WO2013114650A1 - 高麗人参薬効成分の製造方法 - Google Patents

高麗人参薬効成分の製造方法 Download PDF

Info

Publication number
WO2013114650A1
WO2013114650A1 PCT/JP2012/069409 JP2012069409W WO2013114650A1 WO 2013114650 A1 WO2013114650 A1 WO 2013114650A1 JP 2012069409 W JP2012069409 W JP 2012069409W WO 2013114650 A1 WO2013114650 A1 WO 2013114650A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
treatment
ginseng extract
ginseng
decomposition
Prior art date
Application number
PCT/JP2012/069409
Other languages
English (en)
French (fr)
Inventor
勇介 星野
正美 星野
Original Assignee
星野科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星野科学株式会社 filed Critical 星野科学株式会社
Publication of WO2013114650A1 publication Critical patent/WO2013114650A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/258Panax (ginseng)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids

Definitions

  • the present invention relates to a method for producing ginseng medicinal ingredients having excellent medicinal effects.
  • ginseng extract Since ancient times, ginseng extract has been widely used as a herbal medicine, and its medicinal effects have been verified. However, some of the main medicinal components Rb1 of ginseng are not easily absorbed by humans if they are taken orally, and are absorbed when the medicinal components of the ingested ginseng extract are decomposed by intestinal bacteria in the intestine. Test results have been reported to be easy. In other words, absorption of this medicinal ingredient is dependent on enteric bacteria.
  • Degradation of Rb1 for improving absorption is controlled so that the route in which S-Rg3, S-Rh2, and CompoundCoK, which are important active ingredients of ginseng, are all generated, is preferentially selected for derived compounds. It is desirable.
  • Patent Document 1 JP-A-3-277247
  • Patent Document 2 JP-A-2004-49154
  • the present invention By converting Rb1 which is an active ingredient contained in ginseng extract into Rd, the present invention makes it easy to be decomposed and absorbed, and as a result, it has high probability of decomposition to S-Rg3, S-Rh2 and CompoundCoK. It is intended to provide a method for producing ginseng medicinal ingredients.
  • the ginseng extract is obtained by soaking ginseng in a solvent such as an ethanol aqueous solution and eluting the active ingredient into the solvent to concentrate.
  • the object of the present invention is to produce a ginseng medicinal component that decomposes Rb1 which is a component contained in the ginseng extract into a medicinal component through a decomposition route that decomposes it into Rd and does not decompose through a decomposition route that decomposes into GypXVII. Is to try to provide.
  • the gist of the present invention is to prepare a ginseng extract, An enzyme extraction step for extracting an enzyme derived from a fermenting bacterium selected from a filamentous fungus, a lactic acid bacterium, and a bifidobacteria; It is a method for producing a ginseng medicinal ingredient comprising an enzyme action step for allowing the extracted enzyme to act on the ginseng extract.
  • the fermenting bacterium may be a Trichoderma genus.
  • the fermenting bacterium may be a filamentous fungus other than the genus Trichoderma, and the enzyme action step mixes the extracted enzyme with an aqueous ethanol solution having a concentration of 1 to 30% by weight. It may be a step of acting on the ginseng extract.
  • Rb1 which is an active ingredient contained in ginseng extract
  • Rb1 can be efficiently decomposed into Rd, S-Rg3, and S-Rh2 in a short time to obtain these Rd, S-Rg3, and S-Rh2.
  • a method for producing a ginseng medicinal active ingredient is provided.
  • a method for producing a ginseng medicinal ingredient that decomposes Rb1, which is an active ingredient contained in a ginseng extract, into Rd and does not proceed to any further stages while keeping the decomposition at this stage. Is provided. By ingesting an Rd-rich extract, it is possible to produce a large amount of S-Rg3 or the like having a large medicinal effect in the intestine.
  • the components (protoxadiol derivative) contained in the ginseng extract are decomposed stepwise according to the scheme shown in FIG.
  • the active ingredient Rb1 contained in the ginseng extract is decomposed into S-PPD by the route of arrows A1, A2, A3, and A4.
  • it is decomposed into S-PPD along the route of arrows B1, B2, B3, and B4.
  • a decomposition route there is a route that reaches the S-PPD via F2 including the arrow direction selected from the arrows C1, C2, C3, and C4.
  • the inventor of the present application treats ginseng extract with an enzyme derived from a fermentative bacterium selected from filamentous fungi, lactic acid bacteria, and bifidobacteria (hereinafter, this enzyme is also referred to as an enzyme used in the present invention). It has been found that an enzyme can act on Rb1 to degrade Rb1 for purposes of this application. That is, the inventors of the present application have found that according to the method shown in the present application, these microbial enzymes efficiently decompose Rb1 through a route through A1, and hardly decompose through a route through B1.
  • the treatment of ginseng extract with an enzyme has a shorter treatment time than the treatment by fermentation, and there is very little risk of spoilage of the treatment liquid. Further, in the treatment by fermentation, a reaction other than the scheme shown in FIG. 1 occurs, and the active ingredient Rb1 may be decomposed into a non-medicine compound other than the compound shown in FIG. Contains many impurities.
  • the enzyme used for this invention can be obtained by extracting an enzyme from the culture solution which culture
  • This fermenting bacterium is a bacterium selected from filamentous fungi, lactic acid bacteria, and bifidobacteria, and is a bacterium that produces an enzyme that degrades Rb1.
  • a medium for culturing this fermentative bacterium a solid medium, a liquid medium, the components of which are natural products, a synthetic medium, a semi-synthetic medium, and other commonly used media can be appropriately used.
  • the culture temperature and the pH of the medium can be appropriately determined within a range not inhibiting the growth of the fermenting bacteria used in the method of the present invention.
  • the culture can be performed while appropriately controlling the dissolved oxygen concentration, pH, nutrient components, water content and the like.
  • filamentous fungi either solid culture or liquid culture may be used.
  • a medium a medium containing carbohydrates such as glucose, glycerol, and starch as a carbon source, and an inorganic or organic nitrogen source (for example, ammonium sulfate, ammonium chloride, casein) Hydrolyzate, yeast extract, polypeptone, bactotryptone, beef extract, etc.).
  • the lactic acid bacteria used in the present invention are not particularly limited as long as they are lactic acid bacteria that assimilate glucose to produce lactic acid.
  • Known lactic acid bacteria may be used.
  • the culture conditions vary depending on the lactic acid bacteria used and cannot be defined uniformly, but the culture temperature is 20 to 45 ° C., and the culture time is usually 12 to 120 hours. Liquid culture is preferred.
  • As the medium conventionally used molds, actinomycetes, yeasts, bacterial media, and the like can be used.
  • the medium for bifidobacteria is not particularly limited, and examples thereof include a liquid medium used for normal bifidobacteria culture.
  • a liquid medium composed of peptone, meat extract, yeast extract, glucose, potassium hydrogen phosphate, purified water and the like can be used as a carbon source, nitrogen source, mineral and other additives.
  • nutrient sources for example, inorganic salts, vitamins (for example, vitamin B1), antibiotics (for example, ampicillin, kanamycin), etc.
  • vitamins for example, vitamin B1
  • antibiotics for example, ampicillin, kanamycin
  • Extraction of the enzyme used in the present invention from the fermenting bacteria can be performed by a conventional method.
  • solid culture extraction is performed from the culture using water, physiological saline or a buffer solution, and the solid content is removed to obtain a culture extract.
  • liquid culture the liquid containing the cultured fermented bacteria is filtered or centrifuged to collect the supernatant to obtain a culture extract. Ethanol is added to the extract and allowed to stand to precipitate the enzyme, and a volatile solvent is added to the precipitate and washed and filtered.
  • the filtered crude enzyme precipitate is washed with a small amount of a volatile solvent, collected from the filter paper in a petri dish, and dried to obtain the enzyme used in the present invention.
  • the active ingredient Rb1 is decomposed into S-PPD by the route of arrows A1 ⁇ A2 ⁇ A3 ⁇ A4 and arrows A1 ⁇ C1 ⁇ C3 ⁇ A4 and A1 ⁇ C1 ⁇ C4 ⁇ B4. be able to.
  • not all Rb1 is decomposed into PPD, but may remain at the stage where it is decomposed into Rd or S-Rg3 or S-Rh2 and Compound K. That is, the treatment liquid contains a considerable amount of Rd, S-Rg3, S-Rh2, and Compound K.
  • the enzyme treatment according to the present invention provides a method for producing a ginseng medicinal ingredient containing Rd, S-Rg3, S-Rh2 and Compound K at a high ratio.
  • S-Rg3 and S-Rh2 have been reported to have antitumor effects.
  • Rd which is an active ingredient contained in an extract produced by such an enzyme treatment according to the present invention
  • Rd is susceptible to the action of many general types of degrading enzymes.
  • degrading enzymes include not only the enzyme (enzyme-1) derived from the filamentous fungus (Aspergillus niger NBRC4414) used in the present invention, but also the commercially available filamentous fungus Penicillium sp.
  • the Rd-rich ginseng extract obtained by the present invention when the Rd-rich ginseng extract obtained by the present invention is ingested by humans, the medicinal components are effectively absorbed by the human body due to the action of degrading enzymes present in the digestive tract and exhibit high medicinal effects.
  • Enzyme-1 adjusted filamentous fungus (Aspergillus niger NBRC4414) was inoculated into a 500 ml shake flask containing 70 ml of Waksman medium and sterilized, and after shaking culture at 30 ° C. for 48 hours, the filtrate obtained by filtering the culture solution was filtered. Then, the enzyme was precipitated with 80% saturated ammonium sulfate. The collected precipitate was dissolved in a small amount of distilled water, dialyzed with purified water to remove ammonium sulfate, and freeze-dried to obtain enzyme powder.
  • Trichoderma viride NBRC5720 was inoculated into a sterilized 500 ml shake flask with 70 ml Waksman medium, shaken at 30 ° C. for 48 hours, and then filtrated.
  • the enzyme was precipitated with 80% saturated ammonium sulfate, the collected precipitate was dissolved in a small amount of distilled water, dialyzed with purified water to remove ammonium sulfate, and freeze-dried to obtain an enzyme powder.
  • Ginseng Extract Commercial red ginseng was immersed in an aqueous ethanol solution having a concentration of 30% by weight at 30 ° C. for 2 weeks, and the extracted ethanol solution was collected and concentrated to obtain a Brix 80 ginseng extract.
  • Enzyme treatment of ginseng extract-1 10 g of ginseng extract was put into 190 cc of distilled water, 50 mg of the collected enzyme-1 was added and mixed well, and allowed to stand at 50 ° C. for 24 hours.
  • Treatment-2 10 g of ginseng extract was put into 190 g of an aqueous ethanol solution having a concentration of 10% by weight, 50 mg of the collected enzyme-1 was added and mixed well, and allowed to stand at 50 ° C. for 24 hours.
  • Treatment-3 10 g of ginseng extract was put into 190 g of an aqueous ethanol solution having a concentration of 20% by weight, 50 mg of the collected enzyme-1 was added and mixed well, and allowed to stand at 50 ° C.
  • Treatment-4 10 g of ginseng extract was added to 190 g of an aqueous ethanol solution having a concentration of 30% by weight, 50 mg of the collected enzyme-1 was added and mixed well, and the mixture was allowed to stand at 50 ° C. for 24 hours.
  • Treatment-5 10 g of ginseng extract was added to 190 g of purified water, mixed and mixed with 50 mg of the collected enzyme-2, mixed well, and allowed to stand at 50 ° C. for 24 hours.
  • FIG. 2 is a chart of 100 ppm concentration of the standard substance of Rb1.
  • FIG. 3 is a chart of the 100 ppm concentration of the Rd standard.
  • FIG. 4 is a chart of ginseng extract without enzyme addition.
  • FIG. 5 is a chart of the treatment liquid after completion of the enzyme treatment in Treatment-1.
  • FIG. 6 is a chart of the treatment liquid after completion of the enzyme treatment in Treatment-2.
  • FIG. 7 is a chart of the treatment liquid after completion of the enzyme treatment in Treatment-3.
  • FIG. 8 is a chart of the treatment liquid after completion of the enzyme treatment in Treatment-4.
  • FIG. 9 is a chart of the treatment liquid at the beginning of the enzyme treatment in treatment-5 (about 1 hour after the addition of the enzyme).
  • FIG. 10 is a chart of the treatment liquid after completion of the enzyme treatment in Treatment-5.
  • the measurement of the treatment liquid was performed on a sample diluted with the treatment liquid 12.5 times by weight. That is, the ginseng extract was diluted 20 times by weight for processing, further diluted by 12.5 times by weight for measurement, and the sample was diluted 250 times by weight with respect to the original ginseng extract by HPLC measurement. Went.
  • Rb1 ⁇ represents the Rb1 peak and Rd ⁇ represents the Rd peak.
  • Other ⁇ are peaks of protoxadiol derivatives other than Rb1 and Rd.
  • Table 1 shows the results of converting the Rb1 and Rd peaks from each chart into numerical values and converting them into numerical values.
  • the conversion rate in the table represents the ratio at which the decreased Rb1 changes to Rd, and is a value corrected for the decrease in molecular weight.
  • the conversion rate is obtained by converting the value obtained by dividing the Rd amount increased by the treatment by the Rb1 amount decreased by the treatment into a molar ratio.
  • Rb1 is decomposed and decreased, the Rd content is increased, and the conversion rate from Rb1 to Rd is also increased.
  • 6 and 7 show almost no peaks of saponin derivatives other than Rd, and in the reaction in the presence of alcohol, the ratio of saponin derivatives formed by the decomposition of Rb1 that is preferentially decomposed to Rd is treated -1. It is higher than in.
  • Process-4 the degree to which Rb1 is decomposed by the process is smaller than in Process-2 and Process-3. It shows that the enzyme reaction is inhibited when the alcohol concentration exceeds 30%.
  • Example-4 Lactobacillus reuteri was statically cultured in a 500 ml flask at a temperature of 37 ° C. for 12 hours in a Rogosa medium to obtain a culture solution.
  • the filtrate obtained by filtering the cultured broth was centrifuged, the supernatant was collected, ethanol was added, and the mixture was allowed to stand to precipitate the enzyme, and the precipitate was washed and filtered.
  • the filtered crude enzyme precipitate was washed with a small amount of ethyl ether, collected from the filter paper in a petri dish, and dried to collect the enzyme.
  • Ginseng Extract Enzyme Treatment-6 10 g of the same ginseng extract as used in Example 1 was put into 190 cc of 10 wt% ethanol aqueous solution, 50 mg of the collected enzyme was added and mixed well, and the mixture was mixed at 37 ° C for 24 hours. Left to stand. It was confirmed by the peak of the liquid chromatograph that Rb1 was decomposed into Rd, S-Rg3, SRh2, and S-PPD by the treatment. The peaks of GypXVII, GypLXXV and Compound K were hardly observed.
  • Experimental example-1 1 g of a commercially available hemicellulase 1% solution was added to 10 g of the treatment solution obtained by the treatment-5 (Example-3), and the mixture was mixed well, followed by treatment at 50 ° C. for 15 hours. A chart of high performance liquid chromatography of the liquid after this treatment is shown in FIG.
  • FIG. 11 shows that Compound K is detected in a large amount by treating the treatment solution obtained by treatment-5 (Example-3) with hemicellulase.
  • FIG. 11 shows that Rd contained in the treatment liquid obtained by treatment-5 (Example-3) is almost completely decomposed by treatment with hemicellulase, and hemicellulase is obtained. It is shown that the Rd peak disappears in the solution treated with 1.
  • Comparative Example-1 10 g of ginseng extract similar to that used in Example 1 was diluted with 190 cc of distilled water, the same filamentous fungus as used in Example 1 was added, and the mixture was allowed to stand at 50 ° C. for 24 hours and cultured.
  • the method for producing a ginseng active ingredient of the present invention can be suitably applied to the production of a bioactive agent comprising a saponin derivative.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

【課題】高麗人参エキスに含まれる成分であるRb1をRdへと分解する分解ルートで薬効成分へと分解し、GypXVIIへと分解する分解ルートでは分解しない、高麗人参薬効成分の製造方法を提供しようとする。 【課題を解決するための手段】糸状菌、乳酸菌、ビフィズス菌から選択される発酵菌に由来する酵素を該発酵菌から抽出し、抽出された前記酵素を高麗人参エキスに作用させる高麗人参薬効成分製造方法である。

Description

高麗人参薬効成分の製造方法
本発明は、薬効に優れた高麗人参薬効成分の製造方法に関する。
古来から、高麗人参エキスは漢方薬として広く使われ、その薬効についても検証が進められている。しかし、高麗人参の一部の主要薬効成分Rb1は人間が経口摂取しただけでは有効成分が吸収されにくく、摂取された人参エキスの薬効成分が腸内で腸内細菌により分解されることにより吸収されやすいものになるという実験結果が報告されている。つまり、この薬効成分の吸収は腸内細菌頼りということである。
しかし、腸内に存在する細菌は人によって異なり、また、近年高麗人参エキスの成分を分解する細菌をもっていない人も高確率に存在するという調査結果が発表され、これらの人たちは高麗人参を摂取しても効果を得られないのではと懸念されている。
そこで、誰でも有効成分を吸収できるように、有効成分を前もって分解しておけば誰でも吸収できるようになると考えて、細菌で人参を処理し、発酵人参とすることが行われるようになってきた。(例えば、特許文献1、2参照)
このような発酵による方法は当然ながら発酵中に菌の育成が必要なため時間がかかり、また、未知の多様な変化も起こる。また、分解の過程で生成する派生化合物には薬効に重要な成分も有り、したがって有効成分の分解が進み低分子化することで、それより高分子側の必要な薬効が失われる懸念がある。さらに発酵による分解が進むにつれて有効成分が低分子化するとともに親水性が失われていく為沈殿が生じやすく、また、工業的な規模の処理においては、付着や吸着などによりこの低分子化した成分が失われる懸念もある。
さらに、図1に示すように、有効成分Rb1の分解には始めに2つの経路(A1とB1)があり、特に薬効の高い成分の一つであるS-Rg3は、はじめの分解でRdになるA1→A2の経路で生成されるのに対して、はじめの分解でGypXVIIになる経路B1では、その後の段階でS-Rg3が生ずることがない。 
吸収改善のためのRb1の分解は、派生化合物に、高麗人参の重要有効成分とされるS-Rg3、S-Rh2およびCompound Kがすべて生成される経路が優先して選択されるように制御されることが望ましい。
[特許文献1]特開平3-277247号公報
[特許文献2]特開2004-49154号公報
本発明は、高麗人参エキスに含まれる有効成分であるRb1をRdに変換することで、分解および吸収され易くし、結果としてS-Rg3やS-Rh2およびCompound Kへの分解生成確率の高い高麗人参薬効成分の製造方法を提供しようとする。
高麗人参エキスは高麗人参を例えばエタノール水溶液などの溶媒に漬けこんで有効成分を溶媒に溶出させて濃縮して得られる。
本発明の目的は、高麗人参エキスに含まれる成分であるRb1をRdへと分解する分解ルートで薬効成分へと分解し、GypXVIIへと分解する分解ルートでは分解しない、高麗人参薬効成分の製造方法を提供しようとすることである。
本発明のさらなる目的は、Rb1をRdへと分解し、分解をこの段階にとどめてこれ以上の段階へ分解が進むことのない高麗人参薬効成分の製造方法を提供しようとすることである。
 本発明の要旨とするところは、高麗人参エキスを準備する工程、
糸状菌、乳酸菌、ビフィズス菌から選択される発酵菌に由来する酵素を該発酵菌から抽出する酵素抽出工程、
抽出された前記酵素を前記高麗人参エキスに作用させる酵素作用工程
を含む高麗人参薬効成分の製造方法であることにある。
前記発酵菌はトリコデルマ属菌であり得る。
前記高麗人参薬効成分の製造方法においては、前記発酵菌がトリコデルマ属菌以外の糸状菌であり得、前記酵素作用工程が、抽出された前記酵素を、1~30重量%濃度のエタノール水溶液に混合された高麗人参エキスに作用させる工程であり得る。
本発明によると、高麗人参エキスに含まれる有効成分であるRb1を短時間でRdやS-Rg3やS-Rh2へと分解して効率よくこれらRdやS-Rg3やS-Rh2を得ることのできる高麗人参薬効成分の製造方法が提供される。
また、本発明によると、高麗人参エキスに含まれる有効成分であるRb1をRdへと分解し、分解をこの段階にとどめてこれ以上の段階へ分解が進むことのない高麗人参薬効成分の製造方法が提供される。Rdリッチのエキスを摂取することにより、腸内で薬効の大きいS-Rg3などを大量に産生することができる。 
高麗人参エキスに含まれる成分(プロトキサジオール誘導体)の分解のスキームを示すチャートである。 高麗人参エキス標準物質の高速液体クロマトグラフのチャートである。 高麗人参エキス標準物質の高速液体クロマトグラフのチャートである。 高麗人参エキスの高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理後の高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理後の高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理後の高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理後の高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理初期の高速液体クロマトグラフのチャートである。 高麗人参エキスの酵素処理後の高速液体クロマトグラフのチャートである。 酵素処理された高麗人参エキスの高速液体クロマトグラフのチャートである。
高麗人参エキスに含まれる成分(プロトキサジオール誘導体)は、図1に示すスキームにより段階的に分解される。図1において、高麗人参エキスに含まれる有効成分Rb1は、矢印A1→A2→A3→A4の経路でS-PPDへと分解される。あるいは矢印B1→B2→B3→B4の経路でS-PPDへと分解される。さらに分解経路としてはF2を経て矢印C1、C2、C3、C4から選択される矢印方向を含みS-PPDに至る経路もある。
本願の発明者は、糸状菌、乳酸菌、ビフィズス菌から選択される発酵菌に由来する酵素(以下、この酵素を本発明に用いる酵素とも称する)を用いて高麗人参エキスを処理することにより、この酵素をRb1に作用させてRb1を本願の目的のために分解できることを見出した。すなわち、本願の発明者は、本願に示す方法によればこれら微生物酵素がA1を経る経路でRb1を効率よく分解し、B1を経る経路ではほとんど分解しないことを見出した。
 酵素による高麗人参エキスの処理は、発酵による処理に比べて処理時間が短く、かつ、処理液の腐敗のおそれが極めて少ない。また、発酵による処理では図1に示すスキーム以外の反応が起こり、有効成分Rb1が図1に示す化合物以外の、薬効のない化合物へと分解されてしまうおそれがあり、処理後の処理液は不要な不純物を多く含む。
本発明に用いる酵素は発酵菌を培養した培養液から酵素を抽出することによって得ることができる。この発酵菌は、糸状菌、乳酸菌、ビフィズス菌から選択される菌であり、Rb1を分解する酵素を生成する菌である。この発酵菌の培養の培地としては、固形培地、液体培地でその成分が天然物、合成培地、半合成培地その他常用される培地が適宜使用可能である。培養温度や培地のpHは、本発明の方法に用いる発酵菌の生育を阻害しない範囲で適宜定めることができる。培養においては、溶存酸素濃度、pH、栄養成分、水分含量等を適宜制御しながら培養を行うこともできる。
例えば糸状菌については固体培養、液体培養のどちらでもよく、培地としては、炭素源としてグルコース、グリセロール、スターチなどの炭水化物を含有するものと、無機もしくは有機窒素源(例えば硫酸アンモニウム、塩化アンモニウム、カゼインの加水分解物、酵母抽出物、ポリペプトン、バクトトリプトン、ビーフ抽出物等)を含んでいてもよい。
本発明において用いられる乳酸菌は、グルコースを資化して乳酸を生成する乳酸菌であれば特に制限されない。公知の乳酸菌を使用してもよい。培養条件については、使用する乳酸菌によって異なり、一律に規定することはできないが、培養温度としては20~45℃、培養時間については、通常12~120時間である。液体培養が好ましい。培地としては、従来から用いられているカビ、放線菌、酵母、細菌用培地等を使用できる。
ビフィズス菌についても培地としては、特に制限されるものではなく、通常のビフィズス菌の培養に用いられる液体培地が例示される。例えば、炭素源、窒素源、無機質その他の添加剤としてペプトン、肉エキス、酵母エキス、グルコース、リン酸水素カリウムおよび精製水などからなる液体培地を用いることができる。
これらの発酵菌の培地にはさらに必要に応じて他の栄養源(例えば、無機塩、ビタミン類(例えば、ビタミンB1)、抗生物質(例えば、アンピシリン,カナマイシン)など)を添加してもよい。
発酵菌からの本発明に用いる酵素の抽出は常法により行うことができる。例えば、固体培養であれば培養物より水、生理食塩水または緩衝液などを用いて抽出を行い、固形分を除いて培養抽出液を得る。液体培養であれば培養された発酵菌を含有する液をろ過しあるいは遠心分離機にかけて上清を集め培養抽出液を得る。抽出液にエタノールを添加して静置して酵素を沈殿させ、沈殿物に揮発性の溶媒を加えて洗浄ろ過する。ろ過した粗酵素沈殿を少量の揮発性の溶媒で洗うようにしてろ紙からシャーレに集め乾燥して本発明に用いる酵素を得ることができる。
高麗人参エキスを処理すると、分解により有効成分Rb1を矢印A1→A2→A3→A4の経路および矢印A1→C1→C3→A4およびA1→C1→C4→B4の経路でS-PPDへと分解することができる。この場合、Rb1がすべてPPDに分解されるのではなく、RdあるいはS-Rg3あるいはS-Rh2およびCompound Kに分解された段階でとどまっているものもある。すなわち、処理液にはRd、S-Rg3、S-Rh2、Compound Kが相当量含まれることになる。本発明による酵素処理により、RdとS-Rg3とS-Rh2とCompound Kを高い比率で含む高麗人参薬効成分の製造方法が提供される。S-Rg3とS-Rh2は特に抗腫瘍の薬効が報告されている。
さらに、トリコデルマ属菌由来の酵素により高麗人参エキスを処理すると、有効成分Rb1を矢印A1の経路でRdへと分解し分解がその先すなわち、A2以降には容易には進まないことがわかった。すなわち、本発明に用いる酵素による酵素処理により、有効成分Rb1のほとんどの分解をRdへの分解にとどめてRdリッチの高麗人参エキスを得ることができる。この場合、トリコデルマ属菌以外の微生物由来の分解酵素を用いた場合には、高麗人参エキスの処理においては、処理液に1~30重量%の濃度でエタノールを含有させておくことが必要であることがわかった。処理液におけるエタノールの濃度が30重量%を超えるとRb1からRdへの分解反応が抑制され、Rdの収率が悪い。エタノールの濃度が1重量%を下回るとRd以降の分解が進行し、また、B1経路の分解反応も進行し、Rdの収率が下がる。
 とくに、本発明によるこのような酵素処理により製造したエキス液に含有される有効成分であるRdは、一般的な多種類の分解酵素の作用を受けやすいものである。Rdは、例えば、人に摂取された場合に、消化器官内に存在する細菌に由来する分解酵素の作用により有効に人体に吸収されると考えられる。そのような分解酵素としては、本発明に用いられる糸状菌(Aspergillus nigger NBRC4414)由来の酵素(酵素-1)のみならず、市販されている糸状菌Penicillium sp.の酵素(アマノエンザイム株式会社製:ナリンキナーゼ「アマノ」)や、Aspergillus niggerの酵素(アマノエンザイム株式会社製:ヘミセルラーゼ「アマノ」)が例示される。これらの分解酵素によっても、Rdが容易にCompound Kまで分解されて人体に吸収される。
 従って、本発明により得られるRdリッチの高麗人参エキスが人に摂取されると、消化器官内に存在する分解酵素の作用により薬効成分が有効に人体に吸収され、高い薬効を発揮する。
本発明の効果は以下の実験例、実施例で確認される。
酵素-1の調整
糸状菌(Aspergillus nigger NBRC4414)を500mlの振盪用フラスコにWaksman培地70ml入れて殺菌したものに植菌し、30℃で48時間振盪培養したのち、培養液をろ過したろ過液を集めて、80%飽和硫酸アンモニウムで酵素を沈殿させ、集めた沈殿物を少量の蒸留水に溶かし、精製水で透析して硫酸アンモニウムを除去し、凍結乾燥して酵素粉末とした。
酵素-2の調整
 トリコデルマ属菌(Trikoderma viride NBRC5720)を500mlの振盪用フラスコにWaksman培地70ml入れて殺菌したものに植菌し、30℃で48時間振盪培養したのち、培養液をろ過したろ過液を集めて、80%飽和硫酸アンモニウムで酵素を沈殿させ、集めた沈殿物を少量の蒸留水に溶かし、精製水で透析して硫酸アンモニウムを除去し、凍結乾燥して酵素粉末とした。
高麗人参エキスの調整
市販紅参を濃度30重量%のエタノール水溶液に30℃で2週間浸漬したのち、抽出エタノール液を集めて濃縮し、Brix80の高麗人参エキスを得た。
高麗人参エキスの酵素処理
処理-1 高麗人参エキス10gを190ccの蒸留水に投入し、採取した酵素-1を50mg加えよく混合し、50℃で24時間静置した。
処理-2(実施例-1) 高麗人参エキス10gを濃度10重量%のエタノール水溶液190gに投入し、採取した酵素-1を50mg加えてよく混合し50℃で24時間静置した。
処理-3(実施例-2) 高麗人参エキス10gを濃度20重量%のエタノール水溶液190gに投入し、採取した酵素-1を50mg加えてよく混合し50℃で24時間静置した。
処理-4 高麗人参エキス10gを濃度30重量%のエタノール水溶液190gに投入し、採取した酵素-1を50mg加えてよく混合し50℃で24時間静置した。
処理-5(実施例-3)高麗人参エキス10gを190gの精製水に加えて混合し採取した酵素-2を50mg加えてよく混合し50℃で24時間静置した。
標準物質及び処理液の高速液体クロマトグラフィのチャートを図2~図10に示す。
図2はRb1の標準物質の100ppm濃度のチャートである。
図3はRdの標準物質の100ppm濃度のチャートである。
図4は酵素添加無の高麗人参エキスのチャートである。
図5は処理-1における酵素処理終了後の処理液のチャートである。
図6は処理-2における酵素処理終了後の処理液のチャートである。
図7は処理-3における酵素処理終了後の処理液のチャートである。
図8は処理-4における酵素処理終了後の処理液のチャートである。
図9は処理-5における酵素処理初期(酵素添加後約1時間)の処理液のチャートである。
図10は処理-5における酵素処理終了後の処理液のチャートである。
 なお、処理液の測定(図4~図8)は、処理液を12.5重量倍に希釈した試料について行った。すなわち、処理のため高麗人参エキスが20重量倍に希釈され、さらに測定のため12.5重量倍に希釈され、もとの高麗人参エキスに対しては250重量倍に希釈された試料についてHPLC測定を行った。
チャート中Rb1→はRb1のピークをRd→はRdのピークを示す。
その他の→は、Rb1及びRd以外のプロトキサジオール誘導体のピークである。
表1に、各チャートからRb1とRdのピークを濃度に換算して数値化した結果を示す。表中の変換率は、減少したRb1がRdに変わる比率を表したもので、分子量の減少分も補正した値である。表中、変換率は処理により増加したRd量を処理により減少したRb1量で割った値をモル比率に換算したものである。
Figure JPOXMLDOC01-appb-T000001
処理―1では、Rb1は分解されて減少したものの、様々な分解生成化合物となり、Rdの増加は僅かで、Rb1からの変換率は8%と小さい。
処理―2、3では、Rb1が分解され減少し、Rd含量が増加しており、Rb1からのRdへの変換率も高くなっている。図6や7にはRd以外のサポニン誘導体のピークがほとんどみられず、アルコール存在下の反応では、Rb1が分解されてできるサポニン誘導体のうちでRdに優先的に分解される比率が処理-1におけるよりも高いことを示している。
処理―4では、処理-2、処理-3に比べ処理によりRb1が分解される度合いが小さい。アルコール濃度が30%を越えると酵素反応が阻害されることを示している。
処理―5では、酵素を添加した約1時間後の図9において、すでにRb1の半分が分解されており、その変換率も、極めて大きい。反応終了図10において、処理された液はRb1のピークがきわめて小さくなっており、処理-5により、Rb1のほんどがRdに分解されたことが示されまた、処理された液には、処理-1における処理された液のチャートにおけるようなRb1以外及びRd以外のサポニン誘導体のピークが全くと言っていいほどみられない。また変換率が105%と、分解されたRb1よりも多いRdが検出されており、処理―5では、エキス中に存在するRb1と異なるRdより分子量の大きい派生誘導体(例えばマロニル体)が分解されてRdで止まっていることが予想される。また、Rdの分解はほとんど無いと考えられる。処理-5は処理-2、処理-3に比べさらにRdが生成される度合いが大きい。
実施例-4
乳酸菌(Lactobacillus reuteri)を500mlのフラスコ中でロゴサ培地で温度37℃で12時間静置培養し培養液を得た。培養した培養液をろ過したろ過液を遠心分離して上清を集め、エタノールを添加して静置し、酵素を沈殿させ、沈殿物を洗浄ろ過した。ろ過した粗酵素沈殿を少量のエチルエーテルで洗うようにしてろ紙からシャーレに集め乾燥して酵素を採取した。
高麗人参エキスの酵素処理
処理-6 実施例1で用いたと同様の高麗人参エキス10gを190ccの10重量%濃度のエタノール水溶液に投入し、採取した酵素を50mg加えよく混合し、37℃で24時間静置した。
処理によりRb1がRd、S-Rg3、SRh2、S-PPDに分解されたことを液体クロマトグラフのピークにより確認した。GypXVII、GypLXXV、Compound Kのピークはほとんど認められなかった。
実験例-1
 処理-5(実施例-3)により処理されて得られた処理液10gに市販のヘミセルラーゼ1%液1gを加えて良く混合し、50℃で15時間処理した。この処理後の液の高速液体クロマトグラフィのチャートを図11に示す。
 図11には、処理-5(実施例-3)により処理されて得られた処理液は、ヘミセルラーゼで処理されることにより大量にCompound Kが検出されてことが示されている。また、図11には、処理-5(実施例-3)により処理されて得られた処理液に含有されていたRdがヘミセルラーゼで処理されることにより殆んどが分解されて、ヘミセルラーゼで処理された液ではRdのピークが消失していることが示されている。
比較例-1
実施例1で用いたと同様の高麗人参エキス10gを190ccの蒸留水で希釈し、実施例1で用いたと同様の糸状菌を加え50℃で24時間静置し培養した。
培養液には、Rdのほかに、S-Rg3、SRh2、S-PPD、GypXVII、GypLXXV、Compound Kのピークが認められた。
本発明の高麗人参薬効成分の製造方法はサポニン誘導体からなる生理活性薬の製造に好適に適用できる。

Claims (3)

  1. 高麗人参エキスを準備する工程、
    糸状菌、乳酸菌、ビフィズス菌から選択される発酵菌に由来する酵素を該発酵菌から抽出する酵素抽出工程、
    抽出された前記酵素を前記高麗人参エキスに作用させる酵素作用工程
    を含む高麗人参薬効成分の製造方法。
  2. 前記発酵菌がトリコデルマ属菌である請求項1に記載の高麗人参薬効成分の製造方法。
  3. 前記発酵菌がトリコデルマ属菌以外の糸状菌であり、前記酵素作用工程が、抽出された前記酵素を、1~30重量%濃度のエタノール水溶液に混合された高麗人参エキスに作用させる工程である請求項1に記載の高麗人参薬効成分の製造方法。
PCT/JP2012/069409 2012-02-02 2012-07-31 高麗人参薬効成分の製造方法 WO2013114650A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012020436A JP2015082970A (ja) 2012-02-02 2012-02-02 高麗人参薬効成分の製造方法
JP2012-020436 2012-02-02

Publications (1)

Publication Number Publication Date
WO2013114650A1 true WO2013114650A1 (ja) 2013-08-08

Family

ID=48904721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069409 WO2013114650A1 (ja) 2012-02-02 2012-07-31 高麗人参薬効成分の製造方法

Country Status (2)

Country Link
JP (1) JP2015082970A (ja)
WO (1) WO2013114650A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748256B1 (ja) * 2014-09-04 2015-07-15 金氏高麗人参株式会社 ジンセノサイド組成物
JP2021132544A (ja) * 2020-02-25 2021-09-13 株式会社機能性食品開発研究所 高麗人参の発酵物の製造方法
CN116240259A (zh) * 2022-05-31 2023-06-09 株式会社爱茉莉太平洋 从人参提取化合物的方法、含有所述化合物的人参提取物及含有其的皮肤屏障强化用组合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785809B1 (ko) * 2015-12-18 2017-10-18 재단법인 지능형 바이오 시스템 설계 및 합성 연구단 진세노사이드 글리코시다제를 이용한 마이너 진세노사이드의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014523A (ja) * 1996-07-08 1998-01-20 Nagaoka Jitsugyo Kk 高麗人参加工食品およびその製造方法
US20040028671A1 (en) * 2000-12-29 2004-02-12 Fengxie Jin Ginsenoside glycosidases hydrolyzing ginsenoside sugar moieties and uses thereof
US20060216261A1 (en) * 2002-01-05 2006-09-28 Pacific Corporation Nanoemulsion comprising metabolites of ginseng saponin as an active component and a method for preparing the same, and a skin-care composition for anti-aging containing the same
KR100811295B1 (ko) * 2005-04-15 2008-03-07 재단법인서울대학교산학협력재단 인삼으로부터 활성형의 진세노사이드를 생산하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014523A (ja) * 1996-07-08 1998-01-20 Nagaoka Jitsugyo Kk 高麗人参加工食品およびその製造方法
US20040028671A1 (en) * 2000-12-29 2004-02-12 Fengxie Jin Ginsenoside glycosidases hydrolyzing ginsenoside sugar moieties and uses thereof
US20060216261A1 (en) * 2002-01-05 2006-09-28 Pacific Corporation Nanoemulsion comprising metabolites of ginseng saponin as an active component and a method for preparing the same, and a skin-care composition for anti-aging containing the same
KR100811295B1 (ko) * 2005-04-15 2008-03-07 재단법인서울대학교산학협력재단 인삼으로부터 활성형의 진세노사이드를 생산하는 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748256B1 (ja) * 2014-09-04 2015-07-15 金氏高麗人参株式会社 ジンセノサイド組成物
WO2016035182A1 (ja) * 2014-09-04 2016-03-10 金氏高麗人参株式会社 ジンセノサイド組成物
JP2021132544A (ja) * 2020-02-25 2021-09-13 株式会社機能性食品開発研究所 高麗人参の発酵物の製造方法
JP7021752B2 (ja) 2020-02-25 2022-02-17 株式会社機能性食品開発研究所 高麗人参の発酵物の製造方法
CN116240259A (zh) * 2022-05-31 2023-06-09 株式会社爱茉莉太平洋 从人参提取化合物的方法、含有所述化合物的人参提取物及含有其的皮肤屏障强化用组合物

Also Published As

Publication number Publication date
JP2015082970A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
CN109939027B (zh) 一种猴头菌发酵制备含麦角硫因的化妆品原液的方法
EP2444480B1 (en) Method for fermentation and cultivation, fermented plant extract, fermented plant extract powder, and composition containing the extract of fermented plant
WO2010098217A1 (ja) フルクタン含有食品からの免疫賦活発酵食品
WO2013114650A1 (ja) 高麗人参薬効成分の製造方法
JP2009011315A (ja) ヒアルロン酸の製造方法
CN115381860B (zh) 一种保护酒精性肝损伤组合物及其制备方法与应用
KR101867952B1 (ko) 바실러스 세레우스에 대한 항균활성 및 바이오제닉 아민 저감화 효과가 우수한 저영양성 바실러스 아밀로리퀴파시엔스 hj5-2 및 이를 포함한 조성물
JP2024056920A (ja) 6-ヒドロキシダイゼインの製造方法
US5424201A (en) Method for preparing an antitumor dextran using Lactobacillus confusus
CN105559087A (zh) 一种含燕窝酸的益生菌产品及其制备方法
CN111358735A (zh) 一种乳酸杆菌大米发酵产物及其制备方法
KR20170079572A (ko) 펜에틸 이소티오시아네이트(peitc)의 함량을 강화시킨 채소 발효조성물
KR101448665B1 (ko) 발효 건강식품의 제조방법
CN114668055A (zh) 一种茶叶发酵用辅料组合物及其发酵方法
JPS58318B2 (ja) 制癌性物質の製造方法
JP4944412B2 (ja) 前駆脂肪細胞分化抑制剤及びその製造方法
JP4057617B2 (ja) 酢酸菌型セラミドの製造方法
JP7211721B2 (ja) 新規微生物及び該微生物を用いたウロリチン類の製造方法
JPWO2003023045A1 (ja) 硫酸多糖類、その製造方法及びそれを有効成分とする物質
JPH10295393A (ja) ビタミンkの製造法
KR102005629B1 (ko) 인돌-3-카비놀 함량을 강화시킨 발효 양배추 퓨레 및 이를 포함하는 식품 조성물
JP4422404B2 (ja) 感染予防・治療剤および食品
KR101435580B1 (ko) 최적의 탄소원과 질소원을 이용한 글루콘아세토박터 속 kcg326 균주에 의한 박테리아 셀룰로오스의 제조 방법
JP2009284826A (ja) ヒアルロン酸の製造方法
CN115349616B (zh) 一种低盐双菌接菌发酵制备泡椒的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP