WO2014024932A1 - ガラスシート積層体およびガラスシート積層体の製造方法 - Google Patents

ガラスシート積層体およびガラスシート積層体の製造方法 Download PDF

Info

Publication number
WO2014024932A1
WO2014024932A1 PCT/JP2013/071400 JP2013071400W WO2014024932A1 WO 2014024932 A1 WO2014024932 A1 WO 2014024932A1 JP 2013071400 W JP2013071400 W JP 2013071400W WO 2014024932 A1 WO2014024932 A1 WO 2014024932A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
glass sheet
curable composition
cured film
Prior art date
Application number
PCT/JP2013/071400
Other languages
English (en)
French (fr)
Inventor
伊藤 昌宏
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014529537A priority Critical patent/JPWO2014024932A1/ja
Publication of WO2014024932A1 publication Critical patent/WO2014024932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a glass sheet laminate and a method for producing the glass sheet laminate.
  • a cover glass is used on the surface of a display member such as a liquid crystal display or a portable terminal for protection. Moreover, the cover glass is similarly used for the surface of photoelectric conversion elements, such as a solar cell and LED, for protection similarly. These are applications utilizing the excellent durability and transparency of glass.
  • the present invention is an object to provide a laminate that solves the above problems, is thin and lightweight, has excellent gas barrier properties, flexibility, durability, and flatness.
  • the present invention provides a glass sheet laminate, a protective plate, a semiconductor device, and a method for producing a glass sheet laminate having the following configurations [1] to [15].
  • the fluorine-containing polyarylene prepolymer (A) comprises a fluorine-containing aromatic compound having a fluorine atom bonded to a carbon atom of an aromatic ring, a phenol compound having two or more phenolic hydroxyl groups, and a crosslinkable functional group.
  • the glass according to [2] which is a prepolymer obtained by reacting an aromatic compound containing a reactive group capable of reacting in the presence of a dehydrohalogenating agent in the presence of a dehydrohalogenating agent. Sheet laminate.
  • the fluorine-containing aromatic compound is perfluoro (1,3,5-triphenylbenzene) or perfluorobiphenyl, and the phenolic compound is 1,3,5-trihydroxybenzene or 1,1,1-tris.
  • the curable composition contains a compound (B) having two or more crosslinkable functional groups and having no fluorine atom and a number average molecular weight of 140 to 3,000.
  • the glass sheet laminated body in any one of.
  • the curable composition may have an etheric oxygen atom between carbon atoms, a fluoroalkyl group having 20 or less carbon atoms, or an etheric oxygen atom between carbon atoms.
  • [1] to [6] including a compound (C) having an alkyl group having 6 to 24 carbon atoms and a crosslinkable functional group and having a number average molecular weight of more than 3,000 and not more than 50,000.
  • the glass sheet laminated body in any one of.
  • a protective plate having the glass sheet laminate of any one of [1] to [10].
  • a semiconductor device having the glass sheet laminate of any one of [1] to [10] as a base material.
  • [13] Forming a coating film of a liquid coating composition containing a curable composition containing a fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group on a glass sheet having a thickness of 10 to 500 ⁇ m And the manufacturing method of the glass sheet laminated body characterized by heat-curing or photocuring the said coating film and forming a cured film.
  • the liquid coating composition is a curable composition containing a solvent, and after forming a coating film of the curable composition containing the solvent and removing the solvent, the coating film of the curable composition is cured.
  • the glass sheet laminate according to [13] or [14] which has one or more heating steps, and all heating temperatures in the heating step are 250 ° C. or less. Manufacturing method.
  • the glass sheet laminate of the present invention is thin and lightweight, excellent in gas barrier properties, flexibility and durability, and excellent in flatness.
  • the protective plate of this invention is excellent in the protection performance of the surface of a display member and the surface of a photoelectric conversion element, and is excellent in durability.
  • the photoelectric conversion element of this invention can be manufactured efficiently and is excellent in durability.
  • liquid repellency is a general term for water repellency and oil repellency.
  • lyophilic is a general term for hydrophilicity and lipophilicity.
  • Liquidification in the present specification means that the liquid repellency is relatively changed to lyophilicity, specifically, the contact angle with at least one of water or an organic solvent is reduced.
  • the “unit” in the polymer in the present specification is a portion derived from one molecule of the monomer formed by polymerization of the monomer.
  • the unit may have a structure formed directly from the monomer by polymerization, and the structure formed directly from the monomer is converted into another structure by treating the polymer. There may be.
  • the “monomer” in the present specification is a compound having a functional group capable of being polymerized by a radical.
  • the “fluoroalkyl group” is a group in which some or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the “perfluoroalkyl group” means that all of the hydrogen atoms of the alkyl group are fluorine.
  • the “methacryloyl (oxy) group” in the present specification is a general term for a methacryloyl group and a methacryloyloxy group. The same applies to the “acryloyl (oxy) group”.
  • the “(meth) acryloyl group” in this specification is a general term for an acryloyl group and a methacryloyl group.
  • the “(meth) acryloyl (oxy) group” in the present specification is a general term for “acryloyl group”, “methacryloyl group”, “acryloyloxy group” and “methacryloyloxy group”.
  • the “vinyl (oxy) group” in this specification is a general term for a vinyl group and a vinyloxy group. The same applies to the “allyl (oxy) group”.
  • Examples of the crosslinkable functional group in the present invention include a carbon-carbon unsaturated double bond that can be polymerized by a radical, a carbon-carbon unsaturated triple bond that can be polymerized by a radical, a ring that is opened by a radical, and a group containing them. Can be mentioned.
  • the unsaturated double bond and the unsaturated triple bond may exist inside the molecular chain or may exist at the terminal (hereinafter also referred to as “terminal olefin type”), but are highly reactive. It is preferably present at the end.
  • Being present in the molecular chain includes being present in a part of the aliphatic ring such as cycloolefins.
  • an alkenyl group having 4 or less carbon atoms and an alkynyl group having 4 or less carbon atoms are preferable.
  • examples thereof include a cyclopenta-2,5-dien-3-yl group, a cyano group, a diarylhydroxymethyl group, a cyclobutalene ring, and an oxirane ring.
  • crosslinkable functional group in the present invention a vinyl (oxy) group, an allyl (oxy) group, an ethynyl group, and a (meth) acryloyl (oxy) are highly reactive and easily obtain a cured film having a high crosslink density.
  • a crosslinkable functional group selected from the group consisting of groups is preferable, and the fluorine-containing polyarylene prepolymer (A), compound (B) and compound (C) described later are each independently selected from these crosslinkable functional groups. It preferably has a group.
  • a film obtained by curing a film of the curable composition is referred to as a “cured film”.
  • the “cured film” includes not only a cured film in which the curing of the curable composition is completed, but also a cured film in which only a part of the plurality of processes for curing the curable composition is completed. included.
  • the number average molecular weight (Mn) in this specification is a polystyrene equivalent molecular weight obtained by measuring with gel permeation chromatography using a calibration curve prepared using a standard polystyrene sample with a known molecular weight.
  • the glass sheet laminate of the present invention (hereinafter also referred to as “laminate”) is a cured product comprising a glass sheet having a thickness of 10 to 500 ⁇ m and a fluorine-containing polyarylene prepolymer (A) having a crosslinkable functional group. And a cured film formed from the adhesive composition.
  • the glass sheet used for the laminate of the present invention (hereinafter also referred to as “glass sheet”) has a thickness of 10 to 500 ⁇ m. If the thickness is less than 10 ⁇ m, even if it is a laminate, the impact resistance is insufficient and it may be easily damaged, which is not preferable. Moreover, when the thickness exceeds 500 ⁇ m, the flexibility of the laminate may be insufficient, which is not preferable.
  • the thickness is particularly preferably 20 to 300 ⁇ m.
  • the thickness of the glass sheet is preferably uniform. Specifically, the thickness deviation is preferably 15% or less in terms of PV (Peak to Valley) (for example, the deviation is 15 ⁇ m or less with respect to the thickness of 100 ⁇ m). A uniform thickness is preferable because the appearance is good.
  • the light transmittance of the glass sheet is preferably 90% or more in the wavelength range of 400 to 700 nm.
  • the dielectric constant of the glass sheet is preferably 5 to 7 at 10 kHz.
  • the Young's modulus of the glass sheet is preferably from 70 to 95 GPa, particularly preferably from 75 to 90 GPa.
  • the linear expansion coefficient of the glass sheet is preferably 3 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 / ° C.
  • the surface of the glass sheet used in the present invention is preferably flat.
  • the surface roughness is an arithmetic average roughness (Ra) defined by JIS B0601, preferably 30 nm or less, particularly preferably 1 nm or less. If it is flat, the light transmittance is high, and even when an electrode such as a transparent conductive film is laminated on the glass surface, the film resistance becomes uniform and defects are less likely to occur.
  • the material and composition of the glass sheet are not particularly limited. Examples thereof include soda lime glass, alkali-borosilicate glass, alkali-free borosilicate glass, alkali-aluminosilicate glass, and the like. Of these, alkali-free borosilicate glass or alkali-aluminosilicate glass is preferred because of its high durability, high elastic modulus, and low linear expansion coefficient.
  • the alkali-free borosilicate glass and the alkali-aluminosilicate glass may be collectively referred to as “alkali-free glass”. Alkali-free glass is preferable because a defect of an element due to alkali does not occur when a semiconductor element is formed on the glass.
  • the alkali-free glass refers to a glass in which the content of the alkali metal oxide is less than 1 mol% (may be 0 mol%) when the glass composition is represented by an oxide.
  • the glass sheet may be subjected to a tempering treatment.
  • a tempering treatment chemical strengthening is preferable. If it is chemical strengthening, an effective strengthening process can be applied even to a thin glass sheet. In this case, it is possible to obtain an effect that the laminated body is hardly damaged even if it is thin and lightweight.
  • the curable composition in this invention forms the cured film of a laminated body, Comprising:
  • the fluorine-containing polyarylene prepolymer (A) which has a crosslinkable functional group is contained.
  • the curable composition is a compound (B) having two or more crosslinkable functional groups and having no fluorine atom and a number average molecular weight of 140 to 3,000; having an etheric oxygen atom between carbon atoms.
  • the compound (C) having a number average molecular weight of more than 3,000 but not more than 50,000, and a radical polymerization initiator (D) may be included.
  • the fluorine-containing polyarylene prepolymer (A) in the present invention (hereinafter also referred to as “prepolymer (A)”) has a polyarylene structure in which a plurality of aromatic rings are bonded via a single bond or a linking group. In addition, it has a fluorine atom and a crosslinkable functional group.
  • a curable composition contains a prepolymer (A)
  • a low dielectric constant can be provided to a cured film.
  • the crosslinkable functional group of the prepolymer (A) does not substantially react during the production of the prepolymer (A), and preferably is radically polymerized by applying external energy in the presence of the radical polymerization initiator (D) described later. A reaction occurs, causing cross-linking or chain extension between the prepolymer (A) molecules. Moreover, it is thought that it reacts also with the crosslinkable functional group contained in the compound (B) and compound (C) contained in a curable composition as needed, and produces
  • the crosslinkable functional group in the prepolymer (A) a vinyl group and an ethynyl group are particularly preferable.
  • linking group in the polyarylene structure examples include an ether bond (—O—), a sulfide bond (—S—), a carbonyl group (—CO—), a sulfonyl group (—SO 2 —), and the like.
  • ether bond —O—
  • S— a sulfide bond
  • CO— carbonyl group
  • SO 2 — a sulfonyl group
  • the prepolymer (A) in particular, aromatic rings containing fluorine atoms, or an aromatic ring containing fluorine atoms and an aromatic ring not containing fluorine atoms are bonded with a linking group containing an ether bond (—O—). What has a structure is called fluorine-containing polyarylene ether prepolymer.
  • the prepolymer (A) in the present invention preferably contains a fluorine-containing polyarylene ether prepolymer, and the prepolymer (A) is particularly preferably only a fluorine-containing polyarylene ether prepolymer.
  • the linking group containing an ether bond include an ether bond (—O—) consisting only of an etheric oxygen atom, and an alkylene group containing an etheric oxygen atom in the carbon chain.
  • the fluorine-containing polyarylene ether prepolymer is particularly preferable because it has an etheric oxygen atom and thus has a flexible molecular structure and good flexibility of a cured film. .
  • the prepolymer (A) has a fluorine atom. Having fluorine atoms is preferable as a material for forming the insulating film because the dielectric constant and dielectric loss of the cured film tend to be low. When the dielectric constant and dielectric loss of the insulating film are low, a delay in signal propagation speed can be suppressed, and an element having excellent electrical characteristics can be obtained. In addition, when fluorine atoms are contained, the water absorption rate of the cured film is lowered, so that it is possible to suppress changes in the bonding state of the bonding electrode and the surrounding wiring portion, or to suppress deterioration of metal (such as rust). Excellent. The effect is great in terms of improving the reliability of the element.
  • a preferred example of the prepolymer (A) is obtained by reacting a fluorinated aromatic compound, a phenolic compound, and a crosslinkable functional group-containing aromatic compound in the presence of a dehydrohalogenating agent such as potassium carbonate.
  • a dehydrohalogenating agent such as potassium carbonate.
  • examples thereof include fluorine-containing polyarylene ether prepolymers.
  • Each of the fluorine-containing aromatic compound, the phenolic compound, and the crosslinkable functional group-containing aromatic compound may be used alone or in combination of two or more. The reaction can be carried out by a known method.
  • the fluorine-containing aromatic compound is a compound having a fluorine atom bonded to a carbon atom of an aromatic ring, and preferably all of the hydrogen atoms bonded to the carbon atom of the aromatic ring are substituted with a fluorine atom.
  • Preferable specific examples include perfluoro (1,3,5-triphenylbenzene), perfluorobiphenyl and the like.
  • This fluorine-containing aromatic compound is a compound having no crosslinkable functional group.
  • the phenolic compound is a compound having two or more phenolic hydroxyl groups, and a phenolic compound having three or more phenolic hydroxyl groups is preferable.
  • the compound which has 3 or more of phenolic hydroxyl groups and the compound which has two as a phenolic compound.
  • the phenolic hydroxyl group may be a blocked phenolic hydroxyl group capable of dehydrohalogenation reaction.
  • Preferable specific examples include 1,3,5-trihydroxybenzene, 1,1,1-tris (4-hydroxyphenyl) ethane and the like.
  • this phenol type compound is a compound which does not have a crosslinkable functional group.
  • the crosslinkable functional group-containing aromatic compound is an aromatic compound having a reactive group capable of reacting in the presence of a dehydrohalogenating agent in addition to the crosslinkable functional group, and the reactive group includes a phenolic hydroxyl group, Examples thereof include a blocked phenolic hydroxyl group (for example, an acetoxy group), a carbon atom of an aromatic ring to which a fluorine atom is bonded, a carbon atom of an alkyl group (for example, a chloromethyl group) to which a chlorine atom or a bromine atom is bonded.
  • Preferable specific examples of the crosslinkable functional group-containing aromatic compound include pentafluorostyrene, acetoxystyrene, chloromethylstyrene, pentafluorophenylacetylene and the like.
  • the dehydrochlorination reaction is preferably performed in a solvent.
  • a solvent containing an aprotic polar solvent such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane is preferable.
  • the polar solvent contains toluene, xylene, benzene, tetrahydrofuran, benzotrifluoride, xylene hexafluoride, etc. as long as the solubility of the prepolymer (A) to be produced is not lowered and the condensation reaction is not adversely affected. May be. By containing these, the polarity (dielectric constant) of the solvent changes and the reaction rate can be controlled.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the number average molecular weight (Mn) of the prepolymer (A) is preferably 1,000 to 100,000, particularly preferably 5,000 to 50,000.
  • Mn number average molecular weight
  • the compound (B) in the present invention is a compound having two or more crosslinkable functional groups and having no fluorine atom and a number average molecular weight of 140 to 3,000.
  • a cured film having higher hardness can be produced.
  • the compound (B) is usually in a liquid state at normal temperature, and in this case, the compound (B) acts as a reactive diluent, so that the glass transition temperature of the film of the curable composition before curing is lowered, and radical reaction occurs at a low temperature. Therefore, it is considered that curing at a lower temperature is possible.
  • a liquid compound (B) functions as a solvent, and can make a curable composition coatable.
  • the viscosity of the curable composition can be lowered as the compound (B) is a lower viscosity compound and as the compounding amount of the compound (B) is larger.
  • the number average molecular weight (Mn) of the compound (B) is preferably from 200 to 3,000, more preferably from 220 to 2,500, and particularly preferably from 240 to 2,000. It is hard to volatilize by heating as it is more than the lower limit of the above-mentioned range. When the amount is not more than the upper limit of the above range, the viscosity of the compound (B) is kept low, and a uniform curable composition is easily obtained when mixed with the prepolymer (A). Since the compound (B) has two or more crosslinkable functional groups, the molecules can be crosslinked.
  • the compound (B) preferably has 2 to 20 crosslinkable functional groups, and particularly preferably 2 to 8 groups.
  • the crosslinkable functional group of the compound (B) does not contain a fluorine atom, and when the crosslinkable functional group of the prepolymer (A) causes a radical polymerization reaction, a group that simultaneously reacts is preferable.
  • the crosslinkable functional group of compound (B) reacts with at least compound (B) to cause crosslinking or chain extension. Moreover, it reacts with the crosslinkable functional group of the compound (C) contained in a prepolymer (A) and a curable composition as needed, and it is thought that it forms a cured film united with these.
  • a (meth) acryloyl (oxy) group a vinyl (oxy) group and an allyl (oxy) group are preferable, and a (meth) acryloyl (oxy) group is more preferable.
  • a (meth) acryloyl (oxy) group a (meth) acryloyloxy group is more preferable, and an acryloyloxy group is particularly preferable.
  • the compound (B) is preferably a poly (meth) acrylate of a polyhydric alcohol.
  • Polyhydric alcohols include alkane polyols, alkane polyol multimers, polyether polyols such as polyoxyalkylene polyols, polyester diols that are condensates of dihydric alcohols and dibasic acids, and polycyclic alcohols with ring-opening additions. And polyester polyols such as polyester polyols obtained.
  • the compound (B) include dipentaerythritol triacrylate triundecylate, dipentaerythritol pentaacrylate monoundecylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone modified ethoxylated isocyanuric acid triacrylate, 9 , 9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A di Methacrylate, propoxylated bisphenol A diacrylate, propoxylated bisphenol A dimethacrylate, , 10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate,
  • polyester acrylate (compound obtained by modifying both ends of a condensate of dihydric alcohol and dibasic acid with acrylic acid: manufactured by Toagosei Co., Ltd., trade name Aronix (M-6100, M-6200, M-6250, M- 6500); a compound in which the hydroxyl terminal of the condensate of polyhydric alcohol and polybasic acid is modified with acrylic acid: manufactured by Toagosei Co., Ltd., trade names Aronix (M-7100, M-7300K, M-8030, M-8060, M-8100, M-8530, M-8560, M-9050)) can also be used. These can be obtained from commercial products.
  • a compound (B) may be used individually by 1 type, or may use 2 or more types together.
  • ethoxylated isocyanuric acid triacrylate ethoxylated isocyanuric acid triacrylate
  • ⁇ -caprolactone modified ethoxylated isocyanuric acid triacrylate ⁇ -caprolactone modified tris—manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the content thereof is preferably 10 to 80 parts by mass with respect to the total amount (100 parts by mass) of the prepolymer (A) and the compound (B), 15 to 70 parts by mass is more preferable, and 20 to 60 parts by mass is particularly preferable.
  • the content of the compound (B) is not less than the lower limit of the above range, it can be sufficiently cured even at a low temperature, and the cured film has excellent solvent resistance.
  • the content of the compound (B) is not more than the upper limit of the above range, the dielectric constant of the cured film is sufficiently low.
  • Compound (C) in the present invention is either the following compound (C-1) or compound (C-2).
  • Compound (C-1) or compound (C-2) may be used alone or in combination of two or more.
  • Compound (C-1) a fluoroalkyl group having 20 or less carbon atoms (hereinafter also referred to as “Cf group”), which may have an etheric oxygen atom between carbon atoms, a crosslinkable functional group, A compound having a number average molecular weight of more than 3,000 and not more than 50,000.
  • the number of carbon atoms in the Cf group includes all the carbon atoms to which fluorine atoms or trifluoromethyl groups are bonded, and is determined so that the total number of carbon atoms is the smallest.
  • Compound (C-2) an alkyl group having 6 to 24 carbon atoms (hereinafter also referred to as “Rn group”), which may have an etheric oxygen atom between carbon atoms, a crosslinkable functional group, A compound having a number average molecular weight of more than 3,000 and not more than 50,000.
  • the compound (C-1) is decomposed in the molecule by irradiation with ultraviolet rays, and a compound in which a decomposition product group having a Cf group is eliminated, or a compound or decomposition in which decomposition does not occur in the molecule by irradiation with ultraviolet rays.
  • a compound in which a decomposition product group having a Cf group is not eliminated there is a compound in which a decomposition product group having a Cf group is not eliminated.
  • a compound having a unit based on any of the monomer (4a), the monomer (4b) and the monomer (4c) as a unit (c1f) is: It is a compound in which decomposition occurs in the molecule by irradiation of ultraviolet rays, and a decomposition product group having a Cf group is eliminated.
  • the compound having the unit based on the monomer (4d) as the unit (c1f) does not decompose in the molecule when irradiated with ultraviolet rays.
  • the compound (C) has a crosslinkable functional group
  • the compound (C) when the compound (C) is contained in the curable composition, it is included in the crosslinkable functional group of the prepolymer (A) or the curable composition as necessary. It reacts with the crosslinkable functional group of the compound (B) to form a cured film together with these.
  • the compound (C) has a molecular weight within the above range and has the above-described Cf group or Rn group, the surface of the compound (C) opposite to the glass sheet in the film of the curable composition on the glass sheet. Move to. During the formation of the cured film, the compound (C) is cured near the surface, and the surface of the cured film can be modified.
  • liquid repellency can be imparted to the surface of the cured film by including the compound (C-1) in the curable composition.
  • the compound (C-2) in the curable composition By containing the compound (C-2) in the curable composition, the surface of the cured film can be made oleophilic while imparting water repellency to the surface.
  • a compound in which decomposition occurs in the molecule upon irradiation with ultraviolet light and a decomposition product group having a Cf group is eliminated is contained in the curable composition, whereby the surface of the cured film is added. It is possible to form a pattern of the liquid repellent area and the lyophilic area.
  • a surface region from which a decomposition product group having a Cf group is eliminated by irradiation with ultraviolet rays has a relatively low liquid repellency compared to a surface region having a Cf group, and becomes a lyophilic region.
  • a (meth) acryloyl (oxy) group is particularly preferable in terms of high reactivity with the crosslinkable functional group of another compound.
  • the number average molecular weight (Mn) of the compound (C) is more than 3,000 and not more than 50,000, preferably 3,500 to 45,000, particularly preferably 4,000 to 40,000.
  • the compound (C) is sufficiently transferred to the surface of the curable composition when the cured film is formed, and the surface of the cured film is effective. Can be modified.
  • the amount is not more than the upper limit of the above range, a film of the curable composition having good solubility in the curable composition and having no defects can be formed.
  • the content is preferably 0.1 to 20 parts by mass with respect to the total (100 parts by mass) of the prepolymer (A) and the compound (B). 0.2 to 15 parts by mass is particularly preferable.
  • the content of the compound (C) is at least the lower limit of the above range, the surface of the cured film can be sufficiently modified. When it is below the upper limit of the above range, a homogeneous cured film can be obtained.
  • the Cf group possessed by the compound (C-1) may be linear or branched.
  • the number of fluorine atoms in the Cf group is preferably 80% or more with respect to the total number of fluorine atoms and hydrogen atoms, from the viewpoint that the liquid repellency of the surface of the cured film becomes better. Is particularly preferred.
  • fluoroalkyl group examples include CF 3 , CF 2 CF 3 , CF (CF 3 ) 2 , CH (CF 3 ) 2 , CF 2 CHF 2 , (CF 2 ) 2 CF 3 , (CF 2 ) 3 CF 3 , (CF 2 ) 4 CF 3 , (CF 2 ) 5 CF 3 , (CF 2 ) 6 CF 3 , (CF 2 ) 7 CF 3 , (CF 2 ) 8 CF 3 , (CF 2 ) 9 CF 3 , (CF 2) 11 CF 3, include (CF 2) 15 CF 3.
  • fluoroalkyl group having an etheric oxygen atom examples include CF (CF 3 ) O (CF 2 ) 5 CF 3 , CF 2 O (CF 2 CF 2 O) p CF 3 (p is 1 to 8). ), CF (CF 3 ) O (CF 2 CF (CF 3 ) O) q C 6 F 13 (q is an integer of 1 to 4), CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r C 3 F 7 (r is an integer of 0 to 5).
  • the Cf group is preferably a perfluoroalkyl group in terms of more excellent liquid repellency on the surface of the cured film.
  • the Cf group preferably has 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, and particularly preferably 4 to 8 carbon atoms.
  • the liquid repellency is excellent and the compatibility between the monomer having a Cf group, which will be described later, and the other monomer to be copolymerized is improved.
  • the number of carbon atoms in the Cf group is preferably 6 or less, more preferably 2 to 6 and particularly preferably 4 to 6 from the viewpoint of low environmental load.
  • the compound (C-1) is preferably a copolymer having a unit (c1f) having a Cf group and a unit (c2) having a crosslinkable functional group.
  • the unit (c1f) does not have a crosslinkable functional group, and the unit (c2) does not have a Cf group.
  • the copolymer may have an arbitrary unit (c3).
  • the unit (c1f) is preferably formed by polymerizing a monomer (c1fm) having a Cf group and a polymerizable group (a group similar to the crosslinkable functional group).
  • the unit (c1f) having a Cf group can be obtained by various modification methods in which a polymer having a reactive functional group is reacted with a compound having a Cf group.
  • the unit (c1f) is formed by polymerization of the monomer (c1fm)
  • the polymerizable group of the monomer (c1fm) is lost by the polymerization, and therefore the unit (c1f) does not have a crosslinkable functional group.
  • Monomer (c1fm) is, for example, a monool having a Cf group, a monoepoxide having a Cf group, a monocarboxylic acid having a Cf group and a monosulfonic acid having a Cf group (a derivative having a polymerizable group), etc. And a monool derivative having a Cf group is preferable.
  • the monool having a Cf group is preferably a monool represented by HO—R 1 —Cf.
  • R 1 is a single bond or a divalent organic group, preferably an alkylene group.
  • the divalent organic group is not limited to an alkylene group, and may be —R 2 —NR 3 —CO— or —R 2 —NR 3 —SO 2 —.
  • R 2 represents an alkylene group
  • R 3 represents a hydrogen atom or an alkyl group.
  • R 1 may be a single bond.
  • R 1 is an alkylene group
  • the carbon number thereof is preferably 1 to 10, more preferably 2 to 6, and particularly preferably 2 to 4.
  • the number of carbon atoms in R 2 is preferably the same, and R 3 is preferably a hydrogen atom or an alkyl group having 4 or less carbon atoms.
  • R 1 is an alkylene group having 1 to 10 carbon atoms
  • specific examples of R 1 include —CH 2 —, —CH 2 CH 2 —, —CH (CH 3 ) —, —CH 2 CH 2 CH 2. -, -C (CH 3 ) 2- , -CH (CH 2 CH 3 )-, -CH 2 CH 2 CH 2 CH 2- , -CH (CH 2 CH 2 CH 3 )-, -CH 2 (CH 2 ) 3 CH 2 —, —CH (CH 2 CH (CH 3 ) 2 ) — and the like.
  • R 1 is preferably a linear alkylene group, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 - it is particularly preferred.
  • the polymerizable group is preferably a vinyl (oxy) group, an allyl (oxy) group or a (meth) acryloyl (oxy) group, more preferably a vinyl group or a (meth) acryloyloxy group. It is particularly preferred that it is an acryloyloxy group.
  • Examples of the monomer (c1fm) include a compound represented by the following formula (4) (hereinafter sometimes referred to as “monomer (4)”).
  • the monomer (4) for example, a compound having a monool residue having a Cf group and the above-described polymerizable group is preferable.
  • VQR 1 -Cf (4) V: a polymerizable group.
  • Q A single bond or a divalent organic group.
  • Cf Cf group.
  • R 1 A single bond or a divalent organic group.
  • R 1 is, for example, a residue of the above-mentioned monool, and is preferably a single bond or an alkylene group as described above, and a preferable alkylene group is as described above.
  • the preferred range of the polymerizable group represented by V is the same as the polymerizable group described above.
  • V is a polymerizable group having an oxygen atom at the terminal of the bond, and the oxygen atom is an oxygen atom of an ether bond, an oxygen atom on the alcohol residue side of an ester bond, or the like, and a Cf group It is preferably an oxygen atom derived from a monool having When Q is a single bond, V is particularly preferably a (meth) acryloyloxy group.
  • Q is a divalent organic group having an oxygen atom at the bond end on the R 1 side, and the oxygen atom is on the oxygen residue side of the ether bond or the alcohol residue side of the ester bond.
  • the number of carbon atoms is preferably 25 or less. When it has one aromatic ring, it is 12 or less, when it has two, 18 or less, and when it has no aromatic ring, it is 6 or less. Is preferred.
  • Q When Q is a divalent organic group, Q preferably contains an aromatic ring.
  • the R 1 side is preferably —CH 2 O— or —COO— bonded to an aromatic ring.
  • the V side is preferably an aromatic ring bond or an alkylene group bonded to the aromatic ring, and the alkylene group preferably has 4 or less carbon atoms, particularly preferably 1 or 2.
  • V is a vinyl (oxy) group, allyl (oxy) group or (meth) acryloyloxy group directly bonded to the aromatic ring, or (meth) acryloyloxy bonded to the aromatic ring via the above-described alkylene group. It is preferably a group.
  • V is preferably a vinyl group or a (meth) acryloyloxy group directly bonded to the aromatic ring, or a (meth) acryloyloxy group bonded to the aromatic ring via a methylene group or a dimethylene group.
  • the aromatic ring may be a mononuclear aromatic ring, a condensed aromatic ring, or a linked polycyclic aromatic ring.
  • the aromatic ring include a benzene ring, a naphthalene ring, a benzofuran ring, a benzimidazole ring, a benzoxazole ring, and an anthracene ring, and a benzene ring is preferable from the viewpoint of cost.
  • One or more hydrogen atoms on the aromatic ring may be substituted with an alkyl group having 1 to 15 carbon atoms or a halogen atom.
  • the alkyl group as a substituent preferably has 4 or less carbon atoms, and the halogen atom is preferably a fluorine atom or a chlorine atom.
  • the aromatic ring in Q is preferably divalent (that is, has two bonds), and even when it has a plurality of aromatic rings, each is preferably a divalent aromatic ring.
  • the aromatic ring in Q is preferably a phenylene group or a polyphenylene group in which two or three phenylene groups are linked. In the case of a polyphenylene group, a plurality of phenylene groups may be directly bonded or may be bonded via a linking group.
  • As the linking group an alkylene group having 1 to 4 carbon atoms, —O—, —OCH 2 —, —CO—, —SO 2 —, —S— and the like are preferable, and —OCH 2 — is particularly preferable.
  • V and R 1 are preferably bonded to different aromatic rings.
  • Q is a divalent organic group not containing an aromatic ring
  • Q is preferably —R 4 —O— or —R 4 —COO— (R 4 is an alkylene group or cycloalkylene having 10 or less carbon atoms) Represents a group).
  • the monomer (4) include the monomer (4a), monomer (4b), monomer (4c), monomer (4d) described below, depending on the type of Q contained. Is mentioned.
  • Q includes an aromatic ring, and the polymerizable group and the Cf group have —CH 2 O— or —COO—. It is the monomer which has couple
  • the monomer (4d) is a monomer that does not correspond to the monomer (4a), the monomer (4b), and the monomer (4c).
  • a pattern with the maintained liquid repellent region can be formed on the surface of the cured film.
  • conductive ink for electrode formation can be selectively attached to the lyophilic region formed in this manner.
  • the film of the curable composition may be irradiated with ultraviolet rays. In that case, the film of the curable composition may be cured after the ultraviolet irradiation.
  • the cured film is preferably a cured film cured by thermal curing. Therefore, the compound (C-1) having a unit based on the monomer (4a), the monomer (4b) and the monomer (4c) can be used by being blended in a curable composition to be thermally cured. preferable. Next, each monomer will be described.
  • the monomer (4a) is a compound represented by the following formula (4a), and Q is — (CH 2 ) m1 —Ar— (Y—Ar) n1 —X—.
  • the number of carbon atoms in Q is preferably 25 or less, and when it has one aromatic ring, it is preferably 12 or less, and when it has two, it is preferably 18 or less.
  • V a polymerizable group.
  • Ar An aromatic ring optionally having an alkyl group having 1 to 15 carbon atoms or a halogen atom.
  • X —CH 2 O— or —COO—.
  • Y a single bond, —OCH 2 —, —CH 2 O—, an alkylene group having 1 to 4 carbon atoms, —O—, —OCH 2 —, —CO—, —SO 2 — or —S—.
  • R 5 is a single bond or an alkylene group having 1 to 10 carbon atoms.
  • Cf Cf group.
  • m1 An integer from 0 to 4.
  • n1 0 or 1.
  • Ar is preferably an alkyl group having 1 to 4 carbon atoms or a phenylene group which may have a halogen atom, and particularly preferably a phenylene group having no substituent.
  • Y is preferably —OCH 2 — or —CH 2 O—.
  • V 2 -Ph-XR 5 -Cf 1 (4a-1) V 1- (CH 2 ) k1 -Ph-XR 5 -Cf 1 (4a-2)
  • Cf 1 a perfluoroalkyl group having 2 to 15 carbon atoms.
  • V 1 (meth) acryloyloxy group.
  • V 2 Vinyl group or (meth) acryloyloxy group.
  • R 5 is a single bond or an alkylene group having 1 to 10 carbon atoms.
  • Ph phenylene group.
  • X —CH 2 O— or —COO—.
  • Y 1 —OCH 2 — or —CH 2 O— k1: 1 or 2.
  • a Cf group is present in the side chain of the compound (C-1), and the Cf group is bonded to the main chain by a linking group having X. is doing.
  • a compound (C-1) is decomposed in the molecule by irradiation with ultraviolet rays, and a decomposition product group having a Cf group is easily eliminated.
  • the linking group easily undergoes a decomposition reaction upon irradiation with ultraviolet rays, and as a result, the decomposition product group containing the Cf group is further eliminated from the main chain of the compound (C-1). It becomes easy.
  • the compound represented by the formula (4a-1) includes a compound represented by the following formula (4a-11), a compound represented by the following formula (4a-12), and a compound represented by the following formula (4a-13). And the like.
  • Examples of the compound represented by the formula (4a-2) include a compound represented by the following formula (4a-21).
  • Examples of the compound represented by the formula (4a-4) include a compound represented by the following formula (4a-41).
  • the monomer (4b) is a compound represented by the following formula (m1 ⁇ ).
  • Cf Cf group.
  • R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • X 1 oxygen atom, sulfur atom, nitrogen atom or NH.
  • n2 An integer from 0 to 4.
  • m2 1 when X 1 is an oxygen atom, a sulfur atom or NH, and 2 when X 1 is a nitrogen atom.
  • Z 1 R 9 R 10 C ⁇ CR 8 —CO—.
  • R 8 , R 9 and R 10 each independently a hydrogen atom or a methyl group.
  • R 6 and R 7 are, from the viewpoint of easy degradation product group is eliminated including the Cf groups by irradiation with ultraviolet rays, it is preferable that at least one of R 6 and R 7 is other than a hydrogen atom, both R 6 and R 7 Is more preferably a hydrogen atom, and it is particularly preferable that both R 6 and R 7 are methyl groups.
  • X 1 is preferably an oxygen atom, a sulfur atom, or NH because it is easy to produce the compound (C-1) by polymerization (the compound (C-1) is difficult to gel), and since oxygen is easily available, Atoms are particularly preferred.
  • m2 is preferably 1 from the viewpoint that the compound (C-1) can be easily produced by polymerization (the compound (C-1) is difficult to gel).
  • n2 is preferably an integer of 0 to 2, particularly preferably an integer of 0 to 1, from the viewpoint of availability of raw materials and ease of synthesis.
  • R 8 , R 9 and R 10 are preferably hydrogen atoms from the viewpoint of high reactivity. That is, acryloyl group is preferable as Z 1 .
  • Examples of the monomer (4b) include compounds represented by the following formula (m1 ⁇ -1).
  • Examples of the method for producing the compound (m1 ⁇ ) include a method of performing a reaction represented by the following formula.
  • the HO— on the left side of the compound (a1 ⁇ ) was selectively esterified with the compound (b1 ⁇ ) in the presence of a tertiary amine to obtain the compound (c1 ⁇ ), and then the —OH on the right side of the compound (c1 ⁇ ) was converted.
  • the compound (d1 ⁇ ) is esterified to obtain the compound (m1 ⁇ ).
  • the monomer (4b) is a compound (m1 ⁇ ) in which R 3 in the “copolymerizable photoinitiator” described in JP-A-62-81345 is replaced with a Cf group, it is described in the publication.
  • the “copolymerizable photoinitiator” even in the absence of a photocatalyst or the like, decomposition occurs in the molecule by irradiation with ultraviolet rays having a wavelength of 350 to 370 nm, and a decomposition product group containing Cf group can be eliminated. That is, in the monomer (4b), the Cf group present in the side chain is easily detached by irradiation with ultraviolet rays.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • R 12 a divalent organic group having no single bond or fluorine atom.
  • X 2 oxygen atom, sulfur atom, nitrogen atom or NH.
  • m3 1 when X 2 is an oxygen atom, a sulfur atom or NH, and 2 when X 2 is a nitrogen atom.
  • n3 An integer from 0 to 4.
  • k2 0 or 1.
  • Z 2 R 14 R 15 C ⁇ CR 13 —CO—.
  • R 13 , R 14 and R 15 each independently a hydrogen atom or a methyl group.
  • the compound (m1 ⁇ ) has a cis-trans isomer due to an oxime double bond.
  • the compound (m1 ⁇ ) in the present invention is not limited to those shown in the above formula, and may be only a cis isomer, only a trans isomer, or a mixture of both.
  • R 11 is preferably an alkyl group having 1 to 6 carbon atoms from the viewpoint of good solubility of the compound (m1 ⁇ ).
  • R 12 is a divalent organic group having no single bond or fluorine atom. Examples of the divalent organic group include —C 6 H 4 —, —C 6 H 4 O (CH 2 ) w1 — , W1 is an integer of 0 to 10), —C 6 H 4 COO (CH 2 ) w2 — (where w2 is an integer of 0 to 10), —CH 2 —, — (CH 2 ) w3 COO (CH 2 ) w4 — (where w3 is an integer of 1 to 10 and w4 is an integer of 0 to 10), —CH 2 O (CH 2 ) w5 — (where w5 is 0 to And -CH (CH 3 ) O (CH 2 ) w6- (wherein w6 is an integer of 0 to 10).
  • —C 6 H 4 —, —C 6 H 4 O (CH 2 ) w1 —, and —C 6 H 4 COO (CH 2 ) w2 — are preferable.
  • a single bond, —CH 2 —, — (CH 2 ) w3 COO (CH 2 ) w4 —, —CH 2 O (CH 2 ) w5 —, —CH (CH 3 ) O (CH 2 ) w6 — is preferred.
  • W1 is preferably an integer of 0 to 4, and an integer of 0 to 2 is particularly preferable from the viewpoint of easy production.
  • w2 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w3 is preferably an integer of 0 to 6, and particularly preferably an integer of 1 to 3 from the viewpoint of easy production.
  • w4 is preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w5 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • w6 is preferably an integer of 0 to 4, particularly preferably an integer of 0 to 2 from the viewpoint of easy production.
  • X 2 is preferably an oxygen atom, a sulfur atom or NH from the viewpoint that the compound (C-1) can be easily produced by polymerization (the compound (C-1) is difficult to gel), and from the viewpoint that the raw material is easily obtained, An atom and a sulfur atom are more preferable, and a sulfur atom is particularly preferable because the compound (C-1) can be easily produced by polymerization.
  • m3 is preferably 1 from the viewpoint that the compound (C-1) can be easily produced by polymerization (the compound (C-1) is difficult to gel).
  • n3 is preferably an integer of 0 to 2, particularly preferably 0 or 1, from the viewpoint of availability of raw materials and ease of synthesis.
  • k2 is particularly preferably 1 from the viewpoint of availability of raw materials and ease of synthesis.
  • the positional relationship between X 2 and O in —O—Ph—X 2 — (where Ph is a phenylene group) is preferably a para positional relationship from the viewpoint of availability of raw materials.
  • R 13 , R 14 and R 15 are preferably R 13 is a hydrogen atom or a methyl group, and R 14 and R 15 are hydrogen atoms. That is, an acryloyl group or a methacryloyl group is preferred as Z 2.
  • Examples of the monomer (4c) include compounds represented by the following formula (m1 ⁇ -1) to the following formula (m1 ⁇ -3).
  • Examples of the method for producing the compound (m1 ⁇ ) include a method of performing a reaction represented by the following formula. HO— of compound (a1 ⁇ ) is esterified with compound (b1 ⁇ ) in the presence of a tertiary amine to give compound (c1 ⁇ ). Subsequently, oximation is performed using a nitrite ester to obtain a compound (d1 ⁇ ). Next, —OH of the compound (d1 ⁇ ) is esterified with the compound (e1 ⁇ ) in the presence of carbodiimide to obtain the compound (m1 ⁇ ).
  • Compound (a1 ⁇ ) can be produced by a known production method.
  • X 2 is a sulfur atom
  • n3 is 0, and k2 is 1, it can be produced by reacting HO—C 6 H 4 —SH with Br—C 6 H 4 —CO—CH 2 —R 11 .
  • R 1 in the formula (I) in “New O-oxime photoinitiator” described in JP-A-2000-080068 is replaced with an R 12 -Cf group, and R 5 is replaced with [Z - (OCH 2 CH 2) n3 - (OC 6 H 4) k2 -] m3 X 2 - for a compound obtained by replacing the group (m1 ⁇ ), which is described in the publication "new O- oxime photoinitiator”
  • decomposition occurs in the molecule by irradiation with ultraviolet rays having a wavelength of 350 to 370 nm, and a decomposition product group containing a Cf group can be eliminated. That is, in the monomer (4c), the Cf group present in the side chain is easily detached by irradiation with ultraviolet rays.
  • CH 2 CCH 3 COOCH 2 CH 2 CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r C 3 F 7 (r is an integer of 1 to 5).
  • CH 2 CHCOOCH (CF 3 ) 2
  • CH 2 CCH 3 COOCH (CF 3 ) 2
  • CH 2 CHCOOCH 2 CH 2 (CF 2 ) 3 CF 3
  • CH 2 CCH 3 COOCH 2 CH 2 (CF 2) 3 CF 3
  • CH 2 CHCOOCH 2 CH 2 (CF 2) 5 CF 3
  • the monomer (4d) includes a reaction product of a monoepoxide having a Cf group and (meth) acrylic acid, a reaction product of a monocarboxylic acid having a Cf group and a hydroxyalkyl (meth) acrylate, Cf It may be a reaction product of a monosulfonic acid having a group and a hydroxyalkyl (meth) acrylate.
  • a compound in which a hydroxyalkyl group to which a perfluoroalkyl group is bonded and a (meth) acryloyloxy group are bonded by a reaction between a compound having a perfluoroalkyl group and a glycidyl group and (meth) acrylic acid.
  • the proportion of the unit (c1f) in the compound (C-1) is preferably 10 to 90% by mass, more preferably 15 to 90% by mass, and particularly preferably 20 to 90% by mass.
  • the surface of the cured film is excellent in water repellency, and when it is at most the upper limit of the above range, the curable composition is easily dissolved in the solvent.
  • the ratio (preparation ratio) of the monomer (c1fm) that gives the unit (c1f) in the compound (100% by mass) used in the synthesis of the compound (C) is the same as the above ratio.
  • the unit (c2) has a crosslinkable functional group and does not have a fluorine atom.
  • the number of crosslinkable functional groups in the unit (c2) is preferably one.
  • As the crosslinkable functional group in the unit (c2) a (meth) acryloyl (oxy) group is particularly preferable.
  • the crosslinkable functional group of the compound (B) and the crosslinkable functional group of the compound (C-1), which are included in the curable composition as necessary, may be the same as or different from each other.
  • the unit (c2) is usually produced by polymerizing a monomer having a polymerizable group and introducing a crosslinkable functional group into the resulting polymer. Since the polymerizable group possessed by the monomer is lost by polymerization, the crosslinkable functional group of the unit (c2) is introduced after the formation of the polymer.
  • a known method can be appropriately used as the method. Specifically, a monomer having a reactive functional group and a polymerizable group (hereinafter also referred to as “monomer (c4m)”) is copolymerized to produce a copolymer having a reactive functional group. Then, the second reactive functional group that reacts with and binds to the reactive functional group of the obtained copolymer and a compound having a crosslinkable functional group (hereinafter also referred to as “compound (c2c)”). In this method, compound (C-1) is produced by reaction. In this case, the unit (c2) is a unit generated by the bond between the unit (c4) formed by polymerization of the monomer (c4m) and the compound (c2c).
  • the following method can be exemplified.
  • a method of reacting a compound having (Iii) A monomer having a hydroxyl group and a polymerizable group is used as the monomer (c4m), and a copolymer obtained by copolymerizing the monomer is added to an acyl chloride group and a crosslinkable functional group as the compound (c2c).
  • a method of reacting a compound having a group. (Iv) A compound having a hydroxyl group and a crosslinkable functional group as a compound (c2c) is added to a copolymer obtained by copolymerizing an acid anhydride having a polymerizable group as the monomer (c4m). How to react.
  • the obtained compound (C-1) has a unit (c4) formed by polymerization of the monomer (c4m).
  • the compound (C-1) used in the curable composition may have this unit (c4).
  • the reactive functional group of the unit (c4) may adversely affect the curable composition, the reactive functional group of the unit (c4) reacts with the reactive functional group of the copolymer.
  • Examples of the monomer (i), (ii) and (iii) having a hydroxyl group and a polymerizable group and the compound (iv) having a hydroxyl group and a crosslinkable functional group include 2-hydroxyethyl (meth) acrylate, Examples include 4-hydroxybutyl (meth) acrylate.
  • Specific examples of the acid anhydride having a crosslinkable functional group (i) and the acid anhydride having a polymerizable group (iv) include maleic anhydride, itaconic anhydride, citraconic anhydride, and phthalic anhydride. Can be mentioned.
  • Specific examples of the compound (ii) having an isocyanate group and a crosslinkable functional group include 2- (meth) acryloyloxyethyl isocyanate and 1,1-bis (acryloyloxymethyl) ethyl isocyanate.
  • Specific examples of the compound (iii) having an acyl chloride group and a crosslinkable functional group include (meth) acryloyl chloride and 3-butenoyl chloride.
  • Specific examples of the monomer (v) having a carboxy group and a polymerizable group and the compound (vi) having a carboxy group and a crosslinkable functional group include (meth) acrylic acid.
  • Specific examples of the compound (vi) having an epoxy group and a crosslinkable functional group and the monomer (vi) having an epoxy group and a polymerizable group include glycidyl (meth) acrylate and 3,4-epoxycyclohexyl. And methyl acrylate.
  • a unit formed by the method (ii) and a unit formed by the method (iii) are preferable, and the reactivity with the prepolymer (A) is good.
  • the unit formed by the method (ii) is more preferable.
  • a copolymer obtained by copolymerizing 2-hydroxyethyl (meth) acrylate as a monomer having a hydroxyl group and a polymerizable group is reacted with 2- (meth) acryloyloxyethyl isocyanate.
  • the units formed are particularly preferred.
  • the proportion of the unit (c2) in the compound (C-1) is preferably 1 to 90% by mass, more preferably 1 to 80% by mass, and particularly preferably 5 to 80% by mass. Reaction with a prepolymer (A) or a compound (B) becomes favorable as it is more than the lower limit of the said range, and the surface of a cured film is excellent in liquid repellency as it is below the upper limit of the said range.
  • the compound (100% by mass) used for the synthesis of the compound (C-1) the total ratio (preparation ratio) of the monomer (c4m) and the compound (c2c) that give the unit (c2) is also shown. The same as the above ratio.
  • the compound (C-1) When the compound (C-1) is a copolymer, the compound (C-1) has other units (c3) other than the units (c1f) and the units (c2) as necessary, as long as the effect of improving the water repellency is not impaired. It may be. As described above, when the compound (C-1) has a unit derived from the unit (c4) or the unit (c4) and does not have a crosslinkable functional group, these units are the unit (c3). .
  • the unit (c3) is preferably introduced into the compound (C-1) by polymerizing the monomer (c3m). Moreover, it is also preferable to introduce into the polymer by various modification methods in which the compound (C-1) having a reactive functional group is appropriately reacted with the compound.
  • the monomer (c3m) in addition to the monomer (c4m), hydrocarbon olefins, vinyl ethers, isopropenyl ethers, allyl ethers, vinyl esters, allyl esters, (meth) acrylic acid Examples include esters, (meth) acrylamides, aromatic vinyl compounds, chloroolefins, and conjugated dienes. These compounds may contain a functional group, and examples of the functional group include a hydroxyl group, a carbonyl group, and an alkoxy group. These may be used alone or in combination of two or more.
  • the monomer (c3m) examples include acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth).
  • the proportion of the unit (c3) in the compound (C-1) is preferably 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 20% by mass or less.
  • the lower limit is preferably 0% by mass.
  • the proportion (preparation ratio) of the monomer (c3) giving the unit (c3) out of the total monomers (100% by mass) used in the synthesis of the compound (C-1) is the same as the above proportion. It is.
  • “Production Method of Compound (C-1)” The synthesis of compound (C-1) is preferably carried out in a solvent.
  • the solvent include alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, and ethylene glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; 2-methoxyethanol, 2-ethoxyethanol, Cellsorbs such as 2-butoxyethanol; carbitols such as 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol; methyl acetate, ethyl acetate, n-butyl acetate, ethyl lactate, n-butyl lactate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol diacetate, glycerin Est
  • a polymerization initiator examples include known organic peroxides, inorganic peroxides, and azo compounds. Organic peroxides and inorganic peroxides can also be used as redox catalysts in combination with a reducing agent. These polymerization initiators may be used alone or in combination of two or more.
  • the organic peroxide include benzoyl peroxide, lauroyl peroxide, isobutyryl peroxide, t-butyl hydroperoxide, t-butyl- ⁇ -cumyl peroxide and the like.
  • inorganic peroxides include ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, percarbonate and the like.
  • examples of the azo compound include 2,2′-azobisisobutyronitrile, 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 Examples include '-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and the like.
  • chain transfer agents such as mercaptans and alkyl halides
  • mercaptans include n-butyl mercaptan, n-dodecyl mercaptan, t-butyl mercaptan, ethyl thioglycolate, 2-ethylhexyl thioglycolate, 2-mercaptoethanol and the like.
  • halogenated alkyls include chloroform, carbon tetrachloride, carbon tetrabromide and the like. These may be used alone or in combination of two or more. You may mix
  • An example of a polymerization inhibitor is 2,6-di-t-butyl-p-cresol.
  • the same solvent as described above can be used.
  • a solvent that reacts with the compound (c2c) cannot be used.
  • the copolymer can be produced in a solvent, and subsequently compound (c2c) is added and reacted to obtain compound (C-1).
  • the modification can be carried out in the presence of a catalyst or a neutralizing agent.
  • a catalyst or a neutralizing agent For example, when a compound having an isocyanate group and a crosslinkable functional group is reacted with a copolymer having a hydroxyl group, a tin compound or the like can be used as a catalyst.
  • tin compound examples include dibutyltin dilaurate, dibutyltin di (maleic acid monoester), dioctyltin dilaurate, dioctyltin di (maleic acid monoester), and dibutyltin diacetate. These may be used alone or in combination of two or more.
  • a basic catalyst In the case of reacting a copolymer having a hydroxyl group with a compound having an acyl chloride group and a crosslinkable functional group, a basic catalyst can be used.
  • the basic catalyst include triethylamine, pyridine, dimethylaniline, tetramethylurea and the like. These may be used alone or in combination of two or more.
  • the Rn group of the compound (C-2) may be linear, branched or cyclic and is preferably linear because it tends to impart high water repellency to the surface of the cured film.
  • the Rn group may contain an etheric oxygen atom between carbon atoms.
  • linear alkyl group examples include — (CH 2 ) 5 CH 3 , — (CH 2 ) 6 CH 3 , — (CH 2 ) 7 CH 3 , — (CH 2 ) 8 CH 3 , — (CH 2 ) 9 CH 3 , — (CH 2 ) 10 CH 3 , — (CH 2 ) 11 CH 3 , — (CH 2 ) 12 CH 3 , — (CH 2 ) 13 CH 3 , — (CH 2 ) 14 CH 3 , — (CH 2 ) 15 CH 3 , — (CH 2 ) 16 CH 3 , — (CH 2 ) 17 CH 3 , — (CH 2 ) 18 CH 3 , -(CH 2 ) 19 CH 3 ,-(CH 2 ) 20 CH 3 ,-(CH 2 ) 21 CH 3 ,-(CH 2 ) 22 CH 3 ,-(CH 2 ) 23 CH 3 and the like.
  • branched alkyl group examples include —CH 2 CH (CH 3 ) (CH 2 ) 2 CH 3 , —CH (CH 3 ) (CH 2 ) 3 CH 3 , —C (CH 3 ) 2 (CH 2 ) 3 CH 3 , —C (CH 3 ) 2 (CH 2 ) 4 CH 3 , —C (CH 3 ) (CH 2 CH 3 ) (CH 2 ) 3 CH 3 , — (CH 2 ) 2 CH (CH 3 ) CH 2 CH 3 , — (CH 2 ) 3 CH (CH 3 ) 2 , —CH 2 CH (CH 2 CH 3 ) (CH 2 ) 3 CH 3 , — (CH 2 ) 2 CH (CH 3 ) ( CH 2 CH 3 , —CH 2 CH (CH (CH 3 ) 2 ) (CH 3 ) ( CH 2 CH 3 , —CH 2 CH (CH (CH 3 ) 2 ) (CH 3 ) ( CH 2 CH 3 , —CH 2 CH (CH (CH 3
  • cyclic alkyl group examples include cyclohexyl, 2,3-dimethylcyclohexyl, 2,5-dimethylcyclohexyl, 2,6-dimethylcyclohexyl, 3,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, and 2-ethyl.
  • Cyclohexyl 4-ethylcyclohexyl, 4-isopropylcyclohexyl, 1-methylcyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2-isopropyl-5-methylcyclohexyl, 2-propylcyclohexyl, 4-propylcyclohexyl 3,3,5-trimethylcyclohexyl, 4-t-butylcyclohexyl, 4-butylcyclohexyl, 4-pentylcyclohexyl, 2-cyclohexylcyclohexyl, 4-cyclohexyl Sill cyclohexyl, cycloheptyl, cyclooctyl cyclododecyl, pentadecyl, and the like.
  • the carbon number of the Rn group is 6 to 24, preferably 7 to 20, and particularly preferably 8 to 18.
  • the carbon number of the Rn group is equal to or more than the lower limit of the above range, sufficient water repellency can be imparted to the surface of the cured film.
  • a monomer (c1rm) having an Rn group which will be described later, is copolymerized with another monomer to produce the compound (C-2). The compatibility between the monomer (c1rm) and the other monomer is improved.
  • the compound (C-2) is preferably a copolymer having a unit (c1r) having an Rn group and having no fluorine atom and no crosslinkable functional group and a unit (c2).
  • Compound (C-2) may have an arbitrary unit (c3).
  • the unit (c1r) is preferably formed by polymerizing a monomer (c1rm) having an Rn group and a polymerizable group (a group similar to the crosslinkable functional group).
  • the unit (c1r) having an Rn group may be obtained by various modification methods in which a polymer having a reactive functional group is reacted with a compound having an Rn group.
  • the polymerizable group is preferably a vinyl (oxy) group, an allyl (oxy) group or a (meth) acryloyl (oxy) group, more preferably a vinyl group or a (meth) acryloyloxy group, and a (meth) acryloyloxy group. It is particularly preferred that
  • the monomer (c1rm) is preferably a derivative (a derivative having a polymerizable group) such as a monol having an Rn group, a monoepoxide having an Rn group, a monocarboxylic acid having an Rn group, and a monosulfonic acid having an Rn group. And derivatives of monools having an Rn group are particularly preferred.
  • the monool having an Rn group is preferably a monool represented by HO—Rn.
  • the monomer (c1rm) a compound in which the Rn group and the polymerizable group are connected by a single bond or a divalent organic group is particularly preferable.
  • the polymerizable group is a polymerizable group having an oxygen atom at the bond terminal, and the oxygen atom is an ether bond oxygen atom or an ester bond alcohol residue. And oxygen atoms on the base side. This oxygen atom is an oxygen atom derived from a monol having an Rn group.
  • the polymerizable group is particularly preferably a (meth) acryloyloxy group.
  • the organic group is a divalent organic group having an oxygen atom at the bond terminal on the Rn group side.
  • the oxygen atom is an oxygen atom of an ether bond, an oxygen atom on the alcohol residue side of an ester bond, or the like.
  • This oxygen atom is an oxygen atom derived from a monol having an Rn group.
  • its carbon number is preferably 25 or less, preferably 12 or less when it has one aromatic ring, 18 or less when it has two, or 6 or less when it does not have an aromatic ring.
  • a monomer represented by the following formula (5) in which an Rn group and a polymerizable group (meth) acryloyloxy group are linked by a single bond (hereinafter referred to as “monomer”) (5) ) is particularly preferable.
  • CH 2 CX 3 —COO—Rn (5)
  • X 3 a hydrogen atom or a methyl group.
  • Rn an alkyl group having 6 to 24 carbon atoms which may have an etheric oxygen atom between carbon atoms.
  • the monomer (5) include CH 2 ⁇ C (CH 3 ) COO (CH 2 ) 17 CH 3 , CH 2 ⁇ CH—COO— (CH 2 ) 17 CH 3 , CH 2 ⁇ C (CH 3 ) —COO— (CH 2 ) 23 CH 3 , CH 2 ⁇ C (CH 3 ) —COO— (C 2 H 4 O) 10 CH 3 , CH 2 ⁇ CH—COO— (C 2 H 4 O) 10 CH 3 etc. may be mentioned.
  • a reaction product of a monoepoxide having an Rn group and (meth) acrylic acid a reaction product of a monocarboxylic acid having an Rn group and a hydroxyalkyl (meth) acrylate
  • It may be a reaction product of monosulfonic acid having an Rn group and hydroxyalkyl (meth) acrylate.
  • a compound in which a hydroxyalkyl group and a (meth) acryloyloxy group are bonded is obtained by a reaction between a compound having an alkyl group and a glycidyl group and (meth) acrylic acid.
  • the proportion of the unit (c1rm) in the compound (C-2) is preferably 10 to 90% by mass, more preferably 15 to 90% by mass, and particularly preferably 20 to 90% by mass.
  • the surface of the cured film is excellent in water repellency, and when it is at most the upper limit of the above range, the curable composition is easily dissolved in the solvent.
  • the ratio (preparation ratio) of the monomer (c1rm) that gives the unit (c1r) is also the same as the above ratio. .
  • Unit (c2) and Unit (c3) The types of the unit (c2) and the unit (c3), the method of introducing these units into the compound (C-2), etc., are the types of the units (c2) and (c3) described for the compound (C-1), The same kind and method as the method for introducing compound (C-1) can be employed.
  • the proportion of the unit (c2) in the compound (C-2) is preferably 1 to 90% by mass, more preferably 1 to 80% by mass, and particularly preferably 5 to 80% by mass. Reaction with a prepolymer (A) or a compound (B) becomes favorable as it is more than the lower limit of the said range, and the surface of a cured film is excellent in liquid repellency as it is below the upper limit of the said range.
  • the compound (100% by mass) used in the synthesis of the compound (C-2) the total ratio (preparation ratio) of the monomer (c4m) that gives the unit (c2) and the compound (c2c) is also shown. The same as the above ratio.
  • the proportion of the unit (c3) in the compound (C-2) is preferably 70% by mass or less, more preferably 50% by mass or less, and particularly preferably 20% by mass or less.
  • the lower limit is preferably 0% by mass.
  • the proportion of the unit (c3) is the above, the liquid repellency on the surface of the cured film and the curability of the curable composition are good.
  • the proportion (preparation ratio) of monomer (c3) giving unit (c3) is the same as the above proportion. It is.
  • the curable composition in the present invention can be cured at a lower temperature by containing the radical polymerization initiator (D).
  • the radical polymerization initiator (D) a thermal polymerization initiator (D1) or a photopolymerization initiator (D2) is preferable.
  • Thermal polymerization initiator (D1) A well-known thing can be used for a thermal-polymerization initiator (D1). Specific examples include azobisisobutyronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide and the like. In view of the decomposition temperature, azobisisobutyronitrile and benzoyl peroxide are preferred.
  • a thermal-polymerization initiator (D1) may be used individually by 1 type, or may use 2 or more types together.
  • the content of the thermal polymerization initiator (D1) in the curable composition is 1 to 20 with respect to the total amount (100 parts by mass) of the prepolymer (A) and the compound (B) blended as necessary. Mass parts are preferred, and 5 to 15 parts by mass are particularly preferred. When it is at least the lower limit of the above range, it can be sufficiently cured even at a low temperature, and the cured film has excellent solvent resistance. The storage stability of a curable composition becomes it favorable that it is below the upper limit of the said range.
  • a photoinitiator (D2) can use a well-known thing in a photocurable composition.
  • Specific examples include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)] (for example, product name: IRGACURE OXE01), ethanone, 1- [9-ethyl- Oxime ester derivatives such as 6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (o-acetyloxime) (for example, product name: IRGACURE OXE02); IRGACURE 369 (product name), IRGACURE ⁇ -aminoalkylphenone compounds such as 907 (product name); and acylphosphine oxide compounds such as DAROCUR TPO (product name) (all manufactured by Ciba Specialty Chemicals).
  • IRGACURE OXE01 and IRGACURE OXE02 are preferable in terms of the reactivity of the generated radicals.
  • a photoinitiator (D2) may be used individually by 1 type, or may use 2 or more types together.
  • the content of the photopolymerization initiator (D2) in the curable composition is 1 to 20 with respect to the total amount (100 parts by mass) of the prepolymer (A) and the compound (B) blended as necessary. Part by mass is preferable, and 3 to 15 parts by mass is particularly preferable.
  • it is at least the lower limit of the above range, it can be sufficiently cured even at a low temperature, and the cured film has excellent solvent resistance.
  • the storage stability of a curable composition becomes it favorable that it is below the upper limit of the said range.
  • the curable composition in the present invention contains, as necessary, stabilizers such as an ultraviolet absorber, an antioxidant, and a thermal polymerization inhibitor; surfactants such as a leveling agent, an antifoaming agent, a suspending agent, and a dispersant.
  • An additive selected from various additives well-known in the coating field such as a thickener and the like may be contained within a range not impairing the effects of the present invention.
  • an interlayer insulating film hereinafter, also referred to as “direct material”.
  • An adhesion improver such as a silane coupling agent may be added.
  • adhesion improver it is preferable to add an adhesion improver to the curable composition because the adhesion between the cured film of the curable composition and the layer adjacent thereto is improved.
  • the adhesion can also be improved by applying an adhesion improver to the adjacent layers in advance.
  • the content of the additive in the curable composition is 0.0001 to 30 parts by mass with respect to the total amount (100 parts by mass) of the prepolymer (A) and the compound (B) blended as necessary.
  • 0.0001 to 20 parts by mass is more preferable, and 0.0001 to 10 parts by mass is particularly preferable.
  • the cured film in the glass sheet laminate of the present invention is preferably a cured film having a uniform surface and a smooth surface.
  • a liquid curable composition is applied to the surface of the glass sheet and cast to obtain a liquid curable property with a smooth surface with a uniform thickness. It is preferable to form a film of the composition and cure the film of the curable composition to form a cured film.
  • a cured film having a smooth surface with a uniform thickness is produced by the method described above on the surface of the carrier sheet having a smooth peelable surface, and then the cured film is peeled off from the surface of the carrier sheet.
  • the glass sheet laminate of the present invention can also be produced by laminating a film and a glass sheet.
  • a curable composition containing a solvent When the viscosity of the curable composition in the present invention is high or when the curable composition in the present invention is a non-flowable composition, it is preferable to use a curable composition containing a solvent. The lower the viscosity of the composition, the easier it is to form a smooth film with a uniform thickness. Therefore, when the curable composition in the present invention has a viscosity that can be applied, a solvent is added. A low-viscosity composition can also be obtained. When a curable resin composition containing a solvent is used, it is coated and cast, and then the solvent is removed to form a curable composition film.
  • a liquid curable composition having a viscosity that can be applied regardless of whether or not it contains a solvent is referred to as a coating composition.
  • a film formed by applying the coating composition is hereinafter referred to as a coating film.
  • membrane obtained by removing a solvent from the coating film of the coating composition containing a solvent is also called a dry coating film.
  • the dried coating film may be composed of a solid curable composition.
  • the coating composition in the present invention is preferably a composition containing the above-described curable composition and a solvent.
  • the coating composition (dry coating film) of a curable composition is formed by apply
  • the solvent is removed by evaporating the solvent from the coating film of the coating composition. Therefore, the boiling point of the solvent is preferably lower than each component constituting the curable composition.
  • the compound (B) is contained in the curable composition, the component having the lowest boiling point among the components constituting the curable composition is usually the compound (B).
  • a solvent having a boiling point lower than that of the compound (B) as the solvent.
  • the boiling point of the solvent is preferably 50 to 300 ° C, particularly preferably 100 to 250 ° C.
  • the compound (B) it is preferable to use a compound having a boiling point sufficiently higher than that of a commonly used solvent.
  • a well-known thing can be used for a solvent.
  • Specific examples include propylene glycol monomethyl ether acetate (hereinafter also referred to as “PGMEA”), mesitylene, N, N-dimethylacetamide, cyclohexanone, tetrahydrofuran and the like.
  • PGMEA propylene glycol monomethyl ether acetate
  • mesitylene mesitylene
  • N N-dimethylacetamide
  • cyclohexanone tetrahydrofuran and the like.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the content of the solvent in the coating composition containing the solvent is 100 to 5,000 mass with respect to the total amount (100 mass parts) of the prepolymer (A) and the compound (B) blended as necessary. Part is preferable, and 100 to 3,000 parts by weight is particularly preferable.
  • the solid content of the coating composition containing a solvent is preferably 0.1 to 70% by mass, and more preferably 1 to 15% by mass.
  • solid content means the ratio in which the solid content obtained by removing a solvent from a coating composition is contained in the coating composition. For example, 1 g of the coating composition can be placed in an aluminum cup and dried in an oven at 100 ° C. for 10 minutes for measurement.
  • the laminate of the present invention is a laminate of a glass sheet and a cured film.
  • a structure of a laminated body the following 4 examples are mentioned typically.
  • Configuration of a combination of two layers of glass sheets and a single layer of a cured film That is, a configuration in which a cured film is sandwiched between two glass sheets.
  • Configuration of a combination of a glass sheet multilayer and a cured film multilayer That is, the structure which provided the glass sheet and the cured film alternately in the multilayer.
  • the configuration (1) is preferable because it is thin and lightweight, and the flatness of the glass sheet surface can be utilized.
  • the thickness of the cured film is preferably 1 to 1,000 ⁇ m, particularly preferably 5 to 500 ⁇ m. By making the thickness within the above range, it is possible to suppress damage to the glass sheet, to suppress breakage, and to prevent scattering even if it is broken, etc. The effect can be fully demonstrated.
  • the thickness of the laminate is preferably 11 to 1,500 ⁇ m, particularly preferably 30 to 800 ⁇ m.
  • the thickness of the laminate of the present invention is preferably uniform. Specifically, the standard deviation of the thickness is preferably 50% or less, and particularly preferably 35% or less. A uniform thickness is preferable because the appearance is good.
  • the thickness of the cured film is preferably 0.1 to 10 when the thickness of the glass sheet is 1. Particularly preferred is 5-5. In addition, when there are a plurality of layers, the total of them is considered.
  • the laminate of the present invention preferably has a transmittance of 80% or more at a wavelength of 400 to 700 nm, more preferably 90% or more, and particularly preferably 93% or more. It is preferably transparent in the above wavelength range, that is, in the visible light range. If it is transparent, as will be described later, it is suitably used for a protective plate disposed on the front surface of the display member. Further, when used as a base material for a photoelectric conversion element, if the photoelectric conversion element is a light emitting element, the light emission efficiency is not lowered. If the photoelectric conversion element is a power generation element, the power generation efficiency is lowered. It is preferable without any problem.
  • the laminated body of this invention has the cured film of the curable composition containing the above-mentioned prepolymer (A). Therefore, the laminate of the present invention is thin and lightweight, has excellent flexibility, has a gas barrier property based on a glass sheet, and has excellent durability based on a cured film. Moreover, in the case of the cured film which hardened the coating film of the curable composition, it is excellent in flatness.
  • the curable composition of the present invention can be cured at a low temperature. Therefore, the process of forming a cured film on a glass sheet can be performed at a low temperature, and the glass sheet is not easily damaged by heat.
  • the laminated body of this invention is provided with the very thin glass sheet, the curvature by a heat
  • the cured film of the curable composition containing a prepolymer (A) is excellent in heat resistance. Therefore, a coated semiconductor such as an organic semiconductor or an oxide semiconductor, low-temperature polysilicon, or the like can be formed on the cured film at a high temperature. Further, the cured film has a low dielectric constant and excellent insulating properties. Therefore, the laminated body of this invention is used suitably as a base material of a semiconductor device so that it may mention later.
  • the curable composition contains a compound (C-1) in which decomposition occurs in the molecule by irradiation of ultraviolet rays and the decomposition product group having a Cf group is eliminated
  • the cured film is irradiated with ultraviolet rays in a pattern.
  • the pattern of the liquid repellent region and the lyophilic region can be formed on the surface of the cured film as described above.
  • a conductive ink or the like can be selectively attached to the lyophilic region, and an electrode such as a gate electrode, a semiconductor layer, a conductor layer, a transistor material, an electrical wiring, or the like can be selectively formed. Therefore, the laminate of the present invention is also suitably used for IC devices, touch panel substrates, flexible printed boards, RFID substrates and the like in addition to semiconductor device substrates.
  • the protective plate of the present invention is composed of a glass sheet laminate. Since the laminate of the present invention is excellent in transparency and durability, it is suitable for a protective plate disposed on the front surface of a display member such as a liquid crystal display or an organic EL display, or a photoelectric conversion element.
  • a protective plate When used as a protective plate, the laminate having any of the above-mentioned constitutions (1) to (4) can be applied. Among them, a laminate having a constitution in which a cured film is located on at least one surface is preferable.
  • the laminated body of this structure is bonded as a protective plate to the surface of an object such as a display member or a photoelectric conversion element, the cured film can be positioned at least on the outer surface side, and the protective effect of the protective plate is enhanced.
  • the protective plate may be bonded to the object with an adhesive resin or the like, or may be bonded directly to the object by bringing the cured film side into contact with the display member and thermocompression bonding. Moreover, among the multiple steps of curing the curable composition, the cured film that has been completed only in some steps is bonded to the object by the adhesiveness of the cured film, and the remaining steps are performed after bonding, It may be completely cured.
  • the laminate of the present invention has high durability and transparency since the cured film is a cured film of a curable composition containing the prepolymer (A). Therefore, when used as a protective plate disposed on the front surface of the display member, the display color tone can be maintained for a long period of time. Further, it is also suitable as a protective plate for devices used outdoors such as solar cells because of its light weight and high durability (light resistance and weather resistance).
  • the semiconductor device of the present invention has the glass sheet laminate of the present invention as a base material. Since the cured film of the glass sheet laminate of the present invention is a cured film of a curable composition containing the prepolymer (A), it has a low dielectric constant and excellent insulation. Further, it has high heat resistance, and a coated semiconductor such as an organic semiconductor or an oxide semiconductor, low-temperature polysilicon, or the like can be formed on the cured film at a high temperature. Therefore, the laminate of the present invention is preferable as a base material of a semiconductor device.
  • the cured film of the glass sheet laminate of the present invention is cured with a curable composition containing a compound (C-1) in which decomposition occurs in the molecule upon irradiation with ultraviolet rays and a decomposition product group having a Cf group is eliminated.
  • a pattern of a liquid repellent region and a lyophilic region can be formed on the surface of the cured film.
  • a conductive ink for electrode formation can be selectively attached to the lyophilic region to form an electrode. Therefore, the glass sheet laminated body of this invention provided with such a cured film is preferable as a base material of a semiconductor device.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor which is an embodiment of a semiconductor device of the present invention.
  • the thin film transistor in the illustrated example is used as a switching element, for example, and a display member such as a liquid crystal display or an organic EL display is provided by combining the thin film transistor with a display element such as a liquid crystal element or an organic EL element.
  • a display member such as a liquid crystal display or an organic EL display
  • a display element such as a liquid crystal element or an organic EL element.
  • the laminate of the present invention as a protective plate on the front surface of the display member, a flexible display having flexibility, in which the base material and the protective plate are made of the laminate of the present invention, can be obtained.
  • the semiconductor device 10 includes a substrate made of a glass sheet laminate having a glass sheet 11 and a cured film 17, a gate electrode 12, a source electrode 13, a drain electrode 14, and a coating type formed on the cured film 17. And a semiconductor 15.
  • the semiconductor device 10 also protects the gate insulating film 16 formed between the gate electrode 12, the source electrode 13, and the drain electrode 14, and the source electrode 13, the drain electrode 14, and the coating type semiconductor 15 from the external environment. Or an interlayer insulating film 18 for stacking other transistor structures.
  • the semiconductor device 10 of this example is such that a hole is formed in the interlayer insulating film 18 by a laser ablation method or the like, and a pixel electrode 19 is formed so as to be connected to the drain electrode 14, which is suitable for a liquid crystal display or the like. Used.
  • the gate electrode 12, the source electrode 13, the drain electrode 14, and the pixel electrode 19 are formed of a conductor.
  • Conductors include silicon, doped silicon, platinum, gold, silver, copper, chromium, aluminum, calcium, barium, indium tin oxide, indium zinc oxide, zinc oxide, carbon black, fullerenes, carbon nanotubes, polythiophene , Polyethylenedioxythiophene, polystyrene sulfonic acid, polyaniline, polypyrrole, polyfluorene and the like.
  • a conductor may be used individually by 1 type, or may use 2 or more types together.
  • the material of each electrode may be the same or different.
  • Examples of the coating type semiconductor 15 include known coating type semiconductors such as an oxide semiconductor and an organic semiconductor.
  • the oxide semiconductor a material that can be converted into a semiconductor material including a metal oxide by a conversion process such as thermal oxidation can be used.
  • the metal of the metal salt contained in the precursor composition forming the oxide semiconductor is, for example, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe , Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb , Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • a metal nitrate, a metal halide, and an alkoxide are preferable.
  • Specific examples include indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), gallium chloride, aluminum chloride, tri-i- Examples include propoxyindium, diethoxyzinc, bis (dipivaloylmethanato) zinc, tetraethoxytin, tetra-i-propoxytin, tri-i-propoxygallium, and tri-i-propoxyaluminum.
  • oxide semiconductor obtained from the precursor composition for forming an oxide semiconductor examples include indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, tin zinc oxide, and oxide.
  • oxide examples include zinc and tin oxide such as InGaZnOx, InGaOx, InSnZnOx, GaZnOx, InSnOx, InZnOx, SnZnOx (all x> 0), ZnO, and SnO 2 .
  • organic semiconductors examples include polypyrrole and polypyrrole substitution products, polythiophene and polythiophene substitution products, isothianaphthenes such as polyisothianaphthene, chainylene vinylenes such as polychenylene vinylene, and poly (p-phenylene vinylene).
  • the gate insulating film 16 and the interlayer insulating film 18 are formed of, for example, a low dielectric constant cured film such as a cured film of the curable composition described above.
  • a low dielectric constant cured film such as a cured film of the curable composition described above.
  • the surface of the gate insulating film 16 has good water repellency, so that the molecules in the coated semiconductor 15 provided on the gate insulating film 16 are Effects such as easy orientation, polar groups that are the top site of the carrier are less likely to be present on the surface, and moisture in the air is less likely to be adsorbed. Therefore, electron mobility in the thin film transistor is increased, and stability and reliability are improved.
  • FIG. 2 is a schematic configuration diagram of a thin film transistor which is another embodiment of the semiconductor device of the present invention.
  • the semiconductor device 20 includes a base material made of a laminate having a glass sheet 21 and a cured film 27, a gate electrode 22, a source electrode 23, a drain electrode 24, and a coating type semiconductor 25.
  • a gate insulating film 26 is provided between the source electrode 23 and the drain electrode 24.
  • an interlayer insulating film 28 is provided for protecting the gate electrode 22 from the external environment and for stacking other transistor structures.
  • the semiconductor device 20 of FIG. 2 differs from the semiconductor device 10 of FIG. 1 only in that the configuration of the semiconductor device formed on the base material is reversed upside down, and the basic structure and manufacturing method thereof is as shown in FIG. This is the same as the semiconductor device 10 of FIG.
  • a photoelectric conversion element is also mentioned as a semiconductor device of this invention. Since the laminate of the present invention is excellent in transparency and durability, and has a low dielectric constant and excellent insulation, it is suitable for a substrate of a photoelectric conversion element.
  • a photoelectric conversion element both the element which converts light energy into an electrical energy like an organic thin-film solar cell, and the element which converts an electrical energy into light energy like an organic LED are said.
  • the photoelectric conversion element using the laminate of the present invention as a base material is further preferable in the following points. Since the gas barrier property is high by taking advantage of the characteristics of the glass sheet, deterioration (due to oxygen, moisture, etc.) of the organic semiconductor material in the photoelectric conversion element using the organic semiconductor material can be suppressed. Utilizing the characteristics of the entire laminate, the substrate itself is flexible and has excellent flexibility. For this reason, the flexibility of the photoelectric conversion element itself can be increased. Since the cured film is a cured film of a curable composition containing the prepolymer (A), there is little deterioration at high temperatures. Therefore, it can withstand the manufacturing process temperature of the photoelectric conversion element which is relatively high. Moreover, the cured film is excellent in light resistance.
  • the laminate since the cured film is formed through application of a material, the laminate has high flatness.
  • the laminate When the resin film is bonded to a glass sheet, the laminate may be difficult to flatten due to the unevenness of the film, the residual stress, and the like. In particular, when the glass sheet is thin, the influence is remarkable.
  • the process of coating the coating composition since the process of coating the coating composition is performed, not only the thickness is uniform, but also the effect of forming the cured film on the glass sheet is small, and the flatness of the laminate is Get higher. For example, when the laminate is placed on a flat metal mirror surface and the interference fringes are observed, optical interference based on the undulation of the laminate may be seen, but this interference is hardly seen in the laminate of the present invention.
  • the method for producing a glass sheet laminate of the present invention comprises a coating composition comprising a liquid curable composition or a curable composition and a solvent on a glass sheet having a thickness of 10 to 500 ⁇ m.
  • the solvent is removed to form a dry coating film, and the coating film is thermally cured or photocured to form a cured film.
  • the dry coating film may contain a small amount of solvent, and the content of the solvent is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 1% by mass or less in the dry coating film.
  • all the heating temperatures in the heating step are preferably 250 ° C. or less.
  • the coating film of the coating composition may be applied directly to the glass sheet or may be transferred to a glass sheet by coating the coating composition on another substrate. Since the surface of the cured film is likely to be flat, it is preferably applied directly.
  • the surface suitability improvement treatment of the glass sheet may be performed.
  • Specific examples of the surface suitability improvement treatment include cleaning treatment and adhesion improvement treatment.
  • Examples of the cleaning treatment include water cleaning, water vapor cleaning, solvent cleaning, UV / ozone cleaning, and the like.
  • Examples of the adhesive improvement treatment include corona treatment and primer treatment.
  • Examples of the primer used for the primer treatment include aminosilanes and epoxysilanes.
  • the coating method of the coating composition is not particularly limited. Specific examples include spin coating, dip coating, die coating, slit coating, spray coating, inkjet coating, flexo coating, and gravure coating.
  • the application may be performed only once or may be performed in a plurality of times.
  • a cured film is obtained by forming a coating film on a glass sheet and performing heating (curing step). Heating (pre-baking) may be performed before the curing step.
  • Heating pre-baking
  • photocuring a coating film is formed on the glass sheet, heated (prebaked) as necessary, irradiated with light (exposed), and then heated (cured) as necessary.
  • a cured film is obtained. From the viewpoint of productivity, a method of obtaining a cured film by forming a coating film on a glass sheet and irradiating (exposure) light is preferable.
  • a coating film of a coating composition containing a solvent on a glass sheet then remove the solvent by heating (pre-baking) to form a dry coating film, and then cure by irradiating with light (exposure)
  • a method of obtaining a membrane is preferred.
  • a photomask may be used during the exposure.
  • the light to be irradiated is not particularly limited as long as the photopolymerization initiator (D2) contained in the curable composition has a wavelength with sensitivity. Usually, the light used for curing is ultraviolet, but is not limited thereto.
  • the irradiated portion (exposed portion) is cured by selectively irradiating (exposing) light.
  • development a step of removing the unexposed portion by dissolving or dispersing in a solvent
  • the unexposed portion is removed, and the residual solvent in the cured portion is removed to obtain a microprocessed cured film.
  • heating may be performed after development.
  • the residual solvent can be removed by the heating (curing step).
  • curing can be performed at a low temperature of 250 ° C. or less.
  • each heating temperature is set to 250 ° C. or less.
  • the heating temperature of 250 ° C. or lower means that the temperature of the article to be heated does not exceed 250 ° C.
  • the set temperature of a heating device such as a hot plate or oven may be set to 250 ° C. or lower.
  • pre-baking is performed mainly for the purpose of removing the solvent when a coating composition containing a solvent is used, and is performed at a relatively low heating temperature.
  • the heating temperature in pre-baking is preferably 40 to 100 ° C., for example.
  • the curing process and post-exposure baking are performed for the purpose of further curing the film, and are performed at a relatively high heating temperature.
  • the heating temperature in the curing step and post-exposure baking is preferably 80 ° C. or higher, particularly preferably 100 ° C. or higher. If the temperature is lower than this, the effect of performing the curing step or post-exposure baking tends to be insufficient.
  • a lower heating temperature is preferable in that the glass sheet is less damaged and warps and distortions are further suppressed. Moreover, the load of the subsequent cooling process can also be reduced, so that heating temperature is low. Therefore, as for the heating in the manufacturing method of the glass sheet laminated body of this invention, 200 degreeC or less is more preferable for heating temperature. When heating twice or more, each heating temperature shall be 200 degrees C or less. Essentially, the set temperature of a heating device such as a hot plate or oven may be set to 200 ° C. or lower.
  • the method for producing a cured film is preferably a method for producing a cured film by forming a coating composition film on a substrate and then thermally curing or photocuring the curable composition by one or more heating.
  • the heating temperature is preferably 250 ° C. or less.
  • the manufacturing method of the glass sheet laminate of the present invention can employ various manufacturing methods depending on the form of the glass sheet.
  • the continuous method is suitable.
  • the continuous method is a method of winding the obtained glass sheet laminate in a roll shape by performing the surface suitability improvement treatment as necessary, and then continuously applying the coating composition and the subsequent steps. .
  • this manufacturing method is suitable.
  • the leaf-by-leaf method is suitable.
  • this production method is suitable.
  • the cured film 17 is formed on the glass sheet 11 by the method described in [Method for producing glass sheet laminate] described above to produce a glass sheet laminate.
  • a curable composition containing a compound (C-1) in which decomposition occurs in the molecule by irradiation of ultraviolet rays and a decomposition product group having a Cf group is eliminated.
  • a desired portion of the surface of the obtained cured film 17 is partially irradiated with ultraviolet rays, and only the portion of the surface of the cured film 17 irradiated with ultraviolet rays is lyophilic, as shown in FIG.
  • a lyophilic region 17a for the gate electrode for forming the gate electrode is formed.
  • the portion that has not been irradiated with ultraviolet rays becomes a liquid repellent region 17b that maintains liquid repellency.
  • a pattern of the lyophilic region 17 a and the liquid repellent region 17 b is formed on the surface layer portion including the surface of the cured film 17.
  • a laser is partially applied to the cured film 17 in addition to a method of partially irradiating the cured film 17 with ultraviolet rays.
  • Method of irradiating, partially irradiating the coating film with ultraviolet light, forming a pattern consisting of a lyophilic region and a liquid repellent region in the coating film, then curing the coating film by heating or light irradiation A method for producing a cured film having a pattern composed of a lyophilic region and a lyophobic region, a laser is partially irradiated to the coating film, and the coating film is composed of a lyophilic region and a lyophobic region
  • reference numeral 17 c denotes an internal region other than the surface layer of the cured film 17.
  • the lyophilic region 17 a and the liquid repellent region 17 b are not clearly separated from the inner region 17 c below the surface layer showing the respective surface characteristics, but are continuous along the thickness direction. It is speculated that the concentration of the Cf group is changed.
  • a light source capable of irradiating ultraviolet rays having a wavelength of 300 nm or more such as a high pressure mercury lamp (i-line 365 nm), a YAG laser (third harmonic wave 355 nm), or the like can be used.
  • a light source capable of irradiating ultraviolet rays having a wavelength of less than 300 nm may be used.
  • UV irradiation After UV irradiation, heating or decompression may be performed as necessary to promote the removal of the decomposition product group including the Cf group.
  • a liquid for forming a gate electrode such as conductive ink is applied on the lyophilic region 17 a of the cured film 17 and heated to form the gate electrode 12.
  • the method for applying the liquid include a die coating method, a spin coating method, a cap coating method, a dip coating method, an air doctor coater method, a blade coater method, a rod coater method, a knife coater method, a squeeze coater method, and a reverse roll coater method.
  • Various coating methods such as transfer roll coater method, gravure coater method, kiss coater method, cast coater method, spray coater method, slit orifice coater method, calendar coater method, and printing methods such as screen printing, inkjet printing, offset printing, etc. It is preferable to select as appropriate according to the type of liquid and curable composition used.
  • the heating conditions can be set as appropriate according to the type of liquid.
  • an inert atmosphere such as a nitrogen atmosphere or in a vacuum from the viewpoint of easily suppressing the oxidation of the conductor constituting the gate electrode to be formed.
  • heating by an oven and a hot plate, IR heating, flash lamp heating, laser heating, ⁇ -wave plasma heating, or the like can be used.
  • the gate insulating film 16 is formed on the cured film 17 and the gate electrode 12.
  • a known curable composition can be used, and the above-described curable composition containing the prepolymer (A) may be used.
  • the gate insulating film 16 can be formed by thermally curing or photocuring the film of the curable composition.
  • the gate insulating film 16 is formed so as to cover the cured film 17 and the gate electrode 12 so that the gate electrode 12 is not electrically connected to other members.
  • the source electrode 13 and the drain electrode 14 are formed on the obtained gate insulating film 16.
  • the gate insulating film 16 is formed using a curable composition containing a compound (C-1) in which decomposition occurs in the molecule by irradiation of ultraviolet rays and a decomposition product group having a Cf group is eliminated.
  • a desired portion of the gate insulating film 16 is irradiated with ultraviolet rays to form lyophilic regions for the source electrode and the drain electrode, respectively. Formation of the lyophilic region in this step can be performed by the same operation as the formation of the lyophilic region 17a for the gate electrode.
  • the coating film 16 After irradiating a desired part of the coating film with ultraviolet rays to form a pattern of the lyophobic region and the lyophilic region for the source electrode and the drain electrode, it is then cured by heating or light irradiation. The same is true for the gate insulating film 16 having a lyophilic region.
  • the source electrode 13 and the drain electrode 14 are formed on the lyophilic regions for the source electrode and the drain electrode formed on the gate insulating film 16.
  • the source electrode 13 and the drain electrode 14 may be formed by the same operation as the formation of the gate electrode 12.
  • a curable composition containing a compound (C-1) in which decomposition occurs in the molecule by irradiation of ultraviolet rays and a decomposition product group having a Cf group is eliminated is used.
  • ultraviolet light is irradiated on a desired portion between the source electrode 13 and the drain electrode 14 on the gate insulating film 16 to form a pattern of a lyophilic region for a coating type semiconductor.
  • the lyophilic region can be formed in this step by the same operation as the formation of the gate electrode 16 and the formation of the source electrode 13 and the drain electrode 14.
  • the coated semiconductor composition is applied and heated to form the coated semiconductor 15.
  • the method for applying the coating type semiconductor composition include a die coating method, a spin coating method, a cap coating method, a dip coating method, an air doctor coater method, a blade coater method, a rod coater method, a knife coater method, a squeeze coater method, Various coating methods such as reverse roll coater method, transfer roll coater method, gravure coater method, kiss coater method, cast coater method, spray coater method, slit orifice coater method, calendar coater method, printing methods such as screen printing, inkjet printing, etc. However, it may be appropriately selected depending on the coating type semiconductor composition to be used.
  • the heating temperature a temperature at which the oxide semiconductor precursor material is converted into a semiconductor made of a metal oxide by a conversion process such as thermal oxidation can be appropriately selected.
  • the heating temperature is preferably 100 to 500 ° C, more preferably 150 to 400 ° C, further preferably 200 to 300 ° C, and particularly preferably 220 to 275 ° C.
  • the heating time is not particularly limited, but may be, for example, 3 minutes to 24 hours. Since the base material of the semiconductor device 10 is made of the laminate of the present invention, and the cured film 17 of the laminate has heat resistance, the formation of the coating type semiconductor 15 at such a high temperature can be performed without any problems.
  • an interlayer insulating film 18 is formed on the gate insulating film 16, the source electrode 13, the drain electrode 14, and the coating type semiconductor 15.
  • a known curable composition can be used, and the above-described curable composition containing the prepolymer (A) may be used.
  • the interlayer insulating film 18 is formed by curing the film of the curable composition by heating, light irradiation, or the like.
  • a curable composition for forming the interlayer insulating film 18 is formed. It is preferable to contain a dye that absorbs the irradiated laser beam. By containing the dye, the absorption rate of irradiation energy in the cured film is improved, and laser processing of the cured film becomes possible with lower irradiation energy.
  • the dye may be a compound having an ability to absorb laser light, and examples thereof include benzophenone compounds, benzotriazole compounds, benzoate compounds, and triazine compounds.
  • the interlayer insulating film 18 prevents the source electrode 13 and the drain electrode 14 from being electrically connected to other members, and prevents the source electrode 13, the drain electrode 14 and the coated semiconductor 15 from being directly exposed to the external environment. It is formed as a protection.
  • a via hole is formed in the interlayer insulating film 18, the via hole is filled with an electrode material, and an electrode pattern is formed on the surface of the interlayer insulating film 18 to form a pixel electrode 19.
  • the via hole can be formed by a laser ablation method, a dry etching method, a wet etching method, a photolithography method, or the like.
  • the pixel electrode 19 can be formed by the same method as the gate electrode 12, the source electrode 13, the drain electrode 15, and the like.
  • the precipitate was filtered and further washed twice with pure water. Then, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (A-2) (75 g).
  • the number average molecular weight (Mn) of the prepolymer (A-2) was 10,000.
  • AOI 2-acryloyloxyethyl isocyanate (manufactured by Showa Denko KK).
  • MOI 2-methacryloyloxyethyl isocyanate (manufactured by Showa Denko KK).
  • DSH n-dodecyl mercaptan.
  • V-65 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, product name: V-65).
  • V-70 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, product name: V-70).
  • Catalyst DBTDL: Dibutyltin dilaurate.
  • BHT 2,6-di-t-butyl-p-cresol.
  • the methyl ethyl ketone solution of the obtained compound (C-2-1) was poured into methanol for reprecipitation purification and vacuum dried to obtain 11 g of a powdery compound (C-2-1).
  • the number average molecular weight (Mn) of the compound (C-2-1) was 8,000.
  • the obtained 2-butanone solution of the copolymer (C-1-2) was poured into hexane for reprecipitation purification, and vacuum dried to obtain 115 g of a powdery copolymer (C-1-2). It was.
  • the copolymer (C-1-2) had a fluorine content of 18% by mass and a number average molecular weight (Mn) of 6,000.
  • A9300-1CL Triacrylate of ⁇ -caprolactone-modified ethoxylated isocyanuric acid (“ ⁇ -caprolactone-modified tris- (2-acryloxyethyl) isocyanurate” manufactured by Shin-Nakamura Chemical Co., Ltd., number average molecular weight (Mn): 537).
  • ATMPT Trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., number average molecular weight (Mn): 296).
  • ADCP Tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., number average molecular weight (Mn): 304).
  • Thermal polymerization initiator (D1)) BPO benzoyl peroxide.
  • Photopolymerization initiator (D2)) OXE01 1,2-octanedione, 1- [4- (phenylthio)-, 2- (o-benzoyloxime)] (manufactured by BASF).
  • Glass sheet A glass sheet (10 cm ⁇ 10 cm) of alkali-free glass (Asahi Glass Co., Ltd., trade name: AN100). Use a thickness of 50 ⁇ m or 100 ⁇ m.
  • Preparation of curable composition Each component was mixed at room temperature in the mixing ratio shown in Table 1 to obtain coating compositions of Preparation Examples 10-22. Further, as a coating composition of Preparation Example 23 (Comparative Example), a methyl methacrylate polymer (manufactured by Sigma-Aldrich, mass average molecular weight (Mw): 120,000) was dissolved in PGMEA, and a hydrocarbon resin solution (solid Min: 10% by mass).
  • Mw mass average molecular weight
  • Examples 1 to 26 are Examples, and Examples 27 to 28 are Comparative Examples.
  • Examples 1 to 8 thermosetting at 200 ° C.
  • the coating composition shown in Table 2 was spin-coated on a glass sheet at 1,000 rpm for 30 seconds and heated on a hot plate (prebaking). The heating conditions were 100 ° C. and 90 seconds. Then, it heated at 200 degreeC for 2 hours (curing process) with oven, the cured film with a film thickness of 1 micrometer was formed, and the glass sheet laminated body was obtained. The flexibility, flatness, and transparency of the obtained glass sheet laminate were evaluated, and the dielectric constant was measured. The results are shown in Table 2.
  • Examples 9 to 12, Examples 17 to 28: 150 ° C. thermosetting The coating composition shown in Table 2 was spin-coated on a glass sheet at 1,000 rpm for 30 seconds and heated on a hot plate (prebaking). The heating conditions were 150 ° C. and 2 minutes. Then, it heated for 10 minutes at 150 degreeC with the oven (curing process), the cured film with a film thickness of 1 micrometer was formed, and the glass sheet laminated body was obtained. The flexibility, flatness, and transparency of the obtained glass sheet laminate were evaluated, and the dielectric constant was measured. The results are shown in Table 2.
  • Examples 13 to 16 photocuring
  • the coating composition shown in Table 2 was spin-coated on a glass sheet at 1,000 rpm for 30 seconds and heated on a hot plate (prebaking). The heating conditions were 60 ° C. and 90 seconds. Next, exposure was performed at an irradiation energy of 200 mJ / cm 2 .
  • an ultraviolet exposure apparatus manufactured by SUSS, product name: MA-6
  • irradiation was performed using a high-pressure mercury lamp as a light source.
  • it heated for 5 minutes at 100 degreeC with the hotplate (curing process) the cured film with a film thickness of 1 micrometer was formed, and the glass sheet laminated body was obtained. The flexibility, flatness, and transparency of the obtained glass sheet laminate were evaluated, and the dielectric constant was measured. The results are shown in Table 2.
  • each of the glass sheet laminates of Examples 1 to 26 has excellent flexibility, flatness, and transparency, and also has a low relative dielectric constant and sufficient insulation.
  • the glass sheet laminates of Examples 27 and 28 were excellent in flexibility, flatness, and transparency, but had a high relative dielectric constant and insufficient insulation. From these results, it was suggested that the glass sheet laminates of Examples 1 to 26 can be suitably used as a base material of a semiconductor device.
  • Example 29 With respect to the cured film of the glass sheet laminate of Example 17 having a cured film of the curable composition containing the compound (C-1-1), the contact angle was measured. As a result, the water contact angle was 110 ° and the PGMEA contact angle was The cured film was excellent in liquid repellency.
  • Example 30 With respect to the cured film of the glass sheet laminate of Example 19 having a cured film of the curable composition containing the compound (C-2-1), the contact angle was measured to find that the water contact angle was 95 ° and the PGMEA contact angle was Was 10 ° or less and had water repellency and lipophilicity.
  • Example 31 The surface of the cured film of the glass sheet laminate of Example 21 having a cured film of the curable composition containing the compound (C-1-2) was selectively irradiated with ultraviolet rays through a photomask having a pattern.
  • Spot Cure SP-7 manufactured by USHIO INC.
  • the irradiation conditions were 50 J / cm 2 . Under this condition, light with a wavelength of 200 nm or less is not irradiated.
  • the water contact angle of the portion irradiated with ultraviolet rays was 76 °, and the PGMEA contact angle was 10 ° or less.
  • the water contact angle of the part not irradiated with ultraviolet rays was 103 °, and the PGMEA contact angle was 58 °.
  • the ultraviolet irradiation can selectively reduce the liquid repellency of the surface of the cured film.
  • a pattern with a liquid repellent region maintaining liquid repellency could be formed.
  • Example 32 The surface of the cured film of the glass sheet laminate of Example 23 having a cured film of the curable composition containing the compound (C-1-3) was partially irradiated with ultraviolet rays (i-line 365 nm) through a photomask having a pattern. Irradiated.
  • ultraviolet rays i-line 365 nm
  • the product name MA-8 manufactured by SUSS was used, and the irradiation condition was 100 J / cm 2 .
  • ultraviolet rays having a wavelength of 350 nm or less are not irradiated.
  • the PGMEA contact angle in the portion irradiated with ultraviolet rays was 10 ° or less, and the PGMEA contact angle in the portion not irradiated with ultraviolet rays was 53 °.
  • the oil repellency of the surface of the cured film can be selectively reduced by the irradiation of ultraviolet rays, and the lyophilic region which has become lyophilic by the reduction of the oil repellency by the irradiation of ultraviolet rays and the lyophilic region which is not irradiated with the ultraviolet rays.
  • a pattern with a liquid repellent area maintaining oiliness could be formed.
  • Example 33 The surface of the cured film of the glass sheet laminate obtained in Example 25 having a cured film of a curable composition containing the compound (C-1-4) was irradiated with ultraviolet rays (i-line 365 nm) through a photomask having a pattern. ) was partially irradiated.
  • ultraviolet rays i-line 365 nm
  • the product name MA-8 manufactured by SUSS was used, and the irradiation condition was 1 J / cm 2 . In the apparatus and conditions, ultraviolet rays having a wavelength of 350 nm or less are not irradiated.
  • the PGMEA contact angle in the portion irradiated with ultraviolet rays was 10 ° or less, and the PGMEA contact angle in the portion not irradiated with ultraviolet rays was 51 °.
  • the oil repellency of the surface of the cured film can be selectively lowered by the irradiation of ultraviolet rays, and the lyophilic region which has been made lyophilic by reducing the oil repellency by the irradiation of ultraviolet rays and the lyophilic region without being irradiated with ultraviolet rays.
  • a pattern with a liquid repellent area maintaining oiliness could be formed.
  • the laminate of the present invention is suitably used as a protective plate for a display device, a substrate for a semiconductor device, an IC card, a substrate for a touch panel, a flexible printed circuit board, and a substrate for RFID.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 薄くて軽量であり、ガスバリア性、屈曲性および耐久性に優れ、かつ平坦性に優れる積層体、該積層体を有する保護板および半導体装置、積層体の製造方法の提供。 厚さが10~500μmであるガラスシートと、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物から形成される硬化膜とを有する、ガラスシート積層体。

Description

ガラスシート積層体およびガラスシート積層体の製造方法
 本発明はガラスシート積層体およびガラスシート積層体の製造方法に関する。
 液晶ディスプレイや携帯端末等の表示部材の表面には保護のためにカバーガラスが用いられている。また、太陽電池、LED等の光電変換素子の表面にも同様に保護のためにカバーガラスが用いられている。これらはガラスの持つ優れた耐久性、透明性等を利用した用途である。
 近年、表示部材や光電変換素子には著しい軽量化が求められている。このためガラスを薄くする技術が開発されている。しかし、ガラスを薄くすると割れやすくなるという問題がある。このため樹脂材料との複合体で、軽量化、耐衝撃性、耐久性、ガスバリア性、屈曲性等の課題を解決する技術が提案されている(特許文献1~4を参照。)。
特開2010-42588号公報 特開2011-16708号公報 特開2011-51278号公報 国際公開第2008/149793号
 特許文献1~3に記載の技術においては、樹脂として炭化水素系樹脂を用いているため長期間の耐久性、耐光性が充分でなく、樹脂の変色や劣化が生じる場合があった。また特許文献4に記載の技術においては、フッ素樹脂を用いて上記の樹脂の劣化の問題は抑制されている。しかし、当該技術においては、フッ素樹脂フィルムを熱圧着法により積層している。この場合に、積層体が平坦にならないという問題があった。具体的には、積層体の厚さの偏差を小さくすることは可能であるが、積層体全体における自立的な平坦性を確保することは困難であった。例えば、平面上に積層体を置いた場合に、所々で平面から浮き上がるような、いわゆる「うねり」が観察されることがあった。
 本発明においては、上記の問題を解決し、薄くて軽量であり、ガスバリア性、屈曲性および耐久性に優れ、かつ平坦性に優れる積層体を提供することを課題とする。
 本発明は、以下の[1]~[15]の構成を有するガラスシート積層体、保護板、半導体装置、ガラスシート積層体の製造方法を提供する。
[1]厚さが10~500μmであるガラスシートと、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物から形成される硬化膜とを有することを特徴とするガラスシート積層体。
[2]前記含フッ素ポリアリーレンプレポリマー(A)が、含フッ素ポリアリーレンエーテルプレポリマーである、[1]のガラスシート積層体。
[3]前記含フッ素ポリアリーレンプレポリマー(A)が、芳香環の炭素原子に結合したフッ素原子を有する含フッ素芳香族化合物と、フェノール性水酸基を2つ以上有するフェノール系化合物と、架橋性官能基と脱ハロゲン化水素剤の存在下で反応しうる反応性基とを含有する芳香族化合物とを脱ハロゲン化水素剤の存在下で反応させて得られるプレポリマーである、[2]のガラスシート積層体。
[4]前記含フッ素芳香族化合物がペルフルオロ(1,3,5-トリフェニルベンゼン)またはペルフルオロビフェニルであり、前記フェノール系化合物が1,3,5-トリヒドロキシベンゼンまたは1,1,1-トリス(4-ヒドロキシフェニル)エタンであり、前記芳香族化合物がペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレンまたはペンタフルオロフェニルアセチレンである、[3]のガラスシート積層体。
[5]前記硬化性組成物が、2つ以上の架橋性官能基を有し、フッ素原子を有しない数平均分子量が140~3,000の化合物(B)を含む、[1]~[4]のいずれかのガラスシート積層体。
[6]前記化合物(B)が、多価アルコールのポリアクリレートまたは多価アルコールのポリメタクリレートである、[5]のガラスシート積層体。
[7]前記硬化性組成物が、炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が20以下のフルオロアルキル基、または、炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が6~24のアルキル基と、架橋性官能基とを有する、数平均分子量が3,000を超え50,000以下の化合物(C)を含む、[1]~[6]のいずれかのガラスシート積層体。
[8]前記硬化膜の表面に、親液性領域と撥液性領域のパターンが形成されている、[7]のガラスシート積層体。
[9]前記硬化性組成物が、ラジカル重合開始剤(D)を含む、[1]~[8]のいずれかのガラスシート積層体。
[10]前記架橋性官能基が、ビニル(オキシ)基、アリル(オキシ)基、エチニル基および(メタ)アクリロイル(オキシ)基からなる群から選ばれる、[1]~[9]のいずれかのガラスシート積層体。
[11]前記[1]~[10]のいずれかのガラスシート積層体を有する保護板。
[12]前記[1]~[10]のいずれかのガラスシート積層体を基材として有する半導体装置。
[13]厚さが10~500μmであるガラスシート上に、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物を含む液状の塗布用組成物の塗膜を形成し、前記塗膜を熱硬化または光硬化させて硬化膜を形成することを特徴とするガラスシート積層体の製造方法。
[14]前記液状の塗布用組成物が溶剤を含む硬化性組成物であり、溶剤を含む硬化性組成物の塗膜を形成し、溶剤を除去した後、硬化性組成物の塗膜を硬化させる、[13]のガラスシート積層体の製造方法。
[15]前記塗布用組成物の膜を形成した後に、加熱工程を1回以上有し、該加熱工程における加熱温度がすべて250℃以下である、[13]または[14]のガラスシート積層体の製造方法。
 本発明のガラスシート積層体は、薄くて軽量であり、ガスバリア性、屈曲性および耐久性に優れ、かつ平坦性に優れる。
 本発明の保護板は、表示部材の表面や光電変換素子の表面の保護性能に優れ、耐久性に優れる。
 本発明の光電変換素子は、効率的に製造でき、耐久性に優れる。
本発明の半導体装置の一実施形態である薄膜トランジスタの構成を概略的に示す断面図である。 本発明の半導体装置の他の一実施形態である薄膜トランジスタの構成を概略的に示す断面図である。 図1の薄膜トランジスタの製造方法を説明する断面図である。
 本明細書においては、式(m1)で表される化合物を化合物(m1)と記す場合がある。他の式で表される化合物も同様に記す場合がある。
 本明細書における「撥液性」とは、撥水性および撥油性の総称である。
 本明細書における「親液性」とは、親水性および親油性の総称である。
 本明細書における「親液化」とは、撥液性が相対的に親液性に変化することであり、具体的には水または有機溶剤の少なくとも一方との接触角が小さくなることである。
 本明細書における重合体中の「単位」とは、単量体が重合することによって形成された該単量体1分子に由来する部分である。単位は、重合によって単量体から直接形成された構造を有するものであってもよく、単量体から直接形成された構造が重合体を処理することによって別の構造に変換されてなるものであってもよい。
 本明細書における「単量体」とは、ラジカルによって重合し得る官能基を有する化合物である。
 本明細書における「フルオロアルキル基」とは、アルキル基の水素原子の一部または全てがフッ素原子に置換された基であり、「ペルフルオロアルキル基」とは、アルキル基の水素原子の全てがフッ素原子に置換された基である。
 本明細書における「メタクリロイル(オキシ)基」とは、メタクリロイル基およびメタクリロイルオキシ基の総称である。「アクリロイル(オキシ)基」も同様である。
 本明細書における「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基の総称である。「(メタ)アクリロイルオキシ基」も同様である。
 本明細書における「(メタ)アクリロイル(オキシ)基」とは、「アクリロイル基」、「メタクリロイル基」、「アクリロイルオキシ基」および「メタクリロイルオキシ基」の総称である。
 本明細書における「ビニル(オキシ)基」とは、ビニル基およびビニルオキシ基の総称である。「アリル(オキシ)基」も同様である。
 本発明における架橋性官能基としては、ラジカルにより重合しうる炭素-炭素不飽和二重結合、ラジカルにより重合しうる炭素-炭素不飽和三重結合、ラジカルにより開環する環、それらを含む基等が挙げられる。
 不飽和二重結合および不飽和三重結合は、分子鎖の内部に存在してもよく、末端に存在(以下、「末端オレフィン型」ともいう。)してもよいが、反応性が高いことから末端に存在することが好ましい。分子鎖の内部に存在するとは、シクロオレフィン類のように脂肪族環の一部に存在することも含む。末端オレフィン型の架橋性官能基としては、炭素数4以下のアルケニル基と炭素数4以下のアルキニル基が好ましい。
 具体的には、ビニル(オキシ)基、アリル(オキシ)基、イソプロぺニル基、3-ブテニル基、(メタ)アクリロイル(オキシ)基、トリフルオロビニル(オキシ)基、エチニル基、1-オキソシクロペンタ-2,5-ジエン-3-イル基、シアノ基、ジアリールヒドロキシメチル基、シクロブタレン環、オキシラン環が挙げられる。
 本発明における架橋性官能基としては、反応性が高く、高い架橋密度の硬化膜が得られやすい点で、ビニル(オキシ)基、アリル(オキシ)基、エチニル基および(メタ)アクリロイル(オキシ)基からなる群から選ばれる架橋性官能基が好ましく、後述の含フッ素ポリアリーレンプレポリマー(A)、化合物(B)および化合物(C)は、それぞれ独立して、これらから選択される架橋性官能基を有することが好ましい。
 本明細書において、硬化性組成物の膜が硬化した膜を「硬化膜」という。なお、「硬化膜」には、硬化性組成物の硬化が完了した硬化膜だけでなく、例えば、硬化性組成物を硬化させる複数の工程のうち、一部の工程のみが終了した硬化膜も含まれる。
 本明細書における数平均分子量(Mn)は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィで測定することによって得られるポリスチレン換算分子量である。
〔ガラスシート積層体〕
 本発明のガラスシート積層体(以下、「積層体」ともいう。)は、厚さが10~500μmであるガラスシートと、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物から形成される硬化膜とを有する。
(ガラスシート)
 本発明の積層体に用いるガラスシート(以下、「ガラスシート」ともいう。)は、厚さが10~500μmである。当該厚さが10μm未満では積層体にした場合でも耐衝撃性が不充分となり破損しやすくなる場合があり好ましくない。また、当該厚さが500μmを超える場合、積層体の屈曲性が不足する場合があり好ましくない。当該厚さは、20~300μmが特に好ましい。
 ガラスシートの厚さは均一であることが好ましい。具体的には厚さの偏差は、PV(Peak to Valley)値で15%以下(例えば厚さが100μmに対して、偏差が15μm以下)が好ましい。厚さが均一であれば外観が良好となり好ましい。
 ガラスシートの光線透過率は、波長が400~700nmの範囲において90%以上が好ましい。
 ガラスシートの誘電率は、10kHzにおいて5~7が好ましい。
 ガラスシートのヤング率は、70~95GPaが好ましく、75~90GPaが特に好ましい。
 ガラスシートの線膨張係数は、0~200℃において、3×10-6~5×10-6/℃(3~5ppm/℃)が好ましい。これらの特性を有していれば光電変換素子、表示部材等の保護板、半導体装置の基材等として優れるため好ましい。
 本発明に用いるガラスシートの表面は平坦であることが好ましい。特に表面の粗度は、JIS B0601で規定される算術平均粗さ(Ra)で、30nm以下が好ましく、1nm以下が特に好ましい。平坦であれば光線透過率が高く、また、ガラス表面に透明導電膜等の電極を積層した場合であっても膜抵抗が均一となり欠陥が生じにくく好ましい。
 ガラスシートの材質、組成は特に制限はない。例えばソーダライムガラス、アルカリ-ホウケイ酸ガラス、無アルカリ-ホウケイ酸ガラス、無アルカリ-アルミノシリケートガラス等が挙げられる。なかでも、耐久性が高く、弾性率が高く、線膨張係数が低い点から無アルカリ-ホウケイ酸ガラスまたは無アルカリ-アルミノシリケートガラスが好ましい。なお、無アルカリ-ホウケイ酸ガラスおよび無アルカリ-アルミノシリケートガラスを合わせて「無アルカリガラス」ということがある。無アルカリガラスであると、ガラスの上に半導体素子を形成する場合に、アルカリによる素子の不良が発生することがなく好ましい。なお、無アルカリガラスとは、ガラス組成を酸化物で表した場合に、アルカリ金属酸化物の含有割合が1モル%未満である(0モル%であってもよい。)ガラスをいう。
 なお、ガラスシートは強化処理が施されたものであってもよい。強化処理としては化学強化が好ましい。化学強化であれば、薄いガラスシートに対しても有効な強化処理を施すことができる。この場合に薄く、軽量であっても積層体が破損しにくいという効果が得られる。
(硬化性組成物)
 本発明における硬化性組成物は、積層体の硬化膜を形成するものであって、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含有する。該硬化性組成物は、2つ以上の架橋性官能基を有し、フッ素原子を有しない数平均分子量が140~3,000の化合物(B);炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が20以下のフルオロアルキル基、または、炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が6~24のアルキル基と、架橋性官能基とを有する、数平均分子量が3,000を超え50,000以下の化合物(C);ラジカル重合開始剤(D)を含んでもよい。
<含フッ素ポリアリーレンプレポリマー(A)>
 本発明における含フッ素ポリアリーレンプレポリマー(A)(以下、「プレポリマー(A)」ともいう。)は、複数の芳香環が単結合または連結基を介して結合しているポリアリーレン構造を有するとともに、フッ素原子を有し、かつ架橋性官能基を有する。硬化性組成物がプレポリマー(A)を含有することにより、硬化膜に低誘電率を付与できる。
 プレポリマー(A)の架橋性官能基は、プレポリマー(A)製造時には実質上反応を起こさず、好ましくは後述のラジカル重合開始剤(D)の存在下で、外部エネルギーを与えることによりラジカル重合反応を生じ、プレポリマー(A)分子間の架橋または鎖延長を引き起こす。また、必要に応じて硬化性組成物に含まれる化合物(B)や化合物(C)に含まれる架橋性官能基とも反応し、これらと一体となって硬化膜を生成すると考えられる。プレポリマー(A)における架橋性官能基としては、ビニル基とエチニル基が特に好ましい。
 ポリアリーレン構造における連結基は、例えばエーテル結合(-O-)、スルフィド結合(-S-)、カルボニル基(-CO-)、スルホニル基(-SO-)等が挙げられる。プレポリマー(A)のうち、特に、フッ素原子を含む芳香環同士、またはフッ素原子を含む芳香環とフッ素原子を含まない芳香環がエーテル結合(-O-)を含む連結基で結合されている構造を有するものを、含フッ素ポリアリーレンエーテルプレポリマーという。本発明におけるプレポリマー(A)は、含フッ素ポリアリーレンエーテルプレポリマーを含むことが好ましく、プレポリマー(A)としては、含フッ素ポリアリーレンエーテルプレポリマーのみであることが特に好ましい。
 該エーテル結合を含む連結基の具体例としては、エーテル性酸素原子のみからなるエーテル結合(-O-)、炭素鎖中にエーテル性酸素原子を含むアルキレン基等が例示される。
 プレポリマー(A)のうちでも、特に、含フッ素ポリアリーレンエーテルプレポリマーは、エーテル性酸素原子を有するため、分子構造が柔軟性を有し、硬化膜の可撓性が良好である点で好ましい。
 プレポリマー(A)はフッ素原子を有する。フッ素原子を有すると、硬化膜の誘電率および誘電損失が低くなりやすいため、絶縁膜を形成する材料として好ましい。絶縁膜の誘電率および誘電損失が低いと、信号伝播速度の遅延を抑制でき、電気特性に優れた素子が得られる。
 また、フッ素原子を有すると、硬化膜の吸水率が低くなるため、接合電極およびその周辺の配線部分等における接合状態の変化が抑制できる点、または金属の変質(錆等)が抑制できる点に優れる。素子の信頼性向上という点で効果が大きい。
 プレポリマー(A)の好適な例としては、含フッ素芳香族化合物とフェノール系化合物と架橋性官能基含有芳香族化合物とを炭酸カリウム等の脱ハロゲン化水素剤の存在下で反応させて得られる含フッ素ポリアリーレンエーテルプレポリマーが挙げられる。含フッ素芳香族化合物、フェノール系化合物、架橋性官能基含有芳香族化合物はそれぞれ、1種を単独で用いても2種以上を併用してもよい。
 該反応は公知の方法で実施できる。
 前記含フッ素芳香族化合物は芳香環の炭素原子に結合したフッ素原子を有する化合物であり、芳香環の炭素原子に結合した水素原子の全てがフッ素原子に置換されていることが好ましい。好ましい具体例としては、ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロビフェニル等が挙げられる。なお、この含フッ素芳香族化合物は、架橋性官能基を有しない化合物である。
 前記フェノール系化合物はフェノール性水酸基を2つ以上有する化合物であり、フェノール性水酸基を3つ以上有するフェノール系化合物が好ましい。また、フェノール系化合物としてフェノール性水酸基を3つ以上有する化合物と2つ有する化合物を併用することも好ましい。フェノール性水酸基は脱ハロゲン化水素反応しうるブロック化されたフェノール性水酸基であってもよい。好ましい具体例としては、1,3,5-トリヒドロキシベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン等が挙げられる。なお、このフェノール系化合物は、架橋性官能基を有しない化合物である。
 前記架橋性官能基含有芳香族化合物は、架橋性官能基以外に脱ハロゲン化水素剤の存在下で反応しうる反応性基を有する芳香族化合物であり、その反応性基としてはフェノール性水酸基、ブロック化されたフェノール性水酸基(例えば、アセトキシ基)、フッ素原子が結合した芳香環の炭素原子、塩素原子または臭素原子が結合したアルキル基(例えば、クロルメチル基)の炭素原子等が挙げられる。架橋性官能基含有芳香族化合物の好ましい具体例としては、ペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレン、ペンタフルオロフェニルアセチレン等が挙げられる。
 脱塩化水素反応は溶剤中で行うことが好ましい。該溶剤としては、例えばN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド、スルホラン等の非プロトン性の極性溶剤を含有する溶剤が好ましい。極性溶剤には、生成するプレポリマー(A)の溶解性を低下せず、縮合反応に悪影響を及ぼさない範囲で、トルエン、キシレン、ベンゼン、テトラヒドロフラン、ベンゾトリフルオライド、キシレンヘキサフルオライド等が含有されてもよい。これらを含有することにより、溶剤の極性(誘電率)が変化し、反応速度を制御できる。溶剤は1種を単独で用いても2種以上を併用してもよい。
 プレポリマー(A)の数平均分子量(Mn)は、1,000~100,000が好ましく、5,000~50,000が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であると、硬化膜の可撓性が低下しにくく、上記範囲の上限値以下であると、硬化性組成物の精製が容易である。
<化合物(B)>
 本発明における化合物(B)は、2つ以上の架橋性官能基を有し、フッ素原子を有しない数平均分子量が140~3,000の化合物である。硬化性組成物に化合物(B)を含有させることで、より硬度の高い硬化膜が製造できる。化合物(B)は通常常温で液状であり、その場合化合物(B)が反応性希釈剤として働くことで、硬化前の硬化性組成物の膜のガラス転移温度が下がり、低い温度でもラジカル反応が可能となるため、より低温での硬化が可能になると考えられる。また、液状の化合物(B)が溶剤として機能し、硬化性組成物を塗工可能にできる。化合物(B)が低粘度の化合物であるほど、また化合物(B)の配合量が多いほど、硬化性組成物の粘度は低くできる。
 化合物(B)の数平均分子量(Mn)は、200~3,000が好ましく、220~2,500がより好ましく、240~2,000が特に好ましい。上記範囲の下限値以上であると、加熱によって揮発がしにくい。上記範囲の上限値以下であると、化合物(B)の粘度が低く抑えられ、プレポリマー(A)と混合したときに均一な硬化性組成物が得られやすい。
 化合物(B)は架橋性官能基を2個以上有するため、分子間を架橋させることができる。化合物(B)は架橋性官能基を2~20個有することが好ましく、2~8個有することが特に好ましい。
 化合物(B)の架橋性官能基は、フッ素原子を含有せず、上記プレポリマー(A)の架橋性官能基がラジカル重合反応を生じる際に、同時に反応を生じる基が好ましい。
 化合物(B)の架橋性官能基は、少なくとも化合物(B)と反応して架橋または鎖延長を引き起こす。また、プレポリマー(A)や必要に応じて硬化性組成物に含まれる化合物(C)の架橋性官能基と反応し、これらと一体となって硬化膜を生成すると考えられる。
 化合物(B)の架橋性官能基としては、(メタ)アクリロイル(オキシ)基、ビニル(オキシ)基およびアリル(オキシ)基が好ましく、(メタ)アクリロイル(オキシ)基がより好ましい。(メタ)アクリロイル(オキシ)基としては、(メタ)アクリロイルオキシ基がより好ましく、アクリロイルオキシ基が特に好ましい。
 化合物(B)としては多価アルコールのポリ(メタ)アクリレートが好ましい。多価アルコールとしては、アルカンポリオール、アルカンポリオールの多量体、ポリオキシアルキレンポリオール等のポリエーテルポリオール、二価アルコールと二塩基酸の縮合物であるポリエステルジオールや多価アルコールに環状エステルを開環付加して得られるポリエステルポリオール等のポリエステルポリオールが挙げられる。
 化合物(B)の具体例としては、ジペンタエリスリトールトリアクリレートトリウンデシレート、ジペンタエリスリトールペンタアクリレートモノウンデシレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変成エトキシ化イソシアヌル酸のトリアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジメタクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、1,4-ブタンジオールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、アクリル酸2-(2-ビニロキシエトキシ)エチル、メタクリル酸2-(2-ビニロキシエトキシ)エチル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、下式(1)で表されるエトキシ化ペンタエリスリトールテトラアクリレート、下式(2)で表されるプロポキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールメタクリレート、下式(3)で表される化合物等が挙げられる。
 また、ポリエステルアクリレート(二価アルコールと二塩基酸との縮合物の両末端をアクリル酸で修飾した化合物:東亞合成社製、商品名アロニックス(M-6100、M-6200、M-6250、M-6500);多価アルコールと多塩基酸との縮合物の水酸基末端をアクリル酸で修飾した化合物:東亞合成社製、商品名アロニックス(M-7100、M-7300K、M-8030、M-8060、M-8100、M-8530、M-8560、M-9050))も利用できる。これらは市販品から入手できる。化合物(B)は1種を単独で用いても2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000001
 化合物(B)としては、入手容易性と反応性の点から、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変成エトキシ化イソシアヌル酸のトリアクリレート(新中村化学工業社製の「ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート」等)、1,10-デカンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレートおよびトリシクロデカンジメタノールジアクリレートが好ましい。
 硬化性組成物に化合物(B)を含有させる場合、その含有量は、プレポリマー(A)と化合物(B)との合計量(100質量部)に対して、10~80質量部が好ましく、15~70質量部がより好ましく、20~60質量部が特に好ましい。化合物(B)の含有量が上記範囲の下限値以上であると、低温でも充分に硬化でき、硬化膜が耐溶剤性に優れる。化合物(B)の含有量が上記範囲の上限値以下であると、硬化膜の誘電率が充分に低くなる。
<化合物(C)>
 本発明における化合物(C)は、下記の化合物(C-1)または化合物(C-2)のいずれかである。化合物(C-1)または化合物(C-2)は1種以上を単独で用いても2種以上を併用してもよい。
 化合物(C-1):炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が20以下のフルオロアルキル基(以下、「Cf基」ともいう。)と、架橋性官能基とを有する、数平均分子量が3,000を超え50,000以下の化合物。なお、Cf基の炭素数は、フッ素原子またはトリフルオロメチル基が結合している炭素原子を全て含み、炭素原子数の合計数が最も小さくなるように決めるものとする。
 化合物(C-2):炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が6~24のアルキル基(以下、「Rn基」ともいう。)と、架橋性官能基とを有する、数平均分子量が3,000を超え50,000以下の化合物。
 化合物(C-1)には、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物と、紫外線の照射により分子内で分解が生じない化合物や分解が生じてもCf基を有する分解生成基が脱離しない化合物とがある。後述するように、化合物(C-1)のうち、単量体(4a)、単量体(4b)および単量体(4c)のいずれかに基づく単位を単位(c1f)として有する化合物は、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物である。化合物(C-1)のうち、単量体(4d)に基づく単位を単位(c1f)として有する化合物は、紫外線の照射により分子内で分解が生じない。
 化合物(C)は架橋性官能基を有するため、該化合物(C)を硬化性組成物に含有させると、プレポリマー(A)の架橋性官能基や、硬化性組成物に必要に応じて含まれる化合物(B)の架橋性官能基と反応し、これらと一体となって硬化膜を形成する。化合物(C)は上記範囲の分子量であり、かつ、上述のCf基またはRn基を有することから、ガラスシート上の硬化性組成物の膜において、化合物(C)がガラスシートと反対側の表面に移動する。硬化膜の形成時に、化合物(C)は該表面近くで硬化し、硬化膜の表面を改質できる。
 具体的には、硬化性組成物に化合物(C-1)を含有させることにより、硬化膜の表面に撥液性を付与できる。硬化性組成物に化合物(C-2)を含有させることにより、硬化膜の表面に撥水性を付与しつつ、該表面を親油性にできる。また、化合物(C-1)のうち、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物を硬化性組成物に含有させることによって、硬化膜の表面に撥液性領域と親液性領域のパターンを形成することが可能となる。すなわち、紫外線の照射によってCf基を有する分解生成基が脱離した表面領域は、Cf基を有する表面領域に比較して相対的に撥液性が低下し、親液性領域となる。
 化合物(C)における架橋性官能基としては、他の化合物の架橋性官能基との反応性が高い点で、(メタ)アクリロイル(オキシ)基が特に好ましい。
 化合物(C)の数平均分子量(Mn)は、3,000を超え50,000以下であり、3,500~45,000が好ましく、4,000~40,000が特に好ましい。数平均分子量(Mn)が上記範囲の下限値以上であると、硬化膜の形成時において、化合物(C)が硬化性組成物の膜の表面に充分に移行し、硬化膜の表面を効果的に改質できる。上記範囲の上限値以下であると、硬化性組成物中の溶解性が良好で、欠陥のない硬化性組成物の膜を形成できる。
 硬化性組成物に化合物(C)を含有させる場合、その含有量は、プレポリマー(A)と化合物(B)との合計(100質量部)に対して、0.1~20質量部が好ましく、0.2~15質量部が特に好ましい。化合物(C)の含有量が上記範囲の下限値以上であると、硬化膜の表面を充分に改質できる。上記範囲の上限値以下であると、均質な硬化膜が得られる。
 次に、化合物(C-1)および化合物(C-2)のそれぞれについて説明する。
(I)化合物(C-1)
 化合物(C-1)の有するCf基は直鎖状でもよく、分岐状でもよい。
 Cf基は、硬化膜の表面の撥液性がより良好となる点から、フッ素原子と水素原子の合計数に対してフッ素原子の数が80%以上であることが好ましく、100%であることが特に好ましい。
 フルオロアルキル基の具体例としては、CF、CFCF、CF(CF、CH(CF、CFCHF、(CFCF、(CFCF、(CFCF、(CFCF、(CFCF、(CFCF、(CFCF、(CFCF、(CF11CF、(CF15CFが挙げられる。
 また、エーテル性酸素原子を有するフルオロアルキル基の具体例としては、CF(CF)O(CFCF、CFO(CFCFO)CF(pは1~8の整数。)、CF(CF)O(CFCF(CF)O)13(qは1~4の整数。)、CF(CF)O(CFCF(CF)O)(rは0~5の整数。)が挙げられる。
 Cf基は、硬化膜表面の撥液性がより優れる点で、ペルフルオロアルキル基であることが好ましい。Cf基の炭素数は2~20が好ましく、2~15がより好ましく、4~8が特に好ましい。これによって、撥液性に優れるとともに、後述するCf基を有する単量体と、共重合させる他の単量体との相溶性が良好となる。また、Cf基の炭素数は、環境負荷が低くなる点からは、6以下が好ましく、2~6がより好ましく、4~6が特に好ましい。
 化合物(C-1)は、Cf基を有する単位(c1f)と、架橋性官能基を有する単位(c2)とを有する共重合体であることが好ましい。単位(c1f)は、架橋性官能基を有さず、単位(c2)はCf基を有さない。該共重合体は、任意の単位(c3)を有していてもよい。
「単位(c1f)」
 単位(c1f)は、Cf基と重合性基(架橋性官能基と同種の基)とを有する単量体(c1fm)を重合させることにより形成されることが好ましい。または、反応性官能基を有する重合体に、Cf基を有する化合物を反応させる各種変性方法によって、Cf基を有する単位(c1f)とすることもできる。
 単量体(c1fm)の重合により単位(c1f)を形成する場合、単量体(c1fm)の重合性基は重合により失われるため、単位(c1f)は架橋性官能基を有しない。
 単量体(c1fm)は、例えばCf基を有するモノオール、Cf基を有するモノエポキシド、Cf基を有するモノカルボン酸およびCf基を有するモノスルホン酸等の誘導体(重合性基を有する誘導体)等が挙げられ、Cf基を有するモノオールの誘導体が好ましい。
 Cf基を有するモノオールとしては、HO-R-Cfで表されるモノオールが好ましい。Rは単結合または2価の有機基であり、アルキレン基が好ましい。しかし、2価の有機基としてはアルキレン基に限られず、-R-NR-CO-や-R-NR-SO-であってもよい。Rはアルキレン基、Rは水素原子またはアルキル基を表す。また、フルオロアルキル基の炭素原子に直接水酸基が結合したモノオール(例えば、HO-CH(CF)が存在する場合は、Rは単結合であってもよい。
 Rがアルキレン基の場合、その炭素数は1~10が好ましく、2~6がより好ましく、2~4が特に好ましい。Rの炭素数も同様の炭素数であることが好ましく、Rは水素原子または炭素数4以下のアルキル基であることが好ましい。
 Rが、炭素数1~10のアルキレン基の場合、Rの具体例としては、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-C(CH-、-CH(CHCH)-、-CHCHCHCH-、-CH(CHCHCH)-、-CH(CHCH-、-CH(CHCH(CH)-等が挙げられる。Rとしては直鎖状のアルキレン基が好ましく、-CH-、-CHCH-、-CHCHCH-、-CHCHCHCH-が特に好ましい。
 重合性基は、ビニル(オキシ)基、アリル(オキシ)基または(メタ)アクリロイル(オキシ)基であることが好ましく、ビニル基または(メタ)アクリロイルルオキシ基であることがより好ましく、(メタ)アクリロイルオキシ基であることが特に好ましい。
 単量体(c1fm)は、下式(4)で表される化合物(以下、「単量体(4)」という場合がある。)が挙げられる。単量体(4)としては、例えばCf基を有するモノオールの残基等と上述の重合性基とを有する化合物が好ましい。
 V-Q-R-Cf・・・(4)
 V:重合性基。
 Q:単結合または2価の有機基。
 Cf:Cf基。
 R:単結合または2価の有機基。
 単量体(4)において、Rは例えば上述のモノオールの残基等であり、上述のとおり単結合またはアルキレン基であることが好ましく、好ましいアルキレン基は、上述のとおりである。
 単量体(4)において、Vで表される重合性基の好ましい範囲は、上述した重合性基と同様である。
 Qが単結合である場合、Vは結合手末端に酸素原子を有する重合性基であり、その酸素原子はエーテル結合の酸素原子やエステル結合のアルコール残基側の酸素原子等であり、Cf基を有するモノオールに由来する酸素原子であることが好ましい。Qが単結合である場合、Vは(メタ)アクリロイルオキシ基であることが特に好ましい。
 Qが2価の有機基である場合、QはR側の結合末端に酸素原子を有する2価の有機基であり、その酸素原子はエーテル結合の酸素原子やエステル結合のアルコール残基側の酸素原子等であり、Cf基を有するモノオールに由来する酸素原子であることが好ましい。なお、Qが2価の有機基である場合、その炭素数は25以下が好ましく、下記芳香環を1個有する場合は12以下、2個有する場合18以下、芳香環を有しない場合は6以下が好ましい。
 Qが2価の有機基の場合、Qは芳香環を含むことが好ましい。その場合、R側は芳香環に結合した-CHO-または-COO-であることが好ましい。V側は、芳香環の結合手または芳香環に結合したアルキレン基が好ましく、そのアルキレン基の炭素数が4以下が好ましく、1または2が特に好ましい。Vは、芳香環に直接結合した、ビニル(オキシ)基、アリル(オキシ)基または(メタ)アクリロイルオキシ基であるか、または上述のアルキレン基を介して芳香環に結合した(メタ)アクリロイルオキシ基であることが好ましい。特に、Vは、芳香環に直接結合したビニル基または(メタ)アクリロイルオキシ基であるか、メチレン基またはジメチレン基を介して芳香環に結合した(メタ)アクリロイルオキシ基であることが好ましい。
 Qが芳香環を含む場合、芳香環は単核芳香環であっても縮合芳香環であっても連結多環芳香環であってもよい。芳香環としては、ベンゼン環、ナフタレン環、ベンゾフラン環、ベンゾイミダゾール環、ベンゾオキサゾール環、アントラセン環等が挙げられ、コストの点からベンゼン環が好ましい。なお、芳香環上の水素原子の1個以上が、炭素数1~15のアルキル基またはハロゲン原子で置換されてもよい。置換基としてのアルキル基の炭素数は4以下が好ましく、ハロゲン原子としては、フッ素原子または塩素原子が好ましい。
 Q中の芳香環は2価(すなわち、2つの結合手を有する)であることが好ましく、複数の芳香環を有する場合もそれぞれ2価の芳香環であることが好ましい。Q中の芳香環はフェニレン基またはフェニレン基が2個または3個連結したポリフェニレン基であることが好ましい。ポリフェニレン基の場合、複数のフェニレン基は直接結合していてもよく、連結基を介して結合していてもよい。連結基としては、炭素数1~4のアルキレン基、-O-、-OCH-、-CO-、-SO-、-S-等が好ましく、特に-OCH-が好ましい。芳香環がポリフェニレン基の場合、VとRは異なる芳香環に結合していることが好ましい。
 Qが芳香環を含まない2価の有機基の場合、Qは-R-O-または-R-COO-であることが好ましい(Rは炭素数10以下の、アルキレン基またはシクロアルキレン基を表す。)が好ましい。
 単量体(4)の具体例としては、含有するQの種類により、以下に説明する単量体(4a)、単量体(4b)、単量体(4c)、単量体(4d)が挙げられる。
 単量体(4a)、単量体(4b)および単量体(4c)は、Qが芳香環を含み、かつ、重合性基とCf基とが、-CHO-または-COO-を有する連結基を介して結合している単量体である。単量体(4d)は、単量体(4a)、単量体(4b)および単量体(4c)には該当しない単量体である。
 単量体(4a)、単量体(4b)、単量体(4c)に基づく単位を有する化合物(C-1)を含む硬化性組成物から形成された硬化膜に、紫外線を照射することにより、硬化膜の表面からCf基が脱離する。その結果、硬化膜の表面は撥液性が低下し、相対的に親液性となる。この特性を利用し、パターンを有するフォトマスクを介して紫外線を照射することにより、紫外線の照射により撥液性が低下して親液化した親液性領域と、紫外線が照射されず撥液性を維持している撥液性領域とのパターンを硬化膜の表面に形成できる。このように形成された親液性領域には、後述のように、例えば電極形成用の導電インク等を選択的に付着させることができる。
 また、紫外線は硬化性組成物の膜に照射してもよく、その場合、紫外線照射後に硬化性組成物の膜を硬化させればよい。
 硬化膜の表面に紫外線を照射する場合には、該硬化膜は、熱硬化により硬化した硬化膜であることが好ましい。したがって、単量体(4a)、単量体(4b)、単量体(4c)に基づく単位を有する化合物(C-1)は、熱硬化させる硬化性組成物に配合して使用することが好ましい。
 次に、各単量体について、説明する。
(1)単量体(4a)
 単量体(4a)は、下式(4a)で表され、Qが-(CHm1-Ar-(Y-Ar)n1-X-である化合物である。Qの炭素数は25以下が好ましく、芳香環を1個有する場合は12以下、2個有する場合18以下が好ましい。
 V-(CHm1-Ar-(Y-Ar)n1-X-R-Cf・・・(4a)
 V:重合性基。
 Ar:炭素数1~15のアルキル基またはハロゲン原子を有していてもよい芳香環。
 X:-CHO-または-COO-。
 Y:単結合、-OCH-、-CHO-、炭素数1~4のアルキレン基、-O-、-OCH-、-CO-、-SO-または-S-。
 R:単結合または炭素数1~10のアルキレン基。
 Cf:Cf基。
 m1:0~4の整数。
 n1:0または1。
 Arとしては、炭素数1~4のアルキル基またはハロゲン原子を有していてもよい、フェニレン基が好ましく、置換基のないフェニレン基が特に好ましい。Yは-OCH-または-CHO-であることが好ましい。
 単量体(4a)としては、式(4a-1)、式(4a-2)、式(4a-3)または式(4a-4)で表される化合物が好ましい。
 V-Ph-X-R-Cf・・・(4a-1)
 V-(CHk1-Ph-X-R-Cf ・・・(4a-2)
 V-Ph-Y-Ph-X-R-Cf ・・・(4a-3)
 V-(CHk1-Ph-Y-Ph-X-R-Cf ・・・(4a-4)
 Cf:炭素数2~15のペルフルオロアルキル基。
 V:(メタ)アクリロイルオキシ基。
 V:ビニル基または(メタ)アクリロイルオキシ基。
 R:単結合または炭素数1~10のアルキレン基。
 Ph:フェニレン基。
 X:-CHO-または-COO-。
 Y:-OCH-または-CHO-
 k1:1または2。
 単量体(4a)に基づく単位を有する化合物(C-1)においては、化合物(C-1)の側鎖にCf基が存在し、該Cf基がXを有する連結基で主鎖に結合している。このような化合物(C-1)は、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離しやすい。XとともにさらにYを有している場合も、連結基は紫外線の照射により分解反応を起こしやすく、その結果、化合物(C-1)の主鎖からCf基を含む分解生成基がより脱離しやすくなる。
 式(4a-1)で表される化合物としては、下式(4a-11)で表される化合物、下式(4a-12)で表される化合物および下式(4a-13)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 式(4a-2)で表される化合物としては、下式(4a-21)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(4a-4)で表される化合物としては、下式(4a-41)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(2)単量体(4b)
 単量体(4b)は、下式(m1α)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
 Cf:Cf基。
 RおよびR:それぞれ独立に水素原子、炭素数1~6のアルキル基またはフェニル基。
 X:酸素原子、硫黄原子、窒素原子またはNH。
 n2:0~4の整数。
 m2:Xが酸素原子、硫黄原子またはNHである場合には1であり、Xが窒素原子である場合には2。
 Z:R10C=CR-CO-。
 R、RおよびR10:それぞれ独立に水素原子またはメチル基。
 RおよびRは、紫外線の照射によってCf基を含む分解生成基が脱離しやすい点から、RおよびRの少なくとも一方が水素原子以外であることが好ましく、RおよびRの両方が水素原子以外であることがより好ましく、RおよびRの両方がメチル基であることが特に好ましい。
 Xは、重合により化合物(C-1)を製造しやすい(化合物(C-1)がゲル化しにくい)点から、酸素原子、硫黄原子、NHが好ましく、原料を入手しやすい点から、酸素原子が特に好ましい。
 m2は、重合により化合物(C-1)を製造しやすい(化合物(C-1)がゲル化しにくい)点から、1が好ましい。
 n2は、原料の入手性と合成の簡便さの点から、0~2の整数が好ましく、0~1の整数が特に好ましい。
 R、RおよびR10は、反応性が高い点から、水素原子が好ましい。すなわち、Zとしてはアクリロイル基が好ましい。
 単量体(4b)としては、下式(m1α-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 化合物(m1α)の製造方法としては、下式で表される反応を行う方法が挙げられる。化合物(a1α)の左側のHO-を、3級アミンの存在下に化合物(b1α)を用いて選択的にエステル化して化合物(c1α)を得た後、化合物(c1α)の右側の-OHを、化合物(d1α)を用いてエステル化して化合物(m1α)を得る。
Figure JPOXMLDOC01-appb-C000009
 化合物(a1α)は、RおよびRがメチル基、Xが酸素原子、n2が1である化合物の場合、特開昭62-81345号公報に記載された「4-(2-ヒドロキシエトキシ)フェニル2-ヒドロキシ-2-プロピルケトン」の製造方法によって製造できる。市販品としては、IRGACURE 2959(製品名、チバスペシャルティケミカルズ社製)等が挙げられる。
 単量体(4b)は、特開昭62-81345号公報に記載された「共重合性光開始剤」におけるRをCf基に置き換えた化合物(m1α)であるため、該公報に記載された「共重合性光開始剤」同様、光触媒等が存在しなくても、波長350~370nmの紫外線の照射によって分子内において分解が起こり、Cf基を含む分解生成基が脱離できる。すなわち、単量体(4b)は、紫外線の照射によって側鎖に存在するCf基が脱離しやすい。
(3)単量体(4c)
 単量体(4c)は、下式(m1β)で表される化合物である。
Figure JPOXMLDOC01-appb-C000010
 R11:水素原子、炭素数1~6のアルキル基またはフェニル基。
 R12:単結合またはフッ素原子を有さない2価の有機基。
 X:酸素原子、硫黄原子、窒素原子またはNH。
 m3:Xが酸素原子、硫黄原子またはNHである場合には1であり、Xが窒素原子である場合には2。
 n3:0~4の整数。
 k2:0または1。
 Z:R1415C=CR13-CO-。
 R13、R14およびR15:それぞれ独立に水素原子またはメチル基。
 化合物(m1β)には、オキシムの二重結合によるシス-トランス異性体が存在する。本発明における化合物(m1β)は、上記式に示すものに限定はされず、シス体のみであってもよく、トランス体のみであってもよく、両方の混合物であってもよい。
 R11は、化合物(m1β)の溶解性が良好な点から、炭素数1~6のアルキル基が好ましい。
 R12は、単結合またはフッ素原子を有さない2価の有機基であり、2価の有機基としては、-C-、-CO(CHw1-(ただし、w1は0~10の整数である。)、-CCOO(CHw2-(ただし、w2は0~10の整数である。)、-CH-、-(CHw3COO(CHw4-(ただし、w3は1~10の整数であり、w4は0~10の整数である。)、-CHO(CHw5-(ただし、w5は0~10の整数である。)、-CH(CH)O(CHw6-(ただし、w6は0~10の整数である。)が挙げられる。波長300nm以上の紫外線を吸収しやすい点からは、-C-、-CO(CHw1-、-CCOO(CHw2-が好ましい。また、Cf基を含む分解生成基が除去しやすい点からは、単結合、-CH-、-(CHw3COO(CHw4-、-CHO(CHw5-、-CH(CH)O(CHw6-が好ましい。なお、w1は0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w2は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w3は、0~6の整数が好ましく、製造しやすい点から1~3の整数が特に好ましい。w4は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w5は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。w6は、0~4の整数が好ましく、製造しやすい点から0~2の整数が特に好ましい。
 Xは、重合により化合物(C-1)を製造しやすい(化合物(C-1)がゲル化しにくい)点から、酸素原子、硫黄原子、NHが好ましく、原料を入手しやすい点から、酸素原子、硫黄原子がより好ましく、重合により化合物(C-1)を製造しやすい点から、硫黄原子が特に好ましい。
 m3は、重合により化合物(C-1)を製造しやすい(化合物(C-1)がゲル化しにくい)点から、1が好ましい。
 n3は、原料の入手性と合成の簡便さの点から、0~2の整数が好ましく、0または1が特に好ましい。
 k2は、原料の入手性と合成の簡便さの点から、1が特に好ましい。
 -O-Ph-X-(ただし、Phはフェニレン基である。)におけるXとOとの位置関係は、原料の入手容易性の点から、パラ位置関係が好ましい。
 R13、R14およびR15は、反応性が高い点から、R13が水素原子またはメチル基で、R14およびR15が水素原子であることが好ましい。すなわち、Zとしてはアクリロイル基またはメタクリロイル基が好ましい。
 単量体(4c)としては、下式(m1β-1)~下式(m1β-3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 化合物(m1β)の製造方法としては、下式で表される反応を行う方法が挙げられる。化合物(a1β)のHO-を、3級アミンの存在下に化合物(b1β)を用いてエステル化し、化合物(c1β)を得る。次いで、亜硝酸エステルを用いてオキシム化し、化合物(d1β)を得る。次いで、化合物(d1β)の-OHを、カルボジイミドの存在下に化合物(e1β)を用いてエステル化し、化合物(m1β)を得る。
Figure JPOXMLDOC01-appb-C000014
 化合物(a1β)は、公知の製造方法によって製造できる。たとえば、Xが硫黄原子、n3が0、k2が1の場合、HO-C-SHとBr-C-CO-CH-R11とを反応させることによって製造できる。
 単量体(4c)は、特開2000-080068号公報に記載された「新規O-オキシム光開始剤」における式(I)のRをR12-Cf基に置き換え、Rを[Z-(OCHCHn3-(OCk2-]m3-基に置き換えた化合物(m1β)であるため、該公報に記載された「新規O-オキシム光開始剤」同様、光触媒等が存在しなくても、波長350~370nmの紫外線の照射によって分子内において分解が起こり、Cf基を含む分解生成基が脱離できる。すなわち、単量体(4c)は、紫外線の照射によって側鎖に存在するCf基が脱離しやすい。
(4)単量体(4d)
 単量体(4d)としては、下式(4d)で表される化合物が好ましい。
 V-R-Cf ・・・(4d)
 Cf:炭素数2~15のペルフルオロアルキル基
 V:(メタ)アクリロイルオキシ基
 R:単結合または炭素数1~10のアルキレン基
 式(4d)で表される化合物としては、CH=CHCOOCHCF、CH=CCHCOOCHCF、CH=CHCOOCHCFCF、CH=CCHCOOCHCFCF、CH=CHCOOCH(CF、CH=CCHCOOCH(CF、CH=CHCOOCH(CFCF、CH=CCHCOOCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CF11CF、CH=CCHCOOCHCH(CF11CF、CH=CHCOOCHCH(CF15CF、CH=CCHCOOCHCH(CF15CF、CH=CHCOOCHCF(CF)O(CFCF、CH=CCHCOOCHCHCF(CF)O(CFCF、CH=CHCOOCHCFO(CFCFO)CF(pは1~8)、CH=CCHCOOCHCHCFO(CFCFO)CF(pは1~8)、CH=CHCOOCHCF(CF)O(CFCF(CF)O)13(qは1~4)、CH=CCHCOOCHCHCF(CF)O(CFCF(CF)O)13(qは1~4)、CH=CHCOOCHCF(CF)O(CFCF(CF)O)(rは1~5の整数。)、CH=CCHCOOCHCHCF(CF)O(CFCF(CF)O)(rは1~5の整数。)が挙げられる。
 これらのうち、入手容易の点から、CH=CHCOOCH(CF、CH=CCHCOOCH(CF、CH=CHCOOCHCH(CFCF、CH=CCHCOOCHCH(CFCF、CH=CHCOOCHCH(CFCFおよびCH=CCHCOOCHCH(CFCFが好ましい。
 なお、単量体(4d)としては、Cf基を有するモノエポキシドと(メタ)アクリル酸との反応生成物、Cf基を有するモノカルボン酸とヒドロキシアルキル(メタ)アクリレートとの反応生成物、Cf基を有するモノスルホン酸とヒドロキシアルキル(メタ)アクリレートとの反応生成物等であってもよい。例えば、ペルフルオロアルキル基とグリシジル基を有する化合物と(メタ)アクリル酸との反応により、ペルフルオロアルキル基が結合したヒドロキシアルキル基と(メタ)アクリロイルオキシ基が結合した化合物が得られる。
 化合物(C-1)における単位(c1f)の割合は、10~90質量%が好ましく、15~90質量%がより好ましく、20~90質量%が特に好ましい。上記範囲の下限値以上であると、硬化膜の表面が撥水性に優れ、上記範囲の上限値以下であると、硬化性組成物が溶剤に溶けやすい。
 なお、化合物(C)の合成に使用される化合物(100質量%)のうちの、単位(c1f)を与える単量体(c1fm)の割合(仕込み比)も、上記割合と同様である。
「単位(c2)および単位(c3)」
 単位(c2)は架橋性官能基を有し、フッ素原子を有しない。単位(c2)における架橋性官能基の数は1個が好ましい。単位(c2)における架橋性官能基としては、特に(メタ)アクリロイル(オキシ)基が好ましい。硬化性組成物に必要に応じて含まれる、化合物(B)の架橋性官能基と、化合物(C-1)の架橋性官能基とは、互いに同じであってもよく異なっていてもよい。
 単位(c2)は、通常、重合性基を有する単量体の重合と、これにより得られた重合体への架橋性官能基の導入により製造される。単量体が有していた重合性基は重合により失われるため、単位(c2)の架橋性官能基は、重合体の形成後に導入される。
 該方法は公知の方法を適宜用いることができる。具体的には、反応性官能基と重合性基とを有する単量体(以下、「単量体(c4m)」ともいう。)を共重合させて反応性官能基を有する共重合体を製造し、得られた共重合体の反応性官能基と反応して結合する第2の反応性官能基と、架橋性官能基を有する化合物(以下、「化合物(c2c)」ともいう。)とを反応させて化合物(C-1)を製造する方法である。この場合、単位(c2)は、単量体(c4m)の重合により形成された単位(c4)と化合物(c2c)との結合によって生じる単位である。
 具体的には、例えば以下の方法が例示できる。
 (i)単量体(c4m)として水酸基と重合性基とを有する単量体を用い、これを共重合して得られた共重合体に、化合物(c2c)として架橋性官能基を有する酸無水物を反応させる方法。
 (ii)単量体(c4m)として水酸基と重合性基とを有する単量体を用い、これを共重合して得られた共重合体に、化合物(c2c)としてイソシアネート基と架橋性官能基を有する化合物を反応させる方法。
 (iii)単量体(c4m)として水酸基と重合性基とを有する単量体を用い、これを共重合して得られた共重合体に、化合物(c2c)として塩化アシル基と架橋性官能基を有する化合物を反応させる方法。
 (iv)単量体(c4m)として重合性基を有する酸無水物を用い、これを共重合して得られた共重合体に、化合物(c2c)として水酸基と架橋性官能基を有する化合物を反応させる方法。
 (v)単量体(c4m)としてカルボキシ基と重合性基とを有する単量体を用い、これを共重合させて得られた共重合体に、化合物(c2c)としてエポキシ基と架橋性官能基を有する化合物を反応させる方法。
 (vi)単量体(c4m)としてエポキシ基と重合性基とを有する単量体を用い、これを共重合して得られた共重合体に、化合物(c2c)としてカルボキシ基と架橋性官能基を有する化合物を反応させる方法。
 このように単位(c4)を有する共重合体に化合物(c2c)を反応させる場合、共重合体の反応性官能基の実質的に全てに反応させてもよく、共重合体の反応性官能基の一部に反応させてもよい。後者の場合、得られた化合物(C-1)は、単量体(c4m)の重合により形成された単位(c4)を有する。硬化性組成物に使用する化合物(C-1)は、この単位(c4)を有していてもよい。また、単位(c4)の反応性官能基が硬化性組成物に好ましくない影響を与えるおそれがある場合は、単位(c4)の反応性官能基に、共重合体の反応性官能基と反応して結合する第2の反応性官能基を有しかつ架橋性官能基を有しない化合物を反応させて、反応性官能基を不活性な基に変換することもできる。
 なお、この化合物(C-1)に残存した単位(c4)およびそれに由来する上述の不活性な基を有する単位は、後述の任意の単位(c3)とみなすものとする。
 前記(i)、(ii)、(iii)の水酸基と重合性基とを有する単量体および(iv)の水酸基と架橋性官能基を有する化合物としては、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 前記(i)の架橋性官能基を有する酸無水物および(iv)の重合性基を有する酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水フタル酸等が挙げられる。
 前記(ii)のイソシアネート基と架橋性官能基を有する化合物の具体例としては、2-(メタ)アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
 前記(iii)の塩化アシル基と架橋性官能基を有する化合物の具体例としては、(メタ)アクリロイルクロライド、3-ブテノイルクロライドが挙げられる。
 前記(v)のカルボキシ基と重合性基とを有する単量体および(vi)のカルボキシ基と架橋性官能基を有する化合物の具体例としては、(メタ)アクリル酸等が挙げられる。
 前記(vi)のエポキシ基と架橋性官能基を有する化合物および(vi)のエポキシ基と重合性基とを有する単量体の具体例としては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアクリレートが挙げられる。
 単位(c2)としては、上記(ii)の方法で形成される単位および上記(iii)の方法で形成される単位が好ましく、プレポリマー(A)との反応性が良好であることから、前記(ii)の方法で形成される単位がより好ましい。なかでも、水酸基と重合性基とを有する単量体として、2-ヒドロキシエチル(メタ)アクリレートを共重合させて得られた共重合体に、2-(メタ)アクリロイルオキシエチルイソシアネートを反応させて形成された単位が特に好ましい。
 化合物(C-1)における単位(c2)の割合は、1~90質量%が好ましく、1~80質量%がより好ましく、5~80質量%が特に好ましい。上記範囲の下限値以上であると、プレポリマー(A)や化合物(B)との反応が良好になり、上記範囲の上限値以下であると、硬化膜の表面が撥液性に優れる。
 なお、化合物(C-1)の合成に使用される化合物(100質量%)のうちの、単位(c2)を与える単量体(c4m)および化合物(c2c)の合計の割合(仕込み比)も上記割合と同様である。
 化合物(C-1)が共重合体である場合、撥水性の向上効果を損なわない範囲で、必要に応じて、単位(c1f)および単位(c2)以外の他の単位(c3)を有していてもよい。上述のように、化合物(C-1)が単位(c4)、または単位(c4)に由来し、かつ架橋性官能基を有しない単位を有する場合は、それらの単位は単位(c3)である。
 単位(c3)は、単量体(c3m)を重合させることにより化合物(C-1)に導入することが好ましい。また、反応性官能基を有する化合物(C-1)に適宜化合物を反応させる各種変性方法によって、重合体に導入することも好ましい。
 単量体(c3m)としては、上記単量体(c4m)以外に、炭化水素系オレフィン類、ビニルエーテル類、イソプロペニルエーテル類、アリルエーテル類、ビニルエステル類、アリルエステル類、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、芳香族ビニル化合物、クロロオレフィン類、共役ジエン類が挙げられる。これらの化合物には、官能基が含まれていてもよく、官能基としては、例えば、水酸基、カルボニル基、アルコキシ基等が挙げられる。これらは1種単独で用いても2種以上を併用してもよい。
 単量体(c3m)の具体例としては、アクリル酸、メタクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチル-n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(1,1-ジメチル-3-オキソブチル)(メタ)アクリルレート、2-アセトアセトキシエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N-ビニルアセトアミド、N-ビニルホルムアミド、N-(1,1-ジメチル-3-オキソブチル)(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N,N-ビス(メトキシメチル)(メタ)アクリルアミド等が挙げられる。入手容易の点から、アクリル酸、メタクリル酸、シクロヘキシル(メタ)アクリレートおよびイソボルニル(メタ)アクリレートが好ましい。
 化合物(C-1)における単位(c3)の割合は70質量%以下が好ましく、50質量%以下がより好ましく、20質量%以下が特に好ましい。下限は0質量%が好ましい。単位(c3)の割合が上記であると、硬化膜の表面における撥液性や硬化性組成物の硬化性が良好である。
 なお、化合物(C-1)の合成に使用される全単量体(100質量%)のうちの、単位(c3)を与える単量体(c3)の割合(仕込み比)も上記割合と同様である。
 化合物(C-1)における単位の好ましい質量比率は、単位(c1f):単位(c2):単位(c3)=10~90:1~90:0~70が好ましく、15~90:1~80:0~50がより好ましく、20~90:5~80:0~20が特に好ましい。
「化合物(C-1)の製造方法」
 化合物(C-1)の合成は溶剤中で行うことが好ましい。溶剤としては、例えばエタノール、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のセルソルブ類;2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のカルビトール類;メチルアセテート、エチルアセテート、n-ブチルアセテート、エチルラクテート、n-ブチルラクテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールジアセテート、グリセリントリアセテート等のエステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル等のエーテル類;が挙げられる。これらは1種単独で用いても2種以上を併用してもよい。
 また、重合開始剤を用いることが好ましい。重合開始剤としては公知の有機過酸化物、無機過酸化物、アゾ化合物等が挙げられる。有機過酸化物、無機過酸化物は、還元剤と組み合わせて、レドックス系触媒として使用することもできる。これらの重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
 有機過酸化物としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、イソブチリルペルオキシド、t-ブチルヒドロペルオキシド、t-ブチル-α-クミルペルオキシド等が挙げられる。
 無機過酸化物としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過酸化水素、過炭酸塩等が挙げられる。
 アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩等が挙げられる。
 必要に応じて、メルカプタン類、ハロゲン化アルキル類等の連鎖移動剤を用いることが好ましい。
 メルカプタン類としては、n-ブチルメルカプタン、n-ドデシルメルカプタン、t-ブチルメルカプタン、チオグリコール酸エチル、チオグリコール酸2-エチルヘキシル、2-メルカプトエタノール等が挙げられる。ハロゲン化アルキル類としては、クロロホルム、四塩化炭素、四臭化炭素等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 必要に応じて公知の重合禁止剤を配合してもよい。重合禁止剤の例としては、2,6-ジ-t-ブチル-p-クレゾールが挙げられる。
 得られた共重合体を変性する場合も上記と同様の溶剤を使用できる。ただし、化合物(c2c)と反応する溶剤は使用できない。上記共重合体の製造を溶剤中で行い、引き続き化合物(c2c)を添加して反応させ、化合物(C-1)を得ることができる。
 また、触媒や中和剤の存在下に変性を行うこともできる。例えば、水酸基を有する共重合体に、イソシアネート基と架橋性官能基を有する化合物を反応させる場合、触媒として錫化合物等を用いることができる。錫化合物としては、ジブチル錫ジラウレート、ジブチル錫ジ(マレイン酸モノエステル)、ジオクチル錫ジラウレート、ジオクチル錫ジ(マレイン酸モノエステル)、ジブチル錫ジアセテート等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 水酸基を有する共重合体に、塩化アシル基と架橋性官能基を有する化合物を反応させる場合、塩基性触媒を用いることができる。塩基性触媒としては、トリエチルアミン、ピリジン、ジメチルアニリン、テトラメチル尿素等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
(II)化合物(C-2)
 硬化性組成物に化合物(C-2)を含有させることにより、硬化膜の表面に撥水性を付与しつつ、該表面を親油性にできる。そのため、該硬化膜の表面に、空気中の水分等が付着することを抑制しつつ、例えば有機半導体層を形成するための有機溶剤系の塗布液等を良好に塗布できる。
 化合物(C-2)のRn基は直鎖状でも、分岐状でも、環状でもよく、硬化膜の表面に高い撥水性を付与しやすいことから、直鎖状が好ましい。Rn基は、炭素原子間にエーテル性酸素原子を含んでもよい。
 炭素数が6~24のアルキル基のうち、直鎖状のアルキル基の具体例としては、-(CHCH、-(CHCH、-(CHCH、-(CHCH、-(CHCH、-(CH10CH、-(CH11CH、-(CH12CH、-(CH13CH、-(CH14CH、-(CH15CH、-(CH16CH、-(CH17CH、-(CH18CH、-(CH19CH、-(CH20CH、-(CH21CH、-(CH22CH、-(CH23CH等が挙げられる。
 分岐状のアルキル基の具体例としては、-CHCH(CH)(CHCH、-CH(CH)(CHCH、-C(CH(CHCH、-C(CH(CHCH、-C(CH)(CHCH)(CHCH、-(CHCH(CH)CHCH、-(CHCH(CH、-CHCH(CHCH)(CHCH、-(CHCH(CH)(CHCH、-CHCH(CH(CH)(CHCH(CH、-(CHCH(CH)(CHCH(CH、-(CHCH(CH)CHCH、-(CHCH(CH)CHC(CH、-(CHCH(CH)CHC(CH、-CH(CH)(CHCH、-CH(CHCH)(CHCH、-CH(CHCH)(CHCH、-CH(CH)(CHCH、-CH(CHCHCH)(CHCH、-CH((CHCH)(CHCH、-C(CHCH(CH)(CHCH、-C(CHCHCHCH(CH、-CH(CHCH)CHCHCH(CH、-CH(CH)(CHCH(CH、-CH(CH)CHCHCH(CH)CHCH、-CH(CHCH)CHCH(CH)CHCH、-CH(CH)CHCHCH(CH、-CH(CH)(CHCH、-CH(CHCH)(CHCH、-CH(CHCHCH)(CHCH、-CH((CHCH、-CH(CH)(CHCH、-CH(CHCH)(CHCH、-CH((CHCH)(CHCH、-CH(CH)(CHCH、-CH(CH(CH)(CHCH、-CH(CH)(CH11CH、-CH(CH)(CH10CH、-C(CH)(CHCH)(CHCH(CH、-CH((CHCH)(CHCH、-CH(CH)(CHCH、-CH(CHCH)(CHCH、-CH((CHCH)(CHCH、-CH((CHCH)(CHCH、-CH((CHCH、-CH(CHCH(CH))CHCHCH(CHCH)(CHCH、-CH(CH)(CHCH、CH(CH)(CH10CH、-CH(CH)(CH11CH、-CH(CH)(CH12CH、-CH(CH)(CH13CH、-CH(CH)(CH14CH、-CH(CH)(CH15CH、-CH(CH)(CH16CH、-CH(CH)(CH17CH、-CH(CH)(CH18CH、-CH(CH)(CH19CH、-CH(CH)(CH20CH、-CH(CH)(CH21CH等が挙げられる。
 環状のアルキル基の具体例としては、シクロヘキシル、2,3-ジメチルシクロヘキシル、2,5-ジメチルシクロヘキシル、2,6-ジメチルシクロヘキシル、3,4-ジメチルシクロヘキシル、3,5-ジメチルシクロヘキシル、2-エチルシクロヘキシル、4-エチルシクロヘキシル、4-イソプロピルシクロヘキシル、1-メチルシクロヘキシル、2-メチルシクロヘキシル、3-メチルシクロヘキシル、4-メチルシクロヘキシル、2-イソプロピル-5-メチルシクロヘキシル、2-プロピルシクロヘキシル、4-プロピルシクロヘキシル、3,3,5-トリメチルシクロヘキシル、4-t-ブチルシクロヘキシル、4-ブチルシクロヘキシル、4-ペンチルシクロヘキシル、2-シクロヘキシルシクロヘキシル、4-シクロヘキシルシクロヘキシル、シクロヘプチル、シクロオクチルシクロドデシル、シクロペンタデシル等が挙げられる。
 エーテル性酸素原子を有するアルキル基の具体例としては、(CHCHO)αCH(α=3~11の整数)、(CHCHO)αCHCH(α=2~11の整数)、(CHCHO)αC(CH(α=1~10の整数)、(CHCHO)α(CHCH(α=1~10の整数)、(CHCHO)αCH(CH(α=1~10の整数)、(CHCHO)α(CHCH(α=1~10の整数)、(CHCHO)αCHCH(CH(α=1~10の整数)、(CHCHO)α(CHCH(α=1~9の整数)、(CHCHO)α(CHCH(α=1~9の整数)、(CHCHO)α(CHCH(α=1~8の整数)、(CHCHO)α(CHCH(α=1~8の整数)、(CHCHO)α(CHCH(α=1~7の整数)、(CHCHO)α(CHCH(α=1~7)、(CHCHO)α(CH10CH(α=1~6の整数)、(CHCHO)α(CH11CH(α=1~6)、(CHCHO)α(CH12CH(α=1~5の整数)、(CHCHO)α(CH13CH(α=1~5)、(CHCHO)α(CH14CH(α=1~4の整数)、(CHCHO)α(CH15CH(α=1~4の整数)、(CHCHO)α(CH16CH(α=1~3の整数)、(CHCHO)α(CH17CH(α=1~3の整数)、(CHCHO)α(CH18CH(α=1~2の整数)、(CHCHO)α(CH19CH(α=1~2の整数)、CHCHO(CH20CH、CHCHO(CH21CH等が挙げられる。
 Rn基の炭素数は6~24であり、7~20が好ましく、8~18が特に好ましい。Rn基の炭素数が上記範囲の下限値以上であると、硬化膜の表面に充分な撥水性を付与できる。上記範囲の上限値以下であると、後述するRn基を有する単量体(c1rm)と他の単量体とを共重合させて、化合物(C-2)を製造する際に、Rn基を有する単量体(c1rm)と他の単量体との相溶性が良好となる。
 化合物(C-2)は、Rn基を有し、フッ素原子および架橋性官能基を有しない単位(c1r)と、単位(c2)とを有する共重合体であることが好ましい。化合物(C-2)は、任意の単位(c3)を有していてもよい。
「単位(c1r)」
 単位(c1r)は、Rn基と重合性基(架橋性官能基と同種の基)とを有する単量体(c1rm)を重合させることにより形成されることが好ましい。または、反応性官能基を有する重合体に、Rn基を有する化合物を反応させる各種変性方法によって、Rn基を有する単位(c1r)とすることもできる。
 単量体(c1rm)の重合により単位(c1r)を形成する場合、単量体(c1rm)の重合性基は重合により失われるため、単位(c1r)は架橋性官能基を有しない。
 重合性基は、ビニル(オキシ)基、アリル(オキシ)基および(メタ)アクリロイル(オキシ)基が好ましく、ビニル基または(メタ)アクリロイルオキシ基であることがより好ましく、(メタ)アクリロイルオキシ基であることが特に好ましい。
 単量体(c1rm)は、Rn基を有するモノオール、Rn基を有するモノエポキシド、Rn基を有するモノカルボン酸およびRn基を有するモノスルホン酸等の誘導体(重合性基を有する誘導体)が好ましく、Rn基を有するモノオールの誘導体が特に好ましい。
 Rn基を有するモノオールとしては、HO-Rnで表されるモノオールが好ましい。
 単量体(c1rm)としては、Rn基と上記重合性基とが単結合または2価の有機基で連結された化合物が特に好ましい。
 Rn基と重合性基とが単結合で連結されている場合、重合性基は、結合末端に酸素原子を有する重合性基であり、その酸素原子はエーテル結合の酸素原子やエステル結合のアルコール残基側の酸素原子等である。この酸素原子は、Rn基を有するモノオールに由来する酸素原子である。Rn基と重合性基とが単結合で連結されている場合、重合性基は(メタ)アクリロイルオキシ基であることが特に好ましい。
 Rn基と重合性基とが2価の有機基で連結されている場合、有機基は、Rn基側の結合末端に酸素原子を有する2価の有機基である。その酸素原子はエーテル結合の酸素原子やエステル結合のアルコール残基側の酸素原子等である。この酸素原子はRn基を有するモノオールに由来する酸素原子である。2価の有機基である場合、その炭素数は25以下が好ましく、芳香環を1個有する場合は12以下、2個有する場合18以下、芳香環を有しない場合は6以下が好ましい。
 単量体(c1rm)としては、Rn基と重合性基である(メタ)アクリロイルオキシ基とが単結合で連結された下式(5)で表される単量体(以下、「単量体(5)」ともいう。)が特に好ましい。
 CH=CX-COO-Rn・・・(5)
 X:水素原子またはメチル基。
 Rn:炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が6~24のアルキル基。
 単量体(5)の具体例としては、CH=C(CH)COO(CH17CH、CH=CH-COO-(CH17CH、CH=C(CH)-COO-(CH23CH、CH=C(CH)-COO-(CO)10CH、CH=CH-COO-(CO)10CH等が挙げられる。
 上記以外の単量体(c1rm)としては、Rn基を有するモノエポキシドと(メタ)アクリル酸との反応生成物、Rn基を有するモノカルボン酸とヒドロキシアルキル(メタ)アクリレートとの反応生成物、Rn基を有するモノスルホン酸とヒドロキシアルキル(メタ)アクリレートとの反応生成物等であってもよい。例えば、アルキル基とグリシジル基を有する化合物と(メタ)アクリル酸との反応により、ヒドロキシアルキル基と(メタ)アクリロイルオキシ基が結合した化合物が得られる。
 化合物(C-2)における単位(c1rm)の割合は、10~90質量%が好ましく、15~90質量%がより好ましく、20~90質量%が特に好ましい。上記範囲の下限値以上であると、硬化膜の表面が撥水性に優れ、上記範囲の上限値以下であると、硬化性組成物が溶剤に溶けやすい。
 なお、化合物(C-2)の合成に使用される化合物(100質量%)のうちの、単位(c1r)を与える単量体(c1rm)の割合(仕込み比)も、上記割合と同様である。
「単位(c2)および単位(c3)」
 単位(c2)および単位(c3)の種類、これらの単位の化合物(C-2)への導入方法等は、化合物(C-1)について説明した単位(c2)および単位(c3)の種類、化合物(C-1)への導入方法等と同様の種類、方法を採用できる。
 化合物(C-2)における単位(c2)の割合は、1~90質量%が好ましく、1~80質量%がより好ましく、5~80質量%が特に好ましい。上記範囲の下限値以上であると、プレポリマー(A)や化合物(B)との反応が良好になり、上記範囲の上限値以下であると、硬化膜の表面が撥液性に優れる。
 なお、化合物(C-2)の合成に使用される化合物(100質量%)のうちの、単位(c2)を与える単量体(c4m)および化合物(c2c)の合計の割合(仕込み比)も上記割合と同様である。
 化合物(C-2)における単位(c3)の割合は70質量%以下が好ましく、50質量%以下がより好ましく、20質量%以下が特に好ましい。下限は0質量%が好ましい。単位(c3)の割合が上記であると、硬化膜の表面における撥液性や硬化性組成物の硬化性が良好である。
 なお、化合物(C-2)の合成に使用される全単量体(100質量%)のうちの、単位(c3)を与える単量体(c3)の割合(仕込み比)も上記割合と同様である。
 化合物(C-2)における単位の好ましい質量比率は、単位(c1r):単位(c2):単位(c3)=10~90:1~90:0~70が好ましく、15~90:1~80:0~50がより好ましく、20~90:5~80:0~20が特に好ましい。
「化合物(C-2)の製造方法」
 化合物(C-2)の製造は、化合物(C-1)について説明した製造方法と同様の方法で行える。
<ラジカル重合開始剤(D)>
 本発明における硬化性組成物は、ラジカル重合開始剤(D)を含有することにより、より低温で硬化が進行できる。ラジカル重合開始剤(D)としては、熱重合開始剤(D1)または光重合開始剤(D2)が好ましい。
(1)熱重合開始剤(D1)
 熱重合開始剤(D1)は、公知のものを使用できる。具体例としては、アゾビスイソブチロニトリル、過酸化ベンゾイル、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、過酸化ジ-tert-ブチル、過酸化ジクミル等が挙げられる。分解温度の点で、アゾビスイソブチロニトリルおよび過酸化ベンゾイルが好ましい。
 熱重合開始剤(D1)は、1種単独で用いても2種以上を併用してもよい。
 硬化性組成物における熱重合開始剤(D1)の含有量は、プレポリマー(A)と必要に応じて配合される化合物(B)との合計量(100質量部)に対して、1~20質量部が好ましく、5~15質量部が特に好ましい。上記範囲の下限値以上であると、低温でも充分に硬化でき、硬化膜が耐溶剤性に優れる。上記範囲の上限値以下であると、硬化性組成物の貯蔵安定性が良好になる。
(2)光重合開始剤(D2)
 光重合開始剤(D2)は、光硬化性組成物において公知のものを使用できる。具体例としては、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)](例えば、製品名:IRGACURE OXE01)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)(例えば、製品名:IRGACURE OXE02)等のオキシムエステル誘導体;IRGACURE 369(製品名)、IRGACURE 907(製品名)等のα-アミノアルキルフェノン系化合物;DAROCUR TPO(製品名)等(いずれもチバスペシャリティーケミカルズ社製)のアシルホスフィンオキサイド系化合物等が挙げられる。発生するラジカルの反応性の点で、IRGACURE OXE01およびIRGACURE OXE02が好ましい。
 光重合開始剤(D2)は、1種単独で用いても2種以上を併用してもよい。
 硬化性組成物における光重合開始剤(D2)の含有量は、プレポリマー(A)と必要に応じて配合される化合物(B)との合計量(100質量部)に対して、1~20質量部が好ましく、3~15質量部が特に好ましい。上記範囲の下限値以上であると、低温でも充分に硬化でき、硬化膜が耐溶剤性に優れる。上記範囲の上限値以下であると、硬化性組成物の貯蔵安定性が良好になる。
<添加剤>
 本発明における硬化性組成物は、必要に応じて紫外線吸収剤、酸化防止剤、熱重合防止剤等の安定剤類;レベリング剤、消泡剤、沈殿防止剤、分散剤等の界面活性剤類;可塑剤;増粘剤等のコーティング分野で周知の各種添加剤の中から選択される添加剤を、本発明の効果を損なわない範囲で含んでいてもよい。
 また硬化膜が、例えば層間絶縁膜等、製造工程途中で除去されずに最終製品において機能する部材として残る材料(以下、「直材」ともいう。)である場合に、硬化性組成物に、シランカップリング剤等の接着性向上剤を添加してもよい。硬化性組成物に接着性向上剤を含有させると、該硬化性組成物の硬化膜と、これに隣接する層との接着性が向上するため好ましい。なお、該隣接する層に予め接着性向上剤を塗布する方法でも接着性を向上させることができる。
 硬化性組成物における添加剤の含有量は、プレポリマー(A)と必要に応じて配合される化合物(B)との合計量(100質量部)に対して、0.0001~30質量部が好ましく、0.0001~20質量部がより好ましく、0.0001~10質量部が特に好ましい。
(塗布用組成物)
 本発明のガラスシート積層体における硬化膜は、均一な厚さの表面が平滑な硬化膜であることが好ましい。均一な厚さの表面が平滑な硬化膜を形成するためには、液状の硬化性組成物をガラスシート表面に塗工し流延して、均一な厚さの表面が平滑な液状の硬化性組成物の膜を形成し、その硬化性組成物の膜を硬化させて硬化膜とすることが好ましい。場合により、平滑な剥離性表面を有する担持シート表面上で上記のような方法で均一な厚さの表面が平滑な硬化膜を製造し、その後担持シート表面から硬化膜を剥離し、剥離した硬化膜とガラスシートとを積層して、本発明のガラスシート積層体を製造することもできる。
 本発明における硬化性組成物の粘度が高い場合や本発明における硬化性組成物が非流動性の組成物である場合は、溶剤を含む硬化性組成物を使用することが好ましい。組成物の粘度が低いほど均一な厚さの表面が平滑な膜を形成しやすいことより、本発明における硬化性組成物が塗工しうる粘度を有している場合にも溶剤を加えてより低粘度の組成物とすることもできる。溶剤を含む硬化性樹脂組成物を使用する場合は、それを塗工、流延した後溶剤を除去して硬化性組成物の膜とする。
 以下、溶剤を含むか否かにかかわらず、塗工しうる粘度を有する液状の硬化性組成物を塗布用組成物という。塗布用組成物を塗布することにより形成される膜を以下塗膜という。また、溶剤を含む塗布用組成物の塗膜から溶剤を除去して得られる膜を乾燥塗膜ともいう。乾燥塗膜は固体状の硬化性組成物からなる場合もある。
 本発明における塗布用組成物は、上述の硬化性組成物と溶剤とを含む組成物であることが好ましい。溶剤を含ませることで、ガラスシートへの塗工がより容易になり、均一な厚さの表面が平滑な薄い硬化膜を製造しやすくなる。
 溶剤を含む塗布用組成物をガラスシート上に塗布し、溶剤を除去することにより、硬化性組成物の塗膜(乾燥塗膜)が形成される。通常、溶剤の除去は塗布用組成物の塗膜から溶剤を蒸発させることによって行う。したがって、溶剤の沸点は、硬化性組成物を構成する各成分よりも低沸点であることが好ましい。硬化性組成物に化合物(B)が含まれる場合、硬化性組成物を構成する各成分のうち、最も低沸点の成分は、通常、化合物(B)である。そのため、溶剤としては、化合物(B)よりも低沸点の溶剤を使用することが好ましい。溶剤の沸点は50~300℃が好ましく、100~250℃が特に好ましい。逆に、化合物(B)としては、常用される溶剤よりも充分に高い沸点を有する化合物を使用することが好ましい。
 溶剤は公知のものを使用できる。具体例としては、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」ともいう。)、メシチレン、N,N-ジメチルアセトアミド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。なかでも、PGMEAおよびシクロヘキサノンからなる群から選ばれる少なくとも1種が好ましい。
 溶剤は、1種単独で用いても2種以上を併用してもよい。
 溶剤を含む塗布用組成物における溶剤の含有量は、プレポリマー(A)と必要に応じて配合される化合物(B)との合計量(100質量部)に対して、100~5,000質量部が好ましく、100~3,000質量部が特に好ましい。
 また、溶剤を含む塗布用組成物の固形分は、0.1~70質量%が好ましく、1~15質量%が好ましい。ただし固形分とは、塗布用組成物から溶剤を除去して得られる固形分が塗布用組成物に含まれる割合をいう。例えば、1gの塗布用組成物をアルミカップに入れ、100℃のオーブンで10分間乾燥させて測定することができる。
(積層体)
 本発明の積層体はガラスシートと硬化膜との積層体である。積層体の構成としては、典型的には以下の4例が挙げられる。
 (1)ガラスシートの単層と硬化膜の単層との組み合わせの構成。すなわち、ガラスシートの片面に硬化膜を設けた構成。
 (2)ガラスシートの単層と硬化膜の二層との組み合わせの構成。すなわち、ガラスシートの両面に硬化膜を設けた構成。
 (3)ガラスシートの二層と硬化膜の単層との組み合わせの構成。すなわち、2層のガラスシートで硬化膜を挟んだ構成。
 (4)ガラスシートの複層と硬化膜の複層との組み合わせの構成。すなわち、ガラスシートと硬化膜を交互に多層に設けた構成。
 これらの構成の中では薄くて軽量であり、かつ、ガラスシート表面の平坦性が活かせる点で(1)の構成が好ましい。
 本発明の積層体において、硬化膜の厚さは1~1,000μmが好ましく、5~500μmが特に好ましい。厚さを上記範囲にすることにより、ガラスシートに傷が付くことを抑制でき、破損が抑制でき、また割れた場合であっても飛散防止が可能となる等、硬化膜を設けたことによる各種効果を充分に発揮できる。
 上述の(1)の構成において、積層体の厚さは11~1,500μmが好ましく、30~800μmが特に好ましい。
 本発明の積層体の厚さは均一であることが好ましい。具体的には、厚さの標準偏差は50%以下が好ましく、35%以下が特に好ましい。厚さが均一であれば外観が良好となり好ましい。
 本発明の積層体において、ガラスシートと硬化膜との厚さの比率に関して、ガラスシートの厚さを1とした場合の硬化膜の厚さは0.1~10であることが好ましく、0.5~5であることが特に好ましい。なお、複数の層がある場合にはそれらの合計で考慮する。
 本発明の積層体は、波長が400~700nmにおける透過率が80%以上であることが好ましく、90%以上であることがより好ましく、93%以上であることが特に好ましい。上記波長範囲、すなわち可視光の範囲において透明であることが好ましい。透明であれば、後述のように、表示部材の前面に配置される保護板に好適に用いられる。また、光電変換素子の基材として用いた場合に、光電変換素子が発光素子であった場合には、発光効率を下げることがなく、また、発電素子であった場合には、発電効率を下げることがなく好ましい。
 本発明の積層体は、上述のプレポリマー(A)を含む硬化性組成物の硬化膜を有する。したがって、本発明の積層体は、薄くて軽量で、屈曲性に優れ、ガラスシートに基づくガスバリア性を備え、硬化膜に基づく耐久性に優れる。また、硬化性組成物の塗膜を硬化させた硬化膜の場合は、平坦性に優れる。
 本発明の硬化性組成物は、低温での硬化が可能である。そのため、ガラスシート上に硬化膜を形成する工程を低温で行うことができ、ガラスシートは熱のダメージを受けにくい。そのため、本発明の積層体は、非常に薄いガラスシートを備えたものでありながら、熱による反り、歪みが抑制される。
 また、プレポリマー(A)を含む硬化性組成物の硬化膜は、耐熱性に優れる。そのため、該硬化膜の上には、高温下で、有機半導体、酸化物半導体等の塗布型半導体、低温ポリシリコン等を形成できる。また、該硬化膜は、低誘電率で絶縁性に優れる。よって、本発明の積層体は、後述のように、半導体装置の基材として好適に用いられる。
 硬化性組成物が、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物(C-1)を含む場合、その硬化膜にパターン状に紫外線を照射することにより、硬化膜の表面に、上述のとおり、撥液性領域と親液性領域とのパターンを形成することができる。親液性領域には、後述のように、導電インク等を選択的に付着させ、ゲート電極等の電極や、半導体層、導体層、トランジスタ材料、電気配線等も選択的に形成できる。よって、本発明の積層体は、半導体装置の基材の他、ICカード、タッチパネルの基材、フレキシブルプリント基板、RFIDの基材等にも好適に用いられる。
〔保護板〕
 本発明の保護板は、ガラスシート積層体により構成される。本発明の積層体は透明性、耐久性に優れることから、液晶ディスプレイ、有機ELディスプレイ等の表示部材、光電変換素子等の前面に配置される保護板に好適である。保護板として用いる際には、上述の(1)~(4)のいずれの構成の積層体でも適用できるが、なかでも、少なくとも一方の表面に硬化膜が位置する構成の積層体が好ましい。該構成の積層体を保護板として表示部材、光電変換素子等の対象物の表面に貼合すると、少なくとも外面側に硬化膜を位置させることができ、保護板による保護効果が高まる。
 保護板は、接着性樹脂等で対象物に貼合してもよく、硬化膜側を表示部材に接触させて熱圧着することにより、対象物に直接貼合してもよい。また、硬化性組成物を硬化させる複数の工程のうち、一部の工程のみが終了した硬化膜を該硬化膜の粘着性により対象物に貼合し、貼合した後に残りの工程を行い、完全に硬化させてもよい。
 本発明の積層体は、硬化膜がプレポリマー(A)を含む硬化性組成物の硬化膜であるため耐久性、透明性が高い。そのため、表示部材の前面に配置される保護板として用いた場合、表示の色調を長期間にわたって維持可能である。また、太陽電池等の屋外で使用する装置等の保護板としても、軽量で耐久性(耐光性・耐候性)が高い点で好適である。
〔半導体装置〕
 本発明の半導体装置は、本発明のガラスシート積層体を基材として有する。本発明のガラスシート積層体の硬化膜は、プレポリマー(A)を含む硬化性組成物の硬化膜であるため、低誘電率で絶縁性に優れる。また、耐熱性が高く、該硬化膜の上には、高温下で、有機半導体、酸化物半導体等の塗布型半導体、低温ポリシリコン等を形成できる。よって、本発明の積層体は、半導体装置の基材として好ましい。
 また、本発明のガラスシート積層体の硬化膜が、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物(C-1)を含む硬化性組成物の硬化膜である場合、硬化膜の表面に撥液性領域と親液性領域とのパターンを形成できる。親液性領域には、例えば電極形成用の導電インク等を選択的に付着させ、電極を形成できる。よって、このような硬化膜を備えた本発明のガラスシート積層体は、半導体装置の基材として好ましい。
(薄膜トランジスタ)
 図1は、本発明の半導体装置の一実施形態である薄膜トランジスタの構成を概略的に示す断面図である。図示例の薄膜トランジスタは例えばスイッチング素子として使用され、該薄膜トランジスタと、液晶素子、有機EL素子等の表示素子とを組み合わせることで、液晶ディスプレイ、有機ELディスプレイ等の表示部材が提供される。
 また、該表示部材の前面に、本発明の積層体を保護板として設けることにより、基材および保護板が本発明の積層体からなる、屈曲性を備えたフレキシブルディスプレイとすることができる。
 該半導体装置10は、ガラスシート11および硬化膜17を有するガラスシート積層体からなる基材と、硬化膜17上に形成されたゲート電極12と、ソース電極13と、ドレイン電極14と、塗布型半導体15とを有する。また、該半導体装置10は、ゲート電極12とソース電極13およびドレイン電極14との間に形成されたゲート絶縁膜16と、ソース電極13、ドレイン電極14および塗布型半導体15を外部環境から保護したり、他のトランジスタ構成を積層したりするための層間絶縁膜18を有する。
 また、この例の半導体装置10は、層間絶縁膜18に孔部をレーザアブレーション法等で形成し、ドレイン電極14と接続するように画素電極19を形成したものであり、液晶ディスプレイ等に好適に用いられる。
 ゲート電極12、ソース電極13、ドレイン電極14、画素電極19は、導電体によって形成される。導電体としては、シリコン、ドーピングを行ったシリコン、白金、金、銀、銅、クロム、アルミニウム、カルシウム、バリウム、酸化インジウムスズ、酸化インジウム亜鉛、酸化亜鉛、カーボンブラック、フラーレン類、カーボンナノチューブ、ポリチオフェン、ポリエチレンジオキシチオフェン、ポリスチレンスルホン酸、ポリアニリン、ポリピロール、ポリフルオレン等が挙げられる。導電体は、1種を単独で用いても2種以上を併用してもよい。各電極の材料は、それぞれ同じであってもよく、異なっていてもよい。
 塗布型半導体15としては、公知の塗布型半導体が挙げられ、例えば、酸化物半導体、有機半導体等が挙げられる。
 酸化物半導体としては、熱酸化等の変換処理によって金属酸化物からなる半導体材料に変換される材料を使用できる。
 酸化物半導体を形成する前駆体組成物が含有する金属塩の金属は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種である。
 酸化物半導体を形成する前駆体組成物が含有する金属塩としては、金属の硝酸塩、金属のハロゲン化物、アルコキシド類が好ましい。具体例としては、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ-i-プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ-i-プロポキシスズ、トリ-i-プロポキシガリウム、トリ-i-プロポキシアルミニウム等が挙げられる。
 酸化物半導体を形成する前駆体組成物により得られる酸化物半導体としては、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、例えば、InGaZnOx、InGaOx、InSnZnOx、GaZnOx、InSnOx、InZnOx、SnZnOx(いずれもx>0)、ZnO、SnO等が挙げられる。
 有機半導体としては、例えば、ポリピロールおよびポリピロール置換体、ポリチオフェンおよびポリチオフェン置換体、ポリイソチアナフテン等のイソチアナフテン類、ポリチェニレンビニレン等のチェニレンビニレン類、ポリ(p-フェニレンビニレン)等のポリ(p-フェニレンビニレン)類、ポリアニリンおよびポリアニリン置換体、ポリアセチレン類、ポリジアセチレン類、ポリアズレン類、ポリピレン類、ポリカルバゾール類、ポリセレノフェン類、ポリフラン類、ポリ(p-フェニレン)類、ポリインドール類、ポリピリダジン類、ポリビニルカルバゾール、ポリフエニレンスルフィド、ポリビニレンスルフィド等のポリマーおよび多環縮合体;上述した材料中のポリマーと同じ繰返し単位を有するオリゴマー類、ナフタセン、ペンタセン、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン、ピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン等のアセン類およびアセン類の炭素の一部をN、S、O等の原子、カルボニル基等の官能基に置換した誘導体(トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン-6,15-キノン等);金属フタロシアニン類;テトラチアフルバレンおよびテトラチアフルバレン誘導体;テトラチアペンタレンおよびテトラチアペンタレン誘導体;ナフタレン1,4,5,8-テトラカルボン酸ジイミド、N,N'-ビス(4-トリフルオロメチルベンジル)ナフタレン1,4,5,8-テトラカルボン酸ジイミドとともに、N,N'-ビス(1H,1H-ペルフルオロオクチル)、N,N'-ビス(1H,1H-ペルフルオロブチル)およびN,N'-ジオクチルナフタレン1,4,5,8-テトラカルボン酸ジイミド誘導体;ナフタレン2,3,6,7テトラカルボン酸ジイミド等のナフタレンテトラカルボン酸ジイミド類;アントラセン2,3,6,7-テトラカルボン酸ジイミド等のアントラセンテトラカルボン酸ジイミド類等の縮合環テトラカルボン酸ジイミド類;C60、C70、C76、C78、C84等フラーレン類;SWNT等のカーボンナノチューブ;メロシアニン色素類、ヘミシアニン色素類等の色素等が挙げられる。
 ゲート絶縁膜16および層間絶縁膜18は、例えば、上述の硬化性組成物の硬化膜等の低誘電率の硬化膜により形成される。ゲート絶縁膜16を上述の硬化性組成物の硬化膜で形成すると、リーク電流が低減される。また、ゲート絶縁膜16の薄膜化が可能となるため、素子の小型化が実現でき、また、トランジスタの駆動電圧を下げることができる。
 また、硬化性組成物が化合物(C)を含有する場合、ゲート絶縁膜16の表面が良好な撥水性を有するため、該ゲート絶縁膜16の上に設けられた塗布型半導体15中の分子が配向しやすい、キャリアのトップサイトとなる極性基が表面に存在しにくい、空気中の水分等が吸着されにくい等の効果が得られる。したがって、薄膜トランジスタにおける電子移動度が高くなり、安定性および信頼性が向上する。
 図2は、本発明の半導体装置の他の一実施形態である薄膜トランジスタの概略構成図である。
 該半導体装置20は、ガラスシート21および硬化膜27を有する積層体からなる基材と、ゲート電極22と、ソース電極23と、ドレイン電極24と、塗布型半導体25とを有し、ゲート電極22と、ソース電極23およびドレイン電極24との間には、ゲート絶縁膜26が設けられている。また、ゲート電極22を外部環境から保護したり、他のトランジスタ構成を積層したりするための層間絶縁膜28を有している。
 図2の半導体装置20は、図1の半導体装置10とは、基材上に形成される半導体装置構成の上下が逆転している点のみが異なり、その基本的な構造および製造方法は図1の半導体装置10と同様である。
(光電変換素子)
 本発明の半導体装置としては、光電変換素子も挙げられる。本発明の積層体は透明性、耐久性に優れ、低誘電率で絶縁性に優れることから、光電変換素子の基材に好適である。なお、光電変換素子としては、有機薄膜太陽電池のような光エネルギーを電気エネルギーに変換する素子、有機LEDのような電気エネルギーを光エネルギーに変換する素子の双方を合わせていう。
 本発明の積層体を基材として用いた光電変換素子は、さらに以下の点で好適である。
 ガラスシートの特性を活かしガスバリア性が高いため、有機半導体材料を用いた光電変換素子における有機半導体材料の劣化(酸素、水分等による)を抑制できる。
 積層体全体としての特性を活かし、基材自体がフレキシブルであり屈曲性に優れる。このため光電変換素子自体の屈曲性を高くすることができる。
 硬化膜がプレポリマー(A)を含む硬化性組成物の硬化膜であるため、高温における劣化が少ない。そのため、比較的高温となる光電変換素子の製造プロセス温度に耐えられる。また、硬化膜は耐光性に優れる。
 また、硬化膜が材料の塗布を経て形成されるものであるため、積層体の平坦性が高い。樹脂フィルムをガラスシートに貼合した場合は、フィルムの凹凸や、残留応力等の影響により積層体が平坦になりにくい場合があった。特にガラスシートが薄い場合には、その影響が顕著であった。これに対して、本発明では、塗布用組成物の塗布というプロセスを経るため、厚さが均一であるばかりでなく、硬化膜の形成がガラスシートに与える影響も少なく、積層体の平坦性が高くなる。例えば、平坦な金属鏡面に積層体を載せて干渉縞を観察すると、積層体のうねりに基づく光学干渉が見られることがあるが、本発明の積層体ではこの干渉がほとんど見られない。
〔ガラスシート積層体の製造方法〕
 本発明のガラスシート積層体の製造方法は、厚さが10~500μmであるガラスシート上に、液状硬化性組成物からなる塗布用組成物または硬化性組成物と溶剤とを含む塗布用組成物の塗膜を形成し、溶剤が存在する場合は溶剤を除去して乾燥塗膜とし、塗膜を熱硬化または光硬化させて硬化膜を形成する法である。なお、乾燥塗膜には少量の溶剤を含んでいてもよく、溶剤の含有量は乾燥塗膜中の10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が特に好ましい。
 塗布用組成物の塗膜を形成した後に、加熱工程を1回以上有する場合、加熱工程における加熱温度はすべて250℃以下であることが好ましい。
 塗布用組成物の塗膜は、塗布用組成物をガラスシートに直接塗布しても、別の基材に塗布して形成した塗膜をガラスシートに転写してもよい。硬化膜の表面が平坦になりやすいことから直接塗布することが好ましい。
 ガラスシートに塗布用組成物を塗布する際には、ガラスシートの表面適性向上化処理を行ってもよい。具体的な表面適性向上化処理としては、洗浄処理、接着性向上処理等が挙げられる。洗浄処理としては、水洗浄、水蒸気洗浄、溶剤洗浄、UV/オゾン洗浄等が挙げられる。接着性向上処理としては、コロナ処理、プライマ処理等が挙げられる。プライマ処理に用いるプライマとしては、アミノシラン類、エポキシシラン類が挙げられる。
 塗布用組成物の塗布方法は特に制限されない。具体例としては、スピンコート法、ディップコート法、ダイコート法、スリットコート法、スプレーコート法、インクジェットコート法、フレキソコート法、グラビアコート法等が挙げられる。塗布は1回のみで行っても複数回に分けて塗布を行ってもよい。
 硬化を熱硬化で行う場合は、ガラスシート上に塗膜を形成し、加熱(キュア工程)を行うことによって硬化膜を得る。キュア工程の前に加熱(プリベーク)を行ってもよい。
 硬化を光硬化で行う場合は、ガラスシート上に塗膜を形成し、必要に応じて加熱(プリベーク)を行い、光を照射(露光)した後、必要に応じて加熱(キュア工程)を行うことによって硬化膜を得る。生産性の点から、ガラスシート上に塗膜を形成し、光を照射(露光)することによって硬化膜を得る方法が好ましい。ガラスシート上に溶剤を含む塗布用組成物の塗膜を形成し、次に、加熱(プリベーク)により溶剤を除去して乾燥塗膜を形成し、次に光を照射(露光)することによって硬化膜を得る方法が好ましい。なお、該露光時にフォトマスクを用いてもよい。
 照射する光は、硬化性組成物に含まれる光重合開始剤(D2)が感度を有する波長の光であればよく、特に限定されない。通常、硬化に使用する光は紫外線であるが、これに限定されない。
 フォトリソグラフィによる微細加工を行う場合は、光を選択的に照射(露光)することにより、照射した部分(露光部)が硬化する。したがって、露光後に現像(未露光部を溶剤に溶解ないし分散させて除去する工程)を行って、未露光部を除去し、硬化部の残存溶剤を取り除くことによって微細加工された硬化膜が得られる。必要に応じて現像後に加熱(キュア工程)を行ってもよい。この場合は該加熱(キュア工程)で残存溶剤を取り除くこともできる。また、露光後かつ現像前に必要に応じて加熱工程(露光後ベーク)を行ってもよい。
 本発明では、加熱温度が250℃以下の低温で硬化を行うことができる。この場合、例えばプリベークおよび/または露光後ベークと、キュア工程とを行う場合等、2回以上加熱を行う場合は、それぞれの加熱温度をいずれも250℃以下とする。
 本発明において、加熱温度が250℃以下とは、加熱に供される物品の温度が250℃を超えないことを意味する。実質的には、ホットプレートやオーブン等の加熱装置の設定温度を250℃以下とすればよい。
 本発明において、プリベークは、主に、溶剤を含む塗布用組成物を使用した場合に溶剤を除去する目的で行われ、比較的低い加熱温度で行われる。プリベークにおける加熱温度は、例えば40~100℃が好ましい。
 キュア工程および露光後ベークは、さらに膜を硬化させる目的で行われ、比較的高い加熱温度で行われる。キュア工程および露光後ベークにおける加熱温度は80℃以上が好ましく、100℃以上が特に好ましい。これより低温であると、キュア工程または露光後ベークを行うことによる効果が不充分となりやすい。加熱温度が低いほどガラスシートのダメージが少なく、反り、歪みがより抑制される点で好ましい。また、加熱温度が低いほど、その後の冷却工程の負荷も低減できる。
 したがって、本発明のガラスシート積層体の製造方法における加熱は、加熱温度が200℃以下がより好ましい。2回以上加熱を行う場合は、それぞれの加熱温度をいずれも200℃以下とする。実質的には、ホットプレートやオーブン等の加熱装置の設定温度を200℃以下とすればよい。
 本発明の硬化膜の製造は、塗布用組成物を用い、硬化膜を形成する全ての加熱における温度を250℃以下とすることが好ましい。また、光硬化させる場合であっても、溶剤除去等のために加熱が必要である場合があり、その場合の加熱温度が250℃以下であることが好ましい。したがって、硬化膜の製造方法は、基材上に塗布用組成物の膜を形成した後、1回以上の加熱により硬化性組成物を熱硬化または光硬化させて硬化膜を製造する方法が好ましく、加熱温度がすべて250℃以下であることが好ましい。
 本発明のガラスシート積層体の製造方法は、ガラスシートの形態により、様々な製造方法を採用できる。ガラスシートが連続した長いシート状である場合には、連続法が好適である。連続法は、必要に応じて表面適性向上化処理を行った後、塗布用組成物の塗布と、その後の工程を連続で行い、得られたガラスシート積層体をロール状に巻き取る方法である。特に上述の(1)の構成(ガラスシートの片面に硬化膜を設けた構成)である場合には、この製造方法が好適である。またガラスシートが裁断され一定の大きさ・形状で扱われる場合には、毎葉法が好適である。特に上述の(2)~(4)の構成である場合には、この製造方法が好適である。
〔半導体装置の製造方法〕
 次に本発明の半導体装置を製造する方法について、図1の薄膜トランジスタを例示し、図面を参照して説明する。
 まず、上述した〔ガラスシート積層体の製造方法〕に記載の方法により、ガラスシート11上に硬化膜17を形成し、ガラスシート積層体を製造する。ここで硬化膜17の形成には、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物(C-1)を含む硬化性組成物を用いることが好ましい。
 次に、得られた硬化膜17の表面の所望の箇所に部分的に紫外線を照射し、硬化膜17の表面のうち紫外線が照射された部分のみを親液化させ、図3に示すように、ゲート電極を形成するためのゲート電極用の親液性領域17aを形成する。一方、紫外線が照射されなかった部分は撥液性を維持した撥液性領域17bとなる。これにより、硬化膜17の表面を含む表層部分に、親液性領域17aと撥液性領域17bとのパターンを形成する。
 親液性領域17aと撥液性領域17bとからなるパターンを形成する方法としては、硬化膜17に対して部分的に紫外線を照射する方法の他、硬化膜17に対して部分的にレーザを照射する方法、塗膜に対して部分的に紫外線を照射し、塗膜において親液性領域と撥液性領域とからなるパターンを形成した後、加熱または光照射により塗膜を硬化させて、親液性領域と撥液性領域とからなるパターンを有する硬化膜を製造する方法、塗膜に対して部分的にレーザを照射し、塗膜において親液性領域と撥液性領域とからなるパターンを形成した後、加熱または光照射により塗膜を硬化させて、親液性領域と撥液性領域とからなるパターンを有する硬化膜を製造する方法も挙げられる。なお、部分的に紫外線を照射する方法としては、パターンを有するフォトマスクを介して紫外線を照射する方法等が挙げられる。
 図中、符号17cは、硬化膜17の表層以外の内部領域を示す。硬化膜17において、親液性領域17aと撥液性領域17bは、それぞれの表面特性を示す表層の下の内部領域17cと明確に層が分かれているのではなく、厚さ方向に沿って連続的にCf基の濃度が変化していると推測される。
 紫外線の光源としては、高圧水銀灯(i線365nm)、YAGレーザ(3倍波355nm)等の波長300nm以上の紫外線を照射し得る光源を使用できる。なお、硬化膜17の表面は波長300nm未満の紫外線によっても親液化できるため、波長300nm未満の紫外線を照射し得る光源を用いても構わない。
 紫外線照射後、必要に応じて、Cf基を含む分解生成基の除去を促進するために、加熱または減圧してもよい。
 次に、硬化膜17の親液性領域17a上に、導電インク等のゲート電極形成用の液を塗工し、加熱してゲート電極12を形成する。
 液を塗布する方法としては、例えば、ダイコート法、スピンコート法、キャップコート法、ディップコート法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットオリフィスコーター法、カレンダーコーター法等の各種塗工法や、スクリーン印刷、インクジェット印刷、オフセット印刷等の印刷法等が挙げられ、用いる液や硬化性組成物の種類に応じて適宜選択することが好ましい。
 加熱条件は、液の種類等に応じて適宜設定できる。また、加熱は、形成するゲート電極を構成する導電体の酸化を抑制しやすい点から、窒素雰囲気等の不活性雰囲気下または真空中で行うことが好ましい。加熱方法はオーブンおよびホットプレートによる加熱、IR加熱、フラッシュランプ加熱、レーザ加熱、μ波プラズマ加熱等の方法を使用できる。
 次に、図1に示すように、硬化膜17およびゲート電極12の上に、ゲート絶縁膜16を形成する。ゲート絶縁膜16の形成には、公知の硬化性組成物を使用でき、プレポリマー(A)を含む上述の硬化性組成物を用いてもよい。硬化性組成物の膜を熱硬化または光硬化させることにより、ゲート絶縁膜16を形成できる。
 ゲート絶縁膜16は、ゲート電極12が他の部材と電気的に接続しないように、硬化膜17およびゲート電極12の上を覆うように形成される。
 次に、得られたゲート絶縁膜16の上に、ソース電極13およびドレイン電極14を形成する。ゲート絶縁膜16の形成に、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物(C-1)を含む硬化性組成物が用いられている場合には、ゲート絶縁膜16の所望の箇所に紫外線を照射し、ソース電極用およびドレイン電極用の親液性領域をそれぞれ形成する。この工程における親液性領域の形成は、ゲート電極用の親液性領域17aの形成と同様の操作によって行える。なお、塗膜の所望の箇所に紫外線を照射し、撥液性領域とソース電極用およびドレイン電極用の親液性領域とのパターンを形成してから、その後、加熱または光照射により硬化させて親液性領域を有するゲート絶縁膜16とできる点も、同様である。
 次に、ゲート絶縁膜16上に形成されたソース電極用およびドレイン電極用の親液性領域の上に、ソース電極13およびドレイン電極14を形成する。この工程では、ゲート電極12の形成と同様の操作により、ソース電極13およびドレイン電極14を形成すればよい。
 また、ゲート絶縁膜16の形成に、紫外線の照射により分子内で分解が生じ、Cf基を有する分解生成基が脱離する化合物(C-1)を含む硬化性組成物が用いられている場合には、ゲート絶縁膜16上の、ソース電極13およびドレイン電極14の間の所望の箇所に紫外線を照射し、塗布型半導体用の親液性領域のパターンを形成する。この工程における親液性領域の形成は、ゲート電極16の形成、ソース電極13およびドレイン電極14の形成と同様の操作によって行える。
 次に、形成された塗布型半導体用の親液性領域の上に、塗布型半導体組成物を塗工し、加熱して塗布型半導体15を形成する。
 塗布型半導体組成物を塗布する方法としては、例えば、ダイコート法、スピンコート法、キャップコート法、ディップコート法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットオリフィスコーター法、カレンダーコーター法等の各種塗工法や、スクリーン印刷、インクジェット印刷等の印刷法等が挙げられるが、用いる塗布型半導体組成物によって適宜選択するのがよい。
 加熱温度は、酸化物半導体前駆体材料が、熱酸化等の変換処理によって金属酸化物からなる半導体に変換される温度を適宜選択できる。加熱温度は、100~500℃が好ましく、150~400℃がより好ましく、200~300℃がさらに好ましく、220~275℃が特に好ましい。加熱時間は特に限定されないが、例えば、3分~24時間であればよい。
 半導体装置10の基材は、本発明の積層体からなり、該積層体の硬化膜17は耐熱性を有するため、このような高温下での塗布型半導体15の形成を何ら問題なく行える。
 次に、ゲート絶縁膜16、ソース電極13、ドレイン電極14および塗布型半導体15上に、層間絶縁膜18を形成する。層間絶縁膜18の形成には、公知の硬化性組成物を使用でき、プレポリマー(A)を含む上述の硬化性組成物を用いてもよい。硬化性組成物の膜を加熱、光照射等で硬化させることにより、層間絶縁膜18を形成する。
 図1に示すように、層間絶縁膜18に、ドレイン電極14と接続する画素電極19を設けるためのビア穴をレーザアブレーション法で形成する場合には、層間絶縁膜18を形成する硬化性組成物には、照射されるレーザ光を吸収する色素を含有させることが好ましい。色素を含有させることにより、硬化膜における照射エネルギーの吸収率が向上し、より低い照射エネルギーで硬化膜のレーザ加工が可能となる。
 色素としては、レーザ光の吸収能を有する化合物であればよく、例えばベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物、トリアジン系化合物等が挙げられる。
 層間絶縁膜18は、ソース電極13およびドレイン電極14が他の部材と電気的に接続しないように、かつ、ソース電極13、ドレイン電極14および塗布型半導体15が外部環境に直接晒されないようにこれらを保護するものとして形成される。
 次に、層間絶縁膜18にビア穴を形成し、該ビア穴に電極材料を満たし、さらに層間絶縁膜18表面に電極パターンを形成し、画素電極19とする。ビア穴は、レーザアブレーション法の他、ドライエッチング法、ウェットエッチング法、フォトリソグラフィ法等の方法で形成できる。画素電極19は、ゲート電極12、ソース電極13、ドレイン電極15等と同様の方法で形成できる。
 図2の半導体装置20は、図1の半導体装置10とは、硬化膜17,27上に形成される半導体装置構成の上下が逆転している点が異なるのみである。そのため、基本的には、図1の半導体装置10について説明した半導体装置の製造方法の各工程の順序を、図2の半導体装置20に対応する順序に変えて行うことで製造できる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。評価方法は以下の通りである。
〔評価〕
(屈曲性)
 積層体の対向する2辺を両手で保持し、非常に容易に曲げられる場合を◎(優秀)、容易に曲げられる場合を○(良好)、曲げにくく、無理に曲げようとすると破損した場合を×(不良)とした。
(平坦性)
 研磨された金属鏡面上に、積層体を静かに置いた。その際、積層体のガラスシート側が金属鏡面に接するようにした。干渉縞を目視で観測することによって平坦性を評価した。ほとんど観測されないものを○(良好)、観測されたものを×(不良)とした。
(透明性)
 積層体の400~700nmの範囲の透過光スペクトルを測定した。400~700nmの範囲における最も低い透過率が80%以上である場合を○(良好)、80%未満である場合を×(不良)とした。
(誘電率)
 比誘電率の測定は、水銀プローバー(SSM社製、製品名:SSM-495)を用いて、CV測定を行うことにより、1MHzの比誘電率を求めた。
(接触角)
 硬化膜の表面における接触角の測定は、接触角計(協和界面科学社製、製品名:CA-A)を用い、25℃の条件下、液滴法で行った。撥水性評価の場合には、硬化膜上に、約1μLの水を滴下して接触角を測定し、撥油性評価の場合には約1μLのPGMEAを滴下して接触角を測定した。
〔含フッ素ポリアリーレンプレポリマー(A)の合成〕
 略号は以下の化合物を指す。
DMAc:N,N-ジメチルアセトアミド。
PFB:ペルフルオロビフェニル。
(合成例1:プレポリマー(A-1)の合成)
 ジムロートコンデンサ、熱電対温度計、メカニカルスターラの付いた10Lガラス製4つ口フラスコに、PFB(650g)、1,3,5-トリヒドロキシベンゼン(117g)、DMAc(6,202g)を仕込んだ。撹拌しながらオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(575g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、撹拌をしながら0℃に冷却し、4-アセトキシスチレン(200g)、水酸化カリウム(532g)を添加し、さらに0℃で24時間反応した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約10Lに徐々に滴下し、再沈殿を行った。沈殿をろ過後、さらに純水で2回洗浄した。その後、60℃で12時間真空乾燥を行って白色粉末状のプレポリマー(A-1)(800g)を得た。プレポリマー(A-1)の数平均分子量(Mn)は10,000であった。
(合成例2:プレポリマー(A-2)の合成)
 DMAc(492g)溶媒中で、ペンタフルオロスチレン(22g)と1,1,1-トリス(4-ヒドロキシフェニル)エタン(33g)とを炭酸ナトリウム(51g)の存在下に、60℃で24時間反応させた後、続けてPFB(40g)をDMAc(360g)に溶かした溶液を添加し、さらに60℃で17時間反応させた。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約2Lに徐々に滴下し、再沈殿を行った。沈殿をろ過後、さらに純水で2回洗浄した。その後、60℃で12時間真空乾燥を行って白色粉末状のプレポリマー(A-2)(75g)を得た。プレポリマー(A-2)の数平均分子量(Mn)は10,000であった。
〔化合物(C)の合成〕
 略号は以下の化合物を指す。
(Rn基を有する単量体(c1r))
C18MA:CH=C(CH)COO(CH17CH
(Cf基を有する単量体(c1f))
C6FMA:CH=C(CH)COOCHCH(CFF。
(カルボキシ基を有する単量体(c4m))
MAA:メタクリル酸。
(水酸基を有する単量体(c4m))
HEMA:2-ヒドロキシエチルメタクリレート。
(イソシアネート基と架橋性官能基を有する単量体(c2c))
AOI:2-アクリロイルオキシエチルイソシアネート(昭和電工社製)。
MOI:2-メタクリロイルオキシエチルイソシアネート(昭和電工社製)。
(連鎖移動剤)
DSH:n-ドデシルメルカプタン。
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)。V-70:2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-70)。
(触媒)
DBTDL:ジブチル錫ジラウレート。
(重合禁止剤)
BHT:2,6-ジ-t-ブチル-p-クレゾール。
(合成例3:化合物(m1α-1)の合成)
 化合物(a1α-1)(チバスペシャルティケミカルズ社製、製品名:IRGACURE 2959)の2.5gとトリエチルアミンの2.3gをジクロロメタンの62mLに混合して溶解させて、溶液を得た。該溶液を0℃で撹拌しながら、該溶液に、アクリル酸クロリド(化合物(b1α-1))の1.0gをジクロロメタンの8mLに溶解した溶液を、滴下して加えた。滴下が終了した後、0℃で1時間撹拌し、化合物(c1α-1)を含む溶液を得た。
 化合物(c1α-1)を含む溶液を0℃で撹拌しながら、トリエチルアミンの1.7gを加えた。次いで、2-(ヘプタフルオロプロポキシ)-2,3,3,3-テトラフルオロプロピオン酸フルオリド(化合物(d1α-1))の4.4gを滴下して加えた。滴下が終了した後、室温で1時間撹拌し、化合物(m1α-1)を含む溶液を得た。
 化合物(m1α-1)を含む溶液を氷水に注ぎ入れ、酢酸エチルを用いて3回抽出し、有機相を乾燥し、シリカゲルカラムクロマトグラムで精製を行うことで、化合物(m1α-1)の2.0gを得た。
Figure JPOXMLDOC01-appb-C000015
(合成例4:化合物(m1β-3)の合成)
 4-ヒドロキシベンゼンチオールの17.7gと4’-ブロモプロピオフェノンの20.0gをDMAcの151gに溶解し、溶液を得た。該溶液を80℃で撹拌しながら、該溶液に炭酸カリウムの25.9gを添加した。80℃で12時間撹拌し、化合物(a1β-1)の溶液を得た。次いで、得られた化合物(a1β-1)の溶液を水に投入し、沈殿物を真空乾燥して化合物(a1β-1)の24.0gを得た。
 化合物(a1β-1)の20.2gとトリエチルアミンの9.7gをTHFの89gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、該溶液に化合物(b1β-2)の9.0gを滴下して加えた。さらに0℃で1時間撹拌した後、室温で3.5時間撹拌し、化合物(c1β-2)の溶液を得た。次いで、得られた化合物(c1β-2)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(c1β-2)の26.6gを得た。
 化合物(c1β-2)の20.0gと亜硝酸イソアミルの10.9gと35質量%塩酸水溶液の5.0gをTHFの107gに溶解し、溶液を得た。該溶液を室温で1日間撹拌し、化合物(d1β-2)の溶液を得た。次いで、得られた化合物(d1β-2)の溶液を水に投入し、酢酸エチルで3回抽出した。有機相を真空乾燥して化合物(d1β-2)の14.2gを得た。
 一方、無水コハク酸の3.5g、1H,1H,2H,2H-ペルフルオロオクタノールの13.7g、4-ジメチルアミノピリジンの1.1g、トリエチルアミンの5.4gを、ジクロロメタンの106gに溶解し、溶液を得た。該溶液を室温で17時間撹拌し、化合物(e1β-2)の溶液を得た。次いで、得られた化合物(e1β-2)の溶液を1N塩酸で3回、水で1回洗浄した。有機相を真空乾燥して化合物(e1β-2)の15.7gを得た。
 化合物(d1β-2)の5.1gとジイソプロピルカルボジイミドの2.7gをTHFの30gに溶解し、溶液を得た。該溶液を0℃で撹拌しながら、化合物(e1β-2)の9.7gをTHFの10gに溶解した溶液を滴下して加えた。さらに0℃で1時間撹拌した後、室温で19時間撹拌し、化合物(m1β-3)の溶液を得た。該溶液からエバポレータで溶媒を除去した後、真空乾燥して化合物(m1β-3)の9.7gを得た。
Figure JPOXMLDOC01-appb-C000016
(合成例5:化合物(C-1-1)の合成)
 アセトン(555g)溶媒中で、C6FMA(96g)、MAA(72g)とHEMA(72g)とをDSH(9.7g)およびV-70(5g)の存在下に、40℃で18時間反応させて重合体1の溶液を得た。得られた重合体1のアセトン溶液を水に投入することで再沈精製し、真空乾燥して粉末状の重合体1を230g得た。
 続いて、アセトン(100g)溶媒中で、重合体1(100g)、MOI(36g)、DBTDL(0.2g)とBHT(1.8g)とを、30℃で18時間反応させて共重合体(C-1-1)を135g得た。共重合体(C-1-1)におけるフッ素含有量は22質量%、数平均分子量(Mn)は7,000であった。
(合成例6:化合物(C-2-1)の合成)
 メチルエチルケトン(27.6g)溶剤中で、C18MA(8.0g)とHEMA(3.1g)とをDSH(0.68g)およびV-65(0.094g)の存在下に、50℃で24時間反応させた後、70℃で2時間反応させた。
 続いて、AOI(3.3g)、DBTDL(0.013g)とBHT(0.17g)とを、40℃で24時間反応させて共重合体である化合物(C-2-1)を合成した。得られた化合物(C-2-1)のメチルエチルケトン溶液をメタノールに投入することで再沈精製し、真空乾燥して粉末状の化合物(C-2-1)の11gを得た。化合物(C-2-1)の数平均分子量(Mn)は8,000であった。
(合成例7:化合物(C-1-2)の合成)
 2-ブタノン(197g)溶液中で、化合物(4a-21)(50g)とHEMA(34g)とを連鎖移動剤DSH(5.1g)および重合開始剤V-70(0.7g)の存在下に、50℃で24時間反応させ、続いて70℃で2時間反応させた。
 室温(20~25℃)に冷却後、AOI(37g)、DBTDL(0.1g)とBHT(1.9g)を仕込み、40℃で24時間反応させて化合物(C-1-2)を合成した。得られた共重合体(C-1-2)の2-ブタノン溶液をヘキサンに投入することで再沈精製し、真空乾燥して粉末状の共重合体(C-1-2)を115g得た。共重合体(C-1-2)におけるフッ素含有量は18質量%、数平均分子量(Mn)は6,000であった。
(合成例8:化合物(C-1-3)の合成)
 2-ブタノンの2.0g中にて、合成例3で得た化合物(m1α-1)の0.70gおよび2-ヒドロキシエチルメタクリレートの0.15gを、n-ドデシルメルカプタンの0.034gおよび2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-70)の0.005gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.17g、ジブチル錫ジラウレートの0.0007gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.0084gを加え、40℃で24時間反応させて下式の単位(c1f-1)および単位(c2-1)を有する化合物(C-1-3)の2-ブタノン溶液を得た。得られた化合物(C-1-3)の2-ブタノン溶液をヘキサンに投入することによって沈殿させ、真空乾燥して粉末状の化合物(C-1-3)の0.75gを得た。化合物(C-1-3)におけるフッ素含有量は24.2質量%、数平均分子量(Mn)は8,000であった。
Figure JPOXMLDOC01-appb-C000017
(合成例9:化合物(C-1-4)の合成)
 2-ブタノンの2.2g中にて、合成例4で得た化合物(m1β-3)の0.8gおよび2-ヒドロキシエチルメタクリレートの0.13gを、n-オクタデシルメルカプタンの0.03gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、製品名:V-65)の0.004gの存在下に、50℃で24時間反応させた。室温(20~25℃)に冷却した後、2-アクリロイルオキシエチルイソシアネートの0.14g、ジブチル錫ジラウレートの0.0006gおよび2,6-ジ-tert-ブチル-p-クレゾールの0.007gを加え、40℃で24時間反応させて下式の単位(c1f-3)および単位(c2-1)を有する化合物(C-1-4)の2-ブタノン溶液を得た。得られた化合物(C-1-4)の2-ブタノン溶液をヘキサンに投入し、沈殿物を真空乾燥して粉末状の化合物(C-1-4)の0.89gを得た。撥液性重合体(C-1-4)におけるフッ素含有量は23.0質量%、数平均分子量(Mn)は8,000であった。
Figure JPOXMLDOC01-appb-C000018
〔塗布用組成物〕
(化合物(B))
ADPH:製品名、ジペンタエリスリトールヘキサアクリレート(新中村化学工業社製)。
M408:ジトリメチロールプロパンテトラアクリレート(東亞合成社製、数平均分子量(Mn):466)。
A9300-1CL:ε-カプロラクトン変成エトキシ化イソシアヌル酸のトリアクリレート(新中村化学工業社製「ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート」、数平均分子量(Mn):537)。
ATMPT:トリメチロールプロパントリアクリレート(新中村化学工業社製、数平均分子量(Mn):296)。
ADCP:トリシクロデカンジメタノールジアクリレート(新中村化学工業社製、数平均分子量(Mn):304)。
(熱重合開始剤(D1))
BPO:過酸化ベンゾイル。
(光重合開始剤(D2))
OXE01:1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)](BASF社製)。
(溶剤)
PGMEA:プロピレングリコールモノメチルエーテルアセテート。
〔ガラスシート〕
 無アルカリガラス(旭硝子社製、商品名:AN100)のガラスシート(10cm×10cm)。厚さが50μmまたは100μmのものを使用。
〔硬化性組成物の調製〕
 表1に示す配合割合で各成分を室温で混合し、調製例10~22の塗布用組成物を得た。
 また、調製例23(比較例)の塗布用組成物として、メタクリル酸メチルポリマー(シグマアルドリッチ社製、質量平均分子量(Mw):120,000)をPGMEAに溶解し、炭化水素系樹脂溶液(固形分:10質量%)を得た。
Figure JPOXMLDOC01-appb-T000019
 以下の例のうち、例1~26は実施例で、例27~28は比較例である。
〔例1~8:200℃熱硬化〕
 表2に示す塗布用組成物をガラスシート上に毎分1,000回転で30秒間スピンコートし、ホットプレートで加熱した(プリベーク)。加熱条件は100℃、90秒間とした。続いて、オーブンにより、200℃で2時間加熱(キュア工程)して、膜厚1μmの硬化膜を形成し、ガラスシート積層体を得た。
 得られたガラスシート積層体の屈曲性、平坦性、透明性を評価し、誘電率を測定した。結果を表2に示す。
〔例9~12、例17~28:150℃熱硬化〕
 表2に示す塗布用組成物をガラスシート上に毎分1,000回転で30秒間スピンコートし、ホットプレートで加熱した(プリベーク)。加熱条件は150℃、2分間とした。続いて、オーブンにより、150℃で10分間加熱(キュア工程)して、膜厚1μmの硬化膜を形成し、ガラスシート積層体を得た。
 得られたガラスシート積層体の屈曲性、平坦性、透明性を評価し、誘電率を測定した。結果を表2に示す。
〔例13~16:光硬化〕
 表2に示す塗布用組成物をガラスシート上に毎分1,000回転で30秒間スピンコートし、ホットプレートで加熱した(プリベーク)。加熱条件は60℃、90秒間とした。次いで、照射エネルギーが200mJ/cmの露光を行った。露光は、紫外線露光装置(SUSS社製、製品名:MA-6)を用い、高圧水銀灯を光源として照射した。続いてホットプレートにより、100℃で5分間加熱(キュア工程)して、膜厚1μmの硬化膜を形成し、ガラスシート積層体を得た。
 得られたガラスシート積層体の屈曲性、平坦性、透明性を評価し、誘電率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 表2の結果に示されるように、例1~26のガラスシート積層体は、いずれも、屈曲性、平坦性、透明性に優れることに加え、比誘電率が低く、充分な絶縁性も有していた。
 一方、例27および28のガラスシート積層体は、屈曲性、平坦性、透明性に優れるものの、比誘電率が高く、絶縁性が不充分であった。
 この結果から、例1~26のガラスシート積層体は、半導体装置の基材として好適に使用できることが示唆された。
〔例29〕
 化合物(C-1-1)を含む硬化性組成物の硬化膜を有する例17のガラスシート積層体の該硬化膜について、接触角を測定したところ、水接触角が110°、PGMEA接触角が56°であり、該硬化膜は撥液性に優れていた。
〔例30〕
 化合物(C-2-1)を含む硬化性組成物の硬化膜を有する例19のガラスシート積層体の該硬化膜について、接触角を測定したところ、水の接触角が95°、PGMEA接触角が10°以下であり、撥水性と親油性とを有していた。
〔例31〕
 化合物(C-1-2)を含む硬化性組成物の硬化膜を有する例21のガラスシート積層体の該硬化膜の表面に、パターンを有するフォトマスクを介して紫外線を選択的に照射した。紫外線の照射は、スポットキュアSP-7(ウシオ電気社製)を用い、照射条件は50J/cmとした。この条件では波長200nm以下の光は照射されない。
 紫外線が照射された部分の水接触角は76°、PGMEA接触角は10°以下であった。紫外線が照射されなかった部分の水接触角は103°、PGMEA接触角は58°であった。
 このように紫外線の照射により、硬化膜の表面の撥液性を選択的に低下させることができ、紫外線の照射により撥液性が低下して親液化した親液性領域と、紫外線が照射されず撥液性を維持している撥液性領域とのパターンを形成できた。
〔例32〕
 化合物(C-1-3)を含む硬化性組成物の硬化膜を有する例23のガラスシート積層体の該硬化膜の表面に、パターンを有するフォトマスクを介して紫外線(i線365nm)を部分的に照射した。紫外線の照射は、SUSS社製の製品名:MA-8を用い、照射条件は100J/cmとした。該装置および条件では、波長350nm以下の紫外線は照射されない。
 紫外線が照射された部分のPGMEA接触角は10°以下であり、紫外線が照射されなかった部分のPGMEA接触角は53゜であった。
 このように紫外線の照射により、硬化膜の表面の撥油性を選択的に低下させることができ、紫外線の照射により撥油性が低下して親液化した親液性領域と、紫外線が照射されず撥油性を維持している撥液性領域とのパターンを形成できた。
〔例33〕
 化合物(C-1-4)を含む硬化性組成物の硬化膜を有する例25で得られたガラスシート積層体の該硬化膜の表面に、パターンを有するフォトマスクを介して紫外線(i線365nm)を部分的に照射した。紫外線の照射は、SUSS社製の製品名:MA-8を用い、照射条件は1J/cmとした。該装置および条件では、波長350nm以下の紫外線は照射されない。
 紫外線が照射された部分のPGMEA接触角は10°以下であり、紫外線が照射されなかった部分のPGMEA接触角は51゜であった。
 このように紫外線の照射により、硬化膜の表面の撥油性を選択的に低下させることができ、紫外線の照射により撥油性が低下して親液化した親液性領域と、紫外線が照射されず撥油性を維持している撥液性領域とのパターンを形成できた。
 本発明の積層体は、表示装置の保護板、半導体装置の基材、ICカード、タッチパネルの基材、フレキシブルプリント基板、RFIDの基材として、好適に使用される。
 なお、2012年8月9日に出願された日本特許出願2012-176972号および2012年10月22日に出願された日本特許出願2012-233197号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10,20…半導体装置
11,21…ガラスシート
12,22…ゲート電極
13,23…ソース電極
14,24…ドレイン電極
15,25…塗布型半導体
16,26…ゲート絶縁膜
17,27…硬化膜
17a…親液性領域
17b…撥液性領域
17c…内部領域
18,28…層間絶縁膜
19…画素電極

Claims (15)

  1.  厚さが10~500μmであるガラスシートと、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物から形成される硬化膜とを有することを特徴とするガラスシート積層体。
  2.  前記含フッ素ポリアリーレンプレポリマー(A)が、含フッ素ポリアリーレンエーテルプレポリマーである、請求項1に記載のガラスシート積層体。
  3.  前記含フッ素ポリアリーレンプレポリマー(A)が、芳香環の炭素原子に結合したフッ素原子を有する含フッ素芳香族化合物と、フェノール性水酸基を2つ以上有するフェノール系化合物と、架橋性官能基と脱ハロゲン化水素剤の存在下で反応しうる反応性基とを含有する芳香族化合物とを脱ハロゲン化水素剤の存在下で反応させて得られるプレポリマーである、請求項2に記載のガラスシート積層体。
  4.  前記含フッ素芳香族化合物がペルフルオロ(1,3,5-トリフェニルベンゼン)またはペルフルオロビフェニルであり、前記フェノール系化合物が1,3,5-トリヒドロキシベンゼンまたは1,1,1-トリス(4-ヒドロキシフェニル)エタンであり、前記芳香族化合物がペンタフルオロスチレン、アセトキシスチレン、クロルメチルスチレンまたはペンタフルオロフェニルアセチレンである、請求項3に記載のガラスシート積層体。
  5.  前記硬化性組成物が、2つ以上の架橋性官能基を有し、フッ素原子を有しない数平均分子量が140~3,000の化合物(B)を含む、請求項1~4のいずれか一項に記載のガラスシート積層体。
  6.  前記化合物(B)が、多価アルコールのポリアクリレートまたは多価アルコールのポリメタクリレートである、請求項5に記載のガラスシート積層体。
  7.  前記硬化性組成物が、炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が20以下のフルオロアルキル基、または、炭素原子間にエーテル性酸素原子を有していてもよい、炭素数が6~24のアルキル基と、架橋性官能基とを有する、数平均分子量が3,000を超え50,000以下の化合物(C)を含む、請求項1~6のいずれか一項に記載のガラスシート積層体。
  8.  前記硬化膜の表面に、親液性領域と撥液性領域のパターンが形成されている、請求項7に記載のガラスシート積層体。
  9.  前記硬化性組成物が、ラジカル重合開始剤(D)を含む、請求項1~8のいずれか一項に記載のガラスシート積層体。
  10.  前記架橋性官能基が、ビニル(オキシ)基、アリル(オキシ)基、エチニル基および(メタ)アクリロイル(オキシ)基からなる群から選ばれる、請求項1~9のいずれか一項に記載のガラスシート積層体。
  11.  請求項1~10のいずれか一項に記載のガラスシート積層体を有する保護板。
  12.  請求項1~10のいずれか一項に記載のガラスシート積層体を基材として有する半導体装置。
  13.  厚さが10~500μmであるガラスシート上に、架橋性官能基を有する含フッ素ポリアリーレンプレポリマー(A)を含む硬化性組成物を含む液状の塗布用組成物の塗膜を形成し、前記塗膜を熱硬化または光硬化させて硬化膜を形成することを特徴とするガラスシート積層体の製造方法。
  14.  前記液状の塗布用組成物が溶剤を含む硬化性組成物であり、溶剤を含む硬化性組成物の塗膜を形成し、溶剤を除去した後、硬化性組成物の塗膜を硬化させる、請求項13に記載のガラスシート積層体の製造方法。
  15.  前記塗布用組成物の膜を形成した後に、加熱工程を1回以上有し、該加熱工程における加熱温度がすべて250℃以下である、請求項13または14に記載のガラスシート積層体の製造方法。
PCT/JP2013/071400 2012-08-09 2013-08-07 ガラスシート積層体およびガラスシート積層体の製造方法 WO2014024932A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529537A JPWO2014024932A1 (ja) 2012-08-09 2013-08-07 ガラスシート積層体およびガラスシート積層体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012176972 2012-08-09
JP2012-176972 2012-08-09
JP2012233197 2012-10-22
JP2012-233197 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014024932A1 true WO2014024932A1 (ja) 2014-02-13

Family

ID=50068153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071400 WO2014024932A1 (ja) 2012-08-09 2013-08-07 ガラスシート積層体およびガラスシート積層体の製造方法

Country Status (3)

Country Link
JP (1) JPWO2014024932A1 (ja)
TW (1) TW201412521A (ja)
WO (1) WO2014024932A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097562A (ja) * 2014-11-20 2016-05-30 日立化成株式会社 樹脂層付き基板の製造方法、導電層付き基板の製造方法、樹脂層付き基板、導電層付き基板及びタッチパネル。
JPWO2014034671A1 (ja) * 2012-08-31 2016-08-08 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
CN113402165A (zh) * 2021-07-28 2021-09-17 成都光明光电股份有限公司 玻璃组合物、化学强化玻璃及其制造方法
CN113427874A (zh) * 2021-06-25 2021-09-24 绍兴迪飞新材料有限公司 一种自清洁的智能动态调光玻璃
JPWO2022210894A1 (ja) * 2021-03-31 2022-10-06

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118925A (ja) * 1984-07-06 1986-01-27 Seiko Epson Corp 表示装置
JPH08279394A (ja) * 1995-02-06 1996-10-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JPH11329715A (ja) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2002521234A (ja) * 1998-07-20 2002-07-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可撓性基板
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途
WO2009154254A1 (ja) * 2008-06-19 2009-12-23 旭硝子株式会社 硬化性組成物およびそれを用いた硬化膜
WO2011162001A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
JP2012063620A (ja) * 2010-09-16 2012-03-29 Asahi Glass Co Ltd 硬化性組成物および光導波路の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118925A (ja) * 1984-07-06 1986-01-27 Seiko Epson Corp 表示装置
JPH08279394A (ja) * 1995-02-06 1996-10-22 Idemitsu Kosan Co Ltd 多色発光装置およびその製造方法
JPH11329715A (ja) * 1998-04-02 1999-11-30 Cambridge Display Technol Ltd 有機デバイスのための可撓性基体、有機デバイスおよびその製造方法
JP2002521234A (ja) * 1998-07-20 2002-07-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可撓性基板
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途
WO2009154254A1 (ja) * 2008-06-19 2009-12-23 旭硝子株式会社 硬化性組成物およびそれを用いた硬化膜
WO2011162001A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
JP2012063620A (ja) * 2010-09-16 2012-03-29 Asahi Glass Co Ltd 硬化性組成物および光導波路の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034671A1 (ja) * 2012-08-31 2016-08-08 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
JP2016097562A (ja) * 2014-11-20 2016-05-30 日立化成株式会社 樹脂層付き基板の製造方法、導電層付き基板の製造方法、樹脂層付き基板、導電層付き基板及びタッチパネル。
JPWO2022210894A1 (ja) * 2021-03-31 2022-10-06
WO2022210894A1 (ja) * 2021-03-31 2022-10-06 大日本印刷株式会社 転写フィルム、ハードコートフィルム、ならびにハードコート成形体およびその製造方法
JP7276730B2 (ja) 2021-03-31 2023-05-18 大日本印刷株式会社 転写フィルム、ハードコートフィルム、ならびにハードコート成形体およびその製造方法
CN113427874A (zh) * 2021-06-25 2021-09-24 绍兴迪飞新材料有限公司 一种自清洁的智能动态调光玻璃
CN113427874B (zh) * 2021-06-25 2022-04-22 绍兴迪飞新材料有限公司 一种自清洁的智能动态调光玻璃
CN113402165A (zh) * 2021-07-28 2021-09-17 成都光明光电股份有限公司 玻璃组合物、化学强化玻璃及其制造方法
CN113402165B (zh) * 2021-07-28 2022-07-29 成都光明光电股份有限公司 玻璃组合物、化学强化玻璃及其制造方法

Also Published As

Publication number Publication date
TW201412521A (zh) 2014-04-01
JPWO2014024932A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
JP5861764B2 (ja) 非付着性付与剤
JP5983628B2 (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
WO2014024932A1 (ja) ガラスシート積層体およびガラスシート積層体の製造方法
CN104080822B (zh) 化合物、聚合物、固化性组合物、涂布用组合物、以及具有固化膜的物品、具有亲液性区域和拒液性区域的图案的物品及其制造方法
US10241404B2 (en) Photosensitive resin composition, production method for resin film, production method for organic semiconductor element, and fluorine-containing polymer
JP2013214649A (ja) 半導体装置およびその製造方法
WO2014199958A1 (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法
JP6119753B2 (ja) 硬化性組成物および硬化膜の製造方法
JP2014129457A (ja) 撥液性化合物、撥液性重合体、硬化性組成物、塗布用組成物、ならびに硬化膜を有する物品、親液性領域と撥液性領域とのパターンを有する物品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828049

Country of ref document: EP

Kind code of ref document: A1