WO2013105631A1 - ホットスタンプ成形体及びその製造方法 - Google Patents
ホットスタンプ成形体及びその製造方法 Download PDFInfo
- Publication number
- WO2013105631A1 WO2013105631A1 PCT/JP2013/050377 JP2013050377W WO2013105631A1 WO 2013105631 A1 WO2013105631 A1 WO 2013105631A1 JP 2013050377 W JP2013050377 W JP 2013050377W WO 2013105631 A1 WO2013105631 A1 WO 2013105631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- hot stamping
- content
- martensite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
- C21D8/0284—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a hot stamped molded article excellent in formability using a cold-rolled steel sheet for hot stamping and a method for producing the same.
- the cold-rolled steel sheet of the present invention includes a cold-rolled steel sheet, a hot-dip galvanized cold-rolled steel sheet, an alloyed hot-dip galvanized cold-rolled steel sheet, an electrogalvanized cold-rolled steel sheet, and an aluminized cold-rolled steel sheet.
- Hot stamping also called hot pressing, die quenching, press quenching, etc.
- Hot stamping improves the formability of a high-strength steel sheet by heating it at a temperature of 750 ° C. or higher and then hot forming (processing) it, and quenching it after forming to obtain the desired material.
- steel sheets having both press workability and high strength include steel sheets having a ferrite / martensite structure, steel sheets having a ferrite / bainite structure, and steel sheets containing residual austenite in the structure.
- a composite structure steel plate (a steel plate made of ferrite and martensite, so-called DP steel plate) in which martensite is dispersed in a ferrite ground has a low yield ratio, a high tensile strength, and an excellent elongation property.
- this composite steel sheet has the disadvantage that the stress is concentrated at the interface between ferrite and martensite and cracks tend to occur from here, so that the hole expandability is poor.
- the steel plate which has such a composite structure cannot exhibit 1.5 GPa grade tensile strength.
- Patent Documents 1 to 3 disclose the above-described composite structure steel plates.
- Patent Documents 4 to 6 describe the relationship between hardness and formability of high-strength steel sheets.
- Japanese Unexamined Patent Publication No. 6-128688 Japanese Unexamined Patent Publication No. 2000-319756
- Japanese Unexamined Patent Publication No. 2005-120436 Japanese Unexamined Patent Publication No. 2005-256141 Japanese Unexamined Patent Publication No. 2001-355044 Japanese Unexamined Patent Publication No. 11-189842
- the present invention has been devised in view of the above-described problems. That is, the present invention is a cold rolled steel sheet for hot stamping (as described later) having a strength of 1.5 GPa or more, preferably 1.8 GPa or more, and more preferably 2.0 GPa or more and better hole expansibility. It is an object of the present invention to provide a hot stamping body using a galvanized or aluminum-plated material, and a method for producing the same.
- the hot stamping molded product refers to a molded product molded by hot stamping using the above-mentioned cold-rolled steel sheet for hot stamping as a raw material.
- the present inventors secure a strength of 1.5 GPa or higher, preferably 1.8 GPa or higher, more preferably 2.0 GPa or higher, and a hot stamp used for a hot stamping molded body having excellent moldability (hole expansibility).
- the hot-rolled steel sheet and hot stamping conditions were intensively studied.
- the cold-rolled steel sheet for hot stamping (cold-rolled steel sheet before hot stamping) has a higher formability, that is, the product of tensile strength TS and hole expansion ratio ⁇ .
- the cold-rolled steel sheet before hot stamping refers to a cold-rolled steel sheet in a state before being heated in a hot stamping process in which the steel sheet is heated to 750 ° C. or higher and 1000 ° C. or lower and processed and cooled.
- the hot stamping molded product according to an aspect of the present invention is, in mass%, C: more than 0.150%, 0.300% or less, Si: 0.010% or more, 1.000% or less, Mn: 1.50% or more, 2.70% or less, P: 0.001% or more, 0.060% or less, S: 0.001% or more, 0.010% or less, N: 0.0005% or more, 0.0100% or less, Al: 0.010% or more, 0.050% or less, optionally B: 0.0005% or more, 0.0020% or less, Mo: 0.01% or more, 0.50% or less, Cr: 0.01% or more, 0.50% or less, V: 0.001% or more, 0.100% or less, Ti: 0.001% or more, 0.100% or less, Nb: 0.001% or more, 0.050% or less, Ni: 0.01% or more, 1.00% or less, Cu: 0.00%.
- 1% or more, 1.00% or less, Ca: 0.0005% or more, 0.0050% or less, REM: 0.0005% or more, 0.0050% or less may be contained, the balance Is composed of Fe and inevitable impurities, and when the C content, Si content and Mn content are expressed as [C], [Si] and [Mn] in unit mass%, the relationship of the following formula a holds.
- the metal structure contains martensite in an area ratio of 80% or more, pearlite with an area ratio of 10% or less, retained austenite with a volume ratio of 5% or less, ferrite with an area ratio of 0 to 20%, It may contain one or more types of bainite with an area ratio of less than 20%, and TS ⁇ ⁇ , which is the product of TS, which is tensile strength, and ⁇ , which is the hole expansion ratio, is 50000 MPa ⁇ % or more. Before measured The hardness of the martensite, and satisfies the formula b and formula c below.
- H1 is the average hardness of the martensite in the surface layer portion
- H2 is the average hardness of the martensite in the plate thickness center portion in the range of ⁇ 100 ⁇ m in the plate thickness direction from the plate thickness center
- ⁇ HM is the above It is the dispersion value of the hardness of the martensite existing in the center of the plate thickness.
- the area ratio of MnS present in the metal structure and having an equivalent circle diameter of 0.1 ⁇ m to 10 ⁇ m is 0.01% or less.
- d may hold.
- n1 is the average number density of MnS per 10000 ⁇ m 2 with a thickness of 1/4 part
- n2 is the average number density of MnS per 10000 ⁇ m 2 with respect to the center of the thickness.
- the surface may be further subjected to hot dip galvanization.
- the hot-dip galvanized layer may be alloyed hot-dip zinc.
- the surface may be further electrogalvanized.
- the surface may be further subjected to aluminum plating.
- a method for producing a hot stamping molded body includes a casting step in which molten steel having the chemical component described in (1) above is cast into a steel material; and a heating step in which the steel material is heated.
- a hot rolling process in which hot rolling is performed using a hot rolling facility having a plurality of stands on the steel material; a winding process in which the steel material is wound after the hot rolling process; A pickling step for pickling after the picking step; and a cold for subjecting the steel material to cold rolling under the condition that the following formula e is satisfied in a cold rolling mill having a plurality of stands after the pickling step.
- An annealing step in which the steel material is cooled to 700 ° C. or higher and 850 ° C.
- a temper rolling step in which the steel material is subjected to temper rolling after the annealing step. And after the temper rolling step, the steel material is 5 ° C./second or more And a hot stamping step of heating to a temperature range of 750 ° C. or higher at a rate of temperature increase, molding in the temperature range, and cooling to 20 ° C. or higher and 300 ° C. or lower at a cooling rate of 10 ° C./second or higher.
- ri when i is 1, 2, or 3 is a unit of a single target cold rolling rate at the i-th stage counted from the most upstream among the plurality of stands in the cold rolling step.
- R represents the target total cold rolling rate in the cold rolling process in unit%.
- the coiling temperature in the coiling step is expressed as CT in units of ° C; C content of the steel material, Mn content, Si content
- CT in units of ° C
- Mn content Mn content
- Si Si content
- the amount and Mo content are expressed in unit mass% as [C], [Mn], [Si] and [Mo], respectively, the following formula f may hold. 560-474 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 20 ⁇ [Cr] ⁇ 20 ⁇ [Mo] ⁇ CT ⁇ 830 ⁇ 270 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 70 ⁇ [Cr] ⁇ 80 ⁇ [Mo] (f)
- the heating temperature in the heating step is T in unit ° C.
- the in-furnace time is t in unit minutes.
- the steel material is further galvanized between the annealing step and the temper rolling step. You may have the hot dip galvanizing process which performs.
- the steel material is further electrogalvanized between the temper rolling step and the hot stamp step. You may have the electrogalvanization process which performs plating.
- the steel material is further subjected to aluminum plating between the annealing step and the temper rolling step. You may have an aluminum plating process.
- the relationship between C content, Mn content, and Si content is made appropriate, and the hardness of martensite measured with a nanoindenter in a molded article after hot stamping is made appropriate. Therefore, a hot stamp molded body having good hole expandability can be obtained.
- a cold-rolled steel sheet for hot stamping (zinc-plated or used for a hot-stamp molded body according to an embodiment of the present invention (sometimes referred to as a hot-stamp molded body according to the present embodiment or simply a hot-stamp molded body)).
- the reason for limiting the chemical component of the cold-rolled steel sheet according to the present embodiment or simply called the cold-rolled steel sheet for hot stamping, including the case where it is plated with aluminum, will be described.
- “%”, which is a unit of content of each component means “mass%”.
- the chemical component is the same in the cold-rolled steel plate and the hot-stamp formed body using the cold-rolled steel plate.
- C C: more than 0.150% and not more than 0.300% C is an important element for enhancing the strength of steel by strengthening the ferrite phase and the martensite phase.
- C content is 0.150% or less, a martensite structure cannot be sufficiently obtained, and the strength cannot be sufficiently increased.
- the range of the C content is more than 0.150% and 0.300% or less.
- Si 0.010% or more and 1.000% or less Si is an important element for suppressing the formation of harmful carbides and obtaining a composite structure mainly composed of ferrite and martensite.
- Si content exceeds 1.000%, the elongation and hole expansibility decrease, and the chemical conversion treatment performance also decreases. Therefore, the Si content is 1.000% or less.
- Si is added for deoxidation, but if the Si content is less than 0.010%, the deoxidation effect is not sufficient. Therefore, the Si content is 0.010% or more.
- Al 0.010% to 0.050%
- Al is an important element as a deoxidizer. In order to obtain the effect of deoxidation, the Al content is set to 0.010% or more. On the other hand, even if Al is added excessively, the above effect is saturated, and instead the steel is embrittled and TS ⁇ ⁇ is lowered. Therefore, the content of Al is set to 0.010% or more and 0.050% or less.
- Mn 1.50% or more and 2.70% or less Mn is an important element for enhancing the hardenability and strengthening the steel. However, if the Mn content is less than 1.50%, the strength cannot be sufficiently increased. On the other hand, when the content of Mn exceeds 2.70%, the hardenability becomes excessive, and the elongation and hole expansibility are lowered. Therefore, the Mn content is set to 1.50% or more and 2.70% or less. When the demand for elongation is high, the Mn content is desirably 2.00% or less.
- P 0.001% or more and 0.060% or less P is segregated to grain boundaries when the content is large, and local elongation and weldability are deteriorated. Therefore, the P content is 0.060% or less. Although it is desirable that the P content is small, it is desirable that the P content is 0.001% or more because extremely reducing P leads to an increase in cost during refining.
- S 0.001% or more and 0.010% or less S is an element that forms MnS and significantly deteriorates local elongation and weldability. Therefore, the upper limit of the content is 0.010%. Moreover, although the one where S content is small is desirable, it is desirable to make the minimum of S content into 0.001% from the problem of refining cost.
- N 0.0005% or more and 0.0100% or less N is an important element for refining crystal grains by precipitating AlN or the like. However, if the N content exceeds 0.0100%, solid solution N (solid solution nitrogen) remains and elongation and hole expansibility deteriorate. Therefore, the N content is 0.0100% or less. In addition, although the one where N content is small is desirable, it is desirable to make the minimum of N content into 0.0005% from the problem of the cost at the time of refining.
- the cold-rolled steel sheet according to the present embodiment is based on a composition comprising the above elements and the remaining iron and unavoidable impurities, but for further strength improvement, control of the shape of sulfides and oxides, etc.
- Conventionally used elements include at least one element of Nb, Ti, V, Mo, Cr, Ca, REM (rare earth metal), Cu, Ni, and B, the content below the upper limit described later It may be contained in. Since these chemical elements are not necessarily contained in the steel sheet, the lower limit of the content is 0%.
- Nb, Ti, and V are elements that strengthen the steel by precipitating fine carbonitrides.
- Mo and Cr are elements that enhance the hardenability and strengthen the steel.
- Nb 0.001% or more
- Ti 0.001% or more
- V 0.001% or more
- Mo 0.01% or more
- Cr 0.01% or more It is desirable to do.
- Nb more than 0.050%
- Ti more than 0.100%
- V more than 0.100%
- Mo more than 0.50%
- Cr more than 0.50%
- the strength is increased. This effect not only saturates, but also reduces elongation and hole expansibility. Therefore, the upper limits of Nb, Ti, V, Mo, and Cr are 0.050%, 0.100%, 0.100%, 0.50%, and 0.50%, respectively.
- Ca controls the shape of sulfides and oxides to improve local elongation and hole expandability. In order to acquire this effect, it is desirable to contain 0.0005% or more. However, excessive addition degrades workability, so the upper limit of Ca content is 0.0050%.
- REM rare earth element
- Steel further contains Cu: 0.01% to 1.00%, Ni: 0.01% to 1.00%, B: 0.0005% to 0.0020%. be able to. These elements can also improve the hardenability and increase the strength of the steel. However, in order to obtain the effect, it is desirable to contain Cu: 0.01% or more, Ni: 0.01% or more, B: 0.0005% or more. Below this, the effect of strengthening the steel is small. On the other hand, even if Cu: more than 1.00%, Ni: more than 1.00%, and B: more than 0.0020% are added, the effect of increasing the strength is saturated and the elongation and hole expansibility are lowered. Therefore, the upper limits of the Cu content, the Ni content, and the B content are set to 1.00%, 1.00%, and 0.0020%, respectively.
- the C content (mass%), the Si content (mass%), and the Mn content ( Mass%) is expressed as [C], [Si] and [Mn], respectively, it is important that the relationship of the following formula a holds.
- TS ⁇ ⁇ is less than 50000 MPa ⁇ %, and sufficient hole expansibility cannot be obtained.
- the above-mentioned hardness ratio and hardness distribution are in a predetermined state in the hot stamped cold-rolled steel sheet used for hot stamping formability according to the present embodiment, it is generally maintained in the hot stamped body, and elongation and holes It has been found that moldability such as expansibility is improved. This is because the hardness distribution of martensite generated in the cold stamped steel sheet for hot stamping also greatly affects the hot stamped compact after hot stamping. Specifically, it seems that the alloy element concentrated in the central part of the plate thickness remains concentrated in the central part even after hot stamping.
- hot stamping when a cold-rolled steel sheet for hot stamping has a large difference in martensite hardness between the surface thickness layer and the center of the sheet thickness, or when the dispersion value of the martensite hardness at the center of the sheet thickness is large, hot stamping is performed.
- the body also has the same hardness ratio and dispersion value.
- FIG. 2A and FIG. 2B the hot stamped body is shown after hot stamping, and the cold-rolled steel sheet for hot stamping is shown before hot stamping.
- the present inventors further improved the moldability of the hot stamping molded article by the following formulas b and c regarding the hardness measurement of martensite measured at a magnification of 1000 with a nanoindenter of HYSITRON.
- H1 is the hardness of the martensite in the plate thickness surface layer portion that is within 200 ⁇ m in the plate thickness direction from the outermost surface layer of the hot stamped article.
- H2 is the hardness of the martensite within ⁇ 100 ⁇ m from the center of the plate thickness in the plate thickness direction, that is, in the plate thickness direction of the hot stamped product.
- ⁇ HM is a dispersion value of the hardness of martensite existing within a range of 200 ⁇ m in the thickness direction at the thickness center portion of the hot stamping molded body. 300 points are measured each.
- the range of 200 ⁇ m in the plate thickness direction at the plate thickness center portion is the range in which the plate thickness direction dimension around the plate thickness center is 200 ⁇ m.
- the dispersion value is obtained by the following formula h and is a value indicating the distribution of hardness of martensite.
- FIG. 2A shows a ratio between the martensite hardness of the surface layer portion and the martensite hardness of the center portion of the plate thickness of the hot stamped body and the cold-rolled steel sheet for hot stamping.
- FIG. 2B also shows the dispersion value of the hardness of martensite existing within a range of ⁇ 100 ⁇ m from the thickness center to the thickness direction of the hot stamped compact and the cold rolled steel sheet for hot stamping. As can be seen from FIGS.
- the hardness ratio of the cold-rolled steel sheet before hot stamping and the hardness ratio of the cold-rolled steel sheet after hot stamping are substantially the same.
- the martensite hardness dispersion value at the center of the plate thickness is substantially the same.
- the value of H2 / H1 is 1.10 or more means that the hardness of the martensite at the center of the plate thickness is 1.10 times or more of the hardness of the martensite at the plate thickness surface layer portion. Show. That is, it indicates that the hardness at the center of the plate thickness is too high.
- ⁇ HM is 20 or more. In this case, TS ⁇ ⁇ ⁇ 50000 MPa ⁇ %, and sufficient formability cannot be obtained after quenching, that is, in a hot stamped product.
- the lower limit of H2 / H1 is theoretically the case where the plate thickness center portion and the plate thickness surface layer portion are equivalent unless special heat treatment is performed. However, in the production process in consideration of productivity, for example, 1. Up to about 005.
- the dispersion value ⁇ HM of the hot stamping molded body is 20 or more indicates that there is a large variation in the hardness of martensite, and there is a portion where the hardness is locally too high. In this case, TS ⁇ ⁇ ⁇ 50000 MPa ⁇ %. That is, sufficient moldability cannot be obtained in a hot stamping molded body.
- the martensite area ratio of the hot stamped molded body according to the present embodiment is 80% or more. If the martensite area ratio is less than 80%, sufficient strength (for example, 1.5 GPa) required for hot stamped molded articles in recent years cannot be obtained. Therefore, the martensite area ratio is 80% or more. Although all or the main part of the metal structure of the hot stamped product is composed of martensite, the area ratio is 0-10% pearlite, the volume ratio is 0-5% retained austenite, and the area ratio is 0- It may contain 20% ferrite or one or more types of bainite with an area ratio of 0 to less than 20%.
- ferrite may be present in an amount of 0% or more and 20% or less, but within this range, there is no problem in strength after hot stamping. If retained austenite remains in the metal structure, the secondary work brittleness and delayed fracture characteristics are likely to deteriorate. For this reason, it is preferable that the retained austenite is not substantially contained, but unavoidably 5% or less of retained austenite may be included by volume. Since pearlite is a hard and brittle structure, it is preferably not included, but inevitably an area ratio of up to 10% is allowed. Bainite is a structure that can be generated as a residual structure, and is an intermediate structure from the viewpoint of strength and formability, and may not be included.
- ferrite, bainite, pearlite were subjected to nital etching, martensite was subjected to repeller etching, and a 1/4 thickness of the metal structure was observed with an optical microscope at 1000 times. did. Residual austenite was measured for volume fraction with an X-ray diffractometer after the steel plate was polished to a thickness of 1/4 position.
- the metal structure of the hot stamped molded body is affected by the metal structure of the cold-rolled steel sheet for hot stamping. Therefore, by controlling the metal structure of the hot stamped cold-rolled steel sheet, it becomes easy to obtain the above-described metal structure in the hot stamped molded body.
- the ferrite area ratio of the cold-rolled steel sheet according to this embodiment is desirably 40% to 90%. If the ferrite area ratio is less than 40%, the strength becomes too high before the hot stamping, and the shape of the hot stamping molded body may be deteriorated or cutting may be difficult. Therefore, the ferrite area ratio before hot stamping is desirably 40% or more.
- the metal structure contains martensite in addition to ferrite, and the area ratio is preferably 10 to 60%.
- the sum of the ferrite area ratio and the martensite area ratio is desirably 60% or more before hot stamping.
- the metal structure may further contain one or more of pearlite, bainite, and retained austenite. However, if residual austenite remains in the metal structure, secondary work brittleness and delayed fracture characteristics are liable to be lowered, so that it is preferable that substantially no residual austenite is contained. However, unavoidably, a retained austenite of 5% or less by volume may be included.
- pearlite is a hard and brittle structure, it is preferably not included, but it is unavoidable that pearlite is included up to 10% in terms of area ratio. As the remaining structure, bainite can be allowed to be included up to less than 20% in terms of area ratio, for the same reason as described above.
- ferrite, bainite, and pearlite were observed by nital etching, and martensite was observed by repeller etching, similarly to the cold rolled steel sheet before hot stamping. In each case, a plate thickness of 1/4 part was observed with an optical microscope at 1000 times. Residual austenite was measured for volume fraction with an X-ray diffractometer after the steel plate was polished to a thickness of 1/4 position.
- the martensite hardness (intendence hardness (GPa or N / mm 2 )) measured from a nanoindenter at a magnification of 1000 times, or from the intent hardness to the Vickers hardness. (Value converted to (HV)).
- the formed indentation is larger than martensite. Therefore, although the macro-hardness of martensite and surrounding structures (such as ferrite) can be obtained, the hardness of martensite itself cannot be obtained. Since the hardness of martensite itself has a great influence on moldability such as hole expansibility, it is difficult to sufficiently evaluate the moldability only with Vickers hardness.
- the hardness ratio of the martensite hardness measured by the nanoindenter and the dispersion state are controlled within an appropriate range, so that extremely good moldability is obtained. be able to.
- MnS was observed at the position of the thickness 1/4 of the hot stamped molded body (position at the depth of 1/4 of the thickness from the surface) and the center of the thickness.
- the area ratio of MnS with an equivalent circle diameter of 0.1 ⁇ m or more and 10 ⁇ m or less is 0.01% or less, and as shown in FIG. 3, the following formula d holds: TS ⁇ ⁇ ⁇ 50000 MPa ⁇ % It has been found that it is preferable to obtain a good and stable value.
- n1 is the number density (average number density) per unit area of MnS having a circle equivalent diameter of 0.1 ⁇ m or more and 10 ⁇ m or less of the plate thickness 1 ⁇ 4 part of the hot stamped molded body (pieces / 10000 ⁇ m 2 )
- n2 is the number density (average number density) per unit area (number / 10,000 ⁇ m 2 ) of MnS having an equivalent circle diameter of 0.1 ⁇ m or more and 10 ⁇ m or less at the center of the plate thickness of the hot stamped product.
- MnS having an equivalent circle diameter of 0.1 ⁇ m or more is included. If it exists, it is considered that cracks are likely to occur because stress concentrates on the periphery.
- the reason why the circle equivalent diameter of less than 0.1 ⁇ m is not counted is that the influence on the stress concentration is small, so that the diameter exceeding 10 ⁇ m is too large to be suitable for processing.
- the area ratio of MnS of 0.1 ⁇ m or more and 10 ⁇ m or less is more than 0.01%, fine cracks caused by stress concentration are likely to propagate.
- the hole expandability may be reduced.
- the lower limit of the area ratio of MnS is not particularly specified, but the productivity and cost are less than 0.0001% due to the measurement method and magnification and field of view described later, Mn and S content, and desulfurization treatment capacity. Since it affects, 0.0001% or more is appropriate.
- the moldability is likely to be reduced due to stress concentration.
- the value of n2 / n1 is 1.5 or more in the hot stamped molded product indicates that the number density of MnS in the central part of the thickness of the hot stamped molded product is MnS of 1/4 thickness of the hot stamped molded product. The number density is 1.5 times or more. In this case, the formability tends to decrease due to segregation of MnS at the center of the plate thickness.
- FIG. 3 is a diagram showing the relationship between n2 / n1 and TS ⁇ ⁇ of a hot stamped molded product, and the number of MnS in the thickness 1/4 part and the thickness center of the cold-rolled steel sheet for hot stamping. The measurement result of the density is shown by being evaluated with the same index as that of the hot stamping body.
- the hot stamped body is shown after hot stamping, and the hot stamped cold-rolled steel sheet is shown before hot stamping. As can be seen from FIG.
- n2 / n1 ratio of the thickness of 1/4 part to the thickness of MnS
- the hot stamping molded body according to this embodiment is heated to 750 ° C. or more and 1000 ° C. or less at a temperature rising rate of, for example, 5 ° C./second or more and 500 ° C./second or less to the cold-rolled steel sheet according to this embodiment for 1 second or more. It is obtained by molding (processing) within 120 seconds or less and cooling to a temperature range of 20 ° C. or more and 300 ° C. or less at a cooling rate of 10 ° C./second or more and 1000 ° C./less.
- the obtained hot stamped molded article has a tensile strength of 1500 MPa to 2200 MPa, and particularly a high strength steel sheet having a strength of about 1800 MPa to 2000 MPa provides a remarkable effect of improving formability.
- the hot stamped molded body according to this embodiment is preferably galvanized, for example, hot dip galvanized, alloyed hot dip galvanized, electrogalvanized or aluminum plated for rust prevention.
- the plating layer does not change under the above-mentioned hot stamping conditions, and therefore, the hot-rolled cold-rolled steel sheet may be plated. Even if these hot stamping bodies are plated with these, the effect of this embodiment is not impaired. About these plating, it can give by a well-known method.
- the molten steel melted to have the above-described chemical components is continuously cast after the converter to obtain a slab.
- the casting speed is fast, precipitates such as Ti become too fine.
- the productivity is poor and the precipitates are coarsened to reduce the number of particles, and other characteristics such as delayed fracture may not be controlled. For this reason, it is desirable that the casting speed be 1.0 m / min to 2.5 m / min.
- the slab after melting and casting can be subjected to hot rolling as it is.
- it when it is cooled to less than 1100 ° C., it can be reheated to 1100 ° C. or higher and 1300 ° C. or lower in a tunnel furnace or the like and subjected to hot rolling.
- the temperature of the slab at the time of hot rolling is less than 1100 ° C., it is difficult to ensure the finishing temperature in hot rolling, which causes a decrease in elongation.
- the precipitates are not sufficiently dissolved during heating, which causes a decrease in strength.
- the temperature of the heating furnace before performing hot rolling is a heating furnace exit side extraction temperature
- in-furnace time is time until it inserts after extracting a slab in a hot-rolling heating furnace. Since MnS does not change by rolling or hot stamping as described above, it is only necessary to satisfy the expression g when the slab is heated.
- the above ln indicates a natural logarithm.
- hot rolling is performed according to a conventional method.
- a finishing temperature hot rolling end temperature
- the finishing temperature is lower than the Ar3 temperature, two-phase rolling with ferrite ( ⁇ ) and austenite ( ⁇ ) occurs, and there is a concern that the elongation is reduced.
- it exceeds 970 ° C. the austenite grain size becomes coarse, the ferrite fraction becomes small, and there is a concern that the elongation decreases.
- the Ar3 temperature was estimated from the inflection point by performing a four-master test, measuring the change in length of the test piece accompanying the temperature change.
- the steel After hot rolling, the steel is cooled at an average cooling rate of 20 ° C./second or more and 500 ° C./second or less, and wound at a predetermined winding temperature CT ° C.
- the cooling rate is less than 20 ° C./second, pearlite that causes a decrease in elongation is easily generated, which is not preferable.
- the upper limit of the cooling rate is not particularly defined, but the upper limit of the cooling rate is preferably about 500 ° C./second from the viewpoint of equipment specifications, but is not limited thereto.
- cold rolling After winding, pickling is performed and cold rolling (cold rolling) is performed. At that time, as shown in FIG. 4, in order to obtain a range satisfying the above-described formula b, cold rolling is performed under the condition that the following formula e is satisfied. After performing the above rolling, further satisfying conditions such as annealing and cooling described later, TS ⁇ ⁇ ⁇ 50000 MPa ⁇ % as a cold-rolled steel sheet before hot stamping can be obtained. TS ⁇ ⁇ ⁇ 50000 MPa ⁇ % can be secured in the used hot stamping molded body. In cold rolling, it is desirable to use a tandem rolling mill in which a plurality of rolling mills are linearly arranged and continuously rolled in one direction to obtain a predetermined thickness.
- the total rolling rate is the so-called cumulative rolling rate, based on the inlet plate thickness of the first stand, and the cumulative reduction amount relative to this criterion (the difference between the inlet plate thickness before the first pass and the outlet plate thickness after the final pass) The percentage.
- the inventors of the cold rolled steel sheet that has been rolled to satisfy the formula e the form of the martensite structure obtained after annealing can be maintained substantially the same even after hot stamping, It has been found that it is advantageous for the stretch and hole expansibility of the stamp molded body.
- the cold-rolled steel sheet for hot stamping according to the present embodiment is heated to the austenite region by hot stamping, the hard phase containing martensite becomes an austenitic structure with a high C concentration, and the ferrite phase becomes an austenitic structure with a low C concentration. . After cooling, the austenite phase becomes a hard phase containing martensite.
- r, r1, r2, and r3 are target cold rolling rates.
- the target cold rolling rate and the actual cold rolling rate are controlled to be substantially the same value, and cold rolling is performed. It is not preferable that the cold rolling is performed with the actual cold rolling rate deviating from the target cold rolling rate.
- the target rolling rate and the actual rolling rate are greatly deviated, it can be considered that the present invention is implemented if the actual cold rolling rate satisfies the above-mentioned formula e.
- the actual cold rolling rate is preferably within ⁇ 10% of the target cold rolling rate.
- Annealing is performed after cold rolling. By performing the annealing, recrystallization occurs in the steel sheet, and desired martensite is generated.
- the annealing temperature it is preferable to perform annealing by heating in a temperature range of 700 to 850 ° C. by a conventional method, and to cool to 20 ° C. or a temperature at which surface treatment such as hot dip galvanization is performed. By annealing in this temperature range, it is possible to secure a desirable area ratio of ferrite and martensite, and the sum of the ferrite area ratio and the martensite area ratio is 60% or more, so TS ⁇ ⁇ is improved. Conditions other than the annealing temperature are not particularly specified, but the holding time at 700 ° C.
- the temperature rising rate is 1 ° C./second or more
- the equipment capacity upper limit for example, 1000 ° C./second or less
- the cooling rate is 1 ° C./second or more, for example, 500 ° C./second or less.
- the temper rolling may be performed by a conventional method. The elongation of temper rolling is usually about 0.2 to 5%, and it is preferable that the elongation at yield point is avoided and the shape of the steel sheet can be corrected.
- C content (mass%), Mn content (mass%), Si content (mass%) and Mo content (mass%) of steel are respectively [C] and [Mn ], [Si], and [Mo], it is preferable that the following formula f holds for the winding temperature CT in the winding step. 560-474 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 20 ⁇ [Cr] ⁇ 20 ⁇ [Mo] ⁇ CT ⁇ 830 ⁇ 270 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 70 ⁇ [Cr] ⁇ 80 ⁇ [Mo] (f)
- the coiling temperature CT is less than 560-474 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 20 ⁇ [Cr] ⁇ 20 ⁇ [Mo], that is, CT-560-474 ⁇ [
- C] ⁇ 90 ⁇ [Mn] ⁇ 20 ⁇ [Cr] ⁇ 20 ⁇ [Mo] is less than 0, martensite is excessively generated, and the steel sheet becomes too hard, so that cold rolling performed later becomes difficult. Sometimes.
- FIG. 5A the coiling temperature CT is less than 560-474 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 20 ⁇ [Cr] ⁇ 20 ⁇ [Mo]
- the coiling temperature CT exceeds 830-270 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 70 ⁇ [Cr] ⁇ 80 ⁇ [Mo], that is, 830-270 ⁇ [C ]
- ⁇ 90 ⁇ [Mn] ⁇ 70 ⁇ [Cr] ⁇ 80 ⁇ [Mo] is more than 0, a band-like structure composed of ferrite and pearlite is easily generated.
- the ratio of pearlite tends to increase at the center of the plate thickness. For this reason, the uniformity of the distribution of martensite generated in the subsequent annealing step is lowered, and the above-described formula b is difficult to hold. Also, it may be difficult to produce a sufficient amount of martensite.
- the ferrite phase and the hard phase are in an ideal distribution form before hot stamping as described above. Furthermore, in this case, after heating with a hot stamp, C and the like are likely to diffuse uniformly. For this reason, the distribution form of the hardness of the martensite of the hot stamping body is close to ideal. If the above-mentioned metal structure can be ensured more reliably by satisfying the expression f, the moldability of the hot stamping molded body will be excellent.
- the rust prevention ability has a hot dip galvanizing step for performing hot dip galvanization between the annealing step and the temper rolling step, and hot dip galvanizing is performed on the surface of the cold rolled steel sheet. It is also preferable. Furthermore, in order to alloy hot dip galvanizing and obtain alloyed hot dip galvanizing, it is also preferable to have an alloying treatment process which performs an alloying treatment between the hot dip galvanizing process and the temper rolling process. When the alloying treatment is performed, a treatment for thickening the oxide film may be performed by bringing the alloyed hot dip galvanized surface into contact with a substance that oxidizes the plating surface such as water vapor.
- the hot dip galvanizing step and the alloying treatment step for example, it is also preferable to have an electro galvanizing step of applying electro galvanizing to the cold rolled steel sheet surface after the temper rolling step. It is also preferable to have an aluminum plating step of performing aluminum plating between the annealing step and the temper rolling step instead of hot dip galvanizing, and to apply the aluminum plating to the surface of the cold rolled steel sheet.
- Aluminum plating is generally hot aluminum plating and is preferable.
- hot stamping is performed on the obtained cold-rolled steel sheet for hot stamping to obtain a hot stamping body.
- the hot stamping process is desirably performed under the following conditions, for example. First, heating is performed from 750 ° C. to 1000 ° C. at a temperature rising rate of 5 ° C./second to 500 ° C./second. Processing (molding) is performed within 1 second to 120 seconds after heating. In order to obtain high strength, the heating temperature is preferably more than Ac3 point. The Ac3 point was estimated from the inflection point of the length of the test piece by performing a four master test. Subsequently, for example, it is preferable to cool to 20 ° C. or more and 300 ° C.
- the heating temperature in the hot stamping process is preferably 750 ° C. or higher and 1000 ° C. or lower.
- the rate of temperature increase is less than 5 ° C./second, it is difficult to control the temperature and the productivity is remarkably reduced.
- the upper limit of the heating rate of 500 ° C./second depends on the current heating capacity, but is not limited thereto.
- the upper limit of the cooling rate is not particularly limited, but is 1000 ° C./second or less in consideration of the current cooling capacity.
- FIG. 8 shows a flowchart (steps S1 to S14) of an example of the manufacturing method described above.
- the slab After the continuous casting of steels with the components shown in Table 1 at a casting speed of 1.0 m / min to 2.5 m / min, the slab is heated in a conventional furnace under the conditions shown in Table 2 as it is or after cooling. Then, hot rolling was performed at a finishing temperature of 910 to 930 ° C. to obtain a hot rolled steel sheet. Thereafter, the hot-rolled steel sheet was wound at a winding temperature CT shown in Table 2. Thereafter, pickling was performed to remove the scale on the surface of the steel sheet, and the sheet thickness was changed to 1.2 to 1.4 mm by cold rolling. At that time, cold rolling was performed so that the value of the expression e becomes the value shown in Table 2.
- annealing was performed at the annealing temperatures shown in Tables 3 and 4 in a continuous annealing furnace. Some of the steel sheets were further subjected to hot dip galvanization during cooling after soaking in the continuous annealing furnace, and a part of the steel sheets were subsequently subjected to alloying treatment and then subjected to alloy hot dip galvanization. Some steel plates were subjected to electrogalvanization or aluminum plating.
- the temper rolling was performed according to a conventional method with an elongation of 1%. In this state, a sample was taken to evaluate the material and the like of the cold stamped steel sheet for hot stamping, and a material test and the like were performed.
- Hot stamping was performed to cool to below °C.
- a sample is cut out from the position of FIG. 7 from the obtained molded body, subjected to a material test and a structure observation, and each structure fraction, the number density of MnS, hardness, tensile strength (TS), elongation (El), and hole expansion ratio. ( ⁇ ) and the like were obtained. The results are shown in Tables 3 to 8.
- the relationship between the C content, the Mn content, and the Si content is made appropriate, and the hardness of martensite measured by the nanoindenter is made appropriate. It is possible to provide a hot stamping molded body that can secure a strength of 5 GPa or more and obtain good hole expansibility.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本願は、2012年01月13日に、日本に出願された特願2012-004552号に基づき優先権を主張し、その内容をここに援用する。
プレス加工性と高強度とを兼備した鋼板として、フェライト・マルテンサイト組織からなる鋼板、フェライト・ベイナイト組織からなる鋼板、あるいは組織中に残留オーステナイトを含有する鋼板などが知られている。なかでもフェライト地にマルテンサイトを分散させた複合組織鋼板(フェライト・マルテンサイトからなる鋼板、いわゆるDP鋼板)は、低降伏比で引張強度が高く、さらに伸び特性に優れている。しかし、この複合組織鋼板には、フェライトとマルテンサイトの界面に応力が集中してここから割れが発生しやすいので、穴拡げ性に劣るという欠点がある。また、このような複合組織を有する鋼板は、1.5GPa級の引張強度を発揮できていない。
また、マルテンサイトの硬度の制御のためには、冷間圧延において、最上流から第3段目までの各スタンドにおける冷延率の、総冷延率(累積圧延率)に対する割合を特定の範囲内にすることが有効であることも見出した。本発明者らは上記の知見を基に、以下に示す発明の諸態様を知見するに至った。また、ホットスタンプ用冷延鋼板に、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気亜鉛めっき、及びアルミめっき冷延鋼板を行ってもその効果を損なうものではないことを知見した。
5×[Si]+[Mn])/[C]>10・・・(a)
H2/H1<1.10・・・(b)
σHM<20・・・(c)
ここで、H1は表層部の前記マルテンサイトの平均硬度であり、H2は板厚中心から板厚方向に±100μmの範囲である板厚中心部の前記マルテンサイトの平均硬度であり、σHMは前記板厚中心部に存在する前記マルテンサイトの硬度の分散値である。
n2/n1<1.5・・・(d)
ここで、n1は板厚1/4部の10000μm2あたりの前記MnSの平均個数密度であり、n2は前記板厚中心部の10000μm2あたりの前記MnSの平均個数密度である。
1.5×r1/r+1.2×r2/r+r3/r>1・・・(e)
ここで、iを1、2または3としたときのriは前記冷間圧延工程において、前記複数のスタンドのうち最上流から数えて第i段目のスタンドでの単独の目標冷延率を単位%で示しており、rは前記冷間圧延工程における目標の総冷延率を単位%で示している。
560-474×[C]-90×[Mn]-20×[Cr]-20×[Mo]<CT<830-270×[C]-90×[Mn]-70×[Cr]-80×[Mo]・・・(f)
T×ln(t)/(1.7×[Mn]+[S])>1500・・・(g)
まず、本発明の一実施形態に係るホットスタンプ成形体(本実施形態に係るホットスタンプ成形体、または、単にホットスタンプ成形体と言う場合がある)に用いるホットスタンプ用冷延鋼板(亜鉛めっきまたはアルミめっきされている場合を含み、本実施形態に係る冷延鋼板、または単にホットスタンプ用冷延鋼板と言う場合がある)の化学成分の限定理由を説明する。以下、各成分の含有量の単位である「%」は「質量%」を意味する。なお、ホットスタンプでは鋼板の化学成分の成分含有量は変化しないため、冷延鋼板とその冷延鋼板を用いたホットスタンプ成形体とでは、化学成分は同じである。
Cは、フェライト相及びマルテンサイト相を強化して鋼の強度を高めるのに重要な元素である。しかしながら、Cの含有量が0.150%以下ではマルテンサイト組織が十分に得られず、強度を十分高めることができない。一方、0.300%を超えると伸びや穴拡げ性の低下が大きくなる。そのため、Cの含有量の範囲は、0.150%超、0.300%以下とする。
Siは有害な炭化物の生成を抑えフェライトとマルテンサイトとを主体とする複合組織を得るのに重要な元素である。しかし、Si含有量が1.000%を超えると伸びや穴拡げ性が低下するほか化成処理性も低下する。そのため、Siの含有量は1.000%以下とする。また、Siは脱酸のために添加されるが、Siの含有量が0.010%未満では脱酸効果が十分でない。そのため、Siの含有量は、0.010%以上とする。
Alは、脱酸剤として重要な元素である。脱酸の効果を得るため、Alの含有量を0.010%以上とする。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させ、TS×λを低下させる。そのため、Alの含有量は0.010%以上0.050%以下とする。
Mnは焼入れ性を高めて鋼を強化するのに重要な元素である。しかしながら、Mnの含有量が1.50%未満では、強度を十分高めることができない。一方、Mnの含有量が2.70%を超えると、焼入れ性が過剰となり、伸びや穴拡げ性が低下する。従って、Mnの含有量は1.50%以上、2.70%以下とする。伸びの要求が高い場合、Mnの含有量は2.00%以下とすることが望ましい。
Pは、含有量が多いと粒界へ偏析し、局部伸び及び溶接性を劣化させる。従って、Pの含有量は0.060%以下とする。P含有量は少ない方が望ましいが、Pを極端に低減させることは、精錬時のコストアップにつながるので、Pの含有量は0.001%以上とすることが望ましい。
Sは、MnSを形成して局部伸び及び溶接性を著しく劣化させる元素である。従って、含有量の上限を0.010%とする。また、S含有量は少ない方が望ましいが、精錬コストの問題からS含有量の下限を0.001%とするのが望ましい。
Nは、AlN等を析出して結晶粒を微細化するのに重要な元素である。しかし、Nの含有量が0.0100%を超えていると、固溶N(固溶窒素)が残存して伸びや穴拡げ性が低下する。従って、Nの含有量は0.0100%以下とする。なお、N含有量は少ない方が望ましいが、精錬時のコストの問題からN含有量の下限を0.0005%とするのが望ましい。
REM(希土類元素)は、Caと同様に硫化物や酸化物の形状を制御して局部伸びや穴拡げ性を向上させる。この効果を得るためには、0.0005%以上含有することが望ましい。しかし、過度の添加は加工性を劣化させるため、REM含有量の上限を0.0050%とする。
(5×[Si]+[Mn])/[C]>10・・・(a)
(5×[Si]+[Mn])/[C]の値が10以下であると、TS×λが50000MPa・%未満となり、十分な穴拡げ性を得ることができない。これは、C量が高いと硬質相の硬度が高くなりすぎて、軟質相との硬度の差が大きくなりλの値が劣ることと、Si量もしくはMn量が少ないとTSが低くなるためである。そのため、それぞれの元素について上述の範囲とした上で、さらに、その含有量のバランスも制御する必要がある。(5×[Si]+[Mn])/[C]の値については、前述のようにホットスタンプ後も変化しないことから、冷延鋼板製造時に満足することが好ましい。ただし、(5×[Si]+[Mn])/[C]>10を満足しても、後述するH2/H1や、σHMが条件を満足しない場合には、十分な穴拡げ性が得られない。図1において、ホットスタンプ後が、ホットスタンプ成形体を示し、ホットスタンプ前が、ホットスタンプ用冷延鋼板を示している。
H2/H1<1.10・・・(b)
σHM<20・・・(c)
また、ここで、分散値は、以下の式hで求められ、マルテンサイトの硬度の分布を示す値である。
図2Aに、ホットスタンプ成形体及びホットスタンプ用冷延鋼板の、表層部のマルテンサイト硬度と板厚中心部のマルテンサイト硬度との比を示す。また、図2Bにホットスタンプ成形体及びホットスタンプ用冷延鋼板の、板厚中心から板厚方向に±100μmの範囲内に存在するマルテンサイトの硬度の分散値を併せて示す。図2A及び図2Bから分かるように、ホットスタンプ前の冷延鋼板の硬度比とホットスタンプ後の冷延鋼板の硬度比とはほぼ同じである。また、ホットスタンプ前の冷延鋼板とホットスタンプ後の冷延鋼板において、板厚中心部のマルテンサイトの硬度の分散値もほぼ同じである。
n2/n1<1.5・・・(d)
ここで、n1はホットスタンプ成形体の板厚1/4部の円相当直径が0.1μm以上10μm以下のMnSの単位面積あたりの個数密度(平均個数密度)(個/10000μm2)であり、n2はホットスタンプ成形体の板厚中心部の円相当直径が0.1μm以上10μm以下のMnSの単位面積あたりの個数密度(平均個数密度)(個/10000μm2)である。
0.1μm以上10μm以下のMnSを、面積率が0.01%以下の場合に成形性が向上する理由としては、穴拡げ試験を実施した際に、円相当直径が0.1μm以上のMnSが存在するとその周囲に応力が集中するために割れが生じやすくなるためと考えられる。円相当直径0.1μm未満をカウントしないのは、応力集中への影響が小さいためで、10μm超は大き過ぎてそもそも加工に適さなくなるからである。更に、0.1μm以上10μm以下のMnSの面積率が0.01%超であると、応力集中によって生じた微細な割れが伝播しやすくなる。そのため、穴拡げ性が低下する場合がある。尚、MnSの面積率の下限は特に規定しないが、後述の測定方法および倍率や視野の制限、MnやSの含有量、脱硫処理能力から0.0001%未満とすることは生産性、コストに影響するため0.0001%以上が妥当である。
また、MnSの面積率を小さくするためには、鋼のMn含有量(質量%)、S含有量(質量%)をそれぞれ[Mn]、[S]と表したとき、図6に示すように、熱間圧延を施す前の加熱炉の温度T(℃)、在炉時間t(分)、[Mn]及び[S]について下記の式gが成り立つことが好ましい。
T×ln(t)/(1.7×[Mn]+[S])>1500・・・(g)
T×ln(t)/(1.7[Mn]+[S])の値が1500以下であると、MnSの面積率が大きくなり、かつMnSの板厚1/4部のMnSの個数と、板厚中心部のMnSの個数との差が大きくなることがある。なお熱間圧延を施す前の加熱炉の温度とは加熱炉出側抽出温度であり、在炉時間とは、スラブを熱延加熱炉に挿入してから抽出するまでの時間である。MnSについては、前述のように圧延やホットスタンプによって変化しないことから、スラブの加熱時に式gを満足していればよい。なお、上述のlnは、自然対数を示している。
Ar3温度は、フォーマスター試験を行い、温度変化に伴う試験片の長さの変化を測定し、その変曲点から推定した。
一方、冷却速度の上限は特に規定しないが、設備仕様の観点から冷却速度の上限を500℃/秒程度とすることが望ましいが、これに限定しない。
1.5×r1/r+1.2×r2/r+r3/r>1.0・・・(e)
ここで、「ri(i=1,2,3)」は前記冷間圧延における最上流から数えて第i(i=1,2,3)段目のスタンドでの単独の目標冷延率(%)であり、rは前記冷間圧延における目標の総冷延率(%)である。
総圧延率は、いわゆる累積圧延率であり、最初のスタンドの入口板厚を基準とし、この基準に対する累積圧下量(最初のパス前の入口板厚と最終パス後の出口板厚との差)の百分率である。
また、発明者らは、式eを満足する圧延を行った冷延鋼板で、焼鈍後に得られたマルテンサイト組織の形態は、その後、ホットスタンプを行っても、ほぼ同じ状態が維持でき、ホットスタンプ成形体の伸びや穴拡げ性に有利になることを知見した。本実施形態に係るホットスタンプ用冷延鋼板は、ホットスタンプでオーステナイト域まで加熱した場合、マルテンサイトを含む硬質相がC濃度の高いオーステナイト組織になり、フェライト相がC濃度の低いオーステナイト組織になる。その後冷却すればオーステナイト相はマルテンサイトを含む硬質相になる。つまり、式eを満足するような(前述のH2/H1が所定の範囲となるような)マルテンサイト硬度を有するホットスタンプ用鋼板に対してホットスタンプを行えば、ホットスタンプ後も前述のH2/H1が所定の範囲となり、ホットスタンプ後の成形性に優れることになる。
焼鈍温度以外の条件は特に規定しないが、700℃以上850℃以下での保持時間は所定の組織を確実に得るためには下限として1秒以上かつ、生産性に支障ない範囲、例えば10分程度保持することが好ましい。昇温速度は1℃/秒以上、設備能力上限、例えば1000℃/秒以下、冷却速度は1℃/秒以上設備能力上限、例えば500℃/秒以下で適宜決めることが好ましい。調質圧延は常法により行えばよい。調質圧延の伸び率は通常0.2~5%程度であり、降伏点伸びを回避し、鋼板形状が矯正できる程度であれば好ましい。
560-474×[C]-90×[Mn]-20×[Cr]-20×[Mo]<CT<830-270×[C]-90×[Mn]-70×[Cr]-80×[Mo]・・・(f)
式fを満足すると、前述のようにホットスタンプ前でフェライト相と硬質相が理想の分布形態になる。さらに、この場合、ホットスタンプで加熱を行った後、Cなどが均一に拡散しやすい。このため、ホットスタンプ成形体のマルテンサイトの硬さの分布形態が理想に近くなる。式fを満足して前述の金属組織をより確実に確保することが出来れば、ホットスタンプ成形体の成形性が優れることになる。
引き続き、例えば冷却速度10℃/秒以上1000℃/秒以下で20℃以上300℃以下まで冷却することが好ましい。加熱温度が750℃未満ではホットスタンプ成形体において、マルテンサイト分率が十分ではなく強度が確保できない。加熱温度が1000℃超では軟化し過ぎ、また鋼板表面にめっきが施されている場合、特に亜鉛がめっきされている場合は亜鉛が蒸発・消失してしまうおそれがあり好ましくない。従って、ホットスタンプ工程の加熱温度は750℃以上1000℃以下が好ましい。昇温速度が5℃/秒未満では、その制御が難しく、かつ生産性が著しく低下するため5℃/秒以上の昇温速度で加熱することが好ましい。一方、昇温速度上限の500℃/秒は現状加熱能力によるものであるが、これに限定しない。冷却速度が10℃/秒未満ではその速度制御が難しく、生産性も著しく低下するため10℃/秒以上の冷却速度で冷却することが好ましい。冷却速度上限は特に限定しないが、現状冷却能力を考慮すると1000℃/秒以下となる。昇温後成形加工までを1秒以上120秒以下としたのは、鋼板表面に溶融亜鉛めっきなどが施されている場合にその亜鉛などが蒸発してしまうのを回避するためである。冷却温度を20℃(常温)以上300℃以下にするのはマルテンサイトを十分に確保してホットスタンプ後の強度を確保するためである。
なお、図8に上記で説明した製造方法の一例のフローチャート(工程S1~S14)を示す。
λ(%)={(d’-d)/d}×100・・・(i)
d’:亀裂が板厚を貫通した時の穴径
d:穴の初期径
表5、表6中のめっきの種類で、CRはめっき無しの冷延鋼板であり、GIは溶融亜鉛めっき、GAは合金溶融亜鉛めっき、EGは電気めっき、Alはアルミめっきを施していることを示す。
表1中の含有量「0」は、含有量が測定限界以下であることを示す。
表2、表7、表8中の判定の、G、Bは、それぞれ以下を意味している。
G:対象となる条件式を満足している。
B:対象となる条件式を満足していない。
S2 鋳造工程
S3 加熱工程
S4 熱間圧延工程
S5 巻取り工程
S6 酸洗工程
S7 冷間圧延工程
S8 焼鈍工程
S9 調質圧延工程
S10 ホットスタンプ工程
S11 溶融亜鉛めっき工程
S12 合金化処理工程
S13 アルミめっき工程
S14 電気亜鉛めっき工程
Claims (13)
- 質量%で、
C:0.150%超、0.300%以下、
Si:0.010%以上、1.000%以下、
Mn:1.50%以上、2.70%以下、
P:0.001%以上、0.060%以下、
S:0.001%以上、0.010%以下、
N:0.0005%以上、0.0100%以下、
Al:0.010%以上、0.050%以下、
を含有し、選択的に、
B:0.0005%以上、0.0020%以下、
Mo:0.01%以上、0.50%以下、
Cr:0.01%以上、0.50%以下、
V:0.001%以上、0.100%以下、
Ti:0.001%以上、0.100%以下、
Nb:0.001%以上、0.050%以下、
Ni:0.01%以上、1.00%以下、
Cu:0.01%以上、1.00%以下、
Ca:0.0005%以上、0.0050%以下、
REM:0.0005%以上、0.0050%以下、
の1種以上を含有する場合があり、
残部がFe及び不可避不純物からなり、
C含有量、Si含有量及びMn含有量を、単位質量%で、それぞれ[C]、[Si]及び[Mn]と表したとき、下記式aの関係が成り立ち、
金属組織が、面積率で、80%以上のマルテンサイトを含有し、さらに、面積率で10%以下のパーライト、体積率で5%以下の残留オーステナイト、面積率で20%以下のフェライト、面積率で20%未満のベイナイトの1種以上を含有する場合があり、
引張強度であるTSと穴拡げ率であるλの積であるTS×λが50000MPa・%以上であり、
ナノインデンターにて測定された前記マルテンサイトの硬度が、下記の式b及び式cを満足することを特徴とするホットスタンプ成形体。
5×[Si]+[Mn])/[C]>10・・・(a)
H2/H1<1.10・・・(b)
σHM<20・・・(c)
ここで、H1は表層部の前記マルテンサイトの平均硬度であり、H2は板厚中心から板厚方向に±100μmの範囲である板厚中心部の前記マルテンサイトの平均硬度であり、σHMは前記板厚中心部に存在する前記マルテンサイトの硬度の分散値である。 - 前記金属組織中に存在する、円相当直径が0.1μm以上10μm以下のMnSの面積率が0.01%以下であり、
下記式dが成り立つことを特徴とする請求項1に記載のホットスタンプ成形体。
n2/n1<1.5・・・(d)
ここで、n1は板厚1/4部の10000μm2あたりの前記MnSの平均個数密度であり、n2は前記板厚中心部の10000μm2あたりの前記MnSの平均個数密度である。 - さらに、表面に溶融亜鉛めっきが施されていることを特徴とする請求項1または2に記載のホットスタンプ成形体。
- 前記溶融亜鉛めっき層が、合金化溶融亜鉛を含むことを特徴とする請求項3に記載のホットスタンプ成形体。
- さらに、表面に電気亜鉛めっきが施されていることを特徴とする請求項1または2に記載のホットスタンプ成形体。
- さらに、表面にアルミめっきが施されていることを特徴とする請求項1または2に記載のホットスタンプ成形体。
- 請求項1に記載の化学成分を有する溶鋼を鋳造して鋼材とする鋳造工程と;
前記鋼材を加熱する加熱工程と;
前記鋼材に複数のスタンドを有する熱間圧延設備を用いて熱間圧延を施す熱間圧延工程と;
前記鋼材を前記熱間圧延工程後に、巻取る巻取り工程と;
前記鋼材に、前記巻取り工程後に、酸洗を行う酸洗工程と;
前記鋼材を、前記酸洗工程後に、複数のスタンドを有する冷間圧延機にて下記の式eが成り立つ条件下で冷間圧延を施す冷間圧延工程と;
前記鋼材を、前記冷間圧延工程後に、700℃以上850℃以下に加熱して冷却を行う焼鈍工程と;
前記鋼材を、前記焼鈍工程後に、調質圧延を行う調質圧延工程と;
前記鋼材を、前記調質圧延工程後に、5℃/秒以上の昇温速度で750℃以上の温度域まで加熱し、前記温度域で成形加工し、冷却速度10℃/秒以上で20℃以上300℃以下まで冷却するホットスタンプ工程と;
を有することを特徴とするホットスタンプ成形体の製造方法。
1.5×r1/r+1.2×r2/r+r3/r>1・・・(e)
ここで、iを1、2または3としたときのriは前記冷間圧延工程において、前記複数のスタンドのうち最上流から数えて第i段目のスタンドでの単独の目標冷延率を単位%で示しており、rは前記冷間圧延工程における目標の総冷延率を単位%で示している。 - 前記巻取り工程における巻取り温度を、単位℃で、CTと表し;
前記鋼材のC含有量、Mn含有量、Si含有量及びMo含有量を、単位質量%で、それぞれ[C]、[Mn]、[Si]及び[Mo]と表したとき;
下記の式fが成り立つ;
ことを特徴とする請求項7に記載のホットスタンプ成形体の製造方法。
560-474×[C]-90×[Mn]-20×[Cr]-20×[Mo]<CT<830-270×[C]-90×[Mn]-70×[Cr]-80×[Mo]・・・(f) - 前記加熱工程における加熱温度を、単位℃で、Tとし、かつ在炉時間を、単位分で、tとし;
前記鋼材のMn含有量、S含有量を、単位質量%で、それぞれ[Mn]、[S]と表したとき;
下記の式gが成り立つ;
ことを特徴とする請求項7または8に記載のホットスタンプ成形体の製造方法。
T×ln(t)/(1.7×[Mn]+[S])>1500・・・(g) - さらに、前記焼鈍工程と前記調質圧延工程との間に、前記鋼材に溶融亜鉛めっきを施す溶融亜鉛めっき工程を有することを特徴とする請求項7または8に記載のホットスタンプ成形体の製造方法。
- さらに、前記溶融亜鉛めっき工程と前記調質圧延工程との間に、前記鋼材に合金化処理を施す合金化処理工程を有することを特徴とする請求項10に記載のホットスタンプ成形体の製造方法。
- さらに、前記調質圧延工程と前記ホットスタンプ工程との間に、前記鋼材に電気亜鉛めっきを施す電気亜鉛めっき工程を有することを特徴とする請求項7または8に記載のホットスタンプ成形体の製造方法。
- さらに、前記焼鈍工程と前記調質圧延工程の間に、前記鋼材にアルミめっきを施すアルミめっき工程を有することを特徴とする請求項7または8に記載のホットスタンプ成形体の製造方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13736290T PL2803746T3 (pl) | 2012-01-13 | 2013-01-11 | Stal wytłaczana na gorąco i sposób jej wytwarzania |
JP2013530481A JP5382278B1 (ja) | 2012-01-13 | 2013-01-11 | ホットスタンプ成形体及びその製造方法 |
CA2863218A CA2863218C (en) | 2012-01-13 | 2013-01-11 | Hot stamped steel and method for producing the same |
KR1020147019669A KR101660144B1 (ko) | 2012-01-13 | 2013-01-11 | 핫 스탬프 성형체 및 그 제조 방법 |
EP13736290.1A EP2803746B1 (en) | 2012-01-13 | 2013-01-11 | Hot stamped steel and method for producing the same |
MX2014008429A MX2014008429A (es) | 2012-01-13 | 2013-01-11 | Articulo moldeado estampado en caliente y metodo para la produccion del mismo. |
US14/371,481 US9725782B2 (en) | 2012-01-13 | 2013-01-11 | Hot stamped steel and method for producing the same |
BR112014017113-0A BR112014017113B1 (pt) | 2012-01-13 | 2013-01-11 | Aço estampado a quente e método para produzir o mesmo |
ES13736290T ES2733320T3 (es) | 2012-01-13 | 2013-01-11 | Acero estampado en caliente y método para producir el mismo |
RU2014129326/02A RU2581333C2 (ru) | 2012-01-13 | 2013-01-11 | Горячештампованная сталь и способ ее изготовления |
CN201380005178.9A CN104040008B (zh) | 2012-01-13 | 2013-01-11 | 热冲压成型体及其制造方法 |
ZA2014/04811A ZA201404811B (en) | 2012-01-13 | 2014-06-27 | Hot stamped steel and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012004552 | 2012-01-13 | ||
JP2012-004552 | 2012-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013105631A1 true WO2013105631A1 (ja) | 2013-07-18 |
Family
ID=48781573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/050377 WO2013105631A1 (ja) | 2012-01-13 | 2013-01-11 | ホットスタンプ成形体及びその製造方法 |
Country Status (14)
Country | Link |
---|---|
US (1) | US9725782B2 (ja) |
EP (1) | EP2803746B1 (ja) |
JP (1) | JP5382278B1 (ja) |
KR (1) | KR101660144B1 (ja) |
CN (1) | CN104040008B (ja) |
BR (1) | BR112014017113B1 (ja) |
CA (1) | CA2863218C (ja) |
ES (1) | ES2733320T3 (ja) |
MX (1) | MX2014008429A (ja) |
PL (1) | PL2803746T3 (ja) |
RU (1) | RU2581333C2 (ja) |
TW (1) | TWI468532B (ja) |
WO (1) | WO2013105631A1 (ja) |
ZA (1) | ZA201404811B (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103614640A (zh) * | 2013-12-12 | 2014-03-05 | 马鸣图 | 一种抗高温氧化的非镀层热冲压成形用钢 |
JP2014122398A (ja) * | 2012-12-21 | 2014-07-03 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法 |
WO2015041159A1 (ja) * | 2013-09-18 | 2015-03-26 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
WO2015174530A1 (ja) * | 2014-05-15 | 2015-11-19 | 新日鐵住金株式会社 | 熱間成形鋼板部材 |
JP2016537502A (ja) * | 2013-09-19 | 2016-12-01 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | 熱間成形鋼材 |
KR20160146941A (ko) | 2014-05-29 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | 열처리 강재 및 그 제조 방법 |
EP3088545A4 (en) * | 2013-12-23 | 2016-12-21 | Posco | TEMPERED STEEL SHEET HAVING EXCELLENT RESISTANCE AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME |
KR20160146945A (ko) | 2014-05-29 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | 열처리 강재 및 그 제조 방법 |
EP3395981A4 (en) * | 2015-12-23 | 2018-10-31 | Posco | Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor |
WO2019003538A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
JP2020509208A (ja) * | 2016-12-23 | 2020-03-26 | ポスコPosco | 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法 |
JP2020510757A (ja) * | 2017-03-01 | 2020-04-09 | エーケー スティール プロパティ−ズ、インク. | 極めて高い強度を有するプレス硬化鋼および製造方法 |
JP2021181618A (ja) * | 2020-05-15 | 2021-11-25 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
JP2023508240A (ja) * | 2020-03-02 | 2023-03-01 | アルセロールミタル | 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法 |
WO2023132289A1 (ja) * | 2022-01-07 | 2023-07-13 | 日本製鉄株式会社 | ホットスタンプ用鋼板およびホットスタンプ成形体 |
JP7564419B2 (ja) | 2020-03-26 | 2024-10-09 | 日本製鉄株式会社 | ホットスタンプ部品の製造方法 |
JP7564420B2 (ja) | 2020-03-26 | 2024-10-09 | 日本製鉄株式会社 | ホットスタンプ部品の製造方法 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5447740B2 (ja) | 2012-01-13 | 2014-03-19 | 新日鐵住金株式会社 | 冷延鋼板及びその製造方法 |
RU2605404C2 (ru) | 2012-08-06 | 2016-12-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Холоднокатаный стальной лист и способ его изготовления, и сформованное горячей штамповкой изделие |
EP2886674B1 (en) | 2012-08-15 | 2020-09-30 | Nippon Steel Corporation | Steel sheet for hot stamping, method of manufacturing the same, and hot stamped steel sheet member |
CN105506470B (zh) * | 2014-09-26 | 2017-07-21 | 鞍钢股份有限公司 | 一种高强度高韧性热浸镀铝钢板及其制造方法 |
KR101931041B1 (ko) * | 2014-10-24 | 2018-12-19 | 제이에프이 스틸 가부시키가이샤 | 고강도 핫 프레스 부재 및 그 제조 방법 |
KR101677351B1 (ko) * | 2014-12-26 | 2016-11-18 | 주식회사 포스코 | 재질 편차가 적고, 조관성 및 내식성이 우수한 열간 프레스 성형용 열연강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법 |
US10308996B2 (en) | 2015-07-30 | 2019-06-04 | Hyundai Motor Company | Hot stamping steel and producing method thereof |
WO2017037827A1 (ja) * | 2015-08-31 | 2017-03-09 | 新日鐵住金株式会社 | 鋼板 |
KR101714909B1 (ko) * | 2015-10-23 | 2017-03-10 | 주식회사 포스코 | 표면품질이 우수한 고강도 열연강판 및 그 제조방법 |
CN106906421A (zh) * | 2015-12-29 | 2017-06-30 | 宝山钢铁股份有限公司 | 一种低温热冲压汽车零部件、其热冲压工艺及其制造方法 |
CN106929755A (zh) * | 2015-12-29 | 2017-07-07 | 宝山钢铁股份有限公司 | 一种用于生产低温热冲压汽车零部件的钢板及其制造方法和用途 |
CN106906420A (zh) * | 2015-12-29 | 2017-06-30 | 宝山钢铁股份有限公司 | 一种低温热冲压汽车零部件、其热冲压工艺及其制造方法 |
US10619223B2 (en) | 2016-04-28 | 2020-04-14 | GM Global Technology Operations LLC | Zinc-coated hot formed steel component with tailored property |
US10385415B2 (en) | 2016-04-28 | 2019-08-20 | GM Global Technology Operations LLC | Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure |
US10288159B2 (en) | 2016-05-13 | 2019-05-14 | GM Global Technology Operations LLC | Integrated clutch systems for torque converters of vehicle powertrains |
US10240224B2 (en) | 2016-08-12 | 2019-03-26 | GM Global Technology Operations LLC | Steel alloy with tailored hardenability |
JP6460296B2 (ja) * | 2016-11-25 | 2019-01-30 | 新日鐵住金株式会社 | 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材 |
US11027522B2 (en) * | 2017-01-17 | 2021-06-08 | Nippon Steel Corporation | Steel sheet for hot stamping |
US10260121B2 (en) | 2017-02-07 | 2019-04-16 | GM Global Technology Operations LLC | Increasing steel impact toughness |
RU2718021C1 (ru) * | 2017-02-20 | 2020-03-30 | Ниппон Стил Корпорейшн | Горячештампованное изделие |
CN110199046A (zh) * | 2017-02-20 | 2019-09-03 | 日本制铁株式会社 | 热冲压成形体 |
WO2018220412A1 (fr) * | 2017-06-01 | 2018-12-06 | Arcelormittal | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede |
WO2019003450A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
WO2019003448A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
CN107587075B (zh) * | 2017-08-30 | 2019-06-18 | 武汉钢铁有限公司 | 低成本塑料模具钢及其生产方法 |
US11491581B2 (en) | 2017-11-02 | 2022-11-08 | Cleveland-Cliffs Steel Properties Inc. | Press hardened steel with tailored properties |
WO2019186931A1 (ja) * | 2018-03-29 | 2019-10-03 | 日本製鉄株式会社 | ホットスタンプ成形体 |
CN112513310A (zh) | 2018-05-24 | 2021-03-16 | 通用汽车环球科技运作有限责任公司 | 改善压制硬化钢的强度和延性的方法 |
CN112534078A (zh) | 2018-06-19 | 2021-03-19 | 通用汽车环球科技运作有限责任公司 | 具有增强的机械性质的低密度压制硬化钢 |
CN111197145B (zh) | 2018-11-16 | 2021-12-28 | 通用汽车环球科技运作有限责任公司 | 钢合金工件和用于制造压制硬化钢合金部件的方法 |
CN110029274B (zh) * | 2019-04-25 | 2020-09-15 | 首钢集团有限公司 | 一种1600MPa级高强高塑性热冲压用钢及其制备方法 |
CN113906151B (zh) * | 2019-05-31 | 2022-11-11 | 日本制铁株式会社 | 热压成型体 |
KR102604058B1 (ko) * | 2019-05-31 | 2023-11-22 | 닛폰세이테츠 가부시키가이샤 | 핫 스탬프 성형체 |
US11530469B2 (en) | 2019-07-02 | 2022-12-20 | GM Global Technology Operations LLC | Press hardened steel with surface layered homogenous oxide after hot forming |
CN113588365B (zh) * | 2021-07-26 | 2024-03-29 | 青岛特殊钢铁有限公司 | 一种准确评估焊接用钢盘条拉拔加工性能的方法 |
KR20230088118A (ko) * | 2021-12-10 | 2023-06-19 | 현대제철 주식회사 | 핫스탬핑용 소재 |
KR20230088117A (ko) * | 2021-12-10 | 2023-06-19 | 현대제철 주식회사 | 핫스탬핑용 소재 |
CN114561591A (zh) * | 2022-02-28 | 2022-05-31 | 北京理工大学重庆创新中心 | 一种添加y元素的无涂层增强抗高温氧化热冲压成形钢 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172524A (ja) * | 1987-12-28 | 1989-07-07 | Nisshin Steel Co Ltd | 耐食性に優れた高延性高強度の複相組織クロムステンレス鋼帯の製造法 |
JPH06128688A (ja) | 1992-10-20 | 1994-05-10 | Sumitomo Metal Ind Ltd | 疲労特性に優れた熱延鋼板およびその製造方法 |
JPH11189842A (ja) | 1997-10-24 | 1999-07-13 | Kawasaki Steel Corp | 耐衝撃特性、強度−伸びバランス、耐疲労特性および穴拡げ性に優れた高強度高加工性熱延鋼板およびその製造方法 |
JP2000319756A (ja) | 1999-05-06 | 2000-11-21 | Nippon Steel Corp | 疲労特性に優れた加工用熱延鋼板およびその製造方法 |
JP2001355044A (ja) | 2000-06-12 | 2001-12-25 | Nippon Steel Corp | 成形性並びに穴拡げ性に優れた高強度鋼板およびその製造方法 |
JP2005120436A (ja) | 2003-10-17 | 2005-05-12 | Nippon Steel Corp | 穴拡げ性と延性に優れた高強度薄鋼板及びその製造方法 |
JP2005256141A (ja) | 2004-03-15 | 2005-09-22 | Jfe Steel Kk | 穴広げ性に優れる高強度鋼板の製造方法 |
WO2011087057A1 (ja) * | 2010-01-13 | 2011-07-21 | 新日本製鐵株式会社 | 成形性に優れた高強度鋼板及びその製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2830260B1 (fr) | 2001-10-03 | 2007-02-23 | Kobe Steel Ltd | Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci |
JP3762700B2 (ja) | 2001-12-26 | 2006-04-05 | 新日本製鐵株式会社 | 成形性と化成処理性に優れた高強度鋼板およびその製造方法 |
JP2003313636A (ja) | 2002-04-25 | 2003-11-06 | Jfe Steel Kk | 高延性かつ高強度の溶融めっき鋼板およびその製造方法 |
JP4265153B2 (ja) | 2002-06-14 | 2009-05-20 | Jfeスチール株式会社 | 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法 |
EP1634975B9 (en) | 2003-03-31 | 2011-01-19 | Nippon Steel Corporation | Hot dip alloyed zinc coated steel sheet and method for production thereof |
EP1612288B9 (en) | 2003-04-10 | 2010-10-27 | Nippon Steel Corporation | A method for producing a hot-dip zinc coated steel sheet having high strength |
EP1749895A1 (fr) | 2005-08-04 | 2007-02-07 | ARCELOR France | Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites |
WO2007048883A1 (fr) * | 2005-10-27 | 2007-05-03 | Usinor | Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue |
JP4725415B2 (ja) | 2006-05-23 | 2011-07-13 | 住友金属工業株式会社 | 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法 |
DK3290200T3 (da) | 2006-10-30 | 2022-01-03 | Arcelormittal | Coatede stålstrimler, fremgangsmåder til fremstilling heraf, fremgangsmåder til anvendelse heraf, udstansning af emner fremstillet heraf, udstansede produkter fremstillet heraf og fremstillede produkter, der indeholder et sådant udstanset produkt |
JP5082432B2 (ja) * | 2006-12-26 | 2012-11-28 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
JP5223360B2 (ja) | 2007-03-22 | 2013-06-26 | Jfeスチール株式会社 | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
EP1990431A1 (fr) | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites |
ES2387040T3 (es) | 2007-08-15 | 2012-09-12 | Thyssenkrupp Steel Europe Ag | Acero de doble fase, producto plano de un acero de doble fase de este tipo y procedimiento para la fabricación de un producto plano |
PL2204463T3 (pl) | 2007-10-29 | 2019-10-31 | Nippon Steel & Sumitomo Metal Corp | Stal typu martenzytycznego niewymagająca obróbki cieplnej i elementy kute na gorąco ze stali niepoddanej obróbce cieplnej |
JP4894863B2 (ja) | 2008-02-08 | 2012-03-14 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP4659134B2 (ja) | 2008-04-10 | 2011-03-30 | 新日本製鐵株式会社 | 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法 |
JP5347392B2 (ja) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP5418168B2 (ja) | 2008-11-28 | 2014-02-19 | Jfeスチール株式会社 | 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法 |
JP5703608B2 (ja) * | 2009-07-30 | 2015-04-22 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
RU2510423C2 (ru) | 2009-08-31 | 2014-03-27 | Ниппон Стил Корпорейшн | Высокопрочная гальванизированная листовая сталь и способ ее изготовления |
JP5521562B2 (ja) * | 2010-01-13 | 2014-06-18 | 新日鐵住金株式会社 | 加工性に優れた高強度鋼板およびその製造方法 |
BR112012018552B1 (pt) | 2010-01-26 | 2019-01-22 | Nippon Steel & Sumitomo Metal Corporation | chapa de aço laminada a frio de alta resistência e método de produção da mesma |
JP4962594B2 (ja) | 2010-04-22 | 2012-06-27 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
CN102892910B (zh) | 2010-05-10 | 2016-11-16 | 新日铁住金株式会社 | 高强度钢板及其制造方法 |
BR112012031722B8 (pt) | 2010-06-14 | 2022-08-23 | Nippon Steel & Sumitomo Metal Corp | Aço estampado a quente, método de produção de chapa de aço para um aço estampado a quente, e método de produção de aço estampado a quente |
-
2013
- 2013-01-11 CN CN201380005178.9A patent/CN104040008B/zh active Active
- 2013-01-11 BR BR112014017113-0A patent/BR112014017113B1/pt not_active IP Right Cessation
- 2013-01-11 KR KR1020147019669A patent/KR101660144B1/ko active IP Right Grant
- 2013-01-11 CA CA2863218A patent/CA2863218C/en not_active Expired - Fee Related
- 2013-01-11 RU RU2014129326/02A patent/RU2581333C2/ru not_active IP Right Cessation
- 2013-01-11 TW TW102101294A patent/TWI468532B/zh not_active IP Right Cessation
- 2013-01-11 ES ES13736290T patent/ES2733320T3/es active Active
- 2013-01-11 US US14/371,481 patent/US9725782B2/en active Active
- 2013-01-11 EP EP13736290.1A patent/EP2803746B1/en active Active
- 2013-01-11 PL PL13736290T patent/PL2803746T3/pl unknown
- 2013-01-11 MX MX2014008429A patent/MX2014008429A/es active IP Right Grant
- 2013-01-11 JP JP2013530481A patent/JP5382278B1/ja active Active
- 2013-01-11 WO PCT/JP2013/050377 patent/WO2013105631A1/ja active Application Filing
-
2014
- 2014-06-27 ZA ZA2014/04811A patent/ZA201404811B/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172524A (ja) * | 1987-12-28 | 1989-07-07 | Nisshin Steel Co Ltd | 耐食性に優れた高延性高強度の複相組織クロムステンレス鋼帯の製造法 |
JPH06128688A (ja) | 1992-10-20 | 1994-05-10 | Sumitomo Metal Ind Ltd | 疲労特性に優れた熱延鋼板およびその製造方法 |
JPH11189842A (ja) | 1997-10-24 | 1999-07-13 | Kawasaki Steel Corp | 耐衝撃特性、強度−伸びバランス、耐疲労特性および穴拡げ性に優れた高強度高加工性熱延鋼板およびその製造方法 |
JP2000319756A (ja) | 1999-05-06 | 2000-11-21 | Nippon Steel Corp | 疲労特性に優れた加工用熱延鋼板およびその製造方法 |
JP2001355044A (ja) | 2000-06-12 | 2001-12-25 | Nippon Steel Corp | 成形性並びに穴拡げ性に優れた高強度鋼板およびその製造方法 |
JP2005120436A (ja) | 2003-10-17 | 2005-05-12 | Nippon Steel Corp | 穴拡げ性と延性に優れた高強度薄鋼板及びその製造方法 |
JP2005256141A (ja) | 2004-03-15 | 2005-09-22 | Jfe Steel Kk | 穴広げ性に優れる高強度鋼板の製造方法 |
WO2011087057A1 (ja) * | 2010-01-13 | 2011-07-21 | 新日本製鐵株式会社 | 成形性に優れた高強度鋼板及びその製造方法 |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014122398A (ja) * | 2012-12-21 | 2014-07-03 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法 |
US10301699B2 (en) | 2013-09-18 | 2019-05-28 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped part and method of manufacturing the same |
WO2015041159A1 (ja) * | 2013-09-18 | 2015-03-26 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
KR101753016B1 (ko) * | 2013-09-18 | 2017-07-03 | 신닛테츠스미킨 카부시키카이샤 | 핫 스탬프 성형체 및 그 제조 방법 |
CN105518173A (zh) * | 2013-09-18 | 2016-04-20 | 新日铁住金株式会社 | 热冲压成型体以及其制造方法 |
JPWO2015041159A1 (ja) * | 2013-09-18 | 2017-03-02 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
JP2016537502A (ja) * | 2013-09-19 | 2016-12-01 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | 熱間成形鋼材 |
CN103614640B (zh) * | 2013-12-12 | 2016-10-05 | 马鸣图 | 一种抗高温氧化的非镀层热冲压成形用钢 |
CN103614640A (zh) * | 2013-12-12 | 2014-03-05 | 马鸣图 | 一种抗高温氧化的非镀层热冲压成形用钢 |
EP3088545A4 (en) * | 2013-12-23 | 2016-12-21 | Posco | TEMPERED STEEL SHEET HAVING EXCELLENT RESISTANCE AND DUCTILITY AND METHOD FOR MANUFACTURING THE SAME |
JP2017504720A (ja) * | 2013-12-23 | 2017-02-09 | ポスコPosco | 強度及び延性に優れた熱処理硬化型鋼板及びその製造方法 |
US10294541B2 (en) | 2013-12-23 | 2019-05-21 | Posco | Quenched steel sheet having excellent strength and ductility |
JPWO2015174530A1 (ja) * | 2014-05-15 | 2017-04-27 | 新日鐵住金株式会社 | 熱間成形鋼板部材 |
CN106661685A (zh) * | 2014-05-15 | 2017-05-10 | 新日铁住金株式会社 | 热成形钢板构件 |
WO2015174530A1 (ja) * | 2014-05-15 | 2015-11-19 | 新日鐵住金株式会社 | 熱間成形鋼板部材 |
CN106661685B (zh) * | 2014-05-15 | 2018-04-20 | 新日铁住金株式会社 | 热成形钢板构件 |
US10718033B2 (en) | 2014-05-29 | 2020-07-21 | Nippon Steel Corporation | Heat-treated steel material and method of manufacturing the same |
US10662494B2 (en) | 2014-05-29 | 2020-05-26 | Nippon Steel Corporation | Heat-treated steel material and method of manufacturing the same |
KR20160146945A (ko) | 2014-05-29 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | 열처리 강재 및 그 제조 방법 |
KR20160146941A (ko) | 2014-05-29 | 2016-12-21 | 신닛테츠스미킨 카부시키카이샤 | 열처리 강재 및 그 제조 방법 |
EP3395981A4 (en) * | 2015-12-23 | 2018-10-31 | Posco | Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor |
JP2020509208A (ja) * | 2016-12-23 | 2020-03-26 | ポスコPosco | 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法 |
JP2020510757A (ja) * | 2017-03-01 | 2020-04-09 | エーケー スティール プロパティ−ズ、インク. | 極めて高い強度を有するプレス硬化鋼および製造方法 |
JPWO2019003538A1 (ja) * | 2017-06-30 | 2019-06-27 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
WO2019003538A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
US11377709B2 (en) | 2017-06-30 | 2022-07-05 | Jfe Steel Corporation | Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same |
JP7488351B2 (ja) | 2020-03-02 | 2024-05-21 | アルセロールミタル | 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP2023508240A (ja) * | 2020-03-02 | 2023-03-01 | アルセロールミタル | 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法 |
JP7564420B2 (ja) | 2020-03-26 | 2024-10-09 | 日本製鉄株式会社 | ホットスタンプ部品の製造方法 |
JP7564419B2 (ja) | 2020-03-26 | 2024-10-09 | 日本製鉄株式会社 | ホットスタンプ部品の製造方法 |
JP2021181618A (ja) * | 2020-05-15 | 2021-11-25 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
JP7215519B2 (ja) | 2020-05-15 | 2023-01-31 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
WO2023132289A1 (ja) * | 2022-01-07 | 2023-07-13 | 日本製鉄株式会社 | ホットスタンプ用鋼板およびホットスタンプ成形体 |
Also Published As
Publication number | Publication date |
---|---|
RU2581333C2 (ru) | 2016-04-20 |
CA2863218A1 (en) | 2013-07-18 |
RU2014129326A (ru) | 2016-03-10 |
US9725782B2 (en) | 2017-08-08 |
EP2803746A1 (en) | 2014-11-19 |
JPWO2013105631A1 (ja) | 2015-05-11 |
TW201343932A (zh) | 2013-11-01 |
CA2863218C (en) | 2017-07-18 |
PL2803746T3 (pl) | 2019-09-30 |
ES2733320T3 (es) | 2019-11-28 |
CN104040008A (zh) | 2014-09-10 |
MX2014008429A (es) | 2014-10-06 |
KR20140102310A (ko) | 2014-08-21 |
JP5382278B1 (ja) | 2014-01-08 |
ZA201404811B (en) | 2016-01-27 |
BR112014017113B1 (pt) | 2019-03-26 |
BR112014017113A2 (pt) | 2017-06-13 |
EP2803746A4 (en) | 2016-03-16 |
EP2803746B1 (en) | 2019-05-01 |
CN104040008B (zh) | 2016-08-24 |
KR101660144B1 (ko) | 2016-09-26 |
US20150050519A1 (en) | 2015-02-19 |
TWI468532B (zh) | 2015-01-11 |
BR112014017113A8 (pt) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382278B1 (ja) | ホットスタンプ成形体及びその製造方法 | |
US11371110B2 (en) | Cold-rolled steel sheet | |
JP5447740B2 (ja) | 冷延鋼板及びその製造方法 | |
JP5648757B2 (ja) | ホットスタンプ成形体、及びホットスタンプ成形体の製造方法 | |
JP5578289B2 (ja) | 冷延鋼板、及びその製造方法、並びにホットスタンプ成形体 | |
JP5545414B2 (ja) | 冷延鋼板及び冷延鋼板の製造方法 | |
JP6136476B2 (ja) | 冷延鋼板及び冷延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013530481 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13736290 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2863218 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14371481 Country of ref document: US Ref document number: MX/A/2014/008429 Country of ref document: MX Ref document number: 2013736290 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147019669 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014129326 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014017113 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112014017113 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140710 |