WO2013111620A1 - 遠心式流体機械 - Google Patents

遠心式流体機械 Download PDF

Info

Publication number
WO2013111620A1
WO2013111620A1 PCT/JP2013/050317 JP2013050317W WO2013111620A1 WO 2013111620 A1 WO2013111620 A1 WO 2013111620A1 JP 2013050317 W JP2013050317 W JP 2013050317W WO 2013111620 A1 WO2013111620 A1 WO 2013111620A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
impeller
opening
suction
suction passage
Prior art date
Application number
PCT/JP2013/050317
Other languages
English (en)
French (fr)
Inventor
佐野 岳志
伸次 深尾
石坂 浩一
謙一 丹生
勇也 福田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/372,574 priority Critical patent/US9556876B2/en
Priority to EP13740553.6A priority patent/EP2808550B1/en
Publication of WO2013111620A1 publication Critical patent/WO2013111620A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2266Rotors specially for centrifugal pumps with special measures for sealing or thrust balance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/2255Special flow patterns flow-channels with a special cross-section contour, e.g. ejecting, throttling or diffusing effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/688Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for liquid pumps

Definitions

  • the present invention relates to a centrifugal fluid machine used as a centrifugal pump or the like.
  • centrifugal fluid machine described in Patent Literature 1 (centrifugal pump thrust reduction device) is powerful in the impeller in the direction of the pump suction port due to an imbalance in pressure distribution before and after the impeller (impeller). This is to eliminate the situation in which the axial thrust is generated.
  • This centrifugal fluid machine includes an impeller formed by drilling a plurality of flow holes that penetrate radially through the impeller body from an impeller suction opening that is opened at a central portion of one side of the disc-shaped impeller body. In the case where an annular gap orifice is formed between the impeller suction port and the pump casing, a pressure equalizing hole penetrating in the axial direction is formed in the impeller body without intersecting the flow hole.
  • the centrifugal fluid machine (centrifugal pump impeller) described in Patent Document 2 is for improving the suction performance without sacrificing the pump performance.
  • this centrifugal fluid machine an annular protrusion is provided on the back side of the rear shroud of the impeller to form a non-contact seal with the casing, and a balance chamber is formed in a space inside the annular protrusion sandwiched between the rear shroud and the casing.
  • the balance chamber and the suction side of the impeller boss part communicate with each other through a conduction hole provided in the center part of the impeller and a flow path opened downstream on the conical surface on the impeller suction side. is doing.
  • an axial thrust balance mechanism that reduces axial thrust and eliminates an imbalance in pressure distribution before and after the impeller (axial direction) is disclosed.
  • the leakage fluid to the balance chamber flows out to the impeller suction side in the same direction as the impeller suction fluid, Prevent pressure drop on impeller suction side.
  • the flow rate of the fluid on the impeller suction side and the flow rate of the fluid flowing out from the flow hole to the impeller suction side are different, mixing loss due to the speed difference occurs.
  • the present invention solves the above-described problems, and provides a centrifugal fluid machine capable of maintaining axial thrust balance, preventing pressure drop on the suction side of the impeller, and reducing fluid mixing loss. With the goal.
  • a centrifugal fluid machine of the present invention includes a hollow casing, an annular member that is rotatably supported in the casing, and is disposed in one of the axial directions.
  • a disk member disposed on the other side of the direction, an impeller having a plurality of blades arranged in parallel in the circumferential direction between the annular member and the disk member, and the fluid with the rotation of the impeller
  • a suction passage that is sucked in the axial direction from the center of the annular member in the impeller, and a direction in which the fluid pressure-fed by the impeller as the impeller rotates intersects the axial direction of the impeller.
  • Open toward the downstream side A flow path having an opening, and the opening area of the opening is adjusted in accordance with the suction speed of the fluid discharged from the opening to the suction passage to the suction speed of the fluid sucked into the suction passage. Is set.
  • the axial thrust balance is maintained and the pressure drop on the suction side of the impeller is reduced by opening the opening toward the downstream side in the suction direction of the fluid in the suction passage. Can be prevented.
  • the fluid is transferred from the flow path to the suction passage. Mixing loss at the time of joining can be reduced. As a result, the fluid pumping efficiency of the centrifugal fluid machine can be improved.
  • the opening of the flow path passing between the casing and the disk member is ejected with respect to the fluid sucked into the suction passage as the impeller rotates.
  • the fluid is provided so as to be inclined with respect to a normal passing through the shaft of the impeller.
  • the fluid in order to align the direction of the fluid to be ejected with respect to the fluid sucked into the suction passage according to the rotation of the impeller, the fluid merges from the flow path to the suction passage.
  • the mixing loss at the time can be further reduced.
  • the fluid pumping efficiency of the centrifugal fluid machine can be further improved.
  • axial thrust balance can be maintained, pressure drop on the suction side of the impeller can be prevented, and fluid mixing loss can be reduced.
  • FIG. 1 is a diagram showing a part of a side cross section of a centrifugal fluid machine according to an embodiment of the present invention.
  • FIG. 2 is an SS cross-sectional view in FIG.
  • FIG. 1 is a diagram showing a part of a side cross section of a centrifugal fluid machine according to the present embodiment.
  • the “fluid” in the present embodiment may be liquid or gas.
  • the casing 2 has a hollow shape, and the rotary shaft 3 is rotatably supported by a bearing (not shown) at the center.
  • the rotary shaft 3 is connected to a driving device (not shown) at an end thereof.
  • An impeller 4 is fixed to the outer peripheral portion of the rotary shaft 3.
  • Reference numeral C denotes an axis that is the center of rotation of the rotary shaft 3 and the impeller 4.
  • the casing 2 and the impeller 4 are formed along the circumferential direction with the rotation shaft 3 as a center, but in the side cross section of FIG. 1, only one side (the upper side in FIG. 1) is shown and the other side ( The lower side in FIG. 1 is omitted.
  • the impeller 4 is fixed so as to be sandwiched between a front shroud 41 as an annular member having an open center, a rear shroud 42 as a disk member, and the front shroud 41 and the rear shroud 42.
  • the blade 43 is configured.
  • the front shroud 41 and the rear shroud 42 are juxtaposed along the extending direction of the rotating shaft 3.
  • the rear shroud 42 is provided with a boss portion 42A fixed to the rotary shaft 3 and extending radially outward from the boss portion 42A.
  • the rear shroud 42 is formed so that the surface on the front shroud 41 side on which the blades 43 are provided gradually approaches the front shroud 41 side as it approaches the rotating shaft 3.
  • the front shroud 41 is provided so as to be supported by the rear shroud 42 via the blades 43, and is disposed away from the rotating shaft 3.
  • the front shroud 41 is formed such that the surface on the rear shroud 42 side on which the blades 43 are provided gradually moves away from the rear shroud 42 side as the rotating shaft 3 is approached.
  • the front side (in FIG. 1) is the extending direction of the rotary shaft 3 on the side close to the rotary shaft 3.
  • the left side is opened toward the left side, and the side away from the rotary shaft 3 is opened toward the radially outer side of the rotary shaft 3 (upper side in FIG. 1).
  • the plurality of blades 43 are fixed to the opposing surfaces of the rear shroud 42 and the front shroud 41 between the rear shroud 42 and the front shroud 41, and are arranged in parallel at a predetermined interval in the circumferential direction. Therefore, the impeller 4 is rotatably supported in the casing 2 together with the rotary shaft 3. The impeller 4 rotates with the rotation of the rotary shaft 3 to take in the fluid from the front side, compress the fluid, and pump the fluid radially outward on the outer peripheral side.
  • the casing 2 is formed with a suction passage 2A through which fluid is sucked along the axial direction of the impeller 4, and the fluid can be taken into the front shroud 41 side of the impeller 4 through the suction passage 2A. Yes. Further, the casing 2 is formed with a discharge passage 2 ⁇ / b> B for discharging the fluid pressure-fed by the impeller 4 along the outer peripheral side of the impeller 4.
  • the discharge passage 2B has a discharge port (not shown) that discharges fluid to the outside on the outer periphery thereof.
  • a first flow path 5A and a second flow path 5B are provided as shown in FIG.
  • the first flow path 5A communicates with the discharge passage 2B, passes through a gap formed between the casing 2 and the rear shroud 42, approaches the rotary shaft 3, passes through the boss portion 42A, and reaches the suction passage 2A. It is.
  • a through hole 6 is formed in order to form the first flow path 5A.
  • the through hole 6 forms a part of the first flow path 5 ⁇ / b> A, and is provided through the boss portion 42 ⁇ / b> A along the axial direction that is the extending direction of the rotating shaft 3.
  • the boss portion 42A is divided into a rear boss portion 42Aa and a front boss portion 42Ab in order to form the through hole 6.
  • the through-hole 6 is formed as a rear-side through-hole 6a in the rear boss portion 42Aa, and communicates with the discharge passage 2B through the gap between the casing 2 and the rear shroud 42 so as to approach the rotating shaft 3.
  • One end opens toward the radially outer side of the rotary shaft 3 so as to communicate with a part of the path 5A, penetrates along the extending direction of the rotary shaft 3 therefrom, and the other end faces the front boss portion 42Ab side.
  • a plurality are arranged in the circumferential direction so as to face.
  • the through hole 6 is formed as a front through hole 6b in the front boss portion 42Ab, and forms a passage along the extending direction of the rotary shaft 3 with the end portion of the rear shroud 42 on the rotary shaft 3 side. ing. That is, it can be obtained by forming an annular groove continuous in the circumferential direction in the front boss portion 42Ab.
  • the front through hole 6b is opened so that one end thereof faces the rear boss portion 42Aa and communicates with the other end of the rear through hole 6a.
  • the other end of the front through hole 6b extends along the extending direction of the rotary shaft 3 therefrom.
  • An opening is formed in 2A.
  • the opening at the other end of the front through hole 6b is formed as an opening 5Aa in which the first flow path 5A opens to the suction passage 2A.
  • the opening 5Aa is formed so that the other end of the front through hole 6b wraps around the end of the rear shroud 42 on the rotating shaft 3 side (front side), so that the fluid in the suction passage 2A is downstream in the suction direction. It is formed toward the side.
  • the first flow path 5A has been described as a flow path that passes through the boss portion 42A in which the through hole 6 is formed and reaches the suction passage 2A.
  • the first flow path 5A is not limited to this, and for example, the through hole 6 May be formed not on the boss portion 42A but on the rotating shaft 3, and may pass through the rotating shaft 3 in which the through hole 6 is formed to reach the suction passage 2A.
  • the boss portion 42A has been described as being divided into the rear boss portion 42Aa and the front boss portion 42Ab in order to form the through hole 6, but the present invention is not limited thereto. You may form the through-hole 6 by integral casting, without dividing the boss
  • the second channel 5B is a channel that communicates with the discharge passage 2B and reaches the suction passage 2A through a gap formed between the casing 2 and the front shroud 41.
  • the opening at the end where the gap between the casing 2 and the front shroud 41 reaches the suction passage 2A is formed as an opening 5Ba that opens to the suction passage 2A.
  • the opening 5Ba is formed so that a part of the casing 2 wraps around the end of the front shroud 41 on the rotating shaft 3 side (front side), so that the fluid is sucked in the suction passage 2A on the downstream side. It is formed towards.
  • the opening 5Aa of the first flow path 5A and the opening 5Ba of the second flow path 5B are configured so that the ejection speed of the fluid ejected into the suction path 2A is the same as the suction path.
  • the opening area is set so as to match the suction speed of the fluid sucked into 2A.
  • the flow velocity of the fluid in the suction passage 2A is V [m / s]
  • the flow velocity of the fluid ejected from the opening 5Aa and the opening 5Ba is Vs [m / s].
  • the flow velocity V includes a turning component when the impeller 4 rotates.
  • the flow velocity Vs is Q [m 3 / s] as the flow rate of the fluid ejected from the opening 5Aa and the opening 5Ba, and the opening area of the opening 5Aa and the opening 5Ba as A [m 2 ].
  • the flow velocity at the exit of the opening 5Aa and the opening 5Ba is Q / A
  • the turning speed Vt is Considering this, the flow velocity Vs is ((Q / A) 2 + Vt 2 ) 0.5 . Since the flow rate Q and the turning speed Vt are set so as to function as an axial thrust balance mechanism, the suction passage from the opening 5Aa and the opening 5Ba to the suction speed V of the fluid sucked into the suction passage 2A. In order to match the ejection speed Vs of the fluid ejected to 2A, the opening area A of the opening 5Aa and the opening 5Ba may be set.
  • the centrifugal fluid machine 1 has a hollow casing 2 and a front shroud (annular member) 41 that is rotatably supported in the casing 2 and arranged in one of the axial directions.
  • An impeller 4 having a rear shroud (disk member) 42 disposed on the other side in the axial direction, and a plurality of blades 43 juxtaposed in the circumferential direction between the front shroud 41 and the rear shroud 42; 2A, the fluid is sucked in the axial direction from the center of the front shroud 41 in the impeller 4 and the fluid pressure-fed by the impeller 4 as the impeller 4 rotates.
  • a discharge passage 2B discharged along a direction crossing the axial direction, and communicates with the discharge passage 2B to reach the suction passage 2A through the space between the casing 2 and the rear shroud 42, and sucks fluid in the suction passage 2A.
  • a first flow path 5A having an opening 5Aa that opens toward the side, and an ejection speed Vs of the fluid that is ejected from the opening 5Aa into the suction passage 2A and an intake speed V of the fluid that is sucked into the suction path 2A Is set to the opening area A of the opening 5Aa.
  • the centrifugal fluid machine 1 of the present embodiment has a hollow casing 2 and a front shroud (annular member) 41 that is rotatably supported in the casing 2 and arranged in one of the axial directions.
  • An impeller 4 having a rear shroud (disk member) 42 disposed on the other side in the axial direction, and a plurality of blades 43 juxtaposed in the circumferential direction between the front shroud 41 and the rear shroud 42; 2A, the fluid is sucked in the axial direction from the center of the front shroud 41 in the impeller 4 and the fluid pressure-fed by the impeller 4 as the impeller 4 rotates.
  • a discharge passage 2B discharged along a direction intersecting the axial direction, and communicates with the discharge passage 2B to reach the suction passage 2A through the space between the casing 2 and the front shroud 41, and sucks fluid in the suction passage 2A.
  • Downstream of direction A second flow path 5B having an opening 5Ba that opens toward the suction passage 2A.
  • the ejection speed Vs of the fluid ejected from the opening 5Ba into the suction passage 2A is set to the suction speed V of the fluid sucked into the suction passage 2A.
  • the opening area A of the opening 5Ba is set.
  • the axial thrust is reduced by opening the opening 5Aa and the opening 5Ba toward the downstream side in the fluid suction direction in the suction passage 2A.
  • the pressure drop on the suction side of the impeller 4 can be prevented.
  • the opening area A of the opening 5Aa and the opening 5Ba is set, and the fluid ejected from the opening 5Aa and the opening 5Ba to the suction passage 2A with respect to the suction speed V of the fluid sucked into the suction passage 2A.
  • the fluid pumping efficiency of the centrifugal fluid machine 1 can be improved. It is optimal that the ejection speed Vs be the same as the suction speed V. However, the suction speed V may vary depending on the operating state of the centrifugal fluid machine 1, and even in such a case, the mixing loss is reduced. Is sufficient that at least the ejection speed Vs is within a range of ⁇ 50 [%] of the suction speed V, that is, the openings 5Aa and the openings 5Ba are opened so that at least 0.5V ⁇ Vs ⁇ 1.5V. If the area A is set, the effect of improving the fluid pumping efficiency of the centrifugal fluid machine 1 can be obtained.
  • the said structure which sets an opening area is applied to at least one of opening part 5Aa of 5 A of 1st flow paths, or opening part 5Ba of 2nd flow path 5B, there can exist said effect, and 1st flow If applied to the opening 5Aa of the path 5A and the opening 5Ba of the second flow path 5B, the above effect can be obtained remarkably.
  • FIG. 2 is an SS cross-sectional view in FIG.
  • the fluid ejected from the opening 5Aa is inclined by inclining the direction of the opening 5Aa with respect to the rotation direction so as to slightly face the rotation direction of the rotating shaft 3 (the impeller 4).
  • the opening 5Aa is provided so as to be inclined at an angle ⁇ with respect to the normal passing through the axis C of the impeller 4, that is, the radial direction of the axis C (radial direction of the impeller 4).
  • the opening 5Aa is arranged such that the direction of the fluid ejected with respect to the fluid sucked into the suction passage 2A with the rotation of the impeller 4 is aligned. Inclined with respect to the normal passing through the axis C of the vehicle 4.
  • the direction of the fluid to be ejected with respect to the fluid sucked into the suction passage 2A with the rotation of the impeller 4 is aligned by the direction of the opening 5Aa. It becomes possible to further reduce the mixing loss when the fluid joins from the one flow path 5A to the suction passage 2A. As a result, the fluid pumping efficiency of the centrifugal fluid machine 1 can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 軸方向の一方に配置される前シュラウド(41)、軸方向の他方に配置される後シュラウド(42)、および前シュラウドと後シュラウドとの間で周方向に並設された複数の羽根(43)を有してケーシング(2)内に回転自在に支持される羽根車(4)と、羽根車の回転に伴って流体が羽根車に向けて軸方向に吸入される吸入通路(2A)と、羽根車の回転に伴って羽根車で圧送された流体が羽根車の軸方向に交差する方向に沿って排出される排出通路(2B)と、排出通路に連通してケーシングと後シュラウドとの間を経て吸入通路に至り、かつ吸入通路での流体の吸入方向の下流側に向けて開口する開口部(5Aa)を有する第一流路(5A)とを備え、開口部から吸入通路に噴出される流体の噴出速度(Vs)を、吸入通路に吸入される流体の吸入速度(V)に合わせる態様で開口部の開口面積を設定する。

Description

遠心式流体機械
 本発明は、遠心式のポンプなどとして使用される遠心式流体機械に関するものである。
 従来、例えば、特許文献1に記載の遠心式流体機械(遠心ポンプの軸推力軽減装置)は、羽根車(インペラ)の前後の圧力分布の不均衡によって羽根車にポンプ吸込口方向への強大な軸推力が生じる事態を解消するためのものである。この遠心式流体機械は、円板状の羽根車本体の一側中央部に開口した羽根車吸込口から羽根車本体内を放射状に貫通する複数の流通穴を穿設してなる羽根車を備え、羽根車吸込口とポンプケーシングとの間に環状隙間のオリフィス部を形成したものにおいて、羽根車本体に流通穴とは交差せずに軸方向に貫通する均圧穴を穿設している。
 従来、例えば、特許文献2に記載の遠心式流体機械(遠心ポンプの羽根車)は、ポンプ性能を犠牲にせずに吸込性能を高めるためのものである。この遠心式流体機械は、羽根車の後シュラウド裏側に環状突起を設けてケーシングとの間で非接触シールを構成させるとともに、後シュラウドとケーシングとに挟まれた環状突起より内側の空隙にバランス室を設けたものにおいて、バランス室と羽根車ボス部の吸込側とを羽根車中心部に設けた導通穴、および羽根車吸込側の円錐面上に下流に向かって開口した流路を介して連通している。
実開平3-123999号公報 特公昭63-16598号公報
 上述した特許文献1に記載の遠心式流体機械では、軸推力を軽減し、羽根車の前後(軸方向)の圧力分布の不均衡を解消する軸スラストバランス機構が開示されている。そして、上述した特許文献2に記載の遠心式流体機械では、軸スラストバランス機構に加え、バランス室への漏入流体を羽根車吸込側に羽根車の吸込流体と同一方向に流出するようにし、羽根車吸込側の圧力低下を防ぐ。しかしながら、羽根車吸込側の流体の流速と、流通穴から羽根車吸込側に流出される流体の流速とが異なると、当該速度差に起因する混合損失が生じる。
 本発明は上述した課題を解決するものであり、軸スラストバランスを維持するとともに羽根車の吸込側の圧力低下を防ぎ、かつ流体の混合損失を低減することのできる遠心式流体機械を提供することを目的とする。
 上述の目的を達成するために、本発明の遠心式流体機械は、中空形状をなすケーシングと、前記ケーシング内に回転自在に支持されており、軸方向の一方に配置される円環部材、軸方向の他方に配置される円盤部材、および前記円環部材と前記円盤部材との間で周方向に並設された複数の羽根を有する羽根車と、前記羽根車の回転に伴って流体が前記羽根車における前記円環部材の中央から軸方向に吸入される吸入通路と、前記羽根車の回転に伴って前記羽根車で圧送された流体が該羽根車の軸方向に交差する方向に沿って排出される排出通路と、前記排出通路に連通して前記ケーシングと前記円盤部材または前記円環部材の少なくとも一方との間を経て前記吸入通路に至り、かつ前記吸入通路での流体の吸入方向の下流側に向けて開口する開口部を有する流路と、を備え、前記開口部から前記吸入通路に噴出される流体の噴出速度を、前記吸入通路に吸入される流体の吸入速度に合わせる態様で、前記開口部の開口面積が設定されることを特徴とする。
 この遠心式流体機械によれば、開口部の向きを吸入通路での流体の吸入方向の下流側に向けて開口することで、軸スラストバランスを維持するとともに、羽根車の吸込側の圧力低下を防ぐことができる。しかも、開口部の開口面積を設定し、吸入通路に吸入される流体の吸入速度に対して、開口部から吸入通路に噴出される流体の噴出速度を合わせることで、流路から吸入通路に流体が合流する際の混合損失を低減することができる。この結果、遠心式流体機械の流体の圧送効率を向上することができる。
 また、本発明の遠心式流体機械では、前記ケーシングと前記円盤部材との間を経る流路の前記開口部は、前記羽根車の回転に伴い前記吸入通路に吸入される流体に対して噴出される流体の向きを揃える態様で、前記羽根車の軸を通過する法線に対して傾斜して設けられることを特徴とする。
 この遠心式流体機械によれば、開口部の向きにより、羽根車の回転に伴い吸入通路に吸入される流体に対して噴出する流体の向きを揃えるため、流路から吸入通路に流体が合流する際の混合損失をより低減することができる。この結果、遠心式流体機械の流体の圧送効率をより向上することができる。
 本発明によれば、軸スラストバランスを維持するとともに羽根車の吸込側の圧力低下を防ぎ、かつ流体の混合損失を低減することができる。
図1は、本発明の実施の形態に係る遠心式流体機械の側断面の一部を示す図である。 図2は、図1におけるS-S断面図である。
 以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図1は、本実施の形態に係る遠心式流体機械の側断面の一部を示す図である。なお、本実施の形態でいう「流体」とは液体でも気体でもよい。
 遠心式流体機械1において、図1に示すように、ケーシング2は中空形状をなし、中央部に回転軸3が図示しない軸受により回転自在に支持されている。この回転軸3は、その端部に図示しない駆動装置が連結されている。回転軸3は、外周部に羽根車(インペラ)4が固定されている。なお、符号Cは、回転軸3および羽根車4の回転の中心となる軸を示している。また、ケーシング2および羽根車4は、回転軸3を中心として周方向に沿って形成されているが、図1の側断面においては、その一側(図1中上側)のみを示し他側(図1中下側)を省略している。
 羽根車4は、中央が開口された円環部材としての前シュラウド41と、円盤部材としての後シュラウド42と、この前シュラウド41と後シュラウド42との間に挟まれるように固定される複数の羽根43とにより構成されている。前シュラウド41と後シュラウド42とは、回転軸3の延在方向に沿って並設されている。
 後シュラウド42は、ボス部42Aが回転軸3に固定され、当該ボス部42Aから径方向外側に向けて延在して設けられている。後シュラウド42は、羽根43が設けられる前シュラウド41側の面が、回転軸3に近づくほど前シュラウド41側に漸次近づくように形成されている。
 前シュラウド41は、羽根43を介して後シュラウド42に支持されるように設けられ、回転軸3から離れて配置されている。前シュラウド41は、羽根43が設けられる後シュラウド42側の面が、回転軸3に近づくほど後シュラウド42側から漸次遠ざかるように形成されている。そして、前シュラウド41と後シュラウド42との間であって、羽根43が設けられて対向する面の間は、回転軸3に近い側では回転軸3の延在方向である前側(図1の左側)に向けて開放され、回転軸3から離れる側では回転軸3の径方向外側(図1の上側)に向けて開放されている。
 複数の羽根43は、後シュラウド42と前シュラウド41との間にて後シュラウド42および前シュラウド41の対向する各面に固定されているとともに、周方向に所定間隔をもって並設されている。従って、羽根車4は、回転軸3とともにケーシング2内で回転可能に支持されることとなる。そして、羽根車4は、回転軸3の回転に伴い、自身が回転することで、前側から流体を取り込み、当該流体を圧縮して外周側である径方向外側に圧送する。
 ケーシング2は、羽根車4の軸方向に沿って流体が吸入される吸入通路2Aが形成されており、この吸入通路2Aを介して羽根車4における前シュラウド41側に流体を取り込み可能となっている。また、ケーシング2は、羽根車4の外周側に沿って、羽根車4で圧送された流体を排出するための排出通路2Bが形成されている。排出通路2Bは、その外周部に流体を外部に吐出する図示しない吐出口が形成されている。
 従って、図示しない駆動装置により回転軸3が回転すると、羽根車4が回転し、流体が吸入通路2Aを通してケーシング2内に吸い込まれる。すると、この流体は、回転する羽根車4を流過する過程で昇圧された後、排出通路2Bに吐出され、吐出口から外部に吐出される。
 このように構成された遠心式流体機械1において、図1に示すように、第一流路5Aおよび第二流路5Bが設けられている。
 第一流路5Aは、排出通路2Bに連通してケーシング2と後シュラウド42との間に形成された隙間を経て回転軸3に近づき、ボス部42A内を通過して吸入通路2Aに至る流路である。
 ボス部42Aは、この第一流路5Aを形成するために貫通穴6が形成されている。貫通穴6は、第一流路5Aの一部を形成するもので、回転軸3の延在方向である軸方向に沿ってボス部42Aを貫通して設けられている。本実施の形態では、ボス部42Aは、貫通穴6を形成するため、後側ボス部42Aaと前側ボス部42Abとに分割して形成されている。
 貫通穴6は、後側ボス部42Aaでは、後側貫通穴6aとして形成されており、排出通路2Bに連通してケーシング2と後シュラウド42との間の隙間を経て回転軸3に近づく第一流路5Aの一部に連通するように、回転軸3の径方向外側に向けて一端が開口し、そこから回転軸3の延在方向に沿って貫通し、他端が前側ボス部42Ab側に向くように周方向に複数並設されている。
 また、貫通穴6は、前側ボス部42Abでは、前側貫通穴6bとして形成されており、後シュラウド42の回転軸3側の端部との間で回転軸3の延在方向に沿う通路をなしている。すなわち、周方向に連続する環状の溝を前側ボス部42Abに形成することで得ることができる。前側貫通穴6bは、一端が後側ボス部42Aa側に向くように開口して後側貫通穴6aの他端に連通し、そこから回転軸3の延在方向に沿って他端が吸入通路2Aに開口して形成されている。この前側貫通穴6bの他端の開口は、第一流路5Aが吸入通路2Aに開口する開口部5Aaとして形成されている。この開口部5Aaは、前側貫通穴6bの他端が、後シュラウド42の回転軸3側(前側)の端部を回り込むように形成されることで、吸入通路2Aでの流体の吸入方向の下流側に向けて形成されている。なお、第一流路5Aは、貫通穴6を形成したボス部42A内を通過して吸入通路2Aに至る流路であると説明したが、これに限定されることはなく、例えば、貫通穴6をボス部42Aにではなく回転軸3に形成して、その貫通穴6が形成された回転軸3内を通過して吸入通路2Aに至る流路としてもよい。また、ボス部42Aは、貫通穴6を形成するため、後側ボス部42Aaと前側ボス部42Abとに分割して形成されていると説明したが、これに限定されることはなく、例えば、ボス部42Aを前後に分割せずに一体鋳造により貫通穴6を形成してもよい。
 第二流路5Bは、排出通路2Bに連通してケーシング2と前シュラウド41との間に形成された隙間を経て吸入通路2Aに至る流路である。このケーシング2と前シュラウド41との間の隙間が、吸入通路2Aに至る端部の開口は、吸入通路2Aに開口する開口部5Baとして形成されている。この開口部5Baは、ケーシング2の一部が、前シュラウド41の回転軸3側(前側)の端部を回り込むように形成されることで、吸入通路2Aでの流体の吸入方向の下流側に向けて形成されている。
 これら第一流路5Aおよび第二流路5B内での圧力分布が異なるため、羽根車4に軸スラストが作用する。
 そして、本実施の形態の遠心式流体機械1では、第一流路5Aの開口部5Aa、および第二流路5Bの開口部5Baは、吸入通路2Aに噴出される流体の噴出速度を、吸入通路2Aに吸入される流体の吸入速度に合わせるように開口面積が設定される。
 具体的に、吸入通路2Aにおける流体の流速をV[m/s]とし、開口部5Aaや開口部5Baから噴出される流体の流速をVs[m/s]とする。流速Vは、羽根車4が回転する際の旋回成分を含んでいるものとする。一方、流速Vsは、開口部5Aaや開口部5Baから噴出される流体の流量をQ[m/s]とし、開口部5Aaや開口部5Baの開口面積をA[m]とし、開口部5Aaや開口部5Baの出口部分において羽根車4が回転する際の旋回速度をVt[m/s]とすると、開口部5Aaや開口部5Baの出口の流速がQ/Aとなり、旋回速度Vtを考慮すると、流速Vsは、((Q/A)+Vt0.5となる。そして、流量Qおよび旋回速度Vtは、軸スラストバランス機構として機能するように設定されているため、吸入通路2Aに吸入される流体の吸入速度Vに対し、開口部5Aaや開口部5Baから吸入通路2Aに噴出される流体の噴出速度Vsを合わせるには、開口部5Aaや開口部5Baの開口面積Aを設定すればよい。
 すなわち、本実施の形態の遠心式流体機械1は、中空形状をなすケーシング2と、ケーシング2内に回転自在に支持されており、軸方向の一方に配置される前シュラウド(円環部材)41、軸方向の他方に配置される後シュラウド(円盤部材)42、および前シュラウド41と後シュラウド42との間で周方向に並設された複数の羽根43を有する羽根車4と、羽根車4の回転に伴って流体が羽根車4における前シュラウド41の中央から軸方向に吸入される吸入通路2Aと、羽根車4の回転に伴って羽根車4で圧送された流体が該羽根車4の軸方向に交差する方向に沿って排出される排出通路2Bと、排出通路2Bに連通してケーシング2と後シュラウド42との間を経て吸入通路2Aに至り、かつ吸入通路2Aでの流体の吸入方向の下流側に向けて開口する開口部5Aaを有する第一流路5Aと、を備え、開口部5Aaから吸入通路2Aに噴出される流体の噴出速度Vsを、吸入通路2Aに吸入される流体の吸入速度Vに合わせる態様で、開口部5Aaの開口面積Aが設定される。
 また、本実施の形態の遠心式流体機械1は、中空形状をなすケーシング2と、ケーシング2内に回転自在に支持されており、軸方向の一方に配置される前シュラウド(円環部材)41、軸方向の他方に配置される後シュラウド(円盤部材)42、および前シュラウド41と後シュラウド42との間で周方向に並設された複数の羽根43を有する羽根車4と、羽根車4の回転に伴って流体が羽根車4における前シュラウド41の中央から軸方向に吸入される吸入通路2Aと、羽根車4の回転に伴って羽根車4で圧送された流体が該羽根車4の軸方向に交差する方向に沿って排出される排出通路2Bと、排出通路2Bに連通してケーシング2と前シュラウド41との間を経て吸入通路2Aに至り、かつ吸入通路2Aでの流体の吸入方向の下流側に向けて開口する開口部5Baを有する第二流路5Bと、を備え、開口部5Baから吸入通路2Aに噴出される流体の噴出速度Vsを、吸入通路2Aに吸入される流体の吸入速度Vに合わせる態様で、開口部5Baの開口面積Aが設定される。
 この本実施の形態の遠心式流体機械1によれば、開口部5Aaや開口部5Baの向きを吸入通路2Aでの流体の吸入方向の下流側に向けて開口することで、軸スラストを軽減するとともに、羽根車4の吸込側の圧力低下を防ぐことができる。しかも、開口部5Aaや開口部5Baの開口面積Aを設定し、吸入通路2Aに吸入される流体の吸入速度Vに対して、開口部5Aaや開口部5Baから吸入通路2Aに噴出される流体の噴出速度Vsを合わせることで、第一流路5Aや第二流路5Bから吸入通路2Aに流体が合流する際の混合損失を低減することが可能になる。この結果、遠心式流体機械1の流体の圧送効率を向上することが可能になる。なお、噴出速度Vsを吸入速度Vと同一にすることが最適であるが、遠心式流体機械1の稼動状態によって吸入速度Vが変化する場合があり、そのような場合でも混合損失を低減するには、少なくとも噴出速度Vsを吸入速度Vの±50[%]の範囲とすればよく、すなわち、少なくとも0.5V≦Vs≦1.5Vの範囲となるように開口部5Aaや開口部5Baの開口面積Aを設定すれば、遠心式流体機械1の流体の圧送効率を向上する効果が得られる。
 なお、開口面積を設定する上記構成は、第一流路5Aの開口部5Aaか、第二流路5Bの開口部5Baの少なくとも一方に適用されていれば、上記効果を奏することができ、第一流路5Aの開口部5Aa、および第二流路5Bの開口部5Baに適用されていれば、上記効果を顕著に得ることができるものである。
 図2は、図1におけるS-S断面図である。上述したように、噴出速度Vsは、旋回速度Vtの影響を受けるため、開口部5Aaや開口部5Baから噴出される流体は、旋回方向に向けて斜めに流れる。したがって、本実施の形態では、回転軸3(羽根車4)の回転方向にやや対向するように、開口部5Aaの向きを回転方向に対して傾けることで、開口部5Aaから噴出される流体を回転軸3の軸Cの方向に沿うようにしている。具体的には、羽根車4の軸Cを通過する法線、すなわち軸Cの放射方向(羽根車4の半径方向)に対して角度θで傾斜するように開口部5Aaを設ける。
 このように、本実施の形態の遠心式流体機械1では、開口部5Aaを、羽根車4の回転に伴い吸入通路2Aに吸入される流体に対して噴出する流体の向きを揃える態様で、羽根車4の軸Cを通過する法線に対して傾斜して設ける。
 この本実施の形態の遠心式流体機械1によれば、開口部5Aaの向きにより、羽根車4の回転に伴い吸入通路2Aに吸入される流体に対して噴出する流体の向きを揃えるため、第一流路5Aから吸入通路2Aに流体が合流する際の混合損失をより低減することが可能になる。この結果、遠心式流体機械1の流体の圧送効率をより向上することが可能になる。
 1 遠心式流体機械
 2 ケーシング
 2A 吸入通路
 2B 排出通路
 3 回転軸
 4 羽根車
 41 前シュラウド(円環部材)
 42 後シュラウド(円盤部材)
 42A ボス部
 42Aa 後側ボス部
 42Ab 前側ボス部
 43 羽根
 5A 第一流路(流路)
 5Aa 開口部
 5B 第二流路(流路)
 5Ba 開口部
 6 貫通穴
 6a 後側貫通穴
 6b 前側貫通穴
 A 開口面積
 C 軸

Claims (2)

  1.  中空形状をなすケーシングと、
     前記ケーシング内に回転自在に支持されており、軸方向の一方に配置される円環部材、軸方向の他方に配置される円盤部材、および前記円環部材と前記円盤部材との間で周方向に並設された複数の羽根を有する羽根車と、
     前記羽根車の回転に伴って流体が前記羽根車における前記円環部材の中央から軸方向に吸入される吸入通路と、
     前記羽根車の回転に伴って前記羽根車で圧送された流体が該羽根車の軸方向に交差する方向に沿って排出される排出通路と、
     前記排出通路に連通して前記ケーシングと前記円盤部材または前記円環部材の少なくとも一方との間を経て前記吸入通路に至り、かつ前記吸入通路での流体の吸入方向の下流側に向けて開口する開口部を有する流路と、
     を備え、
     前記開口部から前記吸入通路に噴出される流体の噴出速度を、前記吸入通路に吸入される流体の吸入速度に合わせる態様で、前記開口部の開口面積が設定されることを特徴とする遠心式流体機械。
  2.  前記ケーシングと前記円盤部材との間を経る流路の前記開口部は、前記羽根車の回転に伴い前記吸入通路に吸入される流体に対して噴出される流体の向きを揃える態様で、前記羽根車の軸を通過する法線に対して傾斜して設けられることを特徴とする請求項1に記載の遠心式流体機械。
PCT/JP2013/050317 2012-01-23 2013-01-10 遠心式流体機械 WO2013111620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/372,574 US9556876B2 (en) 2012-01-23 2013-01-10 Centrifugal fluid machine
EP13740553.6A EP2808550B1 (en) 2012-01-23 2013-01-10 Centrifugal fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-011397 2012-01-23
JP2012011397A JP2013148075A (ja) 2012-01-23 2012-01-23 遠心式流体機械

Publications (1)

Publication Number Publication Date
WO2013111620A1 true WO2013111620A1 (ja) 2013-08-01

Family

ID=48873342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050317 WO2013111620A1 (ja) 2012-01-23 2013-01-10 遠心式流体機械

Country Status (4)

Country Link
US (1) US9556876B2 (ja)
EP (1) EP2808550B1 (ja)
JP (1) JP2013148075A (ja)
WO (1) WO2013111620A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126383A1 (en) * 2009-04-29 2010-11-04 Fisher & Paykel Healthcare Limited A fan unit with improved surge characteristics
JP6277793B2 (ja) * 2014-03-13 2018-02-14 株式会社Ihi 遠心圧縮機
JP6175211B1 (ja) * 2017-02-23 2017-08-02 三菱重工コンプレッサ株式会社 回転機械
CN109236728B (zh) * 2018-08-27 2020-06-26 江苏大学 一种基于耦合仿生优化的叶片泵叶轮
US11131313B2 (en) * 2019-05-10 2021-09-28 Garrett Transportation I Inc Single-stage compressor with bleed system for thrust load alleviation
CN112503025A (zh) * 2020-02-28 2021-03-16 长城汽车股份有限公司 空气压缩机和车辆
JP7397258B2 (ja) * 2020-08-07 2023-12-13 日立Astemo株式会社 2段遠心ポンプ
JPWO2023286263A1 (ja) * 2021-07-16 2023-01-19

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443606U (ja) * 1977-09-02 1979-03-26
JPS5789896U (ja) * 1980-11-20 1982-06-02
JPS6316598B2 (ja) 1983-10-21 1988-04-09 Dengyosha Mach Works
JPH03123999U (ja) 1990-03-30 1991-12-17
JPH11166499A (ja) * 1997-12-03 1999-06-22 Torishima Pump Mfg Co Ltd 渦巻きポンプ
JP2002235696A (ja) * 2001-02-06 2002-08-23 Mitsubishi Heavy Ind Ltd 遠心ポンプ
WO2004055380A1 (ja) * 2002-12-16 2004-07-01 Daikin Industries, Ltd. 遠心送風機及び遠心送風機を備えた空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US996859A (en) * 1907-11-27 1911-07-04 Gen Electric Centrifugal blower, pump, compressor, &c.
JPS5443606A (en) 1977-09-13 1979-04-06 Mitsubishi Electric Corp Fault detector for contact signal transmission circuit
JPS5789896A (en) 1980-11-26 1982-06-04 Hitachi Ltd Drum type clothing drier
JPS6316598A (ja) 1986-07-09 1988-01-23 松下電器産業株式会社 高周波加熱装置
JPH03123999A (ja) 1989-10-06 1991-05-27 Nippon Telegr & Teleph Corp <Ntt> 経路探索装置
CA2015777C (en) * 1990-04-30 1993-10-12 Lynn P. Tessier Centrifugal pump
DE4400633A1 (de) 1994-01-12 1995-07-13 Klein Schanzlin & Becker Ag Mit Entlastungsöffnungen ausgestattetes Kreiselpumpenlaufrad aus Blech
FI20050450A (fi) * 2005-04-29 2006-10-30 Sulzer Pumpen Ag Keskipakopumppu ja sen juoksupyörä
JP2007085223A (ja) 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd 軸スラストのバランス機構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443606U (ja) * 1977-09-02 1979-03-26
JPS5789896U (ja) * 1980-11-20 1982-06-02
JPS6316598B2 (ja) 1983-10-21 1988-04-09 Dengyosha Mach Works
JPH03123999U (ja) 1990-03-30 1991-12-17
JPH11166499A (ja) * 1997-12-03 1999-06-22 Torishima Pump Mfg Co Ltd 渦巻きポンプ
JP2002235696A (ja) * 2001-02-06 2002-08-23 Mitsubishi Heavy Ind Ltd 遠心ポンプ
WO2004055380A1 (ja) * 2002-12-16 2004-07-01 Daikin Industries, Ltd. 遠心送風機及び遠心送風機を備えた空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808550A4

Also Published As

Publication number Publication date
EP2808550A4 (en) 2015-10-28
US20150016981A1 (en) 2015-01-15
EP2808550A1 (en) 2014-12-03
US9556876B2 (en) 2017-01-31
JP2013148075A (ja) 2013-08-01
EP2808550B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2013111620A1 (ja) 遠心式流体機械
RU2392499C2 (ru) Центробежный насос и его рабочее колесо
JP4724610B2 (ja) ガス分離装置、その前壁及び分離ロータ
JP2017519937A (ja) ポンプのための圧力緩和回転子組立体
CN100582488C (zh) 气体分离设备,它的前壁和分离转子
JP2008542011A (ja) スクリュデカンタ型遠心分離機
KR20150120168A (ko) 원심형 혼류송풍기
WO2014122819A1 (ja) 遠心圧縮機
JP2012202260A (ja) インペラ及びこれを備えたターボ機械
CA2746949C (en) Liquid ring pump with gas scavenge device
EP3705698B1 (en) Turbine and turbocharger
WO2016151906A1 (ja) 回転機械
JP4952463B2 (ja) 遠心圧縮機
US2460122A (en) Pump
US776835A (en) Centrifugal pump.
CN211820467U (zh) 液力耦合器
WO2018110695A1 (ja) 軸シール装置、及び回転機械
JP2020029797A (ja) 片吸込ポンプ
US20170321712A1 (en) Seal device and rotary machine
JP6700893B2 (ja) 羽根車、回転機械
JP2002235696A (ja) 遠心ポンプ
JP6553971B2 (ja) 流体機械
JP4952142B2 (ja) ポンプ
JP2018178872A (ja) 流体機械
JP2018141413A (ja) インペラ及び回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013740553

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE