WO2013108794A1 - 新規糖転移酵素遺伝子及びその使用 - Google Patents
新規糖転移酵素遺伝子及びその使用 Download PDFInfo
- Publication number
- WO2013108794A1 WO2013108794A1 PCT/JP2013/050689 JP2013050689W WO2013108794A1 WO 2013108794 A1 WO2013108794 A1 WO 2013108794A1 JP 2013050689 W JP2013050689 W JP 2013050689W WO 2013108794 A1 WO2013108794 A1 WO 2013108794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flavone
- polynucleotide
- sugar
- hydroxyl group
- protein
- Prior art date
Links
- 108700023372 Glycosyltransferases Proteins 0.000 title description 18
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 150
- 235000011949 flavones Nutrition 0.000 claims abstract description 139
- 229930003944 flavone Natural products 0.000 claims abstract description 138
- VHBFFQKBGNRLFZ-UHFFFAOYSA-N vitamin p Natural products O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1 VHBFFQKBGNRLFZ-UHFFFAOYSA-N 0.000 claims abstract description 111
- GAMYVSCDDLXAQW-AOIWZFSPSA-N Thermopsosid Natural products O(C)c1c(O)ccc(C=2Oc3c(c(O)cc(O[C@H]4[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O4)c3)C(=O)C=2)c1 GAMYVSCDDLXAQW-AOIWZFSPSA-N 0.000 claims abstract description 109
- 150000002212 flavone derivatives Chemical class 0.000 claims abstract description 109
- 235000000346 sugar Nutrition 0.000 claims abstract description 95
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 94
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 88
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 88
- 239000002157 polynucleotide Substances 0.000 claims abstract description 88
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 85
- 230000000694 effects Effects 0.000 claims abstract description 84
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 52
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims abstract description 20
- 150000001413 amino acids Chemical class 0.000 claims abstract description 8
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 45
- 239000002773 nucleotide Substances 0.000 claims description 29
- 125000003729 nucleotide group Chemical group 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 9
- 239000002537 cosmetic Substances 0.000 claims description 8
- 235000013305 food Nutrition 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 3
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 2
- 229940127557 pharmaceutical product Drugs 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 description 48
- 239000002299 complementary DNA Substances 0.000 description 44
- 230000014509 gene expression Effects 0.000 description 37
- 150000002213 flavones Chemical class 0.000 description 29
- 150000004636 anthocyanins Chemical class 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 229930002877 anthocyanin Natural products 0.000 description 27
- 235000010208 anthocyanin Nutrition 0.000 description 27
- 239000004410 anthocyanin Substances 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- 241000588724 Escherichia coli Species 0.000 description 22
- 241000960400 Torenia Species 0.000 description 21
- 102000004190 Enzymes Human genes 0.000 description 20
- 108090000790 Enzymes Proteins 0.000 description 20
- 101710130467 Flavone synthase Proteins 0.000 description 20
- 240000007377 Petunia x hybrida Species 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 102000039446 nucleic acids Human genes 0.000 description 19
- 108020004707 nucleic acids Proteins 0.000 description 19
- 150000007523 nucleic acids Chemical class 0.000 description 19
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 17
- 235000008714 apigenin Nutrition 0.000 description 17
- 229940117893 apigenin Drugs 0.000 description 17
- 239000007788 liquid Substances 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 241001325187 Nemophila Species 0.000 description 16
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 16
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 15
- 229930003935 flavonoid Natural products 0.000 description 15
- 235000017173 flavonoids Nutrition 0.000 description 15
- 239000008103 glucose Substances 0.000 description 15
- 240000006497 Dianthus caryophyllus Species 0.000 description 14
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 14
- 102000051366 Glycosyltransferases Human genes 0.000 description 14
- 241000220317 Rosa Species 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 150000002215 flavonoids Chemical class 0.000 description 13
- 241000109329 Rosa xanthina Species 0.000 description 12
- 235000004789 Rosa xanthina Nutrition 0.000 description 12
- KMOUJOKENFFTPU-UHFFFAOYSA-N cosmosiin Chemical compound OC1C(O)C(O)C(CO)OC1OC1=CC(O)=C2C(=O)C=C(C=3C=CC(O)=CC=3)OC2=C1 KMOUJOKENFFTPU-UHFFFAOYSA-N 0.000 description 12
- 230000000692 anti-sense effect Effects 0.000 description 10
- 238000010828 elution Methods 0.000 description 10
- 108010062650 Flavonoid 3',5'-hydroxylase Proteins 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 9
- 238000006911 enzymatic reaction Methods 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- ICLVCWSZHUZEFT-UHFFFAOYSA-N 7-((E)-7'-hydroxy-3',7'-dimethyl-2',5'-octadienyloxy)-coumarin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)C=C1 ICLVCWSZHUZEFT-UHFFFAOYSA-N 0.000 description 7
- ICLVCWSZHUZEFT-GHRYLNIYSA-N Apigenin 4'-O-beta-D-glucopyranoside Natural products O([C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1)c1ccc(C=2Oc3c(c(O)cc(O)c3)C(=O)C=2)cc1 ICLVCWSZHUZEFT-GHRYLNIYSA-N 0.000 description 7
- ICLVCWSZHUZEFT-QNDFHXLGSA-N Apigenin 4'-O-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)C=C1 ICLVCWSZHUZEFT-QNDFHXLGSA-N 0.000 description 7
- 241000723353 Chrysanthemum Species 0.000 description 7
- 238000010195 expression analysis Methods 0.000 description 7
- -1 iron ions Chemical class 0.000 description 7
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 7
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000012460 protein solution Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- ACBOFPQSBWBAQR-UHFFFAOYSA-N Cosmosiin Natural products OCC1OC(Oc2cc(O)c3C(=O)C=C(Oc3c2)c4cccc(O)c4)C(O)C(O)C1O ACBOFPQSBWBAQR-UHFFFAOYSA-N 0.000 description 6
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 6
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 6
- 244000047670 Viola x wittrockiana Species 0.000 description 6
- 235000004031 Viola x wittrockiana Nutrition 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 6
- 235000009498 luteolin Nutrition 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 240000001436 Antirrhinum majus Species 0.000 description 5
- 235000007516 Chrysanthemum Nutrition 0.000 description 5
- GCPYCNBGGPHOBD-UHFFFAOYSA-N Delphinidin Natural products OC1=Cc2c(O)cc(O)cc2OC1=C3C=C(O)C(=O)C(=C3)O GCPYCNBGGPHOBD-UHFFFAOYSA-N 0.000 description 5
- 241001071795 Gentiana Species 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 235000007242 delphinidin Nutrition 0.000 description 5
- FFNDMZIBVDSQFI-UHFFFAOYSA-N delphinidin chloride Chemical compound [Cl-].[O+]=1C2=CC(O)=CC(O)=C2C=C(O)C=1C1=CC(O)=C(O)C(O)=C1 FFNDMZIBVDSQFI-UHFFFAOYSA-N 0.000 description 5
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 5
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- 235000017276 Salvia Nutrition 0.000 description 4
- 108091081021 Sense strand Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- BBJUSJOGHYQDQX-WODDMCJRSA-N (2S)-4-[(E)-2-[(2S)-2-carboxy-5,6-dihydroxy-2,3-dihydroindol-1-yl]ethenyl]-2,3-dihydropyridine-2,6-dicarboxylic acid Chemical group OC(=O)[C@@H]1Cc2cc(O)c(O)cc2N1\C=C\C1=CC(=N[C@@H](C1)C(O)=O)C(O)=O BBJUSJOGHYQDQX-WODDMCJRSA-N 0.000 description 3
- UHNXUSWGOJMEFO-UHFFFAOYSA-N 4'-O-beta-D-Glucopyranoside-3',4',5,7-Tetrahydroxyflavone Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)C=C1O UHNXUSWGOJMEFO-UHFFFAOYSA-N 0.000 description 3
- UHNXUSWGOJMEFO-LELZANKISA-N 5,7,3',4'-Tetrahydroxyflavone 4'-beta-D-glucopyranoside Natural products O[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)C=C1O UHNXUSWGOJMEFO-LELZANKISA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 241000208152 Geranium Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000234435 Lilium Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 240000007164 Salvia officinalis Species 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- FPFIFCBPMJFKJR-LLVKDONJSA-M betanidin Natural products O=C([O-])[C+]1/[N+](=C/C=C/2\C=C(C(=O)O)N[C@@H](C(=O)O)C\2)/c2c(cc(O)c(O)c2)C1 FPFIFCBPMJFKJR-LLVKDONJSA-M 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003028 enzyme activity measurement method Methods 0.000 description 3
- 239000011536 extraction buffer Substances 0.000 description 3
- GPGMRSSBVJNWRA-UHFFFAOYSA-N hydrochloride hydrofluoride Chemical compound F.Cl GPGMRSSBVJNWRA-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- UHNXUSWGOJMEFO-QNDFHXLGSA-N luteolin-4'-O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)C=C1O UHNXUSWGOJMEFO-QNDFHXLGSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000006152 selective media Substances 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 241000881711 Acipenser sturio Species 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 101710199202 Anthocyanin synthase Proteins 0.000 description 2
- 241000255789 Bombyx mori Species 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 2
- 235000005633 Chrysanthemum balsamita Nutrition 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102000044467 Grifin Human genes 0.000 description 2
- 108700036695 Grifin Proteins 0.000 description 2
- 241001490312 Lithops pseudotruncatella Species 0.000 description 2
- 235000004347 Perilla Nutrition 0.000 description 2
- 244000124853 Perilla frutescens Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 102000004357 Transferases Human genes 0.000 description 2
- 108090000992 Transferases Proteins 0.000 description 2
- 229930014669 anthocyanidin Natural products 0.000 description 2
- 235000008758 anthocyanidins Nutrition 0.000 description 2
- 235000005513 chalcones Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 108010060641 flavanone synthetase Proteins 0.000 description 2
- 150000002216 flavonol derivatives Chemical class 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 101150029296 grifin gene Proteins 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 2
- PSOZMUMWCXLRKX-UHFFFAOYSA-N 2,4-dinitro-6-pentan-2-ylphenol Chemical compound CCCC(C)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O PSOZMUMWCXLRKX-UHFFFAOYSA-N 0.000 description 1
- ABJJEPCCQQOWBG-UHFFFAOYSA-N 2-phenylchromen-4-one Chemical compound O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1.O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1 ABJJEPCCQQOWBG-UHFFFAOYSA-N 0.000 description 1
- 108700016155 Acyl transferases Proteins 0.000 description 1
- 102000057234 Acyl transferases Human genes 0.000 description 1
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241001312221 Anthurium Species 0.000 description 1
- 241000207875 Antirrhinum Species 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- FXNFHKRTJBSTCS-UHFFFAOYSA-N Baicalein Natural products C=1C(=O)C=2C(O)=C(O)C(O)=CC=2OC=1C1=CC=CC=C1 FXNFHKRTJBSTCS-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 240000004385 Centaurea cyanus Species 0.000 description 1
- 235000005940 Centaurea cyanus Nutrition 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000612152 Cyclamen hederifolium Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 235000012040 Dahlia pinnata Nutrition 0.000 description 1
- 244000033273 Dahlia variabilis Species 0.000 description 1
- 241000202296 Delphinium Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 241000597000 Freesia Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241000735332 Gerbera Species 0.000 description 1
- 241000245654 Gladiolus Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241001316290 Gypsophila Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001024703 Homo sapiens Nck-associated protein 5 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 240000001549 Ipomoea eriocarpa Species 0.000 description 1
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 1
- 241001495668 Iris x hollandica Species 0.000 description 1
- 241000191398 Kalanchoe blossfeldiana Species 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 102100036946 Nck-associated protein 5 Human genes 0.000 description 1
- 244000103367 Nemophila menziesii Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000208181 Pelargonium Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 241000182534 Pericallis hybrida Species 0.000 description 1
- 244000127818 Phalaenopsis amabilis Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 238000012180 RNAeasy kit Methods 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241001072909 Salvia Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 101100370749 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) trpC1 gene Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 235000007212 Verbena X moechina Moldenke Nutrition 0.000 description 1
- 240000001519 Verbena officinalis Species 0.000 description 1
- 235000001594 Verbena polystachya Kunth Nutrition 0.000 description 1
- 235000007200 Verbena x perriana Moldenke Nutrition 0.000 description 1
- 235000002270 Verbena x stuprosa Moldenke Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001272 acylglucoses Chemical class 0.000 description 1
- 108700014220 acyltransferase activity proteins Proteins 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 150000001452 anthocyanidin derivatives Chemical class 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- UDFLTIRFTXWNJO-UHFFFAOYSA-N baicalein Chemical group O1C2=CC(=O)C(O)=C(O)C2=C(O)C=C1C1=CC=CC=C1 UDFLTIRFTXWNJO-UHFFFAOYSA-N 0.000 description 1
- 229940015301 baicalein Drugs 0.000 description 1
- 235000016614 betalains Nutrition 0.000 description 1
- 229960004980 betanidine Drugs 0.000 description 1
- NIVZHWNOUVJHKV-UHFFFAOYSA-N bethanidine Chemical compound CN\C(=N/C)NCC1=CC=CC=C1 NIVZHWNOUVJHKV-UHFFFAOYSA-N 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 210000000081 body of the sternum Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 229930186364 cyclamen Natural products 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- 230000014155 detection of activity Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- QOLIPNRNLBQTAU-UHFFFAOYSA-N flavan Chemical class C1CC2=CC=CC=C2OC1C1=CC=CC=C1 QOLIPNRNLBQTAU-UHFFFAOYSA-N 0.000 description 1
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Natural products O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 1
- 235000011957 flavonols Nutrition 0.000 description 1
- NWKFECICNXDNOQ-UHFFFAOYSA-N flavylium Chemical compound C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=[O+]1 NWKFECICNXDNOQ-UHFFFAOYSA-N 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- PEFNSGRTCBGNAN-QNDFHXLGSA-N luteolin 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C=C(C=3C=C(O)C(O)=CC=3)OC2=C1 PEFNSGRTCBGNAN-QNDFHXLGSA-N 0.000 description 1
- SUTSVCLKBLJSPQ-UHFFFAOYSA-N luteolin 7-glucoside Natural products OC1C(O)C(O)C(CO)OC1C1=CC(O)=C2C(=O)C=C(C=3C=C(O)C(O)=CC=3)OC2=C1 SUTSVCLKBLJSPQ-UHFFFAOYSA-N 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229940029079 rose petal extract Drugs 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 101150016309 trpC gene Proteins 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/18—Peptides; Protein hydrolysates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/60—Sugars; Derivatives thereof
- A61K8/602—Glycosides, e.g. rutin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/18—Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/60—Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/10—General cosmetic use
Definitions
- the present invention relates to a polynucleotide encoding a protein having an activity of transferring a sugar to the 4'-position hydroxyl group of flavone, and use thereof.
- the flower color is attributed to four types of pigments: flavonoids, carotenoids, chlorophyll, and betalain.
- flavonoids exhibit various colors such as yellow, red, purple, and blue.
- Anthocyanin One group exhibiting red, purple, and blue is collectively called anthocyanin, and the variety of anthocyanin structure is one of the causes of the variety of flower colors.
- Anthocyanins can be roughly classified into three groups depending on the structure of aglycone, considering their biosynthetic pathway. Vivid red flowers such as carnation and geranium often contain pelargonidin-type anthocyanins, and blue and purple flowers often contain delphinidin-type anthocyanins. The lack of blue and purple varieties in roses, carnations, chrysanthemums and lilies is due to the inability of these plants to synthesize delphinidin-type anthocyanins.
- anthocyanins are modified with one or more aromatic acyl groups, (ii) anthocyanins coexist with pigments such as flavones and flavonols (Iii) iron ions and aluminum ions coexist with anthocyanins, (iv) the pH of vacuoles where anthocyanins are localized increases from neutral to weakly alkaline, or (v) anthocyanins, pigments, metals It is considered that one of ions forming a complex (such anthocyanins are called metalloanthocyanins) is necessary (hereinafter, Non-Patent Document 1).
- Flavonoid and anthocyanin biosynthesis has been well studied, and related biosynthetic enzymes and genes encoding them have been identified (see Non-Patent Document 2 and FIG. 1 below).
- the gene of flavonoid 3 ', 5'-hydroxylase (F3'5'H) that hydroxylates the flavonoid B ring necessary for delphinidin biosynthesis has been obtained from many plants.
- these F3′5′H genes are introduced into carnations (hereinafter, see Patent Document 1), roses (hereinafter, Non-Patent Document 3, Patent Documents 2, 3), and chrysanthemums (hereinafter, Patent Document 4).
- a genetically modified plant in which delphinidin is accumulated in the petals and the color of the flower changes to blue has been created (see Non-Patent Document 4 below).
- Such carnations and roses are commercially available.
- Flavon is a kind of organic compound and is a cyclic ketone of a flavan derivative. In a narrow sense, a compound having the chemical formula C 15 H 10 O 2 and a molecular weight of 222.24, 2,3-didehydroflavan-4-one ( 2,3-didehydroflavan-4-one). In a broad sense, derivatives belonging to flavones are referred to as “flavones”. Flavonoids (flavones) in a broad sense are one of the flavonoid categories. Among flavonoids, those having a flavone structure as a basic skeleton and having no hydroxyl group at the 3-position are classified as “flavones”.
- flavones include apigenin (apigenin; 4 ′, 5,7-trihydroxyflavone) and luteolin (luteolin; 3 ′, 4 ′, 5,7-tetrahydroxyflavone).
- flavone means a flavone in a broad sense, that is, a derivative belonging to flavones.
- the gene of flavone synthase (FNS) necessary for flavone biosynthesis is also obtained from many plants. It has been known that flavones have an effect of darkening the color of anthocyanins in blue when they coexist with anthocyanins, and these FNS genes have attracted attention in flower color modification. By introducing the FNS gene together with F3′5′H into a rose that does not have the ability to synthesize flavones, delphinidin is accumulated in petals, and at the same time, flavones are accumulated, and the color of the flower is further changed to blue (hereinafter, patents). Reference 5).
- flavones In addition to flower-blue coloration, flavones absorb ultraviolet rays, so that they protect plants from ultraviolet rays and function as a signal to insect vision in insect flowers. Flavones are also involved in the interaction between plants and soil microorganisms. Furthermore, flavones are also used as a material for food and cosmetics as a healthy component. For example, flavone is said to have an anti-cancer effect, and it has been demonstrated that ingestion of foods containing a large amount of flavone can help treat or prevent cancer.
- genes that modify anthocyanins and flavones have been obtained from many plants.
- glycosyltransferases acyltransferases, methyltransferases, and the like.
- glycosyltransferase (GT) that catalyzes glycosylation is described.
- GT glycosyltransferase
- a gene encoding a protein having an activity of transferring glucose to the hydroxyl group at the 3-position of anthocyanin has been isolated from gentian, perilla, petunia, rose, snapdragon (hereinafter, non-patent documents 4 to 6, patents). Reference 6).
- a gene encoding a protein having an activity of transferring glucose to the hydroxyl group at the 5-position of anthocyanin has been isolated from perilla, petunia, gentian, verbena, torenia and the like (hereinafter, non-patent documents 5 to 7, patent document 7). reference).
- a gene encoding a protein having an activity of transferring glucose to the 7-position hydroxyl group of flavone has been isolated from Arabidopsis thaliana (refer to Non-Patent Document 8 below).
- a gene encoding a protein having the activity of transferring glucose to the 7-position hydroxyl group of baicalen has been isolated from Scutella niger, and the protein expressing this gene in Escherichia coli has the activity of transferring glucose to the 7-position hydroxyl group of flavonoids. It has also been reported to catalyze a reaction showing the following (see Non-Patent Document 9).
- a gene encoding a protein having an activity of transferring glucose to the hydroxyl group at the 3'-position of anthocyanin has been isolated from gentian, sturgeon, and cineraria (see Patent Document 8 below).
- glycosyltransferase uses UDP-glucose as a sugar donor, but recently a glycosyltransferase using acylglucose as a sugar donor has also been identified.
- a gene encoding a protein having an activity of transferring glucose to the hydroxyl group at the 5-position of anthocyanin-3 glucoside was isolated from carnation, and a gene encoding a protein having an activity of transferring glucose to the hydroxyl group at the 7-position was isolated from delphinium. (Refer to Non-Patent Document 10 below).
- glycosyltransferases have proteins having an activity of transferring glucose to various hydroxyl groups.
- many glycosyltransferases whose functions have not been identified still remain.
- a gene encoding a protein having an activity of transferring a sugar to the 4 ′ position of a flavonoid, or a gene encoding a protein having an activity of transferring a sugar sequentially to two hydroxyl groups of the A ring and B ring of the flavonoid Has not yet been identified. It has been reported that a protein in which a glycosyltransferase gene derived from Livingstone Daisy is expressed in E.
- metalloanthocyanins typified by the pigments of camellia, cornflower, salvia, and nemophila are composed of 6 anthocyanins, 6 flavones, and 2 atoms of metal ions, and each component aggregates to form a stable blue pigment.
- nemophila metalloanthocyanin is formed from nemophilin (see FIG. 3), malonyl apigenin 4 ′, 7-diglucoside (see FIG. 4), Mg 2+ , and Fe 3+ .
- Salvia metalloanthocyanins are formed from cyanosalvianin (see FIG.
- the blue Dutch Iris petal contains a flavone with sugar added at the 4 'position.
- the addition of two sugars to the flavone increases the solubility and changes the physical properties, so that it can be expected to expand its use as a health food, pharmaceutical and cosmetic material.
- the problem to be solved by the present invention is to provide a polynucleotide encoding a protein having an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone and use thereof.
- the present applicants have intensively studied and repeated experiments.
- a polynucleotide encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of flavone was isolated and used. It was confirmed that this can be done, and the present invention has been completed. That is, the present invention is as follows.
- a polynucleotide encoding a protein having the activity of: A polynucleotide selected from the group consisting of:
- [11] A method for adding a sugar to the 4′-position hydroxyl group of a flavone using the polynucleotide according to any one of [1] to [7].
- a protein having an activity of specifically transferring a sugar to the 4'-position hydroxyl group of flavone can be used for modification of flower color by expressing it constitutively or tissue-specifically in a plant.
- a protein having an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone for example, into a plant having an activity of transferring a sugar to the hydroxyl group at the 7-position of flavone, such as rose, And a flavone in which sugar is added to both hydroxyl groups at the 7-position.
- a protein having an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone is expressed in a plant together with a protein having an activity of transferring a sugar to the hydroxyl group at the 7-position of flavone, whereby the 4′-position and the 7-position are expressed.
- a flavone in which sugar is added to both hydroxyl groups is formed.
- the present invention also provides a method for producing a flavone in which a sugar is added to the 4′-position hydroxyl group, and foods, pharmaceuticals, cosmetics and the like obtained by the method.
- NmGT8 It is an alignment figure which compares the amino acid sequence of NmGT8 and NmGT4. It is an alignment figure which compares the amino acid sequence of NmGT8, NmGT3, and NmGT4. It is an alignment figure which compares the amino acid sequence of the enzyme which adds sugar at 4'-position of NmGT8 and the snapdragon chalcone. It is an alignment figure which compares the amino acid sequence of the enzyme which adds sugar to 3rd-position and 5th-position of NmGT8 and rose anthocyanidin. It is a phylogenetic tree indicating the relationship between the NmGT8 of the present invention and the various enzymes described above. A construct containing NmGT8 introduced into Torenia (pSPB4583).
- a construct containing NmGT8 introduced into Petunia (pSPB 5424, 5428). It is a high-performance liquid chromatogram of a petal extract of recombinant petunia introduced with NmGT8. It is an extraction positive ion mass chromatogram of a petal extract of recombinant petunia (250-1250 m / z) into which NmGT8 has been introduced.
- a construct containing NmGT8 introduced into carnation (pSPB5433). Constructs containing NmGT8 introduced into roses (pSPB4577, 4578, 5437, 5440). It is a high-speed liquid chromatogram of the petal extract of a recombinant rose into which NmGT8 has been introduced.
- FIG. 5 is an extracted positive ion mass chromatogram of a recombinant rose petal extract (250-1250 m / z) into which NmGT8 has been introduced.
- the present invention provides the following (a) to (e): (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1; (B) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 and has an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone A polynucleotide encoding (C) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2; (D) The amino acid sequence of SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted, and / or added, and transfers sugar to the hydroxyl group at the 4 ′ position of flavone.
- the term “polynucleotide” means DNA or RNA.
- stringent conditions refers to conditions that enable selective and detectable specific binding between a polynucleotide or an oligonucleotide and genomic DNA. Stringent conditions are defined by a suitable combination of salt concentration, organic solvent (eg, formamide), temperature, and other known conditions. That is, stringency increases depending on whether the salt concentration is decreased, the organic solvent concentration is increased, or the hybridization temperature is increased. In addition, washing conditions after hybridization also affect stringency. This wash condition is also defined by salt concentration and temperature, and the stringency of the wash increases with decreasing salt concentration and increasing temperature.
- the term “stringent conditions” means that the degree of “identity” or “homology” between the base sequences is, for example, about 80% or more, preferably about 90% or more, more preferably, on the average on the whole. It means a condition that specifically hybridizes only between nucleotide sequences having high homology, such as about 95% or more, more preferably 97% or more, and most preferably 98% or more.
- Examples of the “stringent conditions” include conditions in which the sodium concentration is 150 to 900 mM, preferably 600 to 900 mM, pH 6 to 8 at a temperature of 60 ° C. to 68 ° C.
- Hybridization was performed under the conditions of 5 x SSC (750 mM NaCl, 75 mM trisodium citrate), 1% SDS, 5 x Denhardt's solution 50% formaldehyde, and 42 ° C.
- 5 x SSC 750 mM NaCl, 75 mM trisodium citrate
- 1% SDS 1% SDS
- 5 x Denhardt's solution 50% formaldehyde and 42 ° C.
- 0.1 x SSC 15 mM NaCl, 1.5 mM Acid trisodium
- 0.1% SDS washed at 55 ° C.
- Hybridization may be performed by a method known in the art, such as the method described in Current Protocols in Molecular Biology (edited by Frederick M, Ausubel et al, 1987), or the like. It can carry out according to the method according to it. Moreover, when using a commercially available library, it can carry out according to the method as described in an attached instruction manual.
- the gene selected by such hybridization may be naturally derived, for example, a plant-derived gene or a non-plant-derived gene.
- the gene selected by hybridization may be cDNA, genomic DNA, or chemically synthesized DNA.
- amino acid sequence in which one or several amino acids are deleted, substituted, inserted and / or added is, for example, 1 to 20, preferably 1 to 5, more preferably 1 to 3 Means an amino acid sequence wherein a certain number of amino acids are deleted, substituted, inserted and / or added.
- Site-directed mutagenesis which is one of genetic engineering techniques, is useful because it can introduce a specific mutation at a specific position. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory It can be performed according to the method described in Press, Cold Spring Harbor, NY, 1989, etc.
- the DNA according to the present invention is a primer designed based on the nucleotide sequence of the target gene using a method known to those skilled in the art, for example, a method of chemically synthesizing by the phosphoramidide method, a plant nucleic acid sample as a template It can be obtained by a nucleic acid amplification method using
- the terms “identity” and “homology” constitute a chain between two chains in a polypeptide sequence (or amino acid sequence) or polynucleotide sequence (or base sequence). Means the amount (number) of each amino acid residue or base that can be determined to be identical in each other's fitness, and the sequence correlation between two polypeptide sequences or two polynucleotide sequences It means a degree, and “identity” and “homology” can be easily calculated. Many methods for measuring homology between two polynucleotide or polypeptide sequences are known, and the terms “identity” and “homology” are well known to those skilled in the art (see, for example, Lesk, A. M.
- the numerical values of “identity” and “homology” described in the present specification may be numerical values calculated using a homology search program known to those skilled in the art, unless otherwise specified. Preferably, the value is calculated using the ClustalW program of the MacVector application (version 9.5, Oxford Molecular Ltd., Oxford, England).
- the polynucleotide (nucleic acid, gene) of the present invention “encodes” a protein of interest.
- encode means that the protein of interest is expressed in a state having the activity.
- encode includes both the meaning of encoding the protein of interest as a continuous structural sequence (exon) or encoding via an intervening sequence (intron).
- a gene having a native base sequence can be obtained, for example, by analysis using a DNA sequencer as described in the following examples.
- DNA encoding an enzyme having a modified amino acid sequence can be synthesized using conventional site-directed mutagenesis or PCR based on DNA having a native base sequence.
- a DNA fragment to be modified is obtained by restriction enzyme treatment of native cDNA or genomic DNA, using this as a template, site-directed mutagenesis or PCR method is performed using a primer into which a desired mutation is introduced, A modified DNA fragment is obtained. Thereafter, the DNA fragment into which this mutation has been introduced may be ligated with a DNA fragment encoding another part of the target enzyme.
- a DNA encoding an enzyme consisting of a shortened amino acid sequence for example, an amino acid sequence longer than the target amino acid sequence
- a DNA encoding a full-length amino acid sequence is cleaved with a desired restriction enzyme, and the result When the obtained DNA fragment does not encode the entire target amino acid sequence, a DNA fragment consisting of the missing portion sequence may be synthesized and ligated.
- the obtained polynucleotide is expressed using a gene expression system in Escherichia coli and yeast, and the activity of the resulting polynucleotide is transferred to the 4′-position hydroxyl group of the flavone by measuring enzyme activity. It can be confirmed that it encodes a protein having it. Furthermore, by expressing the polynucleotide, a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of a flavone, which is a polynucleotide product, can be obtained.
- a protein having an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone can be obtained using an antibody against the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2, and other organisms can be obtained using such an antibody. It is also possible to clone a polynucleotide encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of the derived flavone.
- the present invention also relates to (recombinant) vectors, in particular expression vectors, comprising a polynucleotide as described above, and also to a host transformed with the vector.
- Prokaryotes or eukaryotes can be used as the host.
- a common host such as a bacterium, for example, a bacterium belonging to the genus Escherichia, for example, an Escherichia coli, a microorganism belonging to the genus Bacillus, for example, Bacillus subtilis can be used.
- eukaryotes lower eukaryotes such as eukaryotic microorganisms such as yeast or filamentous fungi that are fungi can be used.
- yeast examples include microorganisms belonging to the genus Saccharomyces, such as Saccharomyces cerevisiae.
- filamentous fungi examples include microorganisms belonging to the genus Aspergillus, such as Aspergillus oryzae. Examples include microorganisms belonging to the genus Aspergillus niger and Penicillium.
- animal cells or plant cells can be used.
- animal cells cell systems such as mice, hamsters, monkeys, and humans are used.
- insect cells such as silkworm cells and silkworm adults themselves are used. Used as a host.
- the expression vector of the present invention contains an expression control region, for example, a promoter, a terminator, an origin of replication, etc., depending on the type of host into which they are introduced.
- an expression control region for example, a promoter, a terminator, an origin of replication, etc., depending on the type of host into which they are introduced.
- promoters for bacterial expression vectors conventional promoters such as trc promoter, tac promoter, lac promoter, etc. are used, and as yeast promoters, for example, glyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc. are used.
- yeast promoters for example, glyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter, etc.
- the promoter for filamentous fungi for example, amylase promoter, trpC promoter and the like are used.
- viral promoters such as SV40 early promoter and SV40 rate promoter are used.
- promoters that constitutively express polynucleotides in plant cells include cauliflower mosaic virus 35S RNA promoter, rd29A gene promoter, rbcS promoter, mac-1 promoter, and the like.
- tissue-specific gene expression a promoter of a gene that is specifically expressed in the tissue can be used.
- An expression vector can be prepared according to a conventional method using a restriction enzyme, ligase or the like.
- transformation of a host with an expression vector can be performed according to a conventional method.
- the host transformed with the expression vector is cultured, cultivated or grown, and recovered from the culture or medium according to a conventional method, for example, filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, etc.
- the target protein can be obtained by purification.
- a gene encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of nemophila-derived flavone is described.
- the polynucleotide according to the present invention is limited to a gene derived from nemophila.
- the origin of a gene encoding a protein having an activity of transferring sugar to the 4′-position hydroxyl group of flavone may be a plant, animal or microorganism, and the sugar is transferred to the 4′-position hydroxyl group of flavone. As long as it has the activity to do so, it can be used to change the flower color in plants regardless of origin.
- the present invention relates to a plant or a progeny thereof obtained by introducing an exogenous polynucleotide encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of a flavone into a plant and incorporating the same into the plant. Or these parts or organizations.
- the form of the part or tissue can be a cut flower.
- the 4 ′ position of the flavone is glycosylated or the 4 ′ position of the flavone is glycosylated. Can be suppressed, and as a result, the flower color in the plant can be changed.
- a technique for introducing a polynucleotide into a plant and expressing the polynucleotide constitutively or tissue-specifically can be used.
- Introduction of DNA into a plant can be performed by methods known to those skilled in the art, such as the Agrobacterium method, binary vector method, electroporation method, PEG method, particle gun method, and the like.
- transformable plants include roses, carnations, chrysanthemum, snapdragons, cyclamen, orchids, turkeys, freesia, gerbera, gladiolus, gypsophila, kalanchoe, lily, pelargonium, geranium, petunia, torenia, tulip, anthurium, moth orchid , Rice, barley, wheat, rapeseed, potato, tomato, poplar, banana, eucalyptus, sweet potato, soybean, alfalsa, rubin, corn, cauliflower, dahlia and the like.
- the present invention also relates to a processed product (cut flower processed product) using the cut flower.
- the cut flower processed product includes, but is not limited to, a pressed flower using the cut flower, a preserved flower, a dried flower, a resin sealed product, and the like.
- the flavone produced by the production method of the present invention and having a sugar added to the 4′-position hydroxyl group can be used for applications such as food, pharmaceutical and cosmetic production methods.
- RNAi method it is also possible to suppress the expression of a target gene in a plant by an antisense method, a cosuppression method, an RNAi method, or the like.
- Methods for suppressing the expression of the target gene can be performed according to methods known to those skilled in the art.
- antisense RNA / DNA technology Bioscience and Industry, 50, 322 (1992), Chemistry, 46, 681] (1991), Biotechnology, 9, 358 (1992), Trends in Biotechnology, 10, 87 (1992), Trends in Biotechnology, 10, 152 (1992), Cell Engineering, 16,1463 (1997)]
- Triple helix technology Triple helix technology [Trends in Biotechnology, 10, 132 (1992)].
- suppression of gene expression is performed using a single-stranded nucleic acid molecule comprising all or part of the same nucleotide sequence as the antisense strand of the gene according to the present invention.
- a method is known as an antisense method.
- expression of a target gene is suppressed by expressing RNA having a sequence complementary to the gene whose expression is to be suppressed at a high level.
- single-stranded RNA comprising the entire nucleotide sequence identical to the antisense strand of the polynucleotide (gene) according to the present invention can be used.
- a single-stranded RNA comprising a part of the same nucleotide sequence as the antisense strand of the gene according to the present invention can also be used.
- Such partial single-stranded RNA is not particularly limited as long as it can suppress the expression of the gene according to the present invention and can be appropriately designed by those skilled in the art, but is preferably specific for the gene according to the present invention.
- the chain length is preferably 5 to 100 nucleotides, more preferably 5 to 50 nucleotides, and even more preferably 10 to 20 nucleotides.
- Suppression of gene expression is performed using a single-stranded nucleic acid molecule comprising all or part of the same nucleotide sequence as the sense strand of the gene according to the present invention. That is, this sense single-stranded nucleic acid can be used for the suppression of gene expression according to the present invention, similarly to the above-described antisense single-stranded nucleic acid.
- single-stranded RNA comprising the entire nucleotide sequence identical to the sense strand of the gene according to the present invention can be used.
- a single-stranded RNA comprising a part of the same nucleotide sequence as the gene sense strand can also be used.
- Such partial single-stranded RNA is not particularly limited as long as it can suppress the expression of the gene according to the present invention and can be appropriately designed by those skilled in the art, but is preferably specific for the gene according to the present invention.
- the chain length is preferably 5 to 100 nucleotides, more preferably 5 to 50 nucleotides, and even more preferably 10 to 20 nucleotides.
- suppression of gene expression is performed using a double-stranded nucleic acid molecule comprising all or part of the same nucleotide sequence as the gene according to the present invention.
- a double-stranded nucleic acid molecule comprising all or part of the same nucleotide sequence as the gene according to the present invention.
- an antisense or sense single-stranded nucleic acid of the gene according to the present invention can be expressed in angiosperms.
- the double-stranded nucleic acid molecule according to the present invention is preferably DNA, and its chain length and specific nucleotide sequence correspond to the chain length and nucleotide sequence of the intended single-stranded nucleic acid molecule.
- the double-stranded nucleic acid molecule according to the present invention when the antisense single-stranded nucleic acid is expressed, includes the antisense strand of the gene according to the present invention as a coding strand.
- the double-stranded nucleic acid molecule according to the present invention when the sense single-stranded nucleic acid is expressed, includes the sense strand of the gene according to the present invention as a coding strand.
- Double-stranded nucleic acid molecules can be expressed in plants using methods known to those skilled in the art.
- an expression vector containing a promoter, a double-stranded nucleic acid molecule according to the present invention, a transcription terminator, etc. is introduced into a target plant, and the resulting plant is cultivated to express the double-stranded nucleic acid molecule.
- An expression vector can be introduced into a plant by methods known to those skilled in the art, for example, the Agrobacterium method, binary vector method, electroporation method, PEG method, particle gun method and the like.
- RNA As another example of the method for suppressing gene expression using the nucleic acid molecule according to the present invention, there is a cosuppression method.
- a sense double-stranded DNA having the entire nucleotide sequence of the gene according to the invention is introduced into the target plant.
- the sense single-stranded RNA according to the present invention is expressed, and the expression of the gene is extremely suppressed by this RNA (Plant Cell 9: 1357-1368, 1997).
- the obtained protein solution was centrifuged (10000 rpm, 4 ° C., 10 minutes), and ammonium sulfate was added to the collected supernatant to a saturation concentration of 30%. After stirring at 4 ° C. for 1 hour, the supernatant was collected by centrifugation (10000 rpm, 4 ° C., 10 minutes). Ammonium sulfate was added to the resulting supernatant to a saturation concentration of 70%, stirred at 4 ° C. for 1 hour, and then centrifuged (10000 rpm, 4 ° C., 10 minutes) to obtain a precipitate.
- flavone showing the same retention time and absorption maximum as those of purified apigenin 4 ′, 7-diglucoside and apigenin 7-glucoside flavone showing a retention time close to that of apigenin 7-glucoside was biosynthesized (FIG. 7).
- the enzyme reaction was carried out without adding UDP-glucose, nothing was biosynthesized.
- Example 2 Determination of retention time / absorption maximum of apigenin 4′-glucoside
- apigenin 4'-glucoside and apigenin 7-glucoside are biosynthesized as intermediate adults during the process of apigenin 4', 7-diglucoside biosynthesis. Should be done (see FIG. 8). From this, it was determined that the flavone showing the retention time close to that of apigenin 7-glucoside detected in Example 1 was apigenin 4′-glucoside (see FIG. 7). The retention time and absorption maximum of apigenin 4′-glucoside could be determined.
- Nemophila petals have a protein having an activity of transferring sugars to the 4′-position and 7-position hydroxyl groups of flavones depending on UDP-glucose.
- one enzyme may carry out glycosylation of both, and different enzymes each carry out the glycosylation of the hydroxyl groups at the 4′-position and the 7-position. The possibility was considered.
- Example 3 Acquisition of a candidate gene for a gene encoding a protein having an activity of transferring a sugar to the hydroxyl group at the 4′-position of flavone] ⁇ Isolation of total RNA> Total RNA was isolated from petals of Nemophila stage 1 and 2 using Plant RNAeasy Kit (QIAGEN) according to the protocol recommended by the manufacturer. ⁇ Expression analysis of cDNA derived from petals of Nemophila> After reverse transcription reaction of 30 ⁇ g of Nemophila petal-derived total RNA, a homogenized cDNA library was prepared.
- the prepared library was amplified for each clone by emulsion PCR, and then the nucleotide sequence was determined by genome sequencer FLX (Roche Diagnostics Japan Co., Ltd.).
- the obtained sequence data was translated into an amino acid sequence, and a sequence showing homology with the amino acid sequence of gentian anthocyanin 3′-glycosyltransferase was extracted. These sequences were assembled to obtain candidate genes encoding glycosyltransferases.
- Example 4 Obtaining a full-length cDNA sequence of a candidate gene of a gene encoding a protein having an activity of transferring a sugar to the 4'-position hydroxyl group of flavone]
- 25 types of glycosyltransferase gene sequences were obtained.
- Experiments were conducted to obtain full-length cDNA sequences for 10 genes (NmGT0-9).
- the full-length cDNA sequence was obtained using GeneRacer Kit (Invitrogen) according to the protocol recommended by the manufacturer.
- a region specific to the clone was selected from the cDNA partial sequence obtained in Example 3, a primer for RACE was designed based on the sequence of this region, and the 5 ′ and 3 ′ terminal sequences were determined by RACE PCR. Obtained. Based on this sequence, a primer for amplifying a full-length cDNA sequence is designed, and nemophila cDNA is used as a template, using KOD-plus polymerase (TOYOBO) according to the protocol recommended by the manufacturer. PCR reaction was carried out at 50 ⁇ l (held at 94 ° C. for 2 minutes, repeated for 30 cycles of 94 ° C. for 15 seconds, 55 ° C. for 30 seconds, 68 ° C. for 2 minutes, and then held at 4 ° C.).
- TOYOBO KOD-plus polymerase
- Nemophila cDNA was synthesized according to the protocol recommended by the manufacturer using SuperScript II Reverse Transcriptase (Invitrogen), using the total RNA isolated in Example 2 as a template.
- the primers were designed so that restriction enzyme sites were included at both ends of the full-length cDNA so that the NmGT0-9 gene could be inserted into the E. coli expression vector pET15b (Novagen).
- pTOPO-NmGT09 plasmid containing the full length of the NmGT gene (pTOPO-NmGT0-9) is obtained according to the protocol recommended by the manufacturer using Zero Blunt TOPO PCR Cloning kit for sequencing (invitrogen). did.
- NmGT8 SEQ ID NO: 1
- candidate genes NmGT0 to 9
- Example 5 Experiment for measuring enzyme activity of candidate protein having activity of transferring sugar to hydroxyl group at 4 ′ position of flavone (when using crude enzyme)] ⁇ Preparation of E. coli expression construct>
- pTOPO-NmGT0-9 Each 3 ⁇ g of pTOPO-NmGT0-9 was treated with the corresponding restriction enzyme, and the obtained DNA fragment of about 1.5 kb was recovered.
- 2 ⁇ g of vector pET15b was also treated with a restriction enzyme and ligated with the obtained DNA fragment to prepare an E. coli expression construct (pET-NmGT0-9).
- pET-NmGT0-9 was introduced into E. coli strain BL2 using One Shot BL21 (DE3) (invitrogen) according to the protocol recommended by the manufacturer to obtain transformed E. coli.
- This Escherichia coli was cultured using an Overnight Express Autoinduction System 1 (Novagen) according to the protocol recommended by the manufacturer.
- transformed E. coli was cultured at 37 ° C. until the OD600 value reached 0.5 (about 4 hours).
- This Escherichia coli solution was added as a preculture solution to 50 ml of the culture solution, followed by main culture at 27 ° C. overnight.
- the Escherichia coli solution cultured overnight was centrifuged (3000 rpm, 4 ° C., 15 minutes), and the collected cells were mixed with 5 ml of sonic buffer (composition: TrisHCl (pH 7.0): 2.5 mM, dithiothreitol (DTT). ): 1 mM, amidinophanylmethanesulfonyl fluoride hydrochloride (APMSF): 10 ⁇ M), pulverized E. coli by sonication, and then centrifuged (15000 rpm, 4 ° C., 10 minutes) to collect the supernatant. . The supernatant was used as a crude enzyme solution. For the centrifugation, Avanti HP-26XP (rotor: JA-2) was used (BECKMAN COULTER).
- Example 6 Experiment for measuring enzyme activity of protein having activity of transferring sugar to hydroxyl group at 4'-position of flavone (when protein with added His-Tag is purified)] ⁇ Expression of glycosyltransferase in E. coli and protein purification>
- the Escherichia coli strain BL2 introduced with pET-NmGT8 described in Example 5 was cultured using the Overnight Express Automation System 1 (Novagen) according to the protocol recommended by the manufacturer. In 8 ml of the prepared culture solution, the transformed Escherichia coli was cultured at 37 ° C. until the OD600 value reached 0.5 (about 4 hours).
- This Escherichia coli solution was added as a preculture solution to 200 ml of the culture solution, and main culture was performed overnight at 25 ° C.
- the Escherichia coli solution that was cultured overnight was centrifuged (1000 ⁇ g, 4 ° C., 10 minutes), and the collected cells were extracted into 20 ml of an extract (composition: buffer (KCl: 300 mM, KH 2 PO 4 : 50 mM), Suspension in imidazole: 5 mM) (pH 8.0), amidinophanylmethanesulfonyl fluoride hydrochloride (APMSF): 10 ⁇ M) and pulverization of E.
- composition composition: buffer (KCl: 300 mM, KH 2 PO 4 : 50 mM
- Suspension in imidazole 5 mM
- APIMSF amidinophanylmethanesulfonyl fluoride hydrochloride
- NmGT8 protein performs glycosylation at the 4 'position prior to glycosylation at the 7 position of apigenin or luteolin (see Fig. 8).
- NmGT8 protein has high substrate specificity and selectively glycosides the 4′-position of flavones such as apigenin and luteolin. Became clear (see FIG. 11).
- Dbs5GT Livingstone daisy-derived glycosyltransferase gene
- NmGT8 and NmGT3 and between NmGT8 and NmGT4 were 32% and 32%, respectively (see FIGS. 12-1 to 12-3).
- ClustalW program of the MacVector application version 11.02, Oxford Molecular Ltd., Oxford, England
- the amino acid sequence having the highest identity with NmGT8 is an enzyme (GenBank accession No. Q4R1I9) that adds a sugar to positions 3 and 5 of rose anthocyanidins. was 52% (see FIG. 14).
- amino acid sequence having high identity with NmGT8 is an enzyme (described in PCT / JP2004 / 019461) that adds a sugar to the 4′-position of the snapdragon chalcone, and the identity was 51% (see FIG. 13). .
- FIG. 15 shows a phylogenetic tree indicating the relationship between the NmGT8 of the present invention and the various enzymes described above.
- Example 7 Expression in Torenia of a gene encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of flavone
- a binary vector pSPB4583 for expressing NmGT8 was constructed, and Torenia ( (Summer Wave). Details of the introduced construct are shown below (see FIG. 16).
- pSPB4583 is based on a binary vector pBINPLUS (vanEngel et al., Transgenic Research 4, p288) for plant introduction, and has an El235S promoter (Mittsuhara et al., () with an enhancer sequence repeated twice upstream of the cauliflower mosaic virus 35S promoter. 1996) Plant Cell Physiol.37, p49), full length cDNA NmGT8 and mas terminator.
- the reverse transcription PCR reaction was performed in 30 ⁇ l using ExTaq polymerase (Takara) using cDNA as a template according to the protocol recommended by the manufacturer (holding at 94 ° C. for 2 minutes, holding at 94 ° C. for 1 minute, The cycle of holding at 55 ° C. for 1 minute and holding at 72 ° C. for 2 minutes was repeated 25 cycles and then held at 4 ° C.).
- Primers were designed to specifically amplify each full-length cDNA. As a result, transcription of NmGT8 in Torenia was confirmed.
- Example 8 Expression in petunia of a gene encoding a protein having an activity of transferring a sugar to the 4′-position hydroxyl group of flavone
- Binary vectors pSPB5424 and 5428 for expressing NmGT8 were constructed and introduced into Petunia (Saffinia Bouquet Red). Since petunia originally does not biosynthesize flavones, Torenia flavone synthase (described in PCT / JP2008 / 061600, SEQ ID NO: 5) was introduced together, and in petunia NmGT8 transferred sugar to the 4'-position hydroxyl group of flavone Was evaluated. Details of the introduced construct are shown below (see FIG. 17). ⁇ Production of construct>
- pSPB5424 has pBINPLUS as a basic backbone, three expression cassettes (1. El235S promoter and full-length cDNA pansy F3′5′H (described in PCT / JP2004 / 011958, SEQ ID NO: 3)) and HSP terminator (Plant Cell Physiology (2010 51, 328-332), 2. El235S promoter, full-length cDNA torenia flavone synthase, HSP terminator, 3. El235S promoter, full-length cDNA NmGT8, and HSP terminator).
- pSPB5428 is based on pBINPLUS and includes two expression cassettes (1. El235S promoter, full-length cDNA torenia flavone synthase, HSP terminator, 2. El235S promoter, full-length cDNA NmGT8 and HSP terminator).
- Petal pigment analysis was performed on lines in which transcripts were confirmed for full-length cDNA Torenia flavone synthase and full-length cDNA NmGT8. Freeze dried petals of 0.2 g of fully bloomed flowers for more than 24 hours, pulverize with a spatula, add 4 ml of extraction buffer (composition: 50% acetonitrile in water containing 0.1% TFA), and over 20 minutes Processed under sonic. The petal extract was analyzed by high performance liquid chromatography (Prominence (Shimadzu Corporation)). Analysis was performed under the same conditions as described in Example 5.
- Inertsil ODS-4 250 * 4.6 mm, 5 ⁇ m (Shimadzu Corporation) was used.
- liquid A (0.1% formic acid aqueous solution
- liquid B 90% acetonitrile aqueous solution containing 0.1% formic acid
- 35 minutes linear concentration gradient from both 9: 1 mixture to 11: 9 mixture and 10 minutes linear concentration gradient from 11: 9 mixture to 0:10 mixture followed by 5 Elution was performed with a 0:10 mixture for a minute.
- the flow rate was 0.6 ml / min (FIG. 19).
- apigenin 4′-glucoside and luteolin 4′-glucoside were detected in recombinant petunia introduced with flavone synthase and NmGT8 (FIG. 18), and 95.6% of the flavone biosynthesized flavone 4′-glucoside. It was found that occupied. The remaining 4.4% was also found to be flavone 7-glucoside biosynthesized by petunia endogenous activity that transfers sugar to position 7 of flavone (FIG. 19).
- NmGT8 is a protein having an activity of transferring a sugar to the 4′-position of a flavone that functions preferentially over a protein having an activity of transferring a sugar to the 7-position of a petunia endogenous flavone. It became clear. By using NmGT8, flavone 4'-glucoside can be efficiently biosynthesized in petunia.
- Example 9 Expression in carnation of gene encoding protein having activity of transferring sugar to hydroxyl group at 4'-position of flavone
- a binary vector pSPB5433 for expressing NmGT8 was constructed and introduced into carnation (Cream Cinderella). Since carnation originally does not biosynthesize flavones, torenia flavone synthase was introduced together to evaluate whether NmGT8 has an activity of transferring sugars to the 4′-position hydroxyl group of flavones. Details of the introduced construct are shown below (see FIG. 20).
- Example 10 Expression in rose of gene encoding protein having activity of transferring sugar to hydroxyl group at 4 ′ position of flavone
- Binary vectors pSPB4577, 4578, 5437, and 5440 for expressing NmGT8 were constructed and introduced into roses (Knobless, Ritapahumera). Since rose originally does not biosynthesize flavones, torenia flavone synthase was introduced together, and it was evaluated whether NmGT8 has the activity of transferring sugar to the 4′-position hydroxyl group of flavones. Details of the introduced construct are shown below (see FIG. 21).
- pSPB4577 has pBINPLUS as a basic backbone, three expression cassettes (1.
- El235S promoter promoter full-length cDNA pansy F3′5′H and mas terminator, 2. El235S promoter, full-length cDNA torenia flavone synthase, mas terminator, 3 El235S promoter and full length cDNA NmGT8 and mas terminator).
- pSPB4578 has pBINPLUS as a basic skeleton, three expression cassettes (1. Sisoanthocyanin 3-acyl transferase promoter (described in PCT / JP2010 / 053909), full-length cDNA pansy F3′5′H and mas terminator; El235S promoter, full-length cDNA torenia flavone synthase and mas terminator, 3. El235S promoter, full-length cDNA NmGT8 and mas terminator).
- pSPB5437 has pBINPLUS as a basic skeleton, five expression cassettes (1. El235S promoter, full-length cDNA pansy F3′5′H and HSP terminator, 2. lysoanthocyanin 3-acyl transferase chromosomal gene (PCT / JP2010 / 053886 3) El235S promoter, full-length cDNA torenia flavone synthase and HSP terminator, 4. El235S promoter and full-length cDNA NmGT8 and HSP terminator, 5. El235S promoter and full-length cDNA NmGT3 and HSP terminator) include.
- pSPB5440 is based on pBINPLUS, and is composed of five expression cassettes (1. El235S promoter and full-length cDNA pansy F3′5′H and HSP terminator, 2. El235S promoter and cDNA lavender anthocyanin 3-acyltransferase (PCT / 3) El235S promoter, full-length cDNA Torenia flavone synthase and HSP terminator, 4. El235S promoter, full-length cDNA NmGT8, HSP terminator, 5. El235S promoter, full-length cDNA NmGT3, and HSP terminator )It is included.
- Petal pigment analysis was performed on lines in which transcripts were confirmed for full-length cDNA Torenia flavone synthase and full-length cDNA NmGT8. Freeze dried petals of 0.2 g of fully bloomed flowers for more than 24 hours, pulverize with a spatula, add 4 ml of extraction buffer (composition: 50% acetonitrile in water containing 0.1% TFA), and over 20 minutes Processed under sonic. The petal extract was analyzed by high performance liquid chromatography (Prominence (Shimadzu Corporation)). Analysis was performed under the same conditions as described in Example 5. As a control, non-recombinant roses into which no gene was introduced were similarly analyzed (FIG. 22).
- the petal extract diluted 50 times was analyzed with a liquid chromatograph mass spectrometer (Shimadzu Corporation). Shimadzu LCMS-IF-TOF was used as a detector, and detection was performed at 433.1057 ([Api-Glc + H] +) and 449.184 ([Lut-Glc + H] +).
- As the column Inertsil ODS-4 (250 * 4.6 mm, 5 ⁇ m) (Shimadzu Corporation) was used.
- liquid A (0.1% formic acid aqueous solution
- liquid B 90% acetonitrile aqueous solution containing 0.1% formic acid
- apigenin 4′-glucoside and luteolin 4′-glucoside were detected in the recombinant rose introduced with flavone synthase and NmGT8 (FIG. 22), and 97.0% of the flavone biosynthesized flavone 4′-glucoside. It was found that occupied. The remaining 3.0% was also found to be flavone 7-glucoside biosynthesized by rose intrinsic activity that transfers sugar to position 7 of flavone (FIG. 23). On the other hand, no flavone was detected in the non-recombinant rose.
- NmGT8 is a protein having an activity of transferring a sugar to the 4′-position of a flavone that functions preferentially over a protein having an activity of transferring a sugar to the 7-position of a rose endogenous flavone. It became clear. By using NmGT8, flavone 4'-glucoside can be efficiently biosynthesized in roses.
- a polynucleotide encoding a protein having an activity of transferring a sugar to the hydroxyl group at the 4'-position of flavone was identified for the first time.
- the polynucleotide of the present invention in an appropriate host cell, it is possible to produce a protein having an activity of specifically transferring a sugar to the hydroxyl group at the 4'-position of flavone.
- a protein having an activity of transferring a sugar to a hydroxyl group at the 4'-position of a flavone can be used for modification of flower color by expressing it constitutively or tissue-specifically in a plant.
- the present invention also provides a method for producing a flavone in which sugar is added to the hydroxyl group at the 4 'position, and foods, pharmaceuticals, cosmetics and the like obtained by the method.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nutrition Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dermatology (AREA)
- Birds (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Enzymes And Modification Thereof (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
しかしながら、その機能が同定されていない糖転移酵素も未だ多数残っていると考えられている。例えば、フラボノイドの4’位に糖を転移する活性を有するタンパク質をコードする遺伝子や、フラボノイドのA環とB環の2箇所の水酸基に逐次的に糖を転移する活性を有するタンパク質をコードする遺伝子は未だ同定されていない。リビングストンデージー由来の糖転移酵素遺伝子を大腸菌で発現させたタンパク質が、in vitro においてフラボノイドの4’位又は7位のいずれか一方の水酸基にグルコースを転移する活性を示すことが報告されているが、この糖転移酵素の植物体における本来の活性は、ベタニジンの5位の水酸基にグルコースを転移するものである(以下、非特許文献11参照)。
かかる状況の下、本発明が解決しようとする課題は、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチドとその使用を提供することである。
すなわち、本発明は以下の通りのものである。
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリジェント条件下でハイブリダイズするポリヌクレオチドであって、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列において、1又は数個のアミノ酸が欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなり、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;及び
(e)配列番号2のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
からなる群から選ばれるポリヌクレオチド。
前記[10]に記載の非ヒト宿主を培養し又は生育させ、そして
該非ヒト宿主からフラボンの4’位の水酸基に糖を転移する活性を有するタンパク質を採取する、
を含む、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質の製造方法。
前記[10]に記載の非ヒト宿主を培養し又は生育させ、そして
該非ヒト宿主から、4’位の水酸基に糖が付加されたフラボンを採取する、
を含む、4’位の水酸基に糖が付加されたフラボンの製造方法。
また、本発明により、4’位の水酸基に糖が付加したフラボンの製法、及び該製法によって得られた食品、医薬品、化粧品なども提供される。
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリジェント条件下でハイブリダイズするポリヌクレオチドであって、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列において、1又は数個のアミノ酸が欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなり、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;及び
(e)配列番号2のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
からなる群から選ばれるポリヌクレオチドに関する。
本明細書中、用語「ストリジェント条件」とは、ポリヌクレオチド又はオリゴヌクレオチドと、ゲノムDNAとの選択的かつ検出可能な特異的結合を可能とする条件である。ストリンジェント条件は、塩濃度、有機溶媒(例えば、ホルムアミド)、温度、及びその他公知の条件の適当な組み合わせによって定義される。すなわち、塩濃度を減じるか、有機溶媒濃度を増加させるか、又はハイブリダイゼーション温度を上昇させるかによってストリンジェンシー(stringency)は増加する。さらに、ハイブリダイゼーション後の洗浄の条件もストリンジェンシーに影響する。この洗浄条件もまた、塩濃度と温度によって定義され、塩濃度の減少と温度の上昇によって洗浄のストリンジェンシーは増加する。したがって、用語「ストリンジェント条件」とは、各塩基配列間の「同一性」又は「相同性」の程度が、例えば、全体の平均で約80%以上、好ましくは約90%以上、より好ましくは約95%以上、さらに好ましくは97%以上、最も好ましくは98%以上であるような、高い相同性を有する塩基配列間のみで、特異的にハイブリダイズするような条件を意味する。「ストリンジェント条件」としては、例えば、温度60℃~68℃において、ナトリウム濃度150~900mM、好ましくは600~900mM、pH 6~8であるような条件を挙げることができ、具体例としては、5 x SSC(750 mM NaCl、75 mM クエン酸三ナトリウム)、1% SDS、5 x デンハルト溶液50% ホルムアルデヒド、及び42℃の条件でハイブリダイゼーションを行い、0.1 x SSC(15 mM NaCl、1.5 mM クエン酸三ナトリウム)、0.1% SDS、及び55℃の条件で洗浄を行うものを挙げることができる。
また、本発明に係るDNAは、当業者に公知の方法、例えば、ホスホアミダイド法等により化学的に合成する方法、植物の核酸試料を鋳型とし、目的とする遺伝子のヌクレオチド配列に基づいて設計したプライマーを用いる核酸増幅法などによって得ることができる。
あるいは短縮されたアミノ酸配列からなる酵素をコードするDNAを得るには、例えば、目的とするアミノ酸配列より長いアミノ酸配列、例えば、全長アミノ酸配列をコードするDNAを所望の制限酵素により切断し、その結果得られたDNA断片が目的とするアミノ酸配列の全体をコードしていない場合は、不足部分の配列からなるDNA断片を合成し、連結すればよい。
宿主としては、原核生物又は真核生物を用いることがきる。原核生物としては細菌、例えば、エシェリヒア(Escherichia)属に属する細菌、例えば、大腸菌(Escherichia coli)、バシルス(Bacillus)属微生物、例えば、バシルス・スブシルス(Bacillus subtilis)など常用の宿主を用いることができる。真核生物としては、下等真核生物、例えば、真核微生物、例えば、真菌である酵母又は糸状菌が使用できる。
植物細胞内でポリヌクレオチドを構成的に発現させるプロモーターの例としては、カリフラワーモザイクウィルスの35S RNAプロモーター、rd29A遺伝子プロモーター、rbcSプロモーター、mac-1プロモーター等が挙げられる。また、組織特異的な遺伝子発現のためには、その組織で特異的に発現する遺伝子のプロモーターを用いることができる。
発現ベクターの作製は、制限酵素、リガーゼなどを用いて常法に従って行うことができる。また、発現ベクターによる宿主の形質転換も常法に従って行うことができる。
本明細書では、ネモフィラ由来のフラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードする遺伝子について述べているが、本発明に係るポリヌクレオチドは、ネモフィラ由来の遺伝子に限定されるものではなく、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードする遺伝子の起源としては植物でも動物でも微生物であってもよく、フラボンの4’位の水酸基に糖を転移する活性を有している限り、起源を問わず、植物における花色の変更に利用可能である。
また、本発明の製造方法により製造された4’位の水酸基に糖が付加されたフラボンは、食品、医薬品、化粧品の製造方法などの用途に使用することができる。
[実施例1:ネモフィラ花弁におけるフラボンの4’位の水酸基に糖を転移する活性の検出]
ネモフィラ(Nemophila menziesii)の花弁を、以下のように定義した発達段階に分けて採取し、液体窒素で凍らせ、-80℃冷凍庫で保存した:
ステージ1:色が付いていない堅く閉じたつぼみ(約2-5mm);
ステージ2:有色の堅く閉じたつぼみ(約2-5mm);
ステージ3:有色の閉じたつぼみ、がく片がちょうど開こうとしているつぼみ(約5-10mm);
ステージ4:花弁が開こうとしているつぼみ(約10-15mm)
ステージ5:完全にひらいた花
アントシアニンが生合成される前の花弁のステージ1と2で、フラボン糖転移酵素活性が検出されることが期待される。そこで、ステージ1と2の花弁を用いて、花弁抽出液を調製した。500mgの花弁サンプル(-80℃で保存していたステージ1と2のサンプル250mgずつ)を液体窒素で冷やしながら乳鉢ですりつぶし、1.5mlの抽出バッファー(組成;リン酸カリウム緩衝液(pH7.5):100mM、ジチオスレイトール(DTT):1mM、ポリビニルピロリドン40:50mg/ml、スクロース:100mg/ml)に溶かした。得られたタンパク質溶液を遠心分離(10000rpm、4℃、10分間)し、回収した上清に30%の飽和濃度となるように硫酸アンモニウムを加えた。4℃で1時間撹拌した後、遠心分離(10000rpm、4℃、10分間)して上清を回収した。得られた上清に硫酸アンモニウムを飽和濃度70%となるように添加し、4℃で1時間撹拌した後、遠心分離(10000rpm、4℃、10分間)して沈澱を得た。この沈澱を500μlの溶出バッファー(組成;TrisHCl(pH7.5):2.5mM、DTT:1mM、アミジノファニルメタンスルフォニルフルオライド塩酸(APMSF):10μM)に溶かし、NAP-5Colums Sephadex G-25 DNA Grade(GE Healthcare社)を用いてカラム精製を行って、硫酸アンモニウムを取り除いた。この液を「花弁抽出液」とした。遠心分離には、Avanti HP-26XP(ローター:JA-2)を使用した(BECKMAN COULTER社)。
40μlの花弁抽出液、20μlの5mM UDP-グルコース、20μlの1M TrisHCl(pH7.5)、1μlの500ng/μl アピゲニンを混合し、水で200μlになるように氷上で調整した反応液を、30℃で1時間保持した。その後、200μlの停止バッファー(0.1%TFAを含む90%アセトニトリル水溶液)を加えて反応を停止させ、反応液を高速液体クロマトグラフィー(Prominence(島津製作所))にて分析した。検出器は島津PDA SPD-M10AVPを用い330nmでフラボンを検出した。カラムはShim-Pack ODS 150mm*4.6mm(島津製作所)を用いた。溶出には、A液(0.1%TFA水溶液)とB液(0.1%TFAを含む90%アセトニトリル水溶液)を用いた。両者の8:2の混合液から3:7の混合液までの10分間の直線濃度勾配とそれに続く5分間3:7の混合液による溶出を行なった。流速は0.6ml/分とした。コントロールとして、花弁抽出液を100℃20分で熱処理した花弁抽出液を用いて同じ条件下で酵素反応させた反応液を用いた。
その結果、アピゲニン4’,7-ジグルコシド精製品やアピゲニン7-グルコシド標品と同じ保持時間・吸収極大を示すフラボンに加え、アピゲニン7-グルコシドと近い保持時間を示すフラボンが生合成された(図7参照)。UDP-グルコースを加えずに酵素反応したときには、何も生合成されなかった。
ネモフィラ花弁におけるアピゲニン4’,7-ジグルコシドの生合成経路を考慮すると、アピゲニン4’,7-ジグルコシドが生合成される過程で、アピゲニン4’ -グルコシドとアピゲニン7-グルコシドが中間成生物として生合成されるはずである(図8参照)。このことから、実施例1において検出されたアピゲニン7-グルコシドと近い保持時間を示すフラボンは、アピゲニン4’ -グルコシドであると判断された(図7参照)。アピゲニン4’ -グルコシドの保持時間・吸収極大を決定することができた。
これらの結果より、ネモフィラ花弁には、UDP-グルコースに依存したフラボンの4’位と7位の水酸基に糖を転移する活性を有するタンパク質が存在することが明らかとなった。4’位と7位の水酸基の配糖化については、1つの酵素が両方の配糖化を行っている可能性と、4’位と7位の水酸基の配糖化をそれぞれ別の酵素が行っている可能性が考えられた。
<totalRNAの単離>
Plant RNAeasy Kit(QIAGEN社)を用い、製造者に推奨されているプロトコールに従い、ネモフィラのステージ1と2の花弁からtotalRNAを単離した。
<ネモフィラの花弁由来のcDNAの発現解析>
30μgのネモフィラの花弁由来totalRNAの逆転写反応を行った後、均一化cDNAライブラリーを作製した。作製したライブラリーをエマルジョンPCRによって、クローンごと増幅した後、ゲノムシークエンサーFLX(Roche Diagnostics Japan株式会社)により塩基配列の決定を行った。また、得られた配列データをアミノ酸配列に翻訳し、リンドウのアントシアニン3’-糖転移酵素のアミノ酸配列と相同性を示す配列を抽出した。これらの配列をアセンブルし、糖転移酵素をコードする候補遺伝子を得た。
実施例3では糖転移酵素遺伝子の配列が25種得られた。その内10個の遺伝子(NmGT0~9)について完全長cDNA配列を取得するための実験を行った。
完全長cDNA配列の取得は、GeneRacer Kit(invitrogen社)を用いて、製造者に推奨されているプロトコールに従って行った。実施例3で得られたcDNA部分配列の中からそのクローンに特異的な領域を選び、この領域の配列をもとにしてRACE用プライマーを設計し、RACE PCRによって5’,3’末端配列を得た。この配列をもとに、完全長cDNA配列を増幅するためのプライマーを設計し、ネモフィラcDNAを鋳型にして、KOD-plus polymerase(TOYOBO社) を用いて、製造者に推奨されているプロトコールに従い、50μlでPCR反応を行った(94℃で2分間保持し、94℃15秒間、55℃30秒間、68℃で2分間のサイクルを30サイクル繰り返した後、4℃で保持した)。ネモフィラのcDNAは、SuperScriptII Reverse Transcriptase(invitrogen社)を用いて、実施例2で単離したtotal RNAを鋳型にして、製造者に推奨されているプロトコールに従って合成した。プライマーは、大腸菌発現ベクターpET15b(Novagen社)にNmGT0~9遺伝子を挿入できるよう、完全長cDNAの両端に制限酵素サイトが含まれるように設計した。このPCR生成物を用いて、Zero Blunt TOPO PCR Cloning kit for sequencing(invitrogen)を用いて、製造者に推奨されているプロトコールに従って、NmGT遺伝子の完全長を含むプラスミド(pTOPO-NmGT0~9)を取得した。プラスミドに挿入された塩基配列を解析し、フラボンの4’位に糖を転移する活性を有するタンパク質をコードする遺伝子の候補遺伝子(NmGT0~9)の中から完全長cDNA配列(NmGT8:配列番号1)を取得した。
<大腸菌発現コンストラクトの作製>
それぞれ3μgのpTOPO-NmGT0~9を該当する制限酵素で処理し、得られた約1.5kbのDNA断片を回収した。2μgのベクターpET15bも制限酵素で処理し、得られたDNA断片とライゲーションさせて、大腸菌発現コンストラクト(pET-NmGT0~9)を作製した。
pET-NmGT0~9を、One Shot BL21(DE3)(invitorgen)を用いて、製造者に推奨されているプロトコールに従い、大腸菌株BL2へ導入し、形質転換大腸菌を取得した。この大腸菌をOvernight Express Autoinduction System1(Novagen社)を用いて、製造者に推奨されているプロトコールに従い、培養した。調製した培養液2mlで、形質転換大腸菌をOD600値が0.5になるまで37℃で培養した(約4時間)。この大腸菌液を前培養液として、50mlの培養液に加え、27℃で一晩本培養した。
一晩本培養した大腸菌液を遠心分離(3000rpm、4℃、15分間)し、集菌した菌体を5mlのソニックバッファー(組成;TrisHCl(pH7.0):2.5mM、ジチオスレイトール(DTT):1mM、アミジノファニルメタンスルフォニルフルオライド塩酸(APMSF):10μM)に懸濁し、超音波処理により大腸菌を粉砕した後、遠心分離(15000rpm、4℃、10分間)して、上清を回収した。その上清を粗酵素液とした。遠心分離には、Avanti HP-26XP(ローター:JA-2)を使用した(BECKMAN COULTER社)。
80μlの粗酵素液、20μlの5mM UDP-グルコース、20μlの1M TrisHCl(pH7.5)、1μlの500ng/μl のアピゲニンを混合し、水で200μlになるように氷上で調整した反応液を30℃で30分間保持した。その後、200μlの停止バッファー(0.1%TFAを含む90%アセトニトリル水溶液)を加えて反応を停止させ、反応液を高速液体クロマトグラフィー(Prominence(島津製作所))にて分析した。検出器は島津PDA SPD-M10AVPを用い330nmでフラボンを検出した。カラムはShim-Pack ODS 150mm*4.6mm(島津製作所)を用いた。溶出には、A液(0.1%TFA水溶液)とB液(0.1%TFAを含む90%アセトニトリル水溶液)を用いた。両者の8:2の混合液から3:7の混合液までの10分間の直線濃度勾配とそれに続く5分間3:7の混合液による溶出を行なった。流速は0.6ml/分とした。コントロールとして、インサートを挿入しないpETベクターを導入した大腸菌の粗酵素液を用いて同じ条件化で酵素反応させた反応液を用いた。
その結果、NmGT8について、基質以外のピークがみられた。
実施例6以降は、NmGT8(配列番号1)について記載する。
<糖転移酵素の大腸菌での発現とタンパク質精製>
実施例5で記載したpET-NmGT8を導入した大腸菌株BL2をOvernight Express Autoinduction System1(Novagen社)を用いて、製造者に推奨されているプロトコールに従い、培養した。調製した培養液8mlで、形質転換大腸菌をOD600値が0.5になるまで37℃で培養した(約4時間)。この大腸菌液を前培養液として、200mlの培養液に加え、25℃で一晩本培養した。
一晩本培養した大腸菌液を遠心分離(1000×g、4℃、10分間)し、集菌した菌体を20mlの抽出液(組成;緩衝液(KCl:300mM、KH2PO4:50mM、イミダゾール:5mM)(pH8.0)、アミジノファニルメタンスルフォニルフルオライド塩酸(APMSF):10μM)に懸濁し、超音波処理により大腸菌を粉砕した後、遠心分離(1400×g、4℃、20分)して、上清を回収した。その上清を0.45μmフィルターに通し、Profinia(Bio-Rad)を用いて、製造者に推奨されているプロトコールに従って、His-Tag精製した。得られた精製タンパク質溶液を、centrifugal Filters(Ultracel-10K)(Amicon Ultra社)を用いて、遠心分離(7500×g、4℃、15分間)し、その濃縮されたタンパク質溶液を「NmGT8タンパク質溶液」とした。遠心分離には、Avanti HP-26XP(ローター:JA-2)を使用した(BECKMAN COULTER社)。
10μlのタンパク質溶液、2μlの50mM UDP-グルコース、10μlの1MTrisHCl(pH7.5)、5μlの1mMアピゲニンを混合し、水で100μlになるように氷上で調整した反応液を30℃で20分間保持した。その後、100μlの停止バッファー(0.1%TFAを含む90%アセトニトリル水溶液)を加えて反応を停止させ、反応液を高速液体クロマトグラフィー(Prominence(島津製作所))にて分析した。検出器は島津PDA SPD-M10AVPを用い330nmでフラボンを検出した。カラムはShim-Pack ODS 150mm*4.6mm(島津製作所)を用いた。溶出には、A液(0.1%TFA水溶液)とB液(0.1%TFAを含む90%メタノール水溶液)を用いた。両者の8:2の混合液から3:7の混合液までの10分間の直線濃度勾配とそれにつづく6分間3:7の混合液による溶出を行なった。流速は0.6ml/分とした。
本発明のNmGT8遺伝子が、植物内でフラボンの4’位の水酸基に糖を転移する活性を有するタンパク質を翻訳するかどうかを確かめるため、NmGT8を発現させるためのバイナリーベクターpSPB4583を構築し、トレニア(サマーウェーブ)へ導入した。導入したコンストラクトの詳細を以下に示す(図16参照)。
pSPB4583は、植物導入用バイナリーベクターpBINPLUS(vanEngel et al.,Transgenic Reserch 4,p288)を基本骨格とし、カリフラワーモザイクウイルス35Sプロモーター上流にエンハンサー配列を2回繰り返してもつEl235Sプロモーター(Mitsuhara et al.,(1996)Plant Cell Physiol.37,p49)と完全長cDNANmGT8とmasターミネーターが含まれている。
カナマイシンを含む選択培地でシュートを形成し、発根が見られた個体を馴化し、それぞれの組換えトレニアのガク割れしていないつぼみの花弁を用いて、遺伝子発現解析を行った。totalRNA単離は実施例3に記載した方法と同様にして、cDNA合成は実施例4に記載した方法と同様にして行った。逆転写PCR反応は、cDNAを鋳型として、ExTaq polymarase(Takara社)を用いて、製造者に推奨されているプロトコールに従い、30μlで行った(94℃で2分間保持し、94℃で1分、55℃で1分、72℃で2分間保持のサイクルを25サイクル繰り返した後、4℃で保持した)。それぞれの完全長cDNAが特異的に増幅するようなプライマーを設計した。その結果、トレニアにおけるNmGT8の転写が確認された。
NmGT8を発現させるためのバイナリーベクターpSPB5424、5428を構築し、ペチュニア(サフィニアブーケレッド)へ導入した。ペチュニアは元来フラボンを生合成しないため、トレニアフラボン合成酵素(PCT/JP2008/061600に記載、配列番号5)を共に導入し、ペチュニアでNmGT8がフラボンの4’位の水酸基に糖を転移する活性を有するかどうかを評価した。導入したコンストラクトの詳細を以下に示す(図17参照)。
<コンストラクトの作製>
pSPB5428は、pBINPLUSを基本骨格とし、2つの発現カセット(1.El235Sプロモーターと完全長cDNAトレニアフラボン合成酵素とHSPターミネーター、2.El235Sプロモーターと完全長cDNANmGT8とHSPターミネーター)が含まれている。
カナマイシンを含む選択培地でシュートを形成し、発根が見られた個体を馴化し、それぞれの組換えペチュニアの完全にひらいた花の花弁を用いて、実施例7に記載した方法と同様にして、遺伝子発現解析を行った。その結果、ペチュニアにおけるNmGT8の転写が確認された。
完全長cDNAトレニアフラボン合成酵素と完全長cDNANmGT8について転写産物が確認された系統について、花弁の色素分析を行った。0.2gの完全にひらいた花の花弁を24時間以上凍結乾燥させ、スパチュラで細かく砕き、4mlの抽出バッファー(組成;0.1%TFAを含む50%アセトニトリル水溶液)を加えて、20分間超音波下で処理した。その花弁抽出液を高速液体クロマトグラフィー(Prominence(島津製作所))にて分析した。分析は実施例5に記載した条件と同様にして行った。コントロールとして、遺伝子を導入していない非組換えペチュニアとトレニアフラボン合成酵素のみを導入しフラボンを生合成させた組換えペチュニアについても同様にして分析を行った(図18)。さらに、50倍希釈した花弁抽出液を液体クロマトグラフ質量分析計(島津製作所)にて分析した。検出器は島津LCMS-IF-TOFを用い、433.1057(〔Api-Glc+H〕+)と449.1084(〔Lut-Glc+H〕+)で検出した。カラムはInertsil ODS-4(250*4.6mm、5μm)(島津製作所)を用いた。溶出には、A液(0.1%ギ酸水溶液)とB液(0.1%ギ酸を含む90%アセトニトリル水溶液)を用いた。両者の9:1の混合液から11:9の混合液までの35分間の直線濃度勾配及び、11:9の混合液から0:10の混合液までの10分間の直線濃度勾配とそれに続く5分間0:10の混合液による溶出を行なった。流速は0.6ml/分とした(図19)。
NmGT8を発現させるためのバイナリーベクターpSPB5433を構築し、カーネーション(クリームシンデレラ)へ導入した。カーネーションは元来フラボンを生合成しないため、トレニアフラボン合成酵素を共に導入し、カーネーションでNmGT8がフラボンの4’位の水酸基に糖を転移する活性を有するかどうかを評価した。導入したコンストラクトの詳細を以下に示す(図20参照)。
pSPB5433は、植物導入用バイナリーベクターpWTT2132(DNA Plant Technologies, USA=DNAP)を基本骨格とし、4つの発現カセット(1.キンギョソウカルコン合成酵素プロモーター(PCT/AU94/00265に記載)と完全長cDNAパンジーF3’5’HとHSPターミネーター、2.キンギョソウカルコン合成酵素プロモーターと完全長cDNAトレニアフラボン合成酵素とHSPターミネーター、3.カーネーションアントシアニン合成酵素プロモーター(PCT/AU/2009/001659に記載)と完全長cDNANmGT8とHSPターミネーター、4.カーネーションアントシアニン合成酵素プロモーターと完全長cDNANmGT3(特願2011-006317)とHSPターミネーター)が含まれている。
NmGT8を発現させるためのバイナリーベクターpSPB4577、4578、5437、5440を構築し、バラ(ノブレス、リタパヒューメラ)へ導入した。バラは元来フラボンを生合成しないため、トレニアフラボン合成酵素を共に導入し、バラでNmGT8がフラボンの4’位の水酸基に糖を転移する活性を有するかどうかを評価した。導入したコンストラクトの詳細を以下に示す(図21参照)。
pSPB4577は、pBINPLUSを基本骨格とし、3つの発現カセット(1.El235Sプロモータープロモーターと完全長cDNAパンジーF3’5’Hとmasターミネーター、2.El235Sプロモーターと完全長cDNAトレニアフラボン合成酵素とmasターミネーター、3.El235Sプロモーターと完全長cDNANmGT8とmasターミネーター)が含まれている。
pSPB4578は、pBINPLUSを基本骨格とし、3つの発現カセット(1.シソアントシアニン3-アシル基転位酵素プロモーター(PCT/JP2010/053909に記載)と完全長cDNAパンジーF3’5’Hとmasターミネーター、2.El235Sプロモーターと完全長cDNAトレニアフラボン合成酵素とmasターミネーター、3.El235Sプロモーターと完全長cDNANmGT8とmasターミネーター)が含まれている。
pSPB5440は、pBINPLUSを基本骨格とし、5つの発現カセット(1.El235Sプロモーターと完全長cDNAパンジーF3’5’HとHSPターミネーター、2.El235SプロモータープロモーターとcDNAラベンダーアントシアニン3-アシル基転位酵素(PCT/JP1996/000348に記載、配列8参照)、3.El235Sプロモーターと完全長cDNAトレニアフラボン合成酵素とHSPターミネーター、4.El235Sプロモーターと完全長cDNANmGT8とHSPターミネーター、5.El235Sプロモーターと完全長cDNANmGT3とHSPターミネーター)が含まれている。
カナマイシンを含む選択培地でシュートを形成し、発根が見られた個体を馴化し、それぞれの組換えバラの完全にひらいた花の花弁を用いて、実施例7に記載した方法と同様にして、遺伝子発現解析を行った。その結果、バラにおけるNmGT8の転写が確認された。
完全長cDNAトレニアフラボン合成酵素と完全長cDNANmGT8について転写産物が確認された系統について、花弁の色素分析を行った。0.2gの完全にひらいた花の花弁を24時間以上凍結乾燥させ、スパチュラで細かく砕き、4mlの抽出バッファー(組成;0.1%TFAを含む50%アセトニトリル水溶液)を加えて、20分間超音波下で処理した。その花弁抽出液を高速液体クロマトグラフィー(Prominence(島津製作所))にて分析した。分析は実施例5に記載した条件と同様にして行った。コントロールとして、遺伝子を導入していない非組換えバラについても同様にして分析を行った(図22)。50倍希釈した花弁抽出液を液体クロマトグラフ質量分析計(島津製作所)にて分析した。検出器は島津LCMS-IF-TOFを用い、433.1057(〔Api-Glc+H〕+)と449.1084(〔Lut-Glc+H〕+)で検出した。カラムはInertsil ODS-4(250*4.6mm、5μm)(島津製作所)を用いた。溶出には、A液(0.1%ギ酸水溶液)とB液(0.1%ギ酸を含む90%アセトニトリル水溶液)を用いた。両者の9:1の混合液から11:9の混合液までの35分間の直線濃度勾配及び、11:9の混合液から0:10の混合液までの10分間の直線濃度勾配とそれに続く5分間0:10の混合液による溶出を行なった。流速は0.6ml/分とした(図23)。
Claims (19)
- 以下の(a)~(e):
(a)配列番号1の塩基配列からなるポリヌクレオチド;
(b)配列番号1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリジェント条件下でハイブリダイズするポリヌクレオチドであって、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(d)配列番号2のアミノ酸配列において、1又は数個のアミノ酸が欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなり、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;及び
(e)配列番号2のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチド;
からなる群から選ばれるポリヌクレオチド。 - (a)配列番号1の塩基配列からなるポリヌクレオチドである、請求項1に記載のポリヌクレオチド。
- (c)配列番号2のアミノ酸配列からなるタンパク質をコードするポリヌクレオチドである、請求項1に記載のポリヌクレオチド。
- (f)配列番号2のアミノ酸配列に対して、95%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチドである、請求項1に記載のポリヌクレオチド。
- (g)配列番号2のアミノ酸配列に対して、97%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチドである、請求項4に記載のポリヌクレオチド。
- (h)配列番号2のアミノ酸配列に対して、98%以上の同一性を有するアミノ酸配列を有し、かつ、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質をコードするポリヌクレオチドである、請求項5に記載のポリヌクレオチド。
- DNAである、請求項1~6のいずれか1項に記載のポリヌクレオチド。
- 請求項1~7のいずれか1項に記載のポリヌクレオチドによりコードされたタンパク質。
- 請求項1~7のいずれか1項に記載のポリヌクレオチドを含有するベクター。
- 請求項9に記載のベクターが導入された非ヒト宿主。
- 請求項1~7のいずれか1項に記載のポリヌクレオチドを用いてフラボンの4’位の水酸基に糖を付加する方法。
- 請求項1~7のいずれか1項に記載のポリヌクレオチドが導入され、かつ、該ポリヌクレオチドを含有する、植物若しくはその子孫又はそれらの部分若しくは組織。
- 切花である、請求項12に記載の植物の部分。
- 請求項13に記載の切花を用いた切花加工品。
- 以下の工程:
請求項10に記載の非ヒト宿主を培養し又は生育させ、そして
該非ヒト宿主からフラボンの4’位の水酸基に糖を転移する活性を有するタンパク質を採取する、
を含む、フラボンの4’位の水酸基に糖を転移する活性を有するタンパク質の製造方法。 - 以下の工程:
請求項10に記載の非ヒト宿主を培養し又は生育させ、そして
該非ヒト宿主から、4’位の水酸基に糖が付加されたフラボンを採取する、
を含む、4’位の水酸基に糖が付加されたフラボンの製造方法。 - 請求項16に記載の製造方法により製造された4’位の水酸基に糖が付加されフラボンを含有する食品。
- 請求項16に記載の製造方法により製造された4’位の水酸基に糖が付加されフラボンを含有する医薬品。
- 請求項16に記載の製造方法により製造された4’位の両方の水酸基に糖が付加されフラボンを含有する化粧品。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380005375.0A CN104066840B (zh) | 2012-01-17 | 2013-01-16 | 新型糖基转移酶基因及其使用 |
KR1020147018407A KR102028625B1 (ko) | 2012-01-17 | 2013-01-16 | 신규 당 전이 효소 유전자 및 그의 사용 |
RU2014133515A RU2636463C2 (ru) | 2012-01-17 | 2013-01-16 | Новый ген гликозилтрансферазы и его применение |
JP2013554313A JP6147195B2 (ja) | 2012-01-17 | 2013-01-16 | 新規糖転移酵素遺伝子及びその使用 |
CA2863158A CA2863158C (en) | 2012-01-17 | 2013-01-16 | Glycosyltransferase gene and use thereof |
US14/372,232 US10059956B2 (en) | 2012-01-17 | 2013-01-16 | Glycosyltransferase gene and use thereof |
EP13738880.7A EP2818547B1 (en) | 2012-01-17 | 2013-01-16 | Glycosyltransferase gene and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-007105 | 2012-01-17 | ||
JP2012007105 | 2012-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013108794A1 true WO2013108794A1 (ja) | 2013-07-25 |
Family
ID=48799219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/050689 WO2013108794A1 (ja) | 2012-01-17 | 2013-01-16 | 新規糖転移酵素遺伝子及びその使用 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10059956B2 (ja) |
EP (1) | EP2818547B1 (ja) |
JP (1) | JP6147195B2 (ja) |
KR (1) | KR102028625B1 (ja) |
CN (1) | CN104066840B (ja) |
CA (1) | CA2863158C (ja) |
EC (1) | ECSP16013212A (ja) |
RU (1) | RU2636463C2 (ja) |
WO (1) | WO2013108794A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015167016A1 (ja) * | 2014-05-02 | 2015-11-05 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子及びその使用 |
WO2019069946A1 (ja) * | 2017-10-03 | 2019-04-11 | サントリーホールディングス株式会社 | 青系花色を有する形質転換植物及びその作出方法 |
CN114807075A (zh) * | 2021-01-27 | 2022-07-29 | 东北林业大学 | 糖基转移酶PpUGT73E5及其在重楼皂苷合成中的应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104357419B (zh) * | 2014-11-06 | 2017-10-27 | 中国科学院天津工业生物技术研究所 | 一种灯盏花糖基转移酶、制备方法及其应用 |
CN107190015B (zh) * | 2017-07-11 | 2021-06-18 | 山东大学 | 玉米糖基转移酶基因ufgt2在提高植物体内黄酮含量中的应用 |
CN108795897B (zh) * | 2018-05-29 | 2019-06-07 | 首都医科大学 | 一种糖基转移酶ugte1、其编码基因和应用 |
WO2022107857A1 (ja) * | 2020-11-18 | 2022-05-27 | サントリーホールディングス株式会社 | フラボン4'-o-メチル基転移酵素遺伝子及びその使用 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09118611A (ja) * | 1995-10-25 | 1997-05-06 | Nippon Flour Mills Co Ltd | 化粧料 |
JPH09143070A (ja) * | 1995-09-22 | 1997-06-03 | Nippon Flour Mills Co Ltd | リパーゼ阻害剤及び血中トリグリセライド低下剤 |
WO1999005287A1 (fr) | 1997-07-25 | 1999-02-04 | Suntory Limited | Genes codant pour des proteines a activite de transglycolsylation |
WO2001092509A1 (fr) | 2000-06-02 | 2001-12-06 | International Flower Developments Proprietary Limited | Nouveaux genes de glycosyltransferase |
JP2004011958A (ja) | 2002-06-04 | 2004-01-15 | Sanyo Electric Co Ltd | 超臨界冷媒サイクル装置 |
JP2004019461A (ja) | 2002-06-12 | 2004-01-22 | Mitsubishi Heavy Ind Ltd | 圧縮機用電動機の制御装置 |
WO2005017147A1 (ja) | 2003-08-13 | 2005-02-24 | International Flower Developments Proprietary Limited | 花色が変更されたバラの製造方法 |
JP2005095005A (ja) | 2003-09-22 | 2005-04-14 | Aomori Prefecture | 新規グルコシル基転移酵素遺伝子 |
JP2006149293A (ja) | 2004-11-30 | 2006-06-15 | Aomori Prefecture | 新規アントシアニジングルコシル基転移酵素遺伝子 |
WO2006105598A1 (en) | 2005-04-04 | 2006-10-12 | Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patiëntenzorg | Plant genetic sequences associated with vacuolar ph and uses thereof |
WO2007094521A1 (ja) | 2006-02-17 | 2007-08-23 | International Flower Developments Proprietary Limited | フラボノイド糖転移酵素及びその利用 |
WO2008156211A1 (ja) | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボンを含むバラ及びその生産方法 |
WO2009062253A1 (en) | 2007-11-15 | 2009-05-22 | International Flower Developments Pty Ltd | Genetically modified chrysanthemums |
JP2010053909A (ja) | 2008-08-27 | 2010-03-11 | Mitsuboshi Belting Ltd | 伝動ベルトとその製造方法 |
WO2010026666A1 (ja) * | 2008-09-04 | 2010-03-11 | サントリーホールディングス株式会社 | グルクロン酸転移酵素およびそれをコードするポリヌクレオチド |
JP2010053886A (ja) | 2008-08-26 | 2010-03-11 | Jtekt Corp | スラストころ軸受の保持器 |
WO2010122849A1 (ja) | 2009-04-24 | 2010-10-28 | 独立行政法人農業・食品産業技術総合研究機構 | デルフィニジンを花弁に含有するキク植物を生産する方法 |
JP2011006317A (ja) | 2009-05-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 精製された金属又は半金属の製造方法 |
WO2012096307A1 (ja) * | 2011-01-14 | 2012-07-19 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子及びその使用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19923838A1 (de) * | 1999-05-26 | 2000-11-30 | Nutrinova Gmbh | Sorbatkonservierte Mittel, Verfahren zu deren Herstellung und ihre Verwendung |
JP4392483B2 (ja) | 2002-08-20 | 2010-01-06 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子 |
US20070148284A1 (en) * | 2004-08-25 | 2007-06-28 | Cadbury Adams Usa Llc. | Liquid-filled chewing gum |
MY147363A (en) * | 2005-09-20 | 2012-11-30 | Nestec Sa | Water dispersible composition and method for preparing same |
JP5184786B2 (ja) | 2007-01-19 | 2013-04-17 | サントリーホールディングス株式会社 | フラボノイド類の配糖化方法 |
EP2478901A3 (en) * | 2007-02-14 | 2012-11-14 | Mars Incorporated | Neurogenic compounds |
RU2350122C1 (ru) * | 2007-06-15 | 2009-03-27 | Любовь Кимовна Никитина | Биологически активная добавка |
CA2691156A1 (en) | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | Rose containing flavone and delphinidin, and method for production thereof |
WO2009015268A2 (en) | 2007-07-24 | 2009-01-29 | Wisconsin Alumni Research Foundation | Engineered glycosyltransferases with expanded substrate specificity |
RU2010121880A (ru) * | 2007-10-31 | 2011-12-10 | Памела ЛИПКИН (US) | Композиции аналогов простагландина и способы лечения состояний, затрагивающих эпителий |
RU2414885C1 (ru) * | 2009-10-23 | 2011-03-27 | Екатерина Александровна Диброва | Косметическое средство на основе фитоэстрогенного биокомплекса |
KR101162331B1 (ko) * | 2010-04-02 | 2012-07-04 | 주식회사 진켐 | 플라보노이드 당전이 유도체의 제조방법 |
-
2013
- 2013-01-16 RU RU2014133515A patent/RU2636463C2/ru active
- 2013-01-16 JP JP2013554313A patent/JP6147195B2/ja active Active
- 2013-01-16 CN CN201380005375.0A patent/CN104066840B/zh active Active
- 2013-01-16 WO PCT/JP2013/050689 patent/WO2013108794A1/ja active Application Filing
- 2013-01-16 KR KR1020147018407A patent/KR102028625B1/ko active IP Right Grant
- 2013-01-16 CA CA2863158A patent/CA2863158C/en active Active
- 2013-01-16 US US14/372,232 patent/US10059956B2/en active Active
- 2013-01-16 EP EP13738880.7A patent/EP2818547B1/en not_active Not-in-force
-
2014
- 2014-08-08 EC ECIEPI201413212A patent/ECSP16013212A/es unknown
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143070A (ja) * | 1995-09-22 | 1997-06-03 | Nippon Flour Mills Co Ltd | リパーゼ阻害剤及び血中トリグリセライド低下剤 |
JPH09118611A (ja) * | 1995-10-25 | 1997-05-06 | Nippon Flour Mills Co Ltd | 化粧料 |
WO1999005287A1 (fr) | 1997-07-25 | 1999-02-04 | Suntory Limited | Genes codant pour des proteines a activite de transglycolsylation |
WO2001092509A1 (fr) | 2000-06-02 | 2001-12-06 | International Flower Developments Proprietary Limited | Nouveaux genes de glycosyltransferase |
JP2004011958A (ja) | 2002-06-04 | 2004-01-15 | Sanyo Electric Co Ltd | 超臨界冷媒サイクル装置 |
JP2004019461A (ja) | 2002-06-12 | 2004-01-22 | Mitsubishi Heavy Ind Ltd | 圧縮機用電動機の制御装置 |
WO2005017147A1 (ja) | 2003-08-13 | 2005-02-24 | International Flower Developments Proprietary Limited | 花色が変更されたバラの製造方法 |
JP2005095005A (ja) | 2003-09-22 | 2005-04-14 | Aomori Prefecture | 新規グルコシル基転移酵素遺伝子 |
JP2006149293A (ja) | 2004-11-30 | 2006-06-15 | Aomori Prefecture | 新規アントシアニジングルコシル基転移酵素遺伝子 |
WO2006105598A1 (en) | 2005-04-04 | 2006-10-12 | Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek En Patiëntenzorg | Plant genetic sequences associated with vacuolar ph and uses thereof |
WO2007094521A1 (ja) | 2006-02-17 | 2007-08-23 | International Flower Developments Proprietary Limited | フラボノイド糖転移酵素及びその利用 |
WO2008156211A1 (ja) | 2007-06-20 | 2008-12-24 | International Flower Developments Proprietary Limited | フラボンを含むバラ及びその生産方法 |
WO2009062253A1 (en) | 2007-11-15 | 2009-05-22 | International Flower Developments Pty Ltd | Genetically modified chrysanthemums |
JP2010053886A (ja) | 2008-08-26 | 2010-03-11 | Jtekt Corp | スラストころ軸受の保持器 |
JP2010053909A (ja) | 2008-08-27 | 2010-03-11 | Mitsuboshi Belting Ltd | 伝動ベルトとその製造方法 |
WO2010026666A1 (ja) * | 2008-09-04 | 2010-03-11 | サントリーホールディングス株式会社 | グルクロン酸転移酵素およびそれをコードするポリヌクレオチド |
WO2010122849A1 (ja) | 2009-04-24 | 2010-10-28 | 独立行政法人農業・食品産業技術総合研究機構 | デルフィニジンを花弁に含有するキク植物を生産する方法 |
JP2011006317A (ja) | 2009-05-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | 精製された金属又は半金属の製造方法 |
WO2012096307A1 (ja) * | 2011-01-14 | 2012-07-19 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子及びその使用 |
Non-Patent Citations (31)
Title |
---|
"Biocomputing: Informatics and Genome Projects", 1993, ACADEMIC PRESS |
"Computational Molecular Biology", 1988, OXFORD UNIVERSITY PRESS |
"Computer Analysis of Sequence Data: Part I", 1994, HUMAN PRESS |
"Current Protocols in Molecular Biology", 1987 |
"Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
"Sequence Analysis Primer", 1991, M-STOCKTON PRESS |
"Trends in Biotechnology", vol. 10, 1992, pages: 152 |
AKIO NOGUCHI ET AL.: "Local Differentiation of Sugar Donor Specificity of Flavonoid Glycosyltransferase in Lamiales", PLANT CELL, vol. 21, 2009, pages 1556 - 1572, XP055080762 * |
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 70, no. 6, 2006, pages 1471 - 1477 |
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 74, no. 9, 2010, pages 1760 - 1769 |
BIOSCIENCE AND INDUSTRY, vol. 50, 1992, pages 322 |
BIOTECHNOLOGY, vol. 9, 1992, pages 358 |
CELLULAR ENGINEERING, vol. 16, 1997, pages 1463 |
CHEMISTRY, vol. 46, 1991, pages 681 |
HEINJE, G.: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS |
J. BIOL. CHEM., vol. 274, no. 11, 1999, pages 7405 - 7411 |
JOURNAL OF EXPERIMENTAL BOTANY, vol. 59, no. 6, 2008, pages 1241 - 1252 |
MITSUHARA ET AL., PLANT CELL PHYSIOL., vol. 37, 1996, pages 49 |
NATURAL PRODUCT REPORTS, vol. 26, 2009, pages 884 - 915 |
PLANT CELL PHYSIOL., vol. 37, no. 5, 1996, pages 711 - 716 |
PLANT CELL PHYSIOL., vol. 48, no. 11, 2007, pages 1589 - 1600 |
PLANT CELL PHYSIOLOGY, vol. 51, 2010, pages 328 - 332 |
PLANT CELL, vol. 22, no. 10, 2010, pages 3374 - 89 |
PLANT CELL, vol. 9, 1997, pages 1357 - 1368 |
PLANT MOLECULAR BIOLOGY, vol. 48, 2002, pages 401 - 411 |
PLANTA, vol. 210, 2010, pages 1006 - 1013 |
See also references of EP2818547A4 * |
SIMONE WITTE ET AL.: "Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L.", PLANTA, vol. 229, 2009, pages 1135 - 1146, XP019715524 * |
THE PLANT JOURNAL, vol. 19, no. 5, 1999, pages 509 - 519 |
TRENDS IN BIOTECHNOLOGY, vol. 10, 1992, pages 132 |
YUKI MATSUBA ET AL.: "A Novel Glucosylation Reaction on Anthocyanins Catalyzed by Acyl-Glucose--Dependent Glucosyltransferase in the Petals of Carnation and Delphinium", PLANT CELL, vol. 22, 2010, pages 3374 - 3389, XP055080765 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015167016A1 (ja) * | 2014-05-02 | 2015-11-05 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子及びその使用 |
JPWO2015167016A1 (ja) * | 2014-05-02 | 2017-04-20 | サントリーホールディングス株式会社 | 新規糖転移酵素遺伝子及びその使用 |
EP3138908A4 (en) * | 2014-05-02 | 2017-11-15 | Suntory Holdings Limited | Novel glycosyltransferase gene and use thereof |
US10087427B2 (en) | 2014-05-02 | 2018-10-02 | Suntory Holdings Limited | Glycosyltransferase gene and use thereof |
WO2019069946A1 (ja) * | 2017-10-03 | 2019-04-11 | サントリーホールディングス株式会社 | 青系花色を有する形質転換植物及びその作出方法 |
CN114807075A (zh) * | 2021-01-27 | 2022-07-29 | 东北林业大学 | 糖基转移酶PpUGT73E5及其在重楼皂苷合成中的应用 |
CN114807075B (zh) * | 2021-01-27 | 2023-11-21 | 东北林业大学 | 糖基转移酶PpUGT73E5及其在重楼皂苷合成中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CA2863158C (en) | 2021-02-02 |
KR20140116394A (ko) | 2014-10-02 |
RU2636463C2 (ru) | 2017-11-23 |
KR102028625B1 (ko) | 2019-10-04 |
JPWO2013108794A1 (ja) | 2015-05-11 |
CA2863158A1 (en) | 2013-07-25 |
JP6147195B2 (ja) | 2017-06-14 |
EP2818547B1 (en) | 2016-09-07 |
EP2818547A1 (en) | 2014-12-31 |
CN104066840A (zh) | 2014-09-24 |
US10059956B2 (en) | 2018-08-28 |
RU2014133515A (ru) | 2016-03-10 |
EP2818547A4 (en) | 2015-04-01 |
US20150203862A1 (en) | 2015-07-23 |
CN104066840B (zh) | 2016-11-09 |
ECSP16013212A (es) | 2016-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6147195B2 (ja) | 新規糖転移酵素遺伝子及びその使用 | |
CA2585767C (en) | A method of adding aromatic acyl groups to sugars at both the 3' and 5 positions of anthocyanins | |
JP5936553B2 (ja) | 新規糖転移酵素遺伝子及びその使用 | |
JP6602291B2 (ja) | 新規糖転移酵素遺伝子及びその使用 | |
Thill et al. | Differential expression of flavonoid 3′-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria× ananassa and Fragaria vesca | |
JP4691720B2 (ja) | 新規アントシアニジングルコシル基転移酵素遺伝子 | |
JP7146754B2 (ja) | マロニル基転移酵素遺伝子の使用 | |
WO2024135619A1 (ja) | フラバノン2-水酸化酵素遺伝子及びその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13738880 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013554313 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147018407 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2863158 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2013738880 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013738880 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14372232 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14178936 Country of ref document: CO |
|
ENP | Entry into the national phase |
Ref document number: 2014133515 Country of ref document: RU Kind code of ref document: A |