104080822A (zh) 2014-10-01
US20140287200A1 (en) 2014-09-25
TW201335228A (zh) 2013-09-01
KR20140120894A (ko) 2014-10-14
EP2810962A4 (en) 2015-11-04
EP2810962A1 (en) 2014-12-10
JPWO2013115195A1 (ja) 2015-05-11
CN104080822B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5983628B2 (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
WO2013115195A1 (ja) 化合物、重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
JP5861764B2 (ja) 非付着性付与剤
US10241404B2 (en) Photosensitive resin composition, production method for resin film, production method for organic semiconductor element, and fluorine-containing polymer
WO2014199958A1 (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
WO2015002204A1 (ja) 有機トランジスタ素子の製造方法
WO2014024932A1 (ja) ガラスシート積層体およびガラスシート積層体の製造方法
JP6119753B2 (ja) 硬化性組成物および硬化膜の製造方法
JP2014129457A (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556420

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013743801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021274

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE