WO2013105589A1 - 接近検知システム - Google Patents

接近検知システム Download PDF

Info

Publication number
WO2013105589A1
WO2013105589A1 PCT/JP2013/050260 JP2013050260W WO2013105589A1 WO 2013105589 A1 WO2013105589 A1 WO 2013105589A1 JP 2013050260 W JP2013050260 W JP 2013050260W WO 2013105589 A1 WO2013105589 A1 WO 2013105589A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field detection
detection sensitivity
signal
distance
Prior art date
Application number
PCT/JP2013/050260
Other languages
English (en)
French (fr)
Inventor
澤田 喜久三
Original Assignee
吉川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉川工業株式会社 filed Critical 吉川工業株式会社
Priority to US14/371,345 priority Critical patent/US9875635B2/en
Priority to DE112013000561.1T priority patent/DE112013000561B4/de
Priority to CN201380005226.4A priority patent/CN104040375B/zh
Publication of WO2013105589A1 publication Critical patent/WO2013105589A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller

Definitions

  • the present invention detects a worker approaching a work vehicle at a site where a work vehicle such as a forklift or a bulldozer works, and detects that a worker has entered a predetermined distance in a work machine such as a crane.
  • Worker approach detection system that notifies warning sound and brakes, etc.
  • work vehicle (equipment) approach that detects warning and brake braking by detecting that work vehicles are approaching each other within a certain distance It relates to a detection system.
  • equipment is a generic term for equipment that does not move, in addition to equipment that moves, such as work vehicles and cranes.
  • Patent Document 1 As a system for detecting that an operator is too close to a moving device (hereinafter referred to as a moving device) such as a forklift or a heavy machine, conventionally, ultrasonic waves and radio waves are used as disclosed in Patent Document 1. And a method using an infrared sensor and a distance sensor as disclosed in Patent Document 2, a method using two radio waves as disclosed in Patent Document 3, and the like. Patent Document 4 discloses a method using electromagnetic induction waves and radio waves.
  • ultrasonic waves and infrared rays are directional, there is a problem that the position detection device can detect only one direction when it is attached to a mobile device. Furthermore, the detection distance of ultrasonic waves varies under the influence of atmospheric pressure and humidity. In addition, when using infrared rays, there is a problem that the light receiving unit cannot operate successfully due to the influence of ambient light such as sunlight.
  • Patent Document 3 a method using radio waves has been proposed.
  • the radio wave depends on the type of antenna, for example, when a dipole antenna or a helical antenna is used as the antenna on the transmission side, there is no directivity of the radio wave and a 360 ° distance can be detected.
  • the detection distance varies greatly depending on the surrounding environment due to reflection of radio waves. For example, when the radio wave system is used, if the detection distance is 4m outdoors with no shielding around, but if the wall or equipment machine is within 10m indoors, the detection distance is changed from 2m to 8m. It will vary. In addition, there is a problem that a communication hole (a place where communication cannot be performed locally) can be formed despite the short distance due to the influence of reflection.
  • Patent Document 4 discloses a method of detecting a distance by receiving a radio wave having a long wave or medium wave (30 kHz to 3 MHz) from the transmission side by an electromagnetic induction method.
  • the attenuation characteristic as an alternating magnetic field is shown rather than as an electromagnetic wave at a detection distance much closer to the wavelength.
  • the magnetic field strength H attenuates in inverse proportion to the cube of the distance.
  • the electric field E attenuates in inverse proportion to the square of the distance.
  • the electromagnetic induction method in the near field is used for distance detection, it is less susceptible to reflection because of the steeper attenuation characteristics. Further, the frequency of long waves and medium waves is hardly attenuated by moisture, and there is no need to worry about the influence on the distance detection by the human body. As a result, the detection distance is improved to an accuracy of about 3 m to 5 m even if there is a variation with respect to a desired value of 4 m, for example.
  • the approach detection of the mobile device and the worker there is a need to change the alarm level depending on the distance between the worker and the mobile device.
  • the first warning is given when the distance is 7 m
  • the second warning that the danger is higher when the distance is 5 m
  • the brake of the mobile device is braked when the distance is 3 m.
  • Patent Document 4 does not disclose a device configuration or method for the need to change the alarm level according to the distance.
  • Patent Document 4 does not disclose means for performing a detection distance change setting with an apparatus installed in a mobile device.
  • an object of the present invention is to provide an approach detection system that makes it possible to change the alarm level according to the distance between the worker and the device, and further to set the distance at which the alarm is issued on the device side.
  • a further object of the present invention is to provide an approach detection system capable of detecting an operator and issuing an alarm when a plurality of workers approach the equipment.
  • the present invention is an approach detection system that detects a distance between a distance detection control device and an RFID tag with a magnetic field detection function and outputs an approach warning
  • the distance detection control device includes an induction magnetic field transmission unit and a radio wave reception
  • a first control unit that controls the radio wave reception unit and the magnetic field transmission unit, and the RFID tag with a magnetic field detection function includes a magnetic field sensor unit that detects an induction magnetic field transmitted from the induction magnetic field transmission unit,
  • a second control unit that sets a magnetic field detection sensitivity of the magnetic field sensor unit based on magnetic field detection sensitivity setting data and receives a magnetic field detection signal from the magnetic field sensor unit; and a signal received from the second control unit.
  • a radio wave transmitter for transmitting at least a unique identification number of the RFID tag with the magnetic field detection function, magnetic field detection data, and magnetic field detection sensitivity setting data, and setting the magnetic field detection sensitivity
  • the first control unit receives the magnetic field detection data and the magnetic field detection sensitivity setting data via the radio wave reception unit, and the magnetic field detection sensitivity
  • a plurality of approach warnings can be output based on detection sensitivity setting data.
  • the magnetic field sensor unit can vary a magnetic field detection sensitivity based on magnetic field detection sensitivity setting data transmitted from the second control unit, and the RFID tag with a magnetic field detection function includes the at least 2 Based on the magnetic field detection sensitivity of the stage, the magnetic field detection data and the magnetic field detection sensitivity setting data can be transmitted intermittently.
  • the approach detection system of the present invention may be provided with a plurality of the RFID tags with a magnetic field detection function, and in this case, the first control unit from the plurality of RFID tags with a magnetic field detection function, The unique identification number, the magnetic field detection data, and the magnetic field detection sensitivity setting data are received via the radio wave receiver, and the one having the lowest magnetic field detection sensitivity is selected based on a plurality of the magnetic field detection sensitivity setting data. To be able to output an approach warning.
  • the distance detection control device can be attached to a device, and the RFID tag with a magnetic field detection function can be attached to an operator.
  • the distance detection control device can be attached to a first device, and the RFID tag with a magnetic field detection function can be attached to a second device (a device different from the first device). Note that at least one of the first device and the second device is a mobile device.
  • the magnetic field detection sensitivity of the RFID tag with a magnetic field detection function for detecting an induced magnetic field from the distance detection control device is set in at least two stages. Therefore, the distance detection control device (device) and the RFID tag with a magnetic field detection function The alarm level can be changed according to the distance of the (worker).
  • the distance for issuing an alarm can be set by the first control unit on the distance detection device side. Therefore, it is possible to easily set and change the distance for issuing an alarm.
  • the distance detection control device device
  • the worker who is closest to the device can be detected and an alarm can be issued. That is, an alarm can be issued to a worker in a more dangerous position.
  • the positional relationship between the distance detection control device and the RFID tag in the first embodiment of the present invention will be exemplified to explain the functional operation of the present invention.
  • 3 shows an example of data content of a radio signal from the RFID tag of the first embodiment of the present invention to the distance detection control device.
  • the processing flowchart of the distance detection control apparatus of 1st Example of this invention is shown.
  • the processing flow of the distance detection control apparatus of 2nd Example of this invention is shown (front stage part).
  • the processing flow of the distance detection control apparatus of 2nd Example of this invention is shown (back
  • FIG. 1 is a block diagram of an approach detection system according to the first embodiment of the present invention.
  • the approach detection system 1 according to the first embodiment of the present invention includes at least one distance detection control device 100 and at least one RFID tag 110 with a magnetic field detection function.
  • the distance detection control device 100 includes a magnetic field transmission unit 101, a first control unit 102, a radio wave reception unit 103, and a power supply unit 109.
  • the RFID tag 110 with a magnetic field detection function includes a magnetic field sensor unit 111 and a second control unit. 112, a radio wave transmission unit 113, and a power supply unit 114.
  • the distance detection control device 100 is attached to, for example, a top plate portion of a forklift that is a mobile device, and an AC induction magnetic field 120 having a long waveband frequency (for example, 125 kHz) is transmitted from the magnetic field transmission unit 101 while the forklift is operating.
  • the magnetic field sensor unit 111 of the RFID tag with a magnetic field detection function (hereinafter also referred to as an RFID tag) 110 attached to the helmet of the worker detects the AC induction magnetic field 120 and outputs the magnetic field detection signal 116 to the second. Output to the control unit 112.
  • the magnetic field sensor unit 111 receives the magnetic field detection sensitivity setting data 115 from the second control unit 112, and can change the magnetic field detection sensitivity in, for example, eight stages.
  • the magnetic field detection range can be varied between 2 m and 8 m, for example.
  • the second control unit 112 is composed of, for example, an 8-bit CPU, receives the magnetic field detection signal 116, and transmits a signal 117 including magnetic field detection data, magnetic field detection sensitivity setting data, and an ID (unique identification number) of the RFID tag 110 to the radio wave transmission unit 113 for output.
  • the radio wave transmission unit 113 receives the signal 117, converts it to, for example, a UHF band radio wave, and outputs a radio wave signal 121. That is, the radio wave signal 121 includes at least ID information of the RFID tag, magnetic field detection data, and magnetic field detection sensitivity setting data.
  • the radio wave intensity of the radio signal 121 is set to, for example, 10 m to 20 m so that the communication distance exceeds at least the magnetic field detection range.
  • the radio wave receiving unit 103 receives the radio signal 121 and outputs a reception data signal 106 to the first control unit 102.
  • the first control unit 102 is composed of, for example, an 8-bit CPU, receives the reception data signal 106, and can calculate the magnetic field strength of the AC induction magnetic field 120 received by the RFID tag 110 from the magnetic field detection sensitivity setting data and the magnetic field detection data.
  • the detection distance from the distance detection control device 100 can be derived.
  • the first control unit 102 outputs an alarm signal 107 to the alarm device 130 when determining that the detection distance is within a predetermined distance.
  • the first control unit 102 can set and change how many meters the first control unit 102 outputs the alarm signal 107 at a detection distance. Further, since the magnetic field detection sensitivity setting data of the radio signal 121 includes at least two stages of magnetic field detection sensitivity, a plurality of alarm outputs 107 can be output according to the detection distance.
  • An external input / output signal line 108 for inputting / outputting a signal from an external device 131 such as a forklift is connected to the first control unit 102, and the first control unit 102 is connected to an external input / output signal line 108.
  • the magnetic field transmission control signal 104 is output to the magnetic field transmission unit 101 and the radio wave reception control signal 105 is output to the radio wave reception unit 103.
  • the radio wave signal 121 transmitted from the RFID tag 110 includes the RFID tag 110 ID, magnetic field detection data, and magnetic field detection sensitivity setting data. It is possible to change the alarm level according to the distance between the mobile device and the distance between the mobile devices and to set the distance for issuing the alarm on the distance detection device side (first control unit 102).
  • FIG. 2 exemplifies the positional relationship between the distance detection control device 100 and the RFID tag 110 in the first embodiment of the present invention, and explains the functional operation of the present invention.
  • the distance detection control device 100 is mounted on the mobile device 10, and a plurality of workers 11, 12, 13, and 14 respectively attach RFID tags 110-1, 110-2, 110-3, and 110-4. have.
  • 20, 21, and 22 indicate limit area circles of predetermined magnetic field strengths of the AC induction magnetic field emitted from the distance detection control device 100.
  • the magnetic field strength can be measured digitally by changing the magnetic field detection sensitivity of the RFID tag, and 20 is about 7 m when converted to distance when the magnetic field detection sensitivity setting is maximum.
  • Reference numeral 21 denotes a case where the magnetic field detection sensitivity setting is medium, which is about 5 m in terms of distance.
  • Reference numeral 22 denotes a case where the magnetic field detection sensitivity setting is the lowest, which is about 3 m when converted into a distance.
  • the RFID tags 110-1, 110-2, 110-3, and 110-4 respectively transmit radio wave signals 31, 32, 33, and 34 having ID, magnetic field detection data, and magnetic field detection sensitivity setting data, for example, every 0.1 second. Sending intermittently.
  • the RFID tags 110-1, 110-2, 110-3, and 110-4 periodically change their magnetic field detection sensitivity by changing the sensitivity setting.
  • the sensitivity setting that can no longer be detected is output as a radio signal.
  • the magnetic field is not detected at the position of the worker 11 even when the magnetic field detection sensitivity is maximized, and the worker 11 is 7 m or more away.
  • the magnetic field can be detected when the magnetic field detection sensitivity is maximum, and the magnetic field is not detected when the magnetic field detection sensitivity is medium. From this, it can be seen that the worker 12 is between 7 m and 5 m.
  • the magnetic field detection can be performed when the magnetic field detection sensitivity is maximum and medium, and the magnetic field detection is not performed when the magnetic field detection sensitivity is minimum. From this, it can be seen that the worker 13 is between 5 m and 3 m.
  • the magnetic field can be detected when the magnetic field detection sensitivity is maximum, medium and minimum, and it can be seen that the worker 14 is within 3 m.
  • the distance of the worker from the mobile device with approximate accuracy (for example, accuracy of 1 to 2 m).
  • FIG. 3 is a block diagram of the RFID tag 110 with a magnetic field detection function according to the first embodiment of the present invention.
  • the RFID tag 110 with a magnetic field detection function includes a magnetic field sensor unit 201, a control unit 202, a radio wave transmission unit 240, and a power supply unit 203.
  • the magnetic field sensor unit 201 includes a magnetic field detection IC 204 and a resonance circuit including a coil 207 and a capacitor 208.
  • One end 205 of the resonance circuit is connected to the analog signal input terminal LP1P of the magnetic field detection IC 204, and the other end 206 is also connected to the analog signal input terminal LPN.
  • a magnetic field detection signal 210 (IRQ) is output from the magnetic field detection IC 204 and is connected to an interrupt terminal of the microcomputer 215 of the control unit 202.
  • the magnetic field detection IC 204 is connected to the microcomputer 215 so as to transmit / receive a serial clock input signal 211 (SCL), a serial data input signal 212 (SDI), a serial data output 213 (SDO), and a chip selection signal 214 (CS). Yes.
  • SCL serial clock input signal 211
  • SDI serial data input signal 212
  • SDO serial data output 213
  • CS chip selection signal 214
  • the magnetic field detection IC 204 activates the magnetic field detection signal 210 (IRQ) when an alternating induction magnetic field is amplified by a resonance circuit and a predetermined signal pattern is input to the analog input terminals LP1P and LPN at a predetermined signal level or higher. For example, the logic is “1” and the voltage is high level).
  • the predetermined signal level and the predetermined signal pattern are set and changed through a serial clock input signal 211 (SCL), a serial data input signal 212 (SDI), and a serial data output 213 (SDO) from the microcomputer 215 of the control unit 202. Is done.
  • a clock oscillator 218 is connected to the microcomputer 215 via oscillation signal terminals 216 and 217.
  • the microcomputer 215 also outputs an enable signal 219 (EN) and a transmission data signal 220 (DATA) to the RFIC 221 of the radio wave transmission unit 240.
  • a clock oscillator 224 is connected to the RFIC 221 via oscillation signal terminals 223 and 222.
  • the RFIC 221 modulates the transmission data signal 220 (DATA) from the microcomputer 215 and outputs the transmission RF signal 225 (PA) to the filter 226.
  • the filter 226 receives the transmission RF signal 225 (PA), performs a filter operation, and outputs it to the antenna 227.
  • a radio wave signal 121 (see FIG. 1) is transmitted from the antenna 227.
  • the frequency of the radio signal 121 is, for example, 315 MHz, for example, 426 MHz, for example, 2.45 GHz.
  • the transmission data signal 220 (DATA) from the microcomputer 215 to the RFIC 221 does not need to be continuous.
  • the signal time for one time at intervals of 0.1 to 10 seconds is an intermittent signal of about 10 milliseconds. It may be.
  • the power supply unit 203 includes a battery 234 and a voltage regulator 231.
  • the battery 234 is a coin battery, for example, and has a voltage of about 3.3V.
  • a battery 234 is connected to the voltage regulator 231 via terminals 232 and 233 and outputs a power supply voltage signal 230 (Vdd) and a ground voltage signal 209 (GND).
  • the power supply voltage signal 230 (Vdd) is, for example, 2.0V to 2.5V.
  • the power supply voltage signal 230 (Vdd) and the ground voltage signal 209 (GND) are connected to the power supply terminals and ground terminals of the magnetic field detection IC 204, the microcomputer 215, and the RFIC 221.
  • FIG. 4 shows a block diagram of the magnetic field detection IC of the first embodiment of the present invention.
  • 301 (LF1P), 302 (LF2P), 303 (LF3P), and 304 (LFN) are analog input signal terminals, and a tuning circuit is connected to the outside.
  • 301 (LF1P), 302 (LF2P), 303 (LF3P) and three inputs correspond to the direction (axis) of the coil constituting the tuning circuit in three directions (X axis, Y axis, Z axis). This is because the RFID tag mounted with this IC performs magnetic field detection in all directions.
  • Analog input signal terminals 301 (LF1P), 302 (LF2P), and 303 (LF3P) are connected to inputs of the first channel amplifier 320, the second channel amplifier 321, and the third channel amplifier 322, respectively.
  • the first channel amplifier 320, the second channel amplifier 321, and the third channel amplifier 322 are amplifiers, but the gain can be adjusted in a plurality of stages by a gain setting signal 348 from the main logic circuit 326.
  • the amplified signal outputs 341, 342, and 343 of the first channel amplifier 320, the second channel amplifier 321, and the third channel amplifier 322 are connected to the channel selection circuit 323, and the channel selection circuit 323 has the largest signal voltage.
  • One channel signal is selected and output to the waveform signal decoder 327.
  • the waveform signal decoder 327 demodulates the input analog signal, converts it into a digital signal, and outputs it to the comparison circuit 330 and the Manchester decoder 328.
  • the comparison circuit 330 compares whether the input signal matches a predetermined pattern, and if it matches, sends a comparison signal to the wakeup circuit 324.
  • the wakeup circuit 324 receives the channel amplifier output and the comparison signal, and outputs a magnetic field detection signal 307 (IRQ).
  • IRQ magnetic field detection signal
  • the Manchester decoder 328 receives the output from the waveform signal decoder 327 and outputs the output signal data 312 (DAT) and the data clock signal 313 (CL_DAT).
  • the main logic circuit 326 receives an input signal from the serial input / output circuit 329 and a signal from the channel amplifier, stores a gain setting value, a signal pattern, and the like in a register and sends a signal to a necessary circuit. Further, data in the register of the main logic circuit 326 can be transferred to the outside through the serial input / output circuit 329 through 310 (SDO).
  • the bias circuit 325 receives the power supply voltage signal 305 (VCC) and the ground voltage signal 306 (GND) and generates a necessary bias voltage inside the IC.
  • the oscillation circuit 331 generates a clock required in the IC by the internal oscillation circuit.
  • FIG. 5 shows a block diagram of the distance detection control device 100 of the first embodiment of the present invention.
  • the distance detection control device 100 includes a radio wave reception unit 401, a control unit 402, a magnetic field transmission unit 403, and a power supply unit 404.
  • the radio wave receiving unit 401 includes a receiving antenna 405, a capacitor 407 and an inductance 409 that are tuning circuits, and an RF receiving IC 400.
  • the receiving antenna 405 receives the radio wave signal from the RFID tag 110, and this is transmitted to the analog input terminal 410 (LNAIN) of the RF receiving IC 400 via the tuning circuit.
  • an oscillator 415 and tuning capacitors 413 and 414 are connected to oscillation terminals 411 and 412.
  • the RF reception IC 400 amplifies and demodulates the input signal of the analog input terminal 410 (LNAIN) and outputs a reception data output signal 418.
  • the received data output signal 418 is input to the microcomputer 428 of the control unit 402.
  • the microcomputer 428 outputs an alarm output signal 434 according to the tag ID, magnetic field detection data, and magnetic field detection sensitivity setting data included in the received data. Further, a signal 422 is sent to the magnetic field signal generation circuit 432 as necessary. Further, an interface is performed with an external device via a signal 435.
  • a transmitter 421 is connected to the oscillation terminals 419 and 420 in the microcomputer 428.
  • the magnetic field transmission unit 403 includes a magnetic field signal generation circuit 432, a drive circuit 423, and a magnetic field transmission antenna 424.
  • the magnetic field signal generation circuit 432 generates a signal 433 for generating an AC induction magnetic field.
  • the frequency of the signal 433 is, for example, 125 kHz.
  • the signal 433 is not necessarily continuous.
  • the signal 433 may be an intermittent signal having a signal width of 10 milliseconds every 100 milliseconds.
  • the input signal 422 from the microcomputer 428 is not essential for the operation of the magnetic field transmission unit 403, and is used only when the magnetic field transmission needs to be controlled by the value of the received data.
  • the signal 433 is input to the drive circuit 423 and converted into voltage and current necessary for driving the magnetic field transmitting antenna 424.
  • the voltage at this time is 9 to 12 V, for example, and the current is 1 to 2 amperes.
  • the magnetic field transmitting antenna 424 generates an alternating induction magnetic field in all directions.
  • the voltage regulator 427 receives the external power supply voltage input 426 and the ground voltage input 425, and generates the power supply voltage signal 430 (Vdd) of the radio wave reception unit 401, the control unit 402, and the magnetic field signal generation circuit 432.
  • a drive power supply 431 (Vhh) for the drive circuit 423 is also generated.
  • the voltage value of the external power supply voltage input 426 is, for example, 12 to 48V
  • the power supply voltage signal 430 (Vdd) is, for example, 3-5V
  • the drive power supply 431 (Vhh) is, for example, 9-12V.
  • FIG. 6 shows a processing flow of the RFID tag with a magnetic field detection function according to the first embodiment of the present invention.
  • an RFID tag hereinafter also referred to as a tag
  • the operation is started (501, 502).
  • the microcomputer 215 sets the magnetic field detection sensitivity to the maximum and sends it to the magnetic field detection IC 204 (503).
  • a signal indicating whether or not the magnetic field detection IC 204 has detected the magnetic field is sent to the microcomputer 215, and the microcomputer 215 receives the signal and determines whether or not the magnetic field has been detected (504, 505).
  • the microcomputer 215 changes the magnetic field detection flag from “0” to “1”, adds the tag ID and the set magnetic field detection sensitivity information (that is, the maximum magnetic field detection sensitivity), and transmits the radio wave. 240.
  • the radio wave transmission unit 240 converts the tag ID, the magnetic field detection flag, and the magnetic field detection sensitivity information into a radio wave signal and transmits the radio wave signal (508).
  • the microcomputer 215 keeps the magnetic field detection flag to “0”, attaches the tag ID and the set magnetic field detection sensitivity information (that is, the maximum magnetic field detection sensitivity), and transmits the radio wave transmission unit 240. Send to.
  • the radio wave transmission unit 240 converts the tag ID, the magnetic field detection flag, and the magnetic field detection sensitivity information into a radio wave signal and transmits it (512). If the magnetic field cannot be detected, the tag enters a standby state of 1 to 10 seconds (514), and then returns to the magnetic field detection determination process (515).
  • the microcomputer 215 keeps the magnetic field detection flag to be “0”, attaches the tag ID and the set magnetic field detection sensitivity information (that is, medium magnetic field detection sensitivity), and transmits the radio wave. 240.
  • the radio wave transmission unit 240 converts the tag ID, the magnetic field detection flag, and the magnetic field detection sensitivity information into a radio wave signal and transmits it (523). If the magnetic field cannot be detected, the tag returns to the magnetic field detection determination process again (515).
  • the microcomputer 215 sets the magnetic field detection sensitivity to the lowest level and sends it to the magnetic field detection IC 204 (521).
  • a signal indicating whether or not the magnetic field detection IC 204 has detected the magnetic field is sent to the microcomputer 215, and the microcomputer 215 receives the signal and determines whether or not the magnetic field has been detected (523).
  • the microcomputer 215 changes the magnetic field detection flag from “0” to “1”, attaches the tag ID and the set magnetic field detection sensitivity information (that is, the lowest magnetic field detection sensitivity), and transmits the radio wave. 240.
  • the microcomputer 215 keeps the magnetic field detection flag as “0”, attaches the tag ID and the set magnetic field detection sensitivity information (that is, the lowest magnetic field detection sensitivity), and transmits the radio wave transmission unit 240. Send to.
  • the radio wave transmission unit converts the tag ID, the magnetic field detection flag, and the magnetic field detection sensitivity information into a radio wave signal and transmits the radio wave signal (528). If the magnetic field cannot be detected, the tag returns to the magnetic field detection determination process again (515).
  • the magnetic field detection sensitivity medium
  • the position of the RFID tag can be accurately detected by the processing flow of the RFID tag.
  • the magnetic field detection sensitivity setting does not necessarily have to be three steps, and more steps are preferable because the accuracy of position detection is increased.
  • the method of the present processing flow is established even in two stages.
  • FIG. 7 shows an example of data contents of the radio wave signal 121 from the RFID tag of the first embodiment of the present invention to the distance detection control device.
  • the synchronization frame 601 for synchronization is, for example, 8 bits, followed by 24 bits of a unique tag ID (unique identification number) 602 of the RFID tag.
  • 1 bit of the magnetic field detection data (magnetic field detection flag) 603 follows. In the magnetic field detection flag, for example, “0” indicates that no magnetic field is detected and “1” indicates that a magnetic field is detected.
  • FIG. 8 shows a processing flow of the distance detection control apparatus of the first embodiment of the present invention.
  • the magnetic field transmission unit 403 starts AC induction magnetic field transmission (703).
  • the time per magnetic field transmission is, for example, 1 to 20 milliseconds, and the transmission interval is, for example, 100 milliseconds to 1 second.
  • the radio wave receiving unit 401 and the control unit 402 are also turned on when the apparatus is turned on.
  • a communication range for example, 10 to 20 m
  • the alarm signal is, for example, a control signal to a rotating lamp or a sound alarm device.
  • the magnetic field detection sensitivity setting is not the maximum (716)
  • the magnetic field detection sensitivity setting data medium (722)
  • a warning reference process is performed and then a second-stage alarm signal is output.
  • the magnetic field detection sensitivity setting is not medium (723)
  • the magnetic field detection sensitivity setting data is the lowest (725)
  • the third stage alarm signal is output after the warning reference process is performed. If the magnetic field detection sensitivity setting is not the lowest (726), error processing is performed (732), and the process returns to the flow immediately after the power is turned on.
  • the magnetic field detection sensitivity setting data is the maximum (711).
  • the magnetic field detection sensitivity setting data maximum, it means that the tag is in a range where the tag ID can be detected but the magnetic field cannot be detected. Therefore, only the ID detection process is performed (717), and the process after the power is turned on Returning to the routine (720).
  • the magnetic field detection data is not 1 and the magnetic field detection sensitivity setting data is not the maximum (713)
  • the process proceeds to the determination (721) as to whether or not the magnetic field detection sensitivity setting is medium.
  • an alarm signal can be issued at a desired detection distance by the magnetic field detection data and the magnetic field detection sensitivity setting data sent from the RFID tag, and the detection distance can be increased.
  • the alarm signal can be changed accordingly.
  • FIGS. 9A and 9B show a processing flow of the position detection control apparatus according to the second embodiment of the present invention. This flow exemplifies a case where two RFID tags exist in the detection range.
  • the apparatus when the apparatus is turned on (801, 802), AC magnetic field transmission is started from the magnetic field transmission unit 403 (803).
  • the time per magnetic field transmission is, for example, 1 to 20 milliseconds, and the transmission interval is, for example, 100 milliseconds to 1 second.
  • the radio wave receiving unit 401 and the control unit 402 are also turned on when the apparatus is turned on.
  • the radio wave signal can be received by the radio wave receiving unit 401 when the radio wave signal is within a communication range (for example, 10 to 20 m) from the RFID tag. Therefore, first, the microcomputer 428 of the control unit 402 determines whether or not the tag ID can be received (805). If it can be received (807), it is determined whether or not there are two tag IDs. This is determined, for example, by how many tag IDs can be recognized by the microcomputer 428 during 1 to 10 seconds. When there is only one tag ID, the same processing as the processing flow (821) of the first embodiment of the present invention shown in FIG. 8 is performed.
  • the magnetic field detection sensitivity setting data of the first tag is not 1 (812)
  • it is determined whether the magnetic field detection sensitivity setting data is the maximum (817). If the magnetic field detection sensitivity setting data maximum, this means that the tag is in a range where the ID of the first tag can be detected but the magnetic field cannot be detected. The process returns to the subsequent processing routine (823).
  • the magnetic field detection sensitivity setting is not medium (825)
  • it is determined whether the magnetic field detection sensitivity setting is the lowest (826). If the magnetic field detection sensitivity setting data lowest (827), the warning reference process is performed and then the process proceeds to the second tag process (843). When the magnetic field detection sensitivity setting is not the lowest (828), error processing is performed (834), and the process returns to the flow immediately after the power is turned on (823).
  • the selection process (867) refers to a process of selecting a lower magnetic field detection sensitivity setting between the first tag and the second tag. In other words, a tag that is closer to the distance detection control device than the first tag and the second tag is selected.
  • the processing flow of the detection control apparatus of the second embodiment of the present invention when the first RFID tag and the second RFID tag are present in the magnetic field detection range, the RFID tag closer to the distance detection control apparatus. It becomes possible to output a warning by selecting.
  • the processing flow is described in detail for two RFID tags. However, it can be easily inferred that the same processing flow can be applied even when the number of tags is three or more.
  • the distance between the worker and the mobile device is detected.
  • the distance between the device and the mobile device or between the mobile devices can also be detected.
  • proximity detection system 10 mobile device 100: distance detection control device 101: magnetic field transmission unit 102: first control unit 103: radio wave reception unit 104: magnetic field transmission control signal 105: radio wave reception control signal 106: reception data signal 107 : Alarm signal 108: External input / output signal 110: RFID tag with magnetic field detection function 111: Magnetic field sensor unit 112: Second control unit 113: Radio wave transmission unit 114: Power supply unit 115: Magnetic field detection sensitivity setting data signal 116: Magnetic field detection Signal 120: AC induction magnetic field 121: Radio wave signal 130: Alarm device 131: External device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Emergency Alarm Devices (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

【課題】本発明は、作業者と機器の距離により警報のレベルを変えることを可能とし、更に警報を発する距離を機器側で設定可能にする接近検知システムを提供する。本発明の接近検知システムは、作業者に取り付けられる誘導磁界検知機能付きRFIDタグと移動機器に取り付けられる距離検知制御装置を有し、誘導磁界検知機能付きRFIDタグは、複数の磁界検知感度を設定可能であり、かつ、磁界検知感度強設定データと磁界検知データを距離検知制御装置へ間歇的に送信する手段を有し、距離検知制御装置では、受信したデータに応じ、異なる警報レベルを出力する。

Description

接近検知システム
 本発明は、フォークリフトやブルドーザなどの作業車両が作業する現場において、作業者が作業車両に接近したこと、クレーンなどの作業機械において作業者が所定距離内に入ったことなどを検知し、警告灯、警告音で知らせたり、ブレーキの制動などを行う作業者接近検知システム、あるいは、作業車両同士が一定距離以内に近づいたことを検知し、警告、ブレーキの制動などを行う作業車両(機器)接近検知システムに関するものである。
 なお、本発明において「機器」とは、作業車両やクレーンのように移動する機器のほか、移動しない機器を総称するものである。
 フォークリフトや重機などの移動する機器(以下、移動機器と称する。)に作業者が近づきすぎたことを検知するシステムとしては、従来、特許文献1に開示されているように超音波と電波を用いて行う方法や、特許文献2に開示されているように赤外線センサーと距離センサーを用いる方法や、特許文献3に開示されているように2つの電波を用いる方法などがある。また、特許文献4には電磁誘導波と電波を用いる方法が開示されている。
特開平5-321303号公報 特開2006-337216号公報 特開2005-346228号公報 特開平7-168985号公報
 しかるに、超音波や赤外線は指向性があるため、移動機器に取り付けた際に、その位置検知装置では一方向しか検知できないという問題があった。更に、超音波は気圧や湿度の影響で検知距離が変動する。また、赤外線は、屋外で使用時は、太陽光などの外乱光の影響で受光部が首尾よく動作できないなどの問題がある。
 そこで、特許文献3に示すように電波を用いた方法が提案されている。電波はアンテナの種類にもよるが、例えば、ダイポールアンテナやヘリカルアンテナを送信側のアンテナとして使用した場合、電波の指向性がなく、360°距離検知が可能である。
 しかるに、電波を用いて距離検知を行う場合、電波の反射によって、周囲環境により、検知距離が大きく変動するという問題があった。例えば、電波方式を使った場合、周辺に遮蔽物のない屋外で4mの検知距離であったものが、屋内で、壁や設備機械などが10m以内にある場合は、検知距離が2mから8mにばらついてしまう。また、反射の影響により、短距離内であるにもかかわらず、コミュニケーションホール(局所的に通信ができない場所)ができるという問題がある。
 特許文献4には、送信側からの周波数が長波又は中波(30kHz~3MHz)の電波を電磁誘導的な方法で受信し、距離検知を行う方法が開示されている。特許文献4にも開示されているように、波長よりはるかに近い検知距離においては、電磁波としてよりも、交流磁界としての減衰特性を示す。理論的には、波長より十分に短い距離(近傍界)では、磁界強度Hは距離の3乗に反比例して減衰する。これに対し波長より十分に長い距離(遠方界)では、電界Eは距離の2乗に反比例して減衰する。すなわち、近傍界での電磁誘導の方法を距離検知に使えば、より急峻な減衰特性の故、反射の影響を受けにくい。更に、長波や中波の周波数は水分による減衰はほとんどなく、人体による距離検知への影響を懸念する必要はない。これにより、検知距離は例えば4mの所望値に対し、バラツキを含めても3m~5m程度と精度が向上する。
 一方、移動機器と作業者の接近検知に関しては、作業者と移動機器との間の距離により、警報のレベルを変えたいというニーズがある。例えば、距離7mの時に最初の警報を行い、距離5mの時に、より危険性が高いという第二の警報を行い、距離3mの場合は、移動機器のブレーキの制動を行うということが考えられる。
 しかるに、特許文献4には、警報レベルを距離に応じ変えたいというニーズに対しての装置構成や方法は開示されていない。
 更には、警報を発する距離を、移動機器が作業する現場の状況に合わせて変更したいというニーズがある。この操作は、作業者に取り付ける装置ではなく、移動機器に設置する装置で行うことが便利である。接近検知システムにおいては一般的に、作業者に取り付ける装置の必要数の方が移動機器に設置する装置の必要数よりも大きく、設定を変更するのに手間がかかるためである。
 しかるに、特許文献4には、検知距離の変更設定を移動機器に設置する装置で行う手段は開示されていない。
 そこで、本発明の目的は、作業者と機器の距離により警報のレベルを変えることを可能とし、更に警報を発する距離を機器側で設定可能にする接近検知システムを提供することにある。
 本発明の更なる目的は、機器に対し複数の作業者が接近した場合に、最も機器に接近している作業者を検知して警報を発しうる接近検知システムを提供することにある。
 本発明は、距離検知制御装置と磁界検知機能付きRFIDタグとの間の距離を検知して接近警報を出力する接近検知システムであって、前記距離検知制御装置は、誘導磁界送信部と電波受信部と前記電波受信部及び前記磁界送信部を制御する第1の制御部とを備え、前記磁界検知機能付きRFIDタグは、前記誘導磁界送信部から送信される誘導磁界を検知する磁界センサー部と、磁界検知感度設定データに基づき前記磁界センサー部の磁界検知感度を設定すると共に前記磁界センサー部からの磁界検知信号を受信する第2の制御部と、前記第2の制御部から信号を受信して少なくとも前記磁界検知機能付きRFIDタグの固有識別番号、磁界検知データ及び磁界検知感度設定データを送信する電波送信部とを備え、前記磁界検知感度設定データは、少なくとも2段階の磁界検知感度を含むものであり、前記第1の制御部は、前記磁界検知データと前記磁界検知感度設定データを、前記電波受信部を介して受信し、前記磁界検知感度設定データに基づき複数レベルの接近警報を出力できるものであることを特徴とする。
 本発明において、前記磁界センサー部は、前記第2の制御部から送信されてくる磁界検知感度設定データに基づき磁界検知感度を可変できるものであり、前記磁界検知機能付きRFIDタグは、前記少なくとも2段階の磁界検知感度に基づいて、磁界検知データ及び磁界検知感度設定データを間歇的に送信できるものとすることができる。
 また、本発明の接近検知システムは、前記磁界検知機能付きRFIDタグを複数備えたものとすることができ、この場合、前記第1の制御部は、前記複数の磁界検知機能付きRFIDタグから、前記固有識別番号と前記磁界検知データと前記磁界検知感度設定データとを前記電波受信部を介して受信し、複数の前記磁界検知感度設定データに基づき、最も磁界検知感度が低い一つを選択して、接近警報を出力できるようにする。
 更に、本発明において、前記距離検知制御装置は機器に取り付け、前記磁界検知機能付きRFIDタグは作業者に取り付けることができる。あるいは、前記距離検知制御装置は第1の機器に取り付け、前記磁界検知機能付きRFIDタグは第2の機器(前記第1の機器とは別種類の機器)に取り付けることもできる。なお、前記の第1の機器及び第2の機器のうち少なくとも一方は移動機器である。
 本発明によれば、距離検知制御装置からの誘導磁界を検知する磁界検知機能付きRFIDタグの磁界検知感度を少なくとも2段階に設定するので、距離検知制御装置(機器)と磁界検知機能付きRFIDタグ(作業者)の距離により警報のレベルを変えることが可能となる。
 また、警報を発する距離は距離検知装置側の第1の制御部で設定可能である。したがって、警報を発する距離を容易に設定、変更することができる。
 更に、距離検知制御装置(機器)に対し複数の磁界検知機能付きRFIDタグ(作業者)が接近した場合に、最も機器に接近している作業者を検知して警報を発しうる。すなわち、より危険な位置にいる作業者に警報を発することができる。
本発明の第の実施例の接近検知システムのブロック図である。 本発明の第1実施例における距離検知制御装置とRFIDタグの位置関係を  例示し、本発明の機能動作の説明するものである。 本発明の第1実施例のRFIDタグのブロック図である。 本発明の第1実施例の磁界検知用ICのブロック図である。 本発明の第1実施例の距離検知制御装置のブロック図である。 本発明の第1実施例の磁界検知機能付きRFIDタグの処理フロー図である。 本発明の第1実施例のRFIDタグから距離検知制御装置への電波信号のデータ内容の一例を示すものである。 本発明の第1実施例の距離検知制御装置の処理フロー図を示す。 本発明の第2実施例の距離検知制御装置の処理フローを示す(前段部分)。 本発明の第2実施例の距離検知制御装置の処理フローを示す(後段部分)。
 以下、図面に示す実施例に基づき、本発明の実施の形態を説明する。
 図1は、本発明の第1実施例の接近検知システムのブロックである。本発明の第1実施例の接近検知システム1は、少なくとも一つの距離検知制御装置100と少なくとも一つの磁界検知機能付きRFIDタグ110からなる。
 距離検知制御装置100は、磁界送信部101と第1の制御部102と電波受信部103と電源部109から構成され、磁界検知機能付きRFIDタグ110は、磁界センサー部111と第2の制御部112と電波送信部113と電源部114から構成される。
 距離検知制御装置100は、例えば移動機器であるフォークリフトの天板部分に取り付けられ、フォークリフトが稼働中は磁界送信部101から長波帯周波数(例えば125kHz)の交流誘導磁界120が送信される。そして、例えば、作業員のヘルメットに取り付けられた磁界検知機能付きRFIDタグ(以下、RFIDタグとも称す。)110の磁界センサー部111は交流誘導磁界120を検知して磁界検知信号116を第2の制御部112に対して出力する。
 ここで、磁界センサー部111は磁界検知感度設定データ115を第2の制御部112から受けて磁界検知感度を例えば8段階に可変できるようになっている。磁界検知感度を可変することにより、磁界検知範囲を例えば2m~8mの間で可変できる。
 第2の制御部112は例えば8ビットCPUからなり、磁界検知信号116を受けて、磁界検知データ、磁界検知感度設定データ及びRFIDタグ110のID(固有識別番号)を含む信号117を電波送信部113に対して出力する。電波送信部113は前記信号117を受けて、例えばUHF帯の電波へ変換し、電波信号121を出力する。すなわち、電波信号121には少なくともRFIDタグのID情報、磁界検知データ及び磁界検知感度設定データが含まれる。この電波信号121の電波の強さは、通信距離が少なくとも前記磁界検知範囲を上回るように、例えば10m~20mに設定する。
 電波受信部103は電波信号121を受けて第1の制御部102に対して受信データ信号106を出力する。第1の制御部102は例えば8ビットCPUからなり、受信データ信号106を受けて、磁界検知感度設定データと磁界検知データから、RFIDタグ110が受信した交流誘導磁界120の磁界強度を計算でき、距離検知制御装置100からの検知距離を導きだせる。
 第1の制御部102は検知距離が所定の距離以内と判断した場合に、警報装置130に対して警報信号107を出力する。第1の制御部102が何メートルの検知距離で警報信号107を出力するかは第1の制御部102にて設定及び変更が可能である。また、電波信号121の磁界検知感度設定データは、少なくとも2段階の磁界検知感度を含むので、検知距離に応じて複数の警報出力107を出すことが可能である。
 第1の制御部102には、フォークリフト等などの外部装置131からの信号を入出力する外部入出力信号線108が接続され、第1の制御部102は、外部入出力信号線108からの外部入出力信号や受信データ信号106を受けて、磁界送信部101に対して磁界送信制御信号104や、電波受信部103に対して電波受信制御信号105を出力する。
 以上のように、本発明の第1実施例においては、RFIDタグ110から送信される電波信号121にRFIDタグ110のID、磁界検知データ及び磁界検知感度設定データを含ませたことにより、作業者と移動機器の距離により警報のレベルを変えることを可能とし、更に警報を発する距離を距離検知装置側(第1の制御部102)で設定可能にした。
 図2は、本発明の第1実施例における距離検知制御装置100とRFIDタグ110の位置関係を例示し、本発明の機能動作を説明するものである。
 図2において、移動機器10に距離検知制御装置100が搭載されており、複数の作業者11、12、13、14は各々RFIDタグ110-1、110-2、110-3、110-4を持っている。図2において、20、21、22は、距離検知制御装置100から発せられた交流誘導磁界のそれぞれの所定磁界強度の限界域円を示す。
 磁界強度は、換言すればRFIDタグの磁界検知感度を変更することにより、デジタル的に計測でき、20は磁界検知感度設定が最大の場合であり距離に換算すると約7mである。21は磁界検知感度設定が中程度の場合であり距離に換算すると約5mである。22は磁界検知感度設定が最低の場合であり距離に換算すると約3mである。
 RFIDタグ110-1、110-2、110-3、110-4は、各々ID及び磁界検知データ及び磁界検知感度設定データを有する電波信号31、32、33、34を例えば0.1秒毎の間歇的に送信している。また、RFIDタグ110-1、110-2、110-3、110-4は、その磁界検知感度を感度設定を変更することにより周期的に変化させており、磁界検出ができた感度設定及び磁界検出ができなくなった感度設定を電波信号として出力する。
 換言すれば、作業者11の位置では磁界検知感度を最大にしても磁界が検出できておらず、作業者11は7m以遠にいることが判る。また、作業者12の位置では磁界検出感度を最大の場合は磁界検出ができており、磁界検出感度を中程度とした場合は磁界検出ができていない。このことから作業者12は7mと5mの間にいることが判る。また、作業者13の位置では磁界検出感度を最大の場合及び中程度の場合は磁界検出ができており、磁界検出感度を最低とした場合は磁界検出ができていない。このことから作業者13は5mと3mの間にいることが判る。更に、作業者14の位置では磁界検出感度を最大の場合及び中程度及び最低の場合で磁界検出ができており、作業者14は3m以内にいることが判る。
 以上のように、本発明の第1実施例においては、作業者の移動機器からの距離をおおよその精度(例えば1~2mの精度)で検出することが可能である。
 図3は、本発明の第1実施例の磁界検知機能付きRFIDタグ110のブロック図である。
 磁界検知機能付きRFIDタグ110は、磁界センサー部201、制御部202、電波送信部240、電源部203より構成される。磁界センサー部201は、磁界検知用IC204、及びコイル207とコンデンサ208からなる共振回路で構成される。共振回路の一端205は磁界検知用IC204のアナログ信号入力端子LP1Pに接続され、他端206は同じくアナログ信号入力端子LPNへ接続される。磁界検知用IC204からは、磁界検知信号210(IRQ)が出力され、制御部202のマイコン215の割り込み端子に接続される。磁界検知用IC204は、マイコン215とシリアルクロック入力信号211(SCL)、シリアルデータ入力信号212(SDI)、シリアルデータ出力213(SDO)及びチップ選択信号214(CS)を送受信できるように接続されている。
 磁界検知用IC204は、交流誘導磁界が共振回路により増幅され、所定の信号レベル以上で、所定の信号パターンがアナログ入力端子LP1P及びLPNに入力されると、磁界検知信号210(IRQ)をアクティブ(例えば論理で‘1’、電圧でハイレベル)にする。前記の所定の信号レベルと所定の信号パターンは、制御部202のマイコン215からのシリアルクロック入力信号211(SCL)、シリアルデータ入力信号212(SDI)、シリアルデータ出力213(SDO)を通じて設定、変更される。
 マイコン215にはクロック発信子218が発振信号端子216、217を介して接続されている。マイコン215はまた電波送信部240のRFIC221に対してイネーブル信号219(EN)及び送信データ信号220(DATA)を出力する。
 RFIC221には、クロック発信子224が発振信号端子223、222を介して接続されている。RFIC221は、マイコン215からの送信データ信号220(DATA)を変調して送信RF信号225(PA)をフィルタ226に出力する。フィルタ226は送信RF信号225(PA)を受けて、フィルタ動作を行い、アンテナ227へ出力する。アンテナ227からは電波信号121(図1参照)が送信される。電波信号121の周波数は、例えば315MHzであり、例えば426MHzであり、例えば2.45GHzである。
 なお、マイコン215からRFIC221への送信データ信号220(DATA)は連続的である必要はなく、例えば0.1秒~10秒間隔で一回の信号時間が10ミリ秒程度の間歇的な信号であってよい。
 電源部203は、電池234及び電圧レギュレータ231で構成される。電池234は、例えばコイン電池で電圧が3.3V程度である。電圧レギュレータ231には、電池234が端子232及び233を介して接続され、電源電圧信号230(Vdd)と接地電圧信号209(GND)を出力する。電源電圧信号230(Vdd)は例えば2.0V~2.5Vである。電源電圧信号230(Vdd)及び接地電圧信号209(GND)は磁界検知用IC204、マイコン215、RFIC221の電源端子及び接地端子に接続される。
 図4に本発明の第1実施例の磁界検知用ICのブロック図を示す。
 図4において、301(LF1P)、302(LF2P)、303(LF3P)、304(LFN)はアナログ入力信号端子であり、外部に同調回路が接続される。ここで、301(LF1P)、302(LF2P)、303(LF3P)と3入力あるのは、同調回路を構成するコイルの向き(軸)を3方向(X軸、Y軸、Z軸)に対応させるためであり、本ICを実装したRFIDタグが全ての向きに対して磁界検知を行うためである。アナログ入力信号端子301(LF1P)、302(LF2P)、303(LF3P)は各々第1チャンネルアンプ320、第2チャンネルアンプ321、第3チャンネルアンプ322の入力に接続される。
 第1チャンネルアンプ320、第2チャンネルアンプ321、第3チャンネルアンプ322は増幅器であるが、メインロジック回路326からの利得設定信号348により利得が複数の段階で調整可能である。第1チャンネルアンンプ320、第2チャンネルアンプ321、第3チャンネルアンプ322の増幅後の信号出力341、342、343は、チャンネル選択回路323に接続され、チャンネル選択回路323は、最も大きな信号電圧のチャンネル信号を一つ選択し、波形信号デコーダ327へ出力する。波形信号デコーダ327は、入力のアナログ信号を復調しデジタル信号へ変換し、比較回路330及びマンチェスターデコーダ328へ出力する。比較回路330は入力された信号が所定のパターンと一致しているかを比較し、一致していた場合は、ウェイクアップ回路324に対し比較信号を送る。ウェイクアップ回路324は、チャンネルアンプ出力及び比較信号を受けて、磁界検知信号307(IRQ)を出力する。換言すれば、比較回路330があることにより本磁界検知用ICは磁界信号の有無とその強度だけでなく、信号のパターンの一致も判別をしている。
 マンチェスターデコーダ328は、波形信号デコーダ327からの出力を受けて出力信号データ312(DAT)及びデータクロック信号313(CL_DAT)を出力する。
 メインロジック回路326はシリアル入出力回路329からの入力信号や、チャンネルアンプからの信号を受けて、利得設定値や信号パターン等をレジスタに記憶して必要な回路に信号を送る。また、メインロジック回路326のレジスタのデータはシリアル入出力回路329を通じて310(SDO)を通じて外部へ転送することができる。
 バイアス回路325は電源電圧信号305(VCC)と接地電圧信号306(GND)を受けて、IC内部に必要なバイアス電圧を発生する。また、発振回路331は、IC内部に必要なクロックを内部発振回路で生成する。
 図5は本発明の第1実施例の距離検知制御装置100のブロック図を示す。
 距離検知制御装置100は電波受信部401と制御部402と磁界送信部403と電源部404から構成される。
 電波受信部401は、受信アンテナ405、同調回路であるコンデンサ407とインダクタンス409、RF受信IC400からなる。受信アンテナ405はRFIDタグ110からの電波信号を受け、これが同調回路を介してRF受信IC400のアナログ入力端子410(LNAIN)に伝達される。RF受信IC400には発振子415及び同調コンデンサ413、414が発振端子411、412に接続されている。RF受信IC400は、アナログ入力端子410(LNAIN)の入力信号を増幅し復調して受信データ出力信号418を出力する。
 受信データ出力信号418は制御部402のマイコン428に入力される。マイコン428は受信データに含まれるタグIDや磁界検知データや磁界検知感度設定データに応じ、警報出力信号434を出力する。また、必要に応じ磁界信号発生回路432に対して信号422を送る。更に、外部装置と信号435を介してインターフェースを行う。マイコン428には発信子421が発振端子419、420に接続される。
 磁界送信部403は、磁界信号発生回路432、駆動回路423、磁界送信アンテナ424から構成される。磁界信号発生回路432は、交流誘導磁界を発生するための信号433の生成を行う。信号433の周波数は例えば125kHzである。信号433は必ずしも連続的である必要はなく、例えば100ミリ秒毎に信号幅10ミリ秒の間歇信号であってもいい。なお、マイコン428からの入力信号422は磁界送信部403の動作に必須ではなく、磁界送信を受信データの値により制御する必要がある場合にのみ使用される。
 信号433は駆動回路423に入力され、磁界送信アンテナ424の駆動に必要な電圧と電流に変換される。この時の電圧は例えば9~12Vで、電流は1~2アンペアである。磁界送信アンテナ424は、交流誘導磁界を全方向に発生する。
 電圧レギュレータ427は外部電源電圧入力426及び接地電圧入力425を受けて、電波受信部401、制御部402及び磁界信号発生回路432の電源電圧信号430(Vdd)を発生する。また、駆動回路423の駆動電源431(Vhh)をも発生する。ここで、外部電源電圧入力426の電圧値は例えば12~48Vであり、電源電圧信号430(Vdd)は例えば3~5Vであり、駆動電源431(Vhh)は例えば9~12Vである。
 図6は本発明の第1実施例の磁界検知機能付きRFIDタグの処理フローを示す。
 図3も参照しつつ説明すると、まず、RFIDタグ(以下、タグとも称する。)の電源をオン(例えば電池をタグに挿入)すると動作が開始される(501,502)。最初にマイコン215が磁界検知感度を最大に設定し、磁界検知用IC204に送る(503)。
 磁界検知用IC204が磁界検知をできたか否かの信号をマイコン215に送り、マイコン215はその信号を受け磁界検知ができたか否かを判断する(504,505)。
 磁界検知ができた場合(506)、マイコン215は磁界検知フラグを‘0’→‘1’とし、タグIDと設定した磁界検知感度情報(即ち最大の磁界検知感度)をつけて、電波送信部240に送る。電波送信部240は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(508)。
 磁界検知ができなかった場合(507)、マイコン215は磁界検知フラグを‘0’のままとし、タグIDと設定した磁界検知感度情報(即ち最大の磁界検知感度)をつけて、電波送信部240に送る。電波送信部240は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(512)。磁界検知ができなかった場合は、タグは1秒~10秒の待機状態に入り(514)、その後再度、磁界検知の判定の処理に戻る(515)。
 磁界検知感度設定=最大での磁界検知ができた場合は、次にマイコン215は磁界検知感度を中程度に設定し、磁界検知用IC204に送る(510)。磁界検知用IC204が磁界検知をできたか否かの信号をマイコン215に送り、マイコン215はその信号を受け磁界検知ができたか否かを判断する(516)。磁界検知ができた場合(517)、マイコン215は磁界検知フラグを‘0’→‘1’とし、タグIDと設定した磁界検知感度情報(即ち中程度の磁界検知感度)をつけて、電波送信部240に送る。電波送信部240は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(519)。
 磁界検知ができなかった場合(518)、マイコン215は磁界検知フラグを‘0’のままとし、タグIDと設定した磁界検知感度情報(即ち中程度の磁界検知感度)をつけて、電波送信部240に送る。電波送信部240は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(523)。磁界検知ができなかった場合は、タグは再度磁界検知の判定の処理に戻る(515)。
 磁界検知感度設定=中程度での磁界検知ができた場合は、次にマイコン215は磁界検知感度を最低に設定し、磁界検知用IC204に送る(521)。磁界検知用IC204が磁界検知をできたか否かの信号をマイコン215に送り、マイコン215はその信号を受け磁界検知ができたか否かを判断する(523)。磁界検知ができた場合(524)、マイコン215は磁界検知フラグを‘0’→‘1’とし、タグIDと設定した磁界検知感度情報(即ち最低の磁界検知感度)をつけて、電波送信部240に送る。電波送信部240は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(526)。その後、磁界検知感度設定=最低のまま、再度磁界検知判断(523)に戻る(527)。
 磁界検知ができなかった場合(525)、マイコン215は磁界検知フラグを‘0’のままとし、タグIDと設定した磁界検知感度情報(即ち最低の磁界検知感度)をつけて、電波送信部240に送る。電波送信部は、タグIDと磁界検知フラグと磁界検知感度情報を電波信号に変換し送信する(528)。磁界検知ができなかった場合は、タグは再度磁界検知の判定の処理に戻る(515)。
 図6の処理フローにおいて、磁界検知感度=最大で磁界検知ができかつ磁界検知感度=中程度で磁界検知ができなかった場合は、そのRFIDタグが磁界検知感度=最大と磁界検知感度=中程度の間の位置にいると判断できる。同様に、磁界検知感度=中程度で磁界検知ができかつ磁界検知感度=最低で磁界検知ができなかった場合は、そのRFIDタグが磁界検知感度=中程度と磁界検知感度=最低の間の位置にいると判断できる。
 上記のように、本RFIDタグの処理フローにより、RFIDタグの位置を確度よく検知することができる。また、磁界検知感度設定は必ずしも3段階である必要はなく、もっと多段階であれば、位置検出の精度が高くなるので好ましい。また、2段階であっても本処理フローの方式は成り立つ。
 図7は、本発明の第1実施例のRFIDタグから距離検知制御装置への電波信号121のデータ内容の一例を示したものである。まず同期をとるための同期フレーム601が例えば8ビットあり、その後にRFIDタグの固有のタグID(固有識別番号)602の24ビットが続く。更に、磁界検知データ(磁界検知フラグ)603の1ビットが続く。磁界検知フラグは、例えば’0’が磁界検知なしで’1’は磁界検知ありを示す。その後に、磁界検知感度設定データ604の3ビットが続く。磁界検知感度設定データは例えば’000’は磁界検知感度設定=最大を示し、’100’は磁界検知感度設定=中程度を示し、’111’は磁界検知感度設定=最低を示す。
 図8は本発明の第1実施例の距離検知制御装置の処理フローを示す。
 図5も参照しつつ説明すると、まず、装置の電源をオンにすることにより(701、702)、磁界送信部403より交流誘導磁界送信が開始される(703)。磁界送信の一回当たりの時間は例えば1から20ミリ秒であり、送信間隔は例えば100ミリ秒から1秒である。また、図には記していないが、装置の電源をオンにすることにより電波受信部401や制御部402もオンになる。
 RFIDタグから電波信号が受け取れる通信範囲内(例えば10~20m)になると、電波信号を電波受信部401で受信できる。そこで、最初にタグIDが受信できたか否かを制御部402のマイコン428で判断し(705)、受信できた場合(706)は、磁界検知データ(フラグ)=‘1’であるかどうかを判断する(708)。タグIDが受信できない場合(707)は、例えば待機時間100ミリ秒から1秒をまって(719)、再度磁界送信を行い、タグIDの受信を待つ処理に戻る(720)。
 磁界検知データ(フラグ)=‘1’であった場合(709)は、磁界検知感度設定データ=最大であるか否かを判断する(714)。磁界検知感度設定データ=最大であった場合(715)は、警告基準処理を行った上で第1段階の警報信号を出力する。警報信号とは、例えば、回転灯や音声警報装置への制御信号のことである。
 ここで、警告基準処理とは、例えば、距離検知制御装置において、あらかじめ磁界検知感度設定データがどの段階であれば警告を行うかを判断する処理などを含む。例えば、磁界検知感度設定データ=最大であっても警報信号を出さず、磁界検知感度設定データ=中程度で警報信号を出すという処理も含まれる。
 磁界検知感度設定=最大でなかった場合(716)は、磁界検知感度設定=中程度であるか否かを判断(721)する。磁界検知感度設定データ=中程度であった場合(722)は、警告基準処理を行った上で第2段階の警報信号を出力する。磁界検知感度設定=中程度でなかった場合(723)は、磁界検知感度設定=最低であるか否かを判断(724)する。磁界検知感度設定データ=最低であった場合(725)は、警告基準処理を行った上で第3段階の警報信号を出力する。磁界検知感度設定=最低でなかった場合(726)はエラー処理を行い(732)、電源オン直後のフローに戻る。
 磁界検知データ=1でなかった場合(710)は、磁界検知感度設定データ=最大であるか否かを判断(711)する。磁界検知感度設定データ=最大であった場合は、タグのIDは検出できるが磁界検出はできない範囲にタグがいることを意味するので、ID検知処理のみを行い(717)、電源オン後の処理ルーチンに戻る(720)。磁界検知データ=1でなく、磁界検知感度設定データ=最大でなかった場合(713)は、磁界検知感度設定=中程度であるか否かの判断(721)に移る。
 このように図8の距離検知制御装置の処理フローにより、RFIDタグから送られてきた磁界検知データと磁界検知感度設定データにより、所望の検知距離で警報信号を発することができるし、検知距離に応じて警報信号を変えることもできる。
 次に、図9A及び図9Bに本発明の第2実施例である位置検知制御装置の処理フローを示す。なお、本フローはRFIDタグが2個検知範囲に存在する場合を例示している。
 図5も参照しつつ説明すると、まず、装置の電源をオンにすることにより(801、802)、磁界送信部403より交流誘導磁界送信が開始される(803)。磁界送信の一回当たりの時間は例えば1~20ミリ秒であり、送信間隔は例えば100ミリ秒~1秒である。また、図には記していないが、装置の電源をオンにすることにより電波受信部401や制御部402もオンになる。
 RFIDタグから電波信号が受け取れる通信範囲内(例えば10~20m)になると、電波信号を電波受信部401で受信できる。そこで、最初にタグIDが受信できたか否かを制御部402のマイコン428で判断し(805)、受信できた場合(807)は、タグIDが2個あるかどうかを判断する。これは、例えば、1秒~10秒の間に何個のタグIDがマイコン428で認識できたかどうかで判断する。1個のタグIDしかない場合は、図8に示す本発明の第1実施例の処理フロー(821)と同じ処理を行う。
 2個のタグIDがある場合(809)は、第1のタグの磁界検知データ=1であるか否かを判断(811)する。磁界検知データ=1であった場合(813)は、磁界検知感度設定=最大であるか否かを判断(814)する。磁界検知感度設定=最大であった場合は、警告基準処理を行い、第2のタグの処理(843)に移る。
 第1のタグの磁界検知データ=1でなかった場合(812)は、磁界検知感度設定データ=最大であるか否かを判断(817)する。磁界検知感度設定データ=最大であった場合は、第1のタグのIDは検出できるが磁界検出はできない範囲にタグがいることを意味するので、ID検知処理のみを行い(820)、電源オン後の処理ルーチンに戻る(823)。
 第1のタグの磁界検知データ=1でなく、磁界検知感度設定データ=最大でなかった場合(818)は、磁界検知感度設定=中程度であるか否かの判断(824)に移る。また、第1のタグの磁界検知データ=1であって磁界検知感度設定=最大でなかった場合(816)も、磁界検知感度設定=中程度であるか否かを判断(824)する。磁界検知感度設定データ=中程度であった場合(833)は、警告基準処理を行った上で第2のタグの処理(843)に移る。
 磁界検知感度設定=中程度でなかった場合(825)は、磁界検知感度設定=最低であるか否かを判断(826)する。磁界検知感度設定データ=最低であった場合(827)は、警告基準処理を行った上で第2のタグの処理(843)に移る。磁界検知感度設定=最低でなかった場合(828)はエラー処理を行い(834)、電源オン直後のフローに戻る(823)。
 次いで第2のタグの磁界検知データ=1であるか否かを判断(844)する。磁界検知データ=1であった場合(845)は、磁界検知感度設定=最大であるか否かを判断(857)する。磁界検知感度設定=最大であった場合は、警告基準処理を行い(862)、次いで選択処理を行い(867)、警報信号出力を行う(869)。ここで、選択処理(867)とは、第1のタグと第2のタグで磁界検知感度設定がより低いほうを選択する処理をいう。換言すれば、第1のタグと第2のタグで距離検知制御装置により近い距離にいるタグを選択する。
 第2のタグの磁界検知データ=1でなかった場合(846)は、磁界検知感度設定データ=最大であるか否かを判断(850)する。磁界検知感度設定データ=最大であった場合は、第2のタグのIDは検出できるが磁界検出はできない範囲にタグがいることを意味するので、ID検知処理のみを行い(853)、電源オン後の処理ルーチンに戻る(823)。
 第2のタグの磁界検知データ=1でなく、磁界検知感度設定データ=最大でなかった場合(852)は、磁界検知感度設定=中程度であるか否かの判断(854)に移る。第2のタグの磁界検知データ=1であって磁界検知感度設定=最大でなかった場合(849)も、磁界検知感度設定=中程度であるか否かを判断(854)する。磁界検知感度設定データ=中程度であった場合(855)は、警告基準処理を行い(862)、次いで選択処理を行い(867)、警報信号出力を行う(869)。
 磁界検知感度設定=中程度でなかった場合(856)は、磁界検知感度設定=最低であるか否かを判断(859)する。磁界検知感度設定データ=最低であった場合(860)は、警告基準処理を行い(862)、次いで選択処理を行い(867)、警報信号出力を行う(869)。磁界検知感度設定=最低でなかった場合(861)はエラー処理を行い(866)、電源オン直後のフローに戻る(823)。
 このように、本発明の第2実施例の検知制御装置の処理フローにおいては、第1のRFIDタグと第2のRFIDタグが磁界検知範囲に存在する場合、より距離検知制御装置に近いRFIDタグを選択して、警告を出力することが可能になる。また、第2実施例においては2個のRFIDタグにおいて処理フローを詳述したが、タグの個数が3個以上になっても同様な処理フローが適用可能であることは容易に類推できる。
 なお、以上の実施例では、作業者と移動機器間の距離を検知するようにしたが、機器と移動機器間、あるいは移動機器間の距離を検知するようにすることもできる。
 1:接近検知システム
 10:移動機器
 100:距離検知制御装置
 101:磁界送信部
 102:第1の制御部
 103:電波受信部
 104:磁界送信制御信号
 105:電波受信制御信号
 106:受信データ信号
 107:警報信号
 108:外部入出力信号
 110:磁界検知機能付きRFIDタグ
 111:磁界センサー部
 112:第2の制御部
 113:電波送信部
 114:電源部
 115:磁界検知感度設定データ信号
 116:磁界検知信号
 120:交流誘導磁界
 121:電波信号
 130:警報装置
 131:外部装置

Claims (5)

  1.  距離検知制御装置と磁界検知機能付きRFIDタグとの間の距離を検知して接近警報を出力する接近検知システムであって、
     前記距離検知制御装置は、誘導磁界送信部と電波受信部と前記電波受信部及び前記磁界送信部を制御する第1の制御部とを備え、
     前記磁界検知機能付きRFIDタグは、前記誘導磁界送信部から送信される誘導磁界を検知する磁界センサー部と、磁界検知感度設定データに基づき前記磁界センサー部の磁界検知感度を設定すると共に前記磁界センサー部からの磁界検知信号を受信する第2の制御部と、前記第2の制御部から信号を受信して少なくとも前記磁界検知機能付きRFIDタグの固有識別番号、磁界検知データ及び磁界検知感度設定データを送信する電波送信部とを備え、
     前記磁界検知感度設定データは、少なくとも2段階の磁界検知感度を含むものであり、 前記第1の制御部は、前記磁界検知データと前記磁界検知感度設定データを、前記電波受信部を介して受信し、前記磁界検知感度設定データに基づき複数レベルの接近警報を出力できるものである接近検知システム。
  2.  前記磁界センサー部は、前記第2の制御部から送信されてくる磁界検知感度設定データに基づき磁界検知感度を可変できるものであり、
     前記磁界検知機能付きRFIDタグは、前記少なくとも2段階の磁界検知感度に基づいて、磁界検知データ及び磁界検知感度設定データを間歇的に送信できるものである、請求項1に記載の接近検知システム。
  3.  前記磁界検知機能付きRFIDタグを複数備え、
     前記第1の制御部は、前記複数の磁界検知機能付きRFIDタグから、前記固有識別番号と前記磁界検知データと前記磁界検知感度設定データとを前記電波受信部を介して受信し、複数の前記磁界検知感度設定データに基づき、最も磁界検知感度が低い一つを選択して、接近警報を出力できるものである、請求項1又は2に記載の接近検知システム。
  4.  前記距離検知制御装置が機器に取り付けられ、前記磁界検知機能付きRFIDタグが作業者に取り付けられる、請求項1~3のいずれかに記載の接近検知システム。
  5.  前記距離検知制御装置が第1の機器に取り付けられ、前記磁界検知機能付きRFIDタグが第2の機器に取り付けられ、前記第1の機器及び第2の機器のうち少なくとも一方が移動機器である、請求項1~3のいずれかに記載の接近検知システム。
     
PCT/JP2013/050260 2012-01-12 2013-01-10 接近検知システム WO2013105589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/371,345 US9875635B2 (en) 2012-01-12 2013-01-10 Proximity detection system
DE112013000561.1T DE112013000561B4 (de) 2012-01-12 2013-01-10 Näherungserfassungssystem
CN201380005226.4A CN104040375B (zh) 2012-01-12 2013-01-10 接近探测系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012004316A JP5835577B2 (ja) 2012-01-12 2012-01-12 接近検知システム
JP2012-004316 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013105589A1 true WO2013105589A1 (ja) 2013-07-18

Family

ID=48781533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050260 WO2013105589A1 (ja) 2012-01-12 2013-01-10 接近検知システム

Country Status (5)

Country Link
US (1) US9875635B2 (ja)
JP (1) JP5835577B2 (ja)
CN (1) CN104040375B (ja)
DE (1) DE112013000561B4 (ja)
WO (1) WO2013105589A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889634A1 (en) * 2013-12-24 2015-07-01 Televic Healthcare NV Localisation system
EP2889636A1 (en) * 2013-12-24 2015-07-01 Televic Healthcare NV Localisation system
US9709661B2 (en) 2013-12-24 2017-07-18 Televic Healthcare Nv Localisation system
US10539673B2 (en) 2016-12-30 2020-01-21 Televic Healthcare Nv False alarm avoidance system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043177A1 (en) * 2012-09-12 2014-03-20 Strata Proximity Systems, Llc Integrated alarm device
US9712949B2 (en) * 2013-06-07 2017-07-18 Strata Products Worldwide, Llc Method and apparatus for protecting a miner
US9147295B2 (en) 2013-06-21 2015-09-29 X-Card Holdings, Llc Inductive coupling activation systems and methods
CN105723289B (zh) * 2013-11-11 2017-12-12 三菱电机株式会社 访问级别控制装置
FR3020704B1 (fr) * 2014-05-02 2016-05-27 Airbus Prevention de risques lors d'une intervention sur un aeronef
US20160055740A1 (en) * 2014-08-25 2016-02-25 Mindray Ds Usa, Inc. Systems and methods for medical device location discovery
US10067256B2 (en) * 2015-03-26 2018-09-04 General Electric Company Proximity probe interchange compensation
CN104794853A (zh) * 2015-04-22 2015-07-22 交通运输部水运科学研究所 基于射频识别的港口装卸作业人员安全预警系统和方法
US9767330B2 (en) * 2015-07-16 2017-09-19 Empire Technology Development Llc Distance determination between RFID tags
CN106483583B (zh) * 2015-08-26 2019-07-23 深圳市燃气集团股份有限公司 电子标签的定位系统、方法及电子标签探测仪
JP6858515B2 (ja) * 2016-09-09 2021-04-14 若築建設株式会社 重機接触事故防止システム
US11096234B2 (en) 2016-10-11 2021-08-17 Arris Enterprises Llc Establishing media device control based on wireless device proximity
US10940858B2 (en) * 2016-11-29 2021-03-09 Esperanto Sensors LLC Multi-mode collision avoidance system
JP6943421B2 (ja) * 2017-06-07 2021-09-29 株式会社マトリックス 接近検知装置
JP6678142B2 (ja) * 2017-09-26 2020-04-08 日立建機株式会社 作業員接近通知システム
JP6960299B2 (ja) * 2017-10-06 2021-11-05 前田建設工業株式会社 吊荷警報システム
DE102017219858A1 (de) * 2017-11-08 2019-05-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetfeldsensors und zugehörige Magnetfeldsensoranordnung
EP3660541B1 (en) * 2017-12-14 2023-07-19 Hitachi Construction Machinery Co., Ltd. Working machine
JP7050289B2 (ja) * 2018-03-05 2022-04-08 吉川工業株式会社 接近検知システム
EP3550856A1 (en) * 2018-04-04 2019-10-09 Ningbo Geely Automobile Research & Development Co. Ltd. Vehicle alert device and method
US10549959B1 (en) 2018-04-27 2020-02-04 Raymond C. Southern, Jr. Warning assembly for use with load transporting equipment
JP7088544B2 (ja) * 2018-06-22 2022-06-21 吉川工業株式会社 接近検知システム
JP7165968B2 (ja) * 2018-10-12 2022-11-07 株式会社マトリックス 重機周りの安全管理システム
CN112913264B (zh) * 2018-10-26 2024-03-01 三菱电机株式会社 认证装置、认证系统、进出室管理系统、电梯分配管理系统、测位系统及智能设备
JP2020092612A (ja) * 2018-12-10 2020-06-18 松山株式会社 農作業機及び農作業システム
JP2021033412A (ja) * 2019-08-19 2021-03-01 株式会社マトリックス Icタグ
JP7421409B2 (ja) * 2020-04-28 2024-01-24 矢崎エナジーシステム株式会社 接近通知システム及び接近通知プログラム
WO2021226492A1 (en) 2020-05-07 2021-11-11 Cascodium Llc Devices, systems and methods using a common frame of reference to provide a consistent magnetic field orientation for magnetic coupling
EP3929621A1 (en) * 2020-06-22 2021-12-29 Premo, S.A. A safety distance device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291723A (ja) * 2004-03-31 2005-10-20 Honda Motor Co Ltd 移動体の位置検知システム
JP2006065703A (ja) * 2004-08-30 2006-03-09 Inst Of Systems Information Technologies Kyushu 自己位置推定装置、自己位置推定方法、その自己位置推定方法をコンピュータに実行させることが可能なプログラム、及び、そのプログラムを記録した記録媒体
JP2007225448A (ja) * 2006-02-23 2007-09-06 Hitachi Ltd 位置検出システム、位置検出プログラム及び位置検出方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321303A (ja) 1992-05-25 1993-12-07 Hitachi Constr Mach Co Ltd トランスポンダ式安全装置
JPH07168985A (ja) 1993-12-13 1995-07-04 Hazama Gumi Ltd 接近警報システム
JPH07168987A (ja) * 1993-12-13 1995-07-04 Hazama Gumi Ltd 接近警報システムおよび同システムで使用する通話装置
JP4136456B2 (ja) * 2002-05-24 2008-08-20 富士電機リテイルシステムズ株式会社 自動販売機の商品在庫管理システム
US7313378B2 (en) * 2003-11-26 2007-12-25 Starkey Laboratories, Inc. Tracking automatic gain control
KR100729870B1 (ko) 2004-03-31 2007-06-18 혼다 기켄 고교 가부시키가이샤 이동체의 위치검지 시스템
JP3964405B2 (ja) 2004-06-01 2007-08-22 三菱電機エンジニアリング株式会社 警報装置
JP2006270462A (ja) * 2005-03-24 2006-10-05 Tdk Corp 無線センサ装置及びこれを用いた無線センサシステム
JP4545047B2 (ja) 2005-06-03 2010-09-15 Tcm株式会社 移動体用人検知器
KR100847787B1 (ko) * 2006-07-06 2008-07-23 주식회사 스마트로 알에프아이디 리더(또는 단말)를 인증하는 보안알에프아이디 태그와 알에프아이디 리더(또는 단말) 인증방법 및 시스템과 이를 위한 기록매체
US7855636B2 (en) * 2007-09-19 2010-12-21 Honeywell International Inc. Method for dynamically adjusting the sensitivity of a sensor in a security system
US8232888B2 (en) 2007-10-25 2012-07-31 Strata Proximity Systems, Llc Interactive magnetic marker field for safety systems and complex proximity warning system
US8120354B2 (en) * 2008-05-01 2012-02-21 Broadband Discovery Systems, Inc. Self-calibrating magnetic field monitor
CN101776754A (zh) * 2009-10-16 2010-07-14 深圳市科陆电子科技股份有限公司 电力系统仓库的自动识别定位方法
US9230419B2 (en) * 2010-07-27 2016-01-05 Rite-Hite Holding Corporation Methods and apparatus to detect and warn proximate entities of interest

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291723A (ja) * 2004-03-31 2005-10-20 Honda Motor Co Ltd 移動体の位置検知システム
JP2006065703A (ja) * 2004-08-30 2006-03-09 Inst Of Systems Information Technologies Kyushu 自己位置推定装置、自己位置推定方法、その自己位置推定方法をコンピュータに実行させることが可能なプログラム、及び、そのプログラムを記録した記録媒体
JP2007225448A (ja) * 2006-02-23 2007-09-06 Hitachi Ltd 位置検出システム、位置検出プログラム及び位置検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889634A1 (en) * 2013-12-24 2015-07-01 Televic Healthcare NV Localisation system
EP2889636A1 (en) * 2013-12-24 2015-07-01 Televic Healthcare NV Localisation system
WO2015097315A1 (en) * 2013-12-24 2015-07-02 Televic Healthcare Nv Localisation system
WO2015097314A1 (en) * 2013-12-24 2015-07-02 Televic Healthcare Nv Localisation system
CN105940314A (zh) * 2013-12-24 2016-09-14 泰勒维克健康护理股份有限公司 定位系统
US9709661B2 (en) 2013-12-24 2017-07-18 Televic Healthcare Nv Localisation system
US9746543B2 (en) 2013-12-24 2017-08-29 Televic Healthcare Nv Localisation system
CN105940314B (zh) * 2013-12-24 2019-05-03 泰勒维克健康护理股份有限公司 定位系统
US10539673B2 (en) 2016-12-30 2020-01-21 Televic Healthcare Nv False alarm avoidance system

Also Published As

Publication number Publication date
DE112013000561B4 (de) 2022-03-03
JP2013142675A (ja) 2013-07-22
US9875635B2 (en) 2018-01-23
CN104040375A (zh) 2014-09-10
CN104040375B (zh) 2017-02-22
DE112013000561T5 (de) 2014-11-06
US20140361903A1 (en) 2014-12-11
JP5835577B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5835577B2 (ja) 接近検知システム
US8766780B2 (en) Asset tracking system including a tag controller
KR102648154B1 (ko) 타이어 센서 위치확인 방법 및 장치
US9041546B2 (en) System and method for position detection
CN101681544B (zh) 电子eas标签检测和方法
US20070013502A1 (en) Apparatus for monitoring tire pressure using radio frequency identification system
CN102452279B (zh) 轮胎压力信号接收和处理方法及其装置
CN102089792A (zh) 具有金属检测能力的电子商品防盗系统及其方法
JP2008217496A (ja) タグ検知システム、移動物体検知方法、及び入退場管理システム
US20110012723A1 (en) Embedded in tire self-powered semi-passive rfid transponder
CN102763143B (zh) 用于使用相干传输信号进行接收器清空的方法和系统
US9922526B2 (en) Garage door status indicator system
JP4450193B2 (ja) タイヤ空気圧検出装置
CN204884015U (zh) 防盗装置
CN115801062B (zh) 近场通信电路及电子设备
JP5151787B2 (ja) Rfid用リーダライタ
WO2016121793A1 (ja) 音認識盗難防止システム
EP3929621A1 (en) A safety distance device
CN218986639U (zh) 一种可调式有源信标
JP5609415B2 (ja) タイヤ空気圧モニターの故障判別装置及びその故障判別方法
USH1123H (en) Off-route non-contact system for detecting vehicles
GB2476232A (en) Proximity monitoring
JP2006311415A (ja) Rfidタグ
KR20230122746A (ko) 안전 경보 제공 시스템, 안전 경보 제공 장치 및 안전 경보 제공 애플리케이션
KR101310024B1 (ko) 알에프아이디 시스템의 데이터 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000561

Country of ref document: DE

Ref document number: 1120130005611

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736452

Country of ref document: EP

Kind code of ref document: A1