WO2013105236A1 - Rotor à aimant intégré - Google Patents

Rotor à aimant intégré Download PDF

Info

Publication number
WO2013105236A1
WO2013105236A1 PCT/JP2012/050402 JP2012050402W WO2013105236A1 WO 2013105236 A1 WO2013105236 A1 WO 2013105236A1 JP 2012050402 W JP2012050402 W JP 2012050402W WO 2013105236 A1 WO2013105236 A1 WO 2013105236A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic pole
embedded
radius
bridge
Prior art date
Application number
PCT/JP2012/050402
Other languages
English (en)
Japanese (ja)
Inventor
大輔 西島
治之 長谷川
徹 片江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/050402 priority Critical patent/WO2013105236A1/fr
Priority to TW101124583A priority patent/TWI495228B/zh
Publication of WO2013105236A1 publication Critical patent/WO2013105236A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a magnet embedded rotor in which a permanent magnet is embedded in a rotor core.
  • a rotor core in which flat magnet permanent magnets are embedded at predetermined intervals in an annular manner on an outer edge, and adjacent to a magnetic pole part formed on the outer peripheral side of the magnet embedded hole.
  • a magnet-embedded rotor having a small-diameter portion that is formed on the outer peripheral portion between the matching magnetic pole portions and has a smaller radius from the rotation center than the magnetic pole portion (see, for example, Patent Document 1). .
  • a rotor core connecting portion (thin wall portion) for preventing magnet scattering is provided between the outer peripheral end of the magnet embedding hole and the outer peripheral end of the rotor, and a rectangular notch is formed in the rotor core connecting portion.
  • the circumferential length of the notch portion is the outer circumference side end of the magnet embedding hole at the portion where the notch portion is located and the outer circumference of the other magnet embedding hole nearest to the magnet embedding hole.
  • the outer peripheral surface of the rotor is a curved surface. Therefore, when chucking the outer peripheral surface and press-fitting a rotary shaft or the like, the chuck, the outer peripheral surface, Is point contact, and the chuck is liable to be displaced. Therefore, there is a problem that an excessive chucking force is applied to the thin portion between the magnet insertion hole and the outer peripheral surface of the rotor, and the thin portion is deformed.
  • the rectangular cutout portion can be chucked.
  • the magnet insertion hole and the cutout portion There is a problem that a chucking force is applied to the thin-walled portion between the two and the thin-walled portion is deformed similarly to the above.
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain a magnet embedded rotor in which the chuck position is difficult to shift and the thin portion between the magnet embedded hole and the outer peripheral surface is not deformed. Objective.
  • the present invention provides a plurality of magnet embedding holes formed in a cylindrical shape by laminating steel plates, and arranged annularly at predetermined intervals on the outer edge portion, and the magnet A magnetic pole part formed on the outer peripheral side of the embedded hole, a rib part formed between adjacent magnet embedded holes and connected to the bridge parts on both sides of the magnetic pole part, and a connecting part between the bridge part and the rib part And a rotor core having a convex portion protruding outward and having a flat tip.
  • the chuck and the tip of the convex portion are in surface contact with each other, so that the chuck position is difficult to shift. Since it protrudes outward from the connection part of the rib part, there is an effect that the compressive force of the chuck is transmitted from the convex part to the rib part and the thin bridge part is not deformed.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a magnet-embedded rotor according to the present invention.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 3 is an enlarged view of the main part of the transverse section showing Embodiment 2 of the magnet-embedded rotor according to the present invention.
  • FIG. 4 is an enlarged view of the main part of the transverse section showing Embodiment 3 of the magnet-embedded rotor according to the present invention.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a magnet-embedded rotor according to the present invention
  • FIG. 2 is an enlarged view of a portion A in FIG.
  • the rotor core 2 of the magnet-embedded rotor 91 is formed in a cylindrical shape by laminating a number of thin silicon steel plates (magnetic bodies), and is integrated by a rivet (not shown). ing.
  • a shaft 4 is press-fitted and fixed in a shaft hole 2 a formed at the center of the rotor core 2.
  • Magnet embedding holes that are arranged annularly at predetermined intervals on the outer edge of the rotor core 2 so that ten flat permanent magnets 3 form each side of a regular decagon centered on the rotation center O. Embedded in 2b. A magnetic pole portion 2 c is formed on the outer peripheral side of the magnet embedded hole 2 b of the rotor core 2.
  • a rib portion 2d is formed between two adjacent magnet embedding holes 2b. Thin bridge portions 2e on both sides of the magnetic pole portion 2c are connected to the rib portion 2d. A radius Re from the rotation center O to the outer periphery of the bridge portion 2e is smaller than a radius Rc from the magnetic pole portion 2c to the outer periphery of the central portion.
  • the outer periphery of the magnetic pole part 2c has a curved shape, and the shape between the adjacent magnetic pole parts 2c is recessed compared to the center of the magnetic pole part 2c. This is because by curving the magnetic pole portion 2c, the harmonic component of the magnetic flux interlinking with a stator winding (not shown) is reduced, and the induced voltage is brought close to a sine wave.
  • the bridge portion 2e is preferably formed to have a radial width as narrow as possible (for example, a thickness of a silicon steel plate or less) within a range that does not hinder processing so that magnetic saturation is difficult and magnetic flux does not easily pass.
  • the convex part 2f protrudes outward from the connection part of the bridge part 2e and the rib part.
  • the tip of the convex portion 2f is a tip flat surface 2g orthogonal to a meridian S passing through the center of rotation O and the center of the rib portion 2d.
  • a radius Rg from the rotation center O to the tip plane 2g is smaller than a radius Rc from the magnetic pole part 2c to the outer periphery of the central part.
  • the tip flat surface 2g of the projecting portion 2f facing the rotation center O is chucked. Since the tip flat surface 2g is in surface contact with a chuck surface of a chuck (not shown), the rotor core 2 is not detached from the chuck even if a rotational force or the like acts on the rotor core 2.
  • the circumferential width Hg of the tip flat surface 2g of the convex portion 2f is made larger than the width Hd of the rib portion 2d. This prevents the convex portion 2f from buckling before the rib portion 2d. Further, if the circumferential width Hg of the tip flat surface 2g of the convex portion 2f is small, the convex portion 2f is deformed by the compressive force of the chuck, and non-uniform stress such as torsional stress is generated in the rotor core 2. The generation of uneven stress is prevented by increasing the width Hg.
  • FIG. FIG. 3 is an enlarged view of the main part of the transverse section showing Embodiment 2 of the magnet-embedded rotor according to the present invention.
  • the embedded magnet rotor 92 of the second embodiment is provided with a semicircular recess 2h in the bridge portion 2e on both sides of the protrusion 2f.
  • the magnet-embedded rotor 92 of the second embodiment is not different from the magnet-embedded rotor 91 of the first embodiment except that the recessed portion 2h is provided.
  • FIG. FIG. 4 is an enlarged view of the essential part of the transverse section showing Embodiment 3 of the magnet-embedded rotor according to the present invention.
  • the outer periphery of the rotor core 32 is a perfect circle. Accordingly, the radii from the rotation center O (see FIG. 1) to the outer peripheral portion of the magnetic pole portion 32c, the outer peripheral portion of the bridge portion 32e, and the tip flat surface 32g of the convex portion 32f are all the same.
  • a semicircular concave portion 32h is formed in the bridge portion 32e on both sides of the convex portion 32f.

Abstract

La présente invention a trait à un rotor à aimant intégré qui est équipé d'un noyau de fer de rotor (2) qui est formé de manière à se présenter sous une forme cylindrique grâce à la stratification de plaques en acier. Le rotor à aimant intégré comprend une pluralité de trous de logement d'aimant (2b) qui sont disposés de façon annulaire à intervalles prédéterminés sur le bord extérieur, des pôles magnétiques (2c) qui sont formés du côté périphérique extérieur des trous de logement d'aimant (2b), et des nervures (2d) qui sont formées entre les trous de logement d'aimant (2b), adjacentes les unes par rapport aux autres et connectées à des ponts (2e) des deux côtés des pôles magnétiques (2c), et des protubérances (2f) qui font chacune saillie vers l'extérieur à partir d'une connexion entre le pont (2e) et la nervure (2d) et qui sont dotées d'une extrémité avant plate. La largeur dans la direction circonférentielle de la protubérance (2f) est supérieure à la largeur dans la direction circonférentielle de la nervure (2d), et le rayon depuis un centre de rotation (O) jusqu'à l'extrémité avant de la protubérance (2f) est inférieur au rayon depuis le centre de rotation jusqu'à la périphérie extérieure d'une partie centrale du pôle magnétique (2c).
PCT/JP2012/050402 2012-01-11 2012-01-11 Rotor à aimant intégré WO2013105236A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/050402 WO2013105236A1 (fr) 2012-01-11 2012-01-11 Rotor à aimant intégré
TW101124583A TWI495228B (zh) 2012-01-11 2012-07-09 磁鐵埋設型轉子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/050402 WO2013105236A1 (fr) 2012-01-11 2012-01-11 Rotor à aimant intégré

Publications (1)

Publication Number Publication Date
WO2013105236A1 true WO2013105236A1 (fr) 2013-07-18

Family

ID=48781209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050402 WO2013105236A1 (fr) 2012-01-11 2012-01-11 Rotor à aimant intégré

Country Status (2)

Country Link
TW (1) TWI495228B (fr)
WO (1) WO2013105236A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038489A1 (fr) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, machine électrique tournante, compresseur électrique, et dispositif de réfrigération/climatiseur
US20220190654A1 (en) * 2020-12-10 2022-06-16 Almott Group Ad Brushless electrical machine with permanent magnet excitation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610257B (zh) * 2016-03-07 2019-11-29 广东美芝制冷设备有限公司 转子铁芯、转子、电机以及压缩机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165394A (ja) * 2000-09-13 2002-06-07 Sanyo Denki Co Ltd 永久磁石内蔵型同期モータ
JP2004072845A (ja) * 2002-08-02 2004-03-04 Aichi Elec Co 永久磁石電動機
JP2005354798A (ja) * 2004-06-10 2005-12-22 Fujitsu General Ltd 電動機
JP2007181346A (ja) * 2005-12-28 2007-07-12 Fanuc Ltd 電動機及びそのロータコア並びに電動機を製造する方法
WO2007125753A1 (fr) * 2006-04-24 2007-11-08 Fujitsu General Limited Rotor a aimant encastre, moteur utilisant ce rotor, et compresseur utilisant ce moteur
JP2009118687A (ja) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd 永久磁石式回転機
JP2009278860A (ja) * 2009-06-26 2009-11-26 Hitachi Ltd 永久磁石回転電機及びそれを用いた電動車両
JP2011062059A (ja) * 2009-09-14 2011-03-24 Toyota Industries Corp 永久磁石埋設型回転電機
JP2011114927A (ja) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp 回転子、磁石埋込型電動機、及び、電動圧縮機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165394A (ja) * 2000-09-13 2002-06-07 Sanyo Denki Co Ltd 永久磁石内蔵型同期モータ
JP2004072845A (ja) * 2002-08-02 2004-03-04 Aichi Elec Co 永久磁石電動機
JP2005354798A (ja) * 2004-06-10 2005-12-22 Fujitsu General Ltd 電動機
JP2007181346A (ja) * 2005-12-28 2007-07-12 Fanuc Ltd 電動機及びそのロータコア並びに電動機を製造する方法
WO2007125753A1 (fr) * 2006-04-24 2007-11-08 Fujitsu General Limited Rotor a aimant encastre, moteur utilisant ce rotor, et compresseur utilisant ce moteur
JP2009118687A (ja) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd 永久磁石式回転機
JP2009278860A (ja) * 2009-06-26 2009-11-26 Hitachi Ltd 永久磁石回転電機及びそれを用いた電動車両
JP2011062059A (ja) * 2009-09-14 2011-03-24 Toyota Industries Corp 永久磁石埋設型回転電機
JP2011114927A (ja) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp 回転子、磁石埋込型電動機、及び、電動圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038489A1 (fr) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, machine électrique tournante, compresseur électrique, et dispositif de réfrigération/climatiseur
JPWO2017038489A1 (ja) * 2015-09-01 2018-01-18 三菱電機株式会社 回転子、回転電機、電動圧縮機および冷凍空調装置
US10594176B2 (en) 2015-09-01 2020-03-17 Mitsubishi Electric Corporation Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning apparatus
US20220190654A1 (en) * 2020-12-10 2022-06-16 Almott Group Ad Brushless electrical machine with permanent magnet excitation
US11804740B2 (en) * 2020-12-10 2023-10-31 Almott Group Ad Brushless electrical machine with permanent magnet excitation

Also Published As

Publication number Publication date
TW201330459A (zh) 2013-07-16
TWI495228B (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
JP5321451B2 (ja) 永久磁石埋設型電動機
US9130441B2 (en) Brushless DC motor
JP5353917B2 (ja) 回転電機用回転子
JP4110146B2 (ja) 磁性体、回転子、電動機
JP6274475B2 (ja) 回転子、回転電機および回転子の製造方法
US11038388B2 (en) Rotor of rotary electric machine
KR100624381B1 (ko) 영구자석 매립형 전동기의 회전자와 그 제조방법
WO2014091579A1 (fr) Rotor pour moteur
JP5298402B2 (ja) モータのエンドプレート構造
CN105518976A (zh) 永磁体式旋转电机的转子
US9570947B2 (en) Electric rotating machine
WO2017195498A1 (fr) Rotor et machine électrique rotative
WO2013105236A1 (fr) Rotor à aimant intégré
JP4291211B2 (ja) 回転電機の回転子および回転電機
US11139705B2 (en) Electric motor
KR101867973B1 (ko) 모터의 로터 및 이를 갖는 모터
JP2011172359A (ja) 分割型回転子及び電動機
JP2018023232A (ja) 回転電機および回転電機の製造方法
JPWO2013105236A1 (ja) 磁石埋込型回転子
JP2015056911A (ja) ロータ及びこのロータを備える回転電機
JP5879848B2 (ja) 埋込磁石形回転電機のロータ
JP2015082862A (ja) 回転電機のロータコアとシャフトの締結構造
KR20190031763A (ko) 모터
JP6337549B2 (ja) 磁石埋込型ロータ
JP7113906B2 (ja) 回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530021

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865391

Country of ref document: EP

Kind code of ref document: A1