WO2013103116A1 - Wafer-processing tape and method for manufacturing semiconductor device using same - Google Patents

Wafer-processing tape and method for manufacturing semiconductor device using same Download PDF

Info

Publication number
WO2013103116A1
WO2013103116A1 PCT/JP2012/083646 JP2012083646W WO2013103116A1 WO 2013103116 A1 WO2013103116 A1 WO 2013103116A1 JP 2012083646 W JP2012083646 W JP 2012083646W WO 2013103116 A1 WO2013103116 A1 WO 2013103116A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
adhesive layer
processing tape
wafer processing
tape
Prior art date
Application number
PCT/JP2012/083646
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 透
邦彦 石黒
尚明 三原
千佳子 井之前
朗 矢吹
一貴 建部
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to SG2013082540A priority Critical patent/SG194831A1/en
Priority to CN201280017728.4A priority patent/CN103460348B/en
Priority to KR1020137033285A priority patent/KR101545805B1/en
Publication of WO2013103116A1 publication Critical patent/WO2013103116A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/6705Unsaturated polymers not provided for in the groups C08G18/671, C08G18/6795, C08G18/68 or C08G18/69
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09J161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C09J161/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an expandable wafer processing tape and the like used when dividing an adhesive layer along a chip by an expand in a manufacturing process of a semiconductor device.
  • a back grinding process for grinding the back surface of the wafer to reduce the thickness of the wafer after the circuit pattern is formed, and adhesive and stretchable wafer processing tape is attached to the back surface of the wafer.
  • a dicing process for dividing the wafer into chips, an expanding process for expanding (expanding) the wafer processing tape, a pickup process for picking up the divided chips, and bonding the picked-up chips to a lead frame or a package substrate (Alternatively, in a stacked package, a die bonding (mounting) step is performed in which chips are stacked and bonded together.
  • a surface protective tape is used to protect the circuit pattern forming surface (wafer surface) of the wafer from contamination.
  • the wafer processing tape (dicing / die bonding tape) described below is bonded to the backside of the wafer and then applied to the suction table for wafer processing.
  • the tape side is fixed, the surface protective tape is subjected to a treatment for reducing the adhesive strength to the wafer, and then the surface protective tape is peeled off.
  • the wafer from which the surface protective tape has been peeled is then picked up from the suction table with the wafer processing tape being bonded to the back surface, and is subjected to the next dicing process.
  • the treatment for reducing the adhesive force is an energy ray irradiation treatment
  • the surface protection tape is made of a thermosetting component, Heat treatment.
  • a wafer processing tape in which an adhesive layer and an adhesive layer are laminated in this order on a base film is used.
  • an adhesive layer of a wafer processing tape is bonded to the back surface of the wafer to fix the wafer, and the wafer and the adhesive layer are diced into chips using a dicing blade.
  • an expanding process is performed to expand the distance between the chips by expanding the tape in the radial direction of the wafer. This expanding process is performed in the subsequent pick-up process in order to improve chip recognition by a CCD camera or the like and to prevent chip breakage caused by contact between adjacent chips when picking up a chip.
  • the chip is peeled off from the adhesive layer together with the adhesive layer in the pickup process and picked up, and directly attached to the lead frame, the package substrate, etc. in the mounting process.
  • wafer processing tape it is possible to directly bond chips with an adhesive layer to lead frames, package substrates, etc., so the adhesive coating process and die bonding to each chip separately
  • the step of adhering the film can be omitted.
  • the wafer and the adhesive layer are diced together using the dicing blade, and therefore not only the wafer cutting waste but also the adhesive layer cutting waste is generated. Then, when the cutting waste of the adhesive layer is clogged in the groove of the wafer generated by dicing, chips are stuck to each other to cause a pick-up failure and the like, and there is a problem that the manufacturing yield of the semiconductor device is lowered.
  • Patent Document 1 a method for dividing the adhesive layer using the tension at the time of expansion, no cutting waste of the adhesive is generated, and there is no adverse effect in the pickup process.
  • a so-called stealth dicing method that can cut a wafer in a non-contact manner using a laser processing apparatus has been proposed as a wafer cutting method.
  • a stealth dicing method an adhesive layer (die bond resin layer) is interposed, a focus light is adjusted inside a semiconductor substrate to which a sheet is attached, and laser light is irradiated.
  • a method for cutting a semiconductor substrate comprising the steps of:
  • Patent Document 3 discloses a process of attaching an adhesive layer (adhesive film) for die bonding to the back surface of a wafer, and the adhesive layer includes The process of pasting a stretchable protective adhesive tape on the adhesive layer side of the bonded wafer, and irradiating laser light along the street from the surface of the wafer to which the protective adhesive tape was bonded to each chip The process of dividing, the process of expanding the protective adhesive tape to give tensile force to the adhesive layer, breaking the adhesive layer for each chip, and protecting the chip to which the broken adhesive layer is bonded A wafer dividing method including a step of separating from a tape has been proposed.
  • the substrate film is used to reliably cut the adhesive layer along the chip on the wafer to be used.
  • the uniform and isotropic expandability of the adhesive layer must be sufficiently transmitted to the adhesive layer. This is because when a deviation occurs at the interface between the adhesive layer and the pressure-sensitive adhesive layer, sufficient tensile force is not propagated to the adhesive layer at that location, and the adhesive layer cannot be divided.
  • the present invention provides a wafer processing tape that does not cause a shift at the interface between the adhesive layer and the pressure-sensitive adhesive layer due to expansion, has a uniform expandability suitable for the process of dividing the adhesive layer, and has excellent pickup properties. It is an issue to provide.
  • the present invention includes a base film, a pressure-sensitive adhesive layer formed on the base film, and an adhesive layer formed on the pressure-sensitive adhesive layer.
  • the shearing force at 25 ° C. of the pressure-sensitive adhesive layer and the adhesive layer is 0.2 N / mm 2 or more, and the peeling speed is 300 mm in a standard state in accordance with JIS-Z0237 after irradiation with an energy beam of 200 mJ / cm 2.
  • the tape for wafer processing is characterized in that the peeling force between the pressure-sensitive adhesive layer and the adhesive layer at a peeling angle of 180 ° / min is 0.3 N / 25 mm or less.
  • the shear force of the pressure-sensitive adhesive layer and the adhesive layer at 25 ° C. is 0.2 N / mm 2 or more and 0.5 N / mm 2 or less, and the pressure-sensitive adhesive layer has a gel fraction.
  • the pressure-sensitive adhesive composition is composed of a pressure-sensitive adhesive composition that is 60% or more, and the pressure-sensitive adhesive composition contains, as a base resin, 60 mol% or more of a (meth) acrylate having an alkyl chain having 6 to 12 carbon atoms, and an iodine value.
  • the pressure-sensitive adhesive composition is selected from the group consisting of polyisocyanates, melamine-formaldehyde resins, and epoxy resins, and contains a polymer having 5-30 energy ray-curable carbon-carbon double bonds. It is particularly preferred if it contains at least one compound.
  • the reason is that it does not peel off from the adhesive layer at the time of dicing, has a retainability that does not cause a defect such as chip jumping, and a property that facilitates peeling from the adhesive layer at the time of pickup, Wafer processing that avoids the possibility that low molecular weight components of the pressure-sensitive adhesive layer will float off the pressure-sensitive adhesive surface and contaminate the chip surface or the adhesive layer, is easy to manufacture, and improves the cohesive strength of the pressure-sensitive adhesive This is because a tape can be obtained.
  • the present invention provides, as a second aspect, a method for manufacturing a semiconductor device using the wafer processing tape according to the first aspect, (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) irradiating a laser beam to a portion to be divided of the wafer, and forming a modified region by multiphoton absorption inside the wafer; (F) Expanding the wafer processing tape to divide the wafer and the adhesive layer of the wafer processing tape along a cutting line to obtain a plurality of chips with the adhesive layer Process, (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step
  • the present invention provides, as a third aspect, a method for manufacturing a semiconductor device using the wafer processing tape according to the first aspect, (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) irradiating a laser beam along a cutting line on the wafer surface, and cutting the wafer into chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained; (H) picking up the chip with the adhesive layer
  • this invention is the method of manufacturing a semiconductor device using the tape for wafer processing of the said 1st aspect as a 4th aspect, (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) cutting the wafer along a cutting line using a dicing blade and cutting the wafer into chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained; (H) picking up the chip with the adhesive layer from the adhesive
  • a fifth aspect of the present invention is a method of manufacturing a semiconductor device using the wafer processing tape according to the first aspect, (A) cutting the wafer on which the circuit pattern is formed, using a dicing blade, along a line to be cut to a depth less than the thickness of the wafer; (B) bonding a surface protective tape to the wafer surface; (C) a back grinding process for grinding the wafer back surface and dividing it into chips; (D) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer divided into the chips while the wafer is heated to 70 to 80 ° C .; (E) peeling the surface protection tape from the wafer surface divided into the chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) in the expanded wafer processing tape, removing the slack generated in the expanding step by heating and shrinking a portion that does not overlap the chip, and maintaining the interval between the chips; (H) picking up
  • the base film is uniformly and isotropically expandable when expanded. Is sufficiently propagated to the adhesive layer through the pressure-sensitive adhesive layer, and the adhesive layer is efficiently divided. Further, the peeling force between the pressure-sensitive adhesive layer and the adhesive layer at a peeling speed of 300 mm / min and a peeling angle of 180 ° in a standard state in accordance with JIS-Z0237 after irradiation with an energy beam of 200 mJ / cm 2 is 0.3 N / Since it is 25 mm or less, the peeling force is sufficiently reduced and the pickup performance is good.
  • (B) It is sectional drawing which shows the process of dividing a wafer into a chip
  • (C) It is sectional drawing which shows the tape for wafer processing after expansion, an adhesive bond layer, and a chip
  • the measuring method of a shear force it is sectional drawing which shows the state which bonded the auxiliary
  • FIG. 1 is a cross-sectional view showing a wafer processing tape 10 according to an embodiment of the present invention.
  • the wafer processing tape 10 of the present invention is one in which the adhesive layer 13 is divided along the chip when the wafer is divided into chips by expanding.
  • the wafer processing tape 10 includes a base film 11, a pressure-sensitive adhesive layer 12 provided on the base film 11, and an adhesive layer 13 provided on the pressure-sensitive adhesive layer 12.
  • the back surface of the wafer is pasted on 13.
  • Each layer may be cut (precut) into a predetermined shape in advance according to the use process and the apparatus.
  • the wafer processing tape 10 of the present invention may be in a form cut for each wafer, or a long sheet in which a plurality of pieces cut for each wafer are formed,
  • the form wound up in roll shape may be sufficient. Below, the structure of each layer is demonstrated.
  • the base film 11 is not particularly limited as long as it has uniform and isotropic expandability in the expanding process.
  • the cross-linked resin has a greater restoring force against tension than the non-cross-linked resin, and has a large shrinkage stress when heat is applied to the stretched state after the expanding step. Therefore, the slack generated in the tape after the expanding step can be removed by heating and shrinking, whereby the tape can be tensioned and the interval between the individual chips can be stably maintained. Therefore, a crosslinked resin, especially a thermoplastic crosslinked resin, is preferably used as the base film.
  • thermoplastic crosslinked resin examples include an ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid binary copolymer or ethylene- (meth) acrylic acid- (meth) acrylic acid with a metal ion. Is done. These are particularly suitable in that they can be expanded uniformly and are suitable for the expanding process and have a strong restoring force when heated by crosslinking.
  • the metal ion contained in the ionomer resin is not particularly limited, but zinc ion having particularly low elution property is preferable from the viewpoint of low contamination.
  • thermoplastic crosslinked resin includes a low density polyethylene having a specific gravity of 0.910 to less than 0.930 or an ultra-low density polyethylene having a specific gravity of less than 0.910, such as an electron beam. What was bridge
  • crosslinked by irradiating an energy ray is also suitable.
  • thermoplastic cross-linked resin has a certain uniform expansibility since a cross-linked site and a non-cross-linked site coexist in the resin. Further, since a strong restoring force is exerted during heating, it is also suitable for removing tape slack generated in the expanding process. By appropriately adjusting the amount of energy rays irradiated to the low density polyethylene or the ultra low density polyethylene, a resin having sufficient uniform expandability can be obtained.
  • thermoplastic cross-linked resin in addition to the above-mentioned ionomer resin and energy-cross-linked polyethylene, those obtained by irradiating an ethylene-vinyl acetate copolymer with an energy beam such as an electron beam are also suitable.
  • This thermoplastic cross-linked resin is suitable because it can remove the slack of the tape generated in the expanding process because it has a strong restoring force when heated.
  • the base film 11 is a single layer, it is not limited to this, The multilayer structure which laminated
  • the thickness of the base film 11 is not particularly defined, but it is preferably about 50 to 200 ⁇ m, more preferably 100 to 150 ⁇ m, as the thickness that is easy to stretch in the expanding process of the wafer processing tape 10 and has sufficient strength not to break. .
  • a conventionally known extrusion method, laminating method, or the like can be used as a method for producing the multi-layer base film 11.
  • laminating method an adhesive may be interposed between the layers.
  • a conventionally well-known adhesive agent can be used as an adhesive agent.
  • the pressure-sensitive adhesive layer 12 can be formed by applying a pressure-sensitive adhesive composition to the base film 11.
  • the pressure-sensitive adhesive layer 12 constituting the wafer processing tape 10 of the present invention has a holding property that does not cause separation from the adhesive layer 13 during dicing and does not cause defects such as chip jumping, and an adhesive during pickup. Any material may be used as long as it can be easily separated from the layer 13. Specifically, the shearing force at 25 ° C.
  • the peeling force (peeling adhesive strength) between the adhesive layer 12 and the adhesive layer 13 at a peeling speed of 300 mm / min and a peeling angle of 180 ° at a temperature of 23 ⁇ 1 ° C. and a relative humidity of 50 ⁇ 5% is 0.3 N /
  • the pressure-sensitive adhesive layer 12 is 25 mm or less.
  • the shearing force at the interface between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is more preferably 0.2 N / mm 2 or more and 0.5 N / mm 2 or less.
  • the peeling force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 there is no particular lower limit for the peeling force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13, but if the peeling force is too small, the chip may be peeled off by the pick-up process or the chip may fly during expansion in the pick-up process. Further, since there is a risk that peripheral chips other than the predetermined chip may be peeled off at the time of picking up, and jumping may occur, so that 0.03 N / 25 mm or more is more preferable.
  • the configuration of the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer 12 is not particularly limited, but in order to improve the pick-up property after dicing, an energy ray-curable one is preferable, and after curing, A material that can be easily peeled off from the adhesive layer 13 is preferable.
  • the pressure-sensitive adhesive composition contains 60 mol% or more of (meth) acrylate having an alkyl chain having 6 to 12 carbon atoms as the base resin, and has an iodine value of 5 to 30. -What has a polymer (A) which has a carbon double bond is illustrated.
  • the energy ray means a light ray such as ultraviolet rays or ionizing radiation such as an electron beam.
  • the gel fraction is more preferably 60% or more. If the gel fraction is low, the degree of cross-linking of the resin is low and the amount of low molecular weight components increases, so the low molecular weight components may float on the surface of the adhesive and leave, leading to contamination of the chip surface or adhesive layer. Because. If the adhesive layer is contaminated, the adhesive layer may be peeled off during the wafer processing process, or low molecular weight components may be volatilized and voids may be formed during the thermocompression bonding process when the semiconductor chip is encapsulated with the mold resin. Sometimes.
  • the amount of energy ray-curable carbon-carbon double bonds introduced is preferably 5 to 30, more preferably 10 to 20, in terms of iodine value. This is because the polymer (A) itself is stable and easy to manufacture. Moreover, when the iodine value is less than 5, the effect of reducing the adhesive strength after irradiation with energy rays may not be sufficiently obtained. When the iodine value is larger than 30, the flowability of the adhesive after irradiation with energy rays becomes insufficient, and it becomes impossible to obtain a sufficient gap between the chips after the expansion of the wafer processing tape 10. Image recognition may be difficult.
  • the polymer (A) preferably has a glass transition temperature of ⁇ 70 ° C. to 15 ° C., more preferably ⁇ 66 ° C. to ⁇ 28 ° C. If the glass transition temperature is ⁇ 70 ° C. or higher, the heat resistance against energy radiation is sufficient, and if it is 15 ° C. or lower, the effect of preventing chip scattering after dicing on a wafer having a rough surface is obtained. It is done.
  • the polymer (A) may be produced by any method, for example, a polymer obtained by mixing an acrylic copolymer and a compound having an energy ray-curable carbon-carbon double bond, An acrylic copolymer having a functional group or a methacrylic copolymer having a functional group (A1), a functional group capable of reacting with the functional group, and an energy ray-curable carbon-carbon double bond What is obtained by reacting with a compound (A2) having a hydrogen atom is used.
  • methacrylic copolymer (A1) having the functional group a monomer (A1-1) having a carbon-carbon double bond such as an alkyl acrylate ester or an alkyl methacrylate ester, and carbon Examples thereof include those obtained by copolymerizing a monomer (A1-2) having a carbon double bond and having a functional group.
  • Monomer (A1-1) includes hexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, decyl acrylate, lauryl acrylate or alkyl chain having an alkyl chain having 6 to 12 carbon atoms Examples thereof include pentyl acrylate, n-butyl acrylate, isobutyl acrylate, ethyl acrylate, methyl acrylate, and similar methacrylates, which are monomers having 5 or less carbon atoms.
  • the monomer (A1-1) contains many components having an alkyl chain with a carbon number smaller than 6, the peeling force between the pressure-sensitive adhesive layer and the adhesive layer will increase, and in the pick-up process, such as chip cracking will occur. Problems may occur. Also, if there are many components having more than 12 carbon atoms, they tend to be solid at room temperature, so the processability is poor, and sufficient adhesive force between the pressure-sensitive adhesive layer and the adhesive layer cannot be obtained, resulting in deviation at the interface. In some cases, problems may occur when the adhesive layer is divided.
  • the glass transition temperature becomes lower as the monomer having a larger alkyl chain carbon number is used. Therefore, the pressure-sensitive adhesive composition having a desired glass transition temperature can be selected appropriately.
  • Product can be prepared.
  • a low molecular compound having a carbon-carbon double bond such as vinyl acetate, styrene or acrylonitrile can be added for the purpose of improving various properties such as compatibility. In that case, these low molecular weight compounds are blended within a range of 5% by mass or less of the total mass of the monomer (A1-1).
  • examples of the functional group of the monomer (A1-2) include a carboxyl group, a hydroxyl group, an amino group, a cyclic acid anhydride group, an epoxy group, and an isocyanate group.
  • Specific examples of the monomer (A1-2) include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycol monoacrylate.
  • Glycol monomethacrylates N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride, itaconic anhydride
  • acids fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether.
  • examples of the functional group used include a hydroxyl group, an epoxy group, and an isocyanate group when the functional group of the compound (A1) is a carboxyl group or a cyclic acid anhydride group.
  • a hydroxyl group a cyclic acid anhydride group, an isocyanate group, and the like can be exemplified.
  • an amino group an epoxy group, an isocyanate group, and the like can be exemplified.
  • Carboxyl group, cyclic acid anhydride group, amino group and the like As specific examples of the compound (A2), the same compounds as listed in the specific examples of the monomer (A1-2) can be listed.
  • the compound (A2) a compound obtained by urethanizing a part of the isocyanate group of the polyisocyanate compound with a monomer having a hydroxyl group or a carboxyl group and an energy ray-curable carbon-carbon double bond can also be used.
  • a desired product with respect to characteristics such as acid value or hydroxyl value can be produced. If the OH group is left so that the hydroxyl value of the polymer (A) is 5 to 100, the risk of pick-up mistakes can be further reduced by reducing the adhesive strength after irradiation with energy rays. Further, if the COOH group is left so that the acid value of the polymer (A) is 0.5 to 30, the effect of improving the restoring property of the pressure-sensitive adhesive layer after expanding the wafer processing tape of the present invention can be obtained. And preferred.
  • the hydroxyl value of the polymer (A) is too low, the effect of reducing the adhesive strength after irradiation with energy rays is not sufficient, and if too high, the fluidity of the adhesive after irradiation with energy rays tends to be impaired. . If the acid value is too low, the effect of improving the tape restoring property is not sufficient, and if it is too high, the fluidity of the pressure-sensitive adhesive tends to be impaired.
  • ketone-based, ester-based, alcohol-based and aromatic-based solvents can be used, among which toluene, acetic acid
  • a good solvent for an acrylic polymer such as ethyl, isopropyl alcohol, benzene methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and a solvent having a boiling point of 60 to 120 ° C. is preferable.
  • a radical generator such as an azobis type such as ⁇ , ⁇ '-azobisisobutylnitrile or an organic peroxide type such as benzoyl peroxide is usually used.
  • a catalyst and a polymerization inhibitor can be used in combination, and the polymer (A) having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time.
  • a mercaptan or carbon tetrachloride solvent it is preferable to use a mercaptan or carbon tetrachloride solvent. This reaction is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
  • the polymer (A) can be obtained.
  • the molecular weight of the polymer (A) is preferably about 500,000 to 1,000,000. If it is less than 500,000, the cohesive force becomes small, and the expansion tends to cause a shift at the interface with the adhesive layer, and sufficient tensile force is not propagated to the adhesive layer, so that the adhesive layer is not divided. May be sufficient.
  • the molecular weight is preferably 500,000 or more. Further, if the molecular weight exceeds 1,000,000, there is a possibility of gelation at the time of synthesis and coating.
  • the molecular weight in this invention is a mass mean molecular weight of polystyrene conversion.
  • the resin composition constituting the pressure-sensitive adhesive layer 12 may further contain a compound (B) that acts as a crosslinking agent in addition to the polymer (A).
  • a compound (B) that acts as a crosslinking agent in addition to the polymer (A).
  • Good it is at least one compound selected from polyisocyanates, melamine / formaldehyde resins, and epoxy resins. These can be used alone or in combination of two or more.
  • This compound (B) reacts with the polymer (A) or the base film, and as a result, a pressure-sensitive adhesive mainly composed of the polymers (A) and (B) after coating the pressure-sensitive adhesive composition due to the resulting crosslinked structure.
  • the cohesive strength of can be improved.
  • the polyisocyanates are not particularly limited, and examples thereof include 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 '-[2,2-bis (4 -Phenoxyphenyl) propane] aromatic isocyanate such as diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate Lysine diisocyanate, lysine triisocyanate, and the like.
  • Coronate L (trade name, manufactured by Nippon Polyurethane Co., Ltd.) and the like are used. It can be.
  • Specific examples of the melamine / formaldehyde resin include Nicalac MX-45 (trade name, manufactured by Sanwa Chemical Co., Ltd.) and Melan (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • As the epoxy resin TETRAD-X (trade name, manufactured by Mitsubishi Chemical Corporation) or the like can be used. In the present invention, it is particularly preferable to use polyisocyanates.
  • the addition amount of the compound (B) is selected so that the blending ratio is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (A). By selecting within this range, it is possible to obtain an appropriate cohesive force, and since the crosslinking reaction does not proceed abruptly, workability such as blending and application of the adhesive is improved.
  • the pressure-sensitive adhesive layer 12 preferably contains a photopolymerization initiator (C).
  • a photopolymerization initiator (C) contained in the adhesive layer 12 A conventionally well-known thing can be used.
  • benzophenones such as benzophenone, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 4,4′-dichlorobenzophenone, acetophenones such as acetophenone and diethoxyacetophenone, 2-ethylanthraquinone, t- Examples include anthraquinones such as butylanthraquinone, 2-chlorothioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzyl, 2,4,5-triarylimidazole dimer (rophine dimer), acridine compounds, and the like.
  • the addition amount of the photopolymerization initiator (C) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (A). .
  • the energy ray-curable pressure-sensitive adhesive used in the present invention can be blended with a tackifier, a tackifier, a surfactant, or other modifiers as necessary.
  • the thickness of the pressure-sensitive adhesive layer 12 is not particularly limited, it is at least 5 ⁇ m, more preferably 10 ⁇ m or more.
  • the pressure-sensitive adhesive layer 12 may have a configuration in which a plurality of layers are laminated.
  • the adhesive layer 13 peels off from the adhesive layer 12 and adheres to the chip when the chip is picked up after the wafer is bonded and diced. And it is used as an adhesive agent when fixing a chip
  • the adhesive layer 13 is not particularly limited, but may be a film-like adhesive generally used for wafers. Acrylic adhesive, epoxy resin / phenolic resin / acrylic resin blend system An adhesive or the like is preferable.
  • the thickness may be appropriately set, but is preferably about 5 to 100 ⁇ m.
  • the adhesive layer 13 may be formed by laminating a film formed in advance (hereinafter referred to as an adhesive film) directly or indirectly on the base film 11. .
  • the laminating temperature is preferably in the range of 10 to 100 ° C., and a linear pressure of 0.01 to 10 N / m is preferably applied.
  • Such an adhesive film may be one in which the adhesive layer 13 is formed on the separator. In that case, the separator may be peeled off after lamination, or the cover of the wafer processing tape 10 may be used as it is. You may use as a film and peel when bonding a wafer.
  • the said adhesive film may be laminated
  • the adhesive film according to a wafer is laminated
  • the ring frame 20 can be bonded to the pressure-sensitive adhesive layer 12 by using a pre-cut adhesive film, and the ring is peeled off when the tape is peeled off after use. The effect that the adhesive residue to the frame 20 hardly occurs is obtained.
  • the wafer processing tape 10 of the present invention is used in a method for manufacturing a semiconductor device including an expanding process for dividing the adhesive layer 13 by at least expansion. Therefore, other processes and the order of processes are not particularly limited. For example, it can be suitably used in the following semiconductor device manufacturing methods (A) to (D).
  • Manufacturing method of semiconductor device (A) (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) irradiating a laser beam to a portion to be divided of the wafer, and forming a modified region by multiphoton absorption inside the wafer; (F) Expanding the wafer processing tape to divide the wafer and the adhesive layer of the wafer processing tape along a cutting line to obtain a plurality of chips with the adhesive layer Process, (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained; (H) picking up the chip with the adhesive layer from the
  • Manufacturing method of semiconductor device (B) (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) irradiating a laser beam along a cutting line on the wafer surface, and cutting the wafer into chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained; (H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape; A method of manufacturing a semiconductor device including:
  • Manufacturing method of semiconductor device (C) (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed; (B) a back grinding process for grinding the back surface of the wafer; (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .; (D) peeling the surface protection tape from the wafer surface; (E) cutting the wafer along a cutting line using a dicing blade and cutting the wafer into chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained; (H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape; A method of manufacturing a semiconductor device including:
  • Manufacturing method of semiconductor device (D) (A) cutting the wafer on which the circuit pattern is formed, using a dicing blade, along a line to be cut to a depth less than the thickness of the wafer; (B) bonding a surface protective tape to the wafer surface; (C) a back grinding process for grinding the wafer back surface and dividing it into chips; (D) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer divided into the chips while the wafer is heated to 70 to 80 ° C .; (E) peeling the surface protection tape from the wafer surface divided into the chips; (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer; (G) in the expanded wafer processing tape, removing the slack generated in the expanding step by heating and shrinking a portion that does not overlap the chip, and maintaining the interval between the chips; (H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape; A method of manufacturing
  • a method of using the tape when the wafer processing tape 10 of the present invention is applied to the method (A) for manufacturing a semiconductor device will be described with reference to FIGS.
  • a surface protection tape 14 for protecting a circuit pattern containing an ultraviolet curable component in an adhesive is bonded to the surface of a wafer W on which a circuit pattern is formed. Perform back grinding process to grind.
  • the wafer processing tape 10 is bonded to the back side of the wafer W.
  • the wafer processing tape 10 used here is obtained by laminating an adhesive film that has been cut (precut) in advance in a shape corresponding to the wafer W to be bonded, and the adhesive layer on the surface to be bonded to the wafer W.
  • the adhesive layer 12 is exposed around the area where 13 is exposed.
  • the portion of the wafer processing tape 10 where the adhesive layer 13 is exposed and the back surface of the wafer W are bonded together, and the portion where the adhesive layer 12 around the adhesive layer 13 is exposed and the ring frame 20 are bonded together.
  • the heater table 25 is set to 70 to 80 ° C., and thus heat bonding is performed.
  • the wafer W to which the wafer processing tape 10 is bonded is unloaded from the heater table 25 and placed on the suction table 26 with the wafer processing tape 10 side down as shown in FIG. Then, from the upper side of the wafer W sucked and fixed to the suction table 26, for example, the substrate surface side of the surface protective tape 14 is irradiated with ultraviolet rays of 1000 mJ / cm 2 using the energy ray light source 27, and the surface protective tape 14 The adhesive strength to the wafer W is reduced, and the surface protection tape 14 is peeled off from the surface of the wafer W.
  • a laser beam is irradiated on a portion to be divided of the wafer W to form a modified region 32 by multiphoton absorption inside the wafer W.
  • the wafer processing tape 10 to which the wafer W and the ring frame 20 are bonded is placed on the stage 21 of the expanding apparatus with the base film 11 side facing down. .
  • the hollow cylindrical push-up member 22 of the expanding device is raised, and the wafer processing tape 10 is expanded (expanded).
  • the expanding speed is, for example, 5 to 500 mm / sec
  • the expanding amount (push-up amount) is, for example, 5 to 25 mm.
  • the wafer processing tape 10 is stretched in the radial direction of the wafer W, so that the wafer W is divided into chips 34 starting from the modified region 32.
  • the adhesive layer 13 elongation (deformation) due to expansion is suppressed at the portion bonded to the back surface of the wafer W, and no breakage occurs.
  • the adhesive layer 13 is also cut off together with the wafer W. Thereby, the some chip
  • the push-up member 22 is returned to the original position, the slack of the wafer processing tape 10 generated in the previous expanding process is removed, and the distance between the chips 34 is stably maintained.
  • Perform the process for example, warm air of 90 to 120 ° C. is used in the annular heat shrinkage region 28 between the region where the chip 34 exists in the wafer processing tape 10 and the ring frame 20 by using the warm air nozzle 29. Is applied to heat and shrink the base film 11 to tension the wafer processing tape 10.
  • the adhesive layer 12 is subjected to an energy ray curing process or a thermosetting process to weaken the adhesive force of the adhesive layer 12 to the adhesive layer 13, and then the chip 34 is picked up.
  • acrylic copolymer (a-1) As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 60 mol%, and the weight average molecular weight being 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value was 20, and an acrylic copolymer (a-) having a glass transition temperature of ⁇ 60 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. 1) was prepared.
  • (A-2) As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 80 mol%, and the weight average molecular weight being 700,000 was prepared.
  • 2-isocyanatoethyl methacrylate was added so that the iodine value would be 15, and an acrylic copolymer (a-) having a glass transition temperature of ⁇ 70 ° C., a hydroxyl value of 20 mgKOH / g, and an acid value of 5 mgKOH / g. 2) was prepared.
  • (A-3) As the acrylic copolymer (A1) having a functional group, a copolymer composed of dodecyl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a dodecyl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer (a-) having a glass transition temperature of ⁇ 5 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. 3) was prepared.
  • (A-4) As the acrylic copolymer (A1) having a functional group, a copolymer composed of lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a lauryl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value was 20, and an acrylic copolymer (a-4 having a glass transition temperature of 5 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g) ) was prepared.
  • (A-5) As the acrylic copolymer (A1) having a functional group, a copolymer composed of lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a lauryl acrylate ratio of 80 mol% and a mass average molecular weight of 750,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 15, and an acrylic copolymer compound (a-) having a glass transition temperature of 10 ° C., a hydroxyl value of 20 mgKOH / g, and an acid value of 5 mgKOH / g. 5) was prepared.
  • the acrylic copolymer (A1) having a functional group is composed of 2-ethylhexyl acrylate, lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid, and the combined ratio of 2-ethylhexyl acrylate and lauryl acrylate is 60 mol%, mass A copolymer having an average molecular weight of 800,000 was prepared.
  • the acrylic copolymer (A1) having a functional group is composed of 2-ethylhexyl acrylate, lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid, and the combined ratio of 2-ethylhexyl acrylate and lauryl acrylate is 80 mol%, mass A copolymer having an average molecular weight of 700,000 was prepared.
  • (A-8) As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 55 mol%, and the weight average molecular weight being 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of ⁇ 55 ° C., a hydroxyl value of 80 mgKOH / g, and an acid value of 5 mgKOH / g -8) was produced.
  • (A-9) As the acrylic copolymer (A1) having a functional group, a copolymer composed of butyl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a butyl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of ⁇ 40 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. ⁇ 9) was produced.
  • HTR-860P-3 (trade name, mass average molecular weight 800,000 manufactured by Nagase ChemteX Corporation), which is an acrylic rubber (high molecular weight component) containing 3% by mass of a monomer unit derived from glycidyl acrylate or glycidyl methacrylate. ) 200 parts by mass and 0.075 parts by mass of “Curazole 2PZ-CN” (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator, and mixed by stirring.
  • An adhesive composition (d-1) was obtained.
  • HTR-860P-3 (trade name, mass average molecular weight 800,000 manufactured by Nagase ChemteX Corporation), which is an acrylic rubber (high molecular weight component) containing 3% by mass of a monomer unit derived from glycidyl acrylate or glycidyl methacrylate. ) 200 parts by weight and 0.01 part by weight of “Curazole 2PZ-CN” (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 1-cyanoethyl-2-phenylimidazole) as a curing accelerator, and stirred and mixed. A varnish of the adhesive composition was obtained.
  • Example 1 5 parts by weight of Coronate L (manufactured by Nippon Polyurethane) as a polyisocyanate is added to 100 parts by weight of the acrylic copolymer (a-1), and 3 parts by weight of Irgacure 184 (manufactured by Ciba Geigy Japan) is used as a photopolymerization initiator. The added mixture was dissolved in ethyl acetate and stirred to prepare an adhesive composition. Next, this pressure-sensitive adhesive composition was applied to a release liner made of a polyethylene-terephthalate film subjected to a release treatment so that the thickness after drying was 10 ⁇ m, and dried at 110 ° C. for 3 minutes. A pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive layer was formed on a base film was prepared by bonding to a material film.
  • Coronate L manufactured by Nippon Polyurethane
  • Irgacure 184 manufactured by Ciba Geigy Japan
  • the adhesive composition (d-1) was applied to a release liner made of a polyethylene-terephthalate film subjected to a release treatment so that the thickness after drying was 20 ⁇ m, and dried at 110 ° C. for 5 minutes.
  • a release liner made of a polyethylene-terephthalate film subjected to a release treatment so that the thickness after drying was 20 ⁇ m, and dried at 110 ° C. for 5 minutes.
  • the adhesive sheet was cut into the shape shown in FIG. 3 and the like that can be bonded to the ring frame so as to cover the opening. Moreover, the adhesive film was cut into the shape shown in FIG. Then, the adhesive layer side of the adhesive sheet and the adhesive layer side of the adhesive film are pasted so that a portion where the adhesive layer 12 is exposed is formed around the adhesive film as shown in FIG. In addition, a wafer processing tape was produced.
  • Example 2 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-2) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 3 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-3) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 4 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-4) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 5 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-5) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 6 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-6) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 7 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-7) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 8 A wafer processing tape was produced in the same manner as in Example 1 except that the adhesive composition (d-2) was used.
  • Example 9 A wafer processing tape was produced in the same manner as in Example 4 except that the adhesive composition (d-2) was used.
  • Example 1 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1, except that the amount of polyisocyanate was 1 part by mass. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • a pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-8) was used and the amount of polyisocyanate was changed to 2 parts by mass. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • Example 3 A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-9) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
  • the measurement was performed at a peeling rate of 300 mm / min and a peeling angle of 180 ° in a standard state (temperature 23 ° C., relative humidity 50%).
  • As the ultraviolet lamp a high-pressure mercury lamp (365 nm, 30 mW / cm 2 , irradiation distance 10 cm) was used, and the irradiation intensity was 200 mJ / cm 2 .
  • the measurement results are shown in Table 1.
  • a surface protection tape was bonded to the wafer surface on which the circuit pattern was formed.
  • B A back grinding process for grinding the wafer back surface was performed.
  • C With the wafer heated to 70 ° C., the wafer processing tape adhesive layer is bonded to the back surface of the wafer, and at the same time, the wafer processing ring frame is attached to the wafer processing tape adhesive layer. It bonded with the exposed part, without overlapping with an adhesive bond layer.
  • D) The surface protection tape was peeled from the wafer surface.
  • the wafer processing tape was expanded by 10% to divide the wafer and the adhesive layer along a cutting line, thereby obtaining a plurality of chips with the adhesive layer.
  • G In the expanding step (f), a portion of the wafer processing tape that does not overlap with the chip (an annular region between the region where the chip is present and the ring frame) is heated to 120 ° C. and contracted. The resulting slack was removed and the tip spacing was maintained.
  • the chip with the adhesive layer was picked up from the adhesive layer of the wafer processing tape.
  • the dicing ring frame bonded to the wafer processing tape with DDS-2300 manufactured by DISCO Corporation is pushed down by the expanding ring of DDS-2300 manufactured by DISCO Corporation, and used for wafer processing. Expanding was performed by pressing a portion of the outer periphery of the wafer bonding portion of the tape that did not overlap the wafer against a circular push-up member. Further, as the conditions of the steps (f) and (g), the expanding speed was 300 mm / sec, and the expanding amount (push-up amount) was 20 mm.
  • the amount of expansion refers to the amount of change in the relative position between the ring frame and the push-up member before and after pressing.
  • the shearing force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is 0.2 N / mm 2 or more, and the peeling force after irradiation with energy rays of 200 mJ / cm 2 is 0.3 N / 25 mm or less.
  • the wafer processing tapes of Examples 1 to 9 have a dividing rate of the adhesive layer of 100%, and it was revealed from the evaluation of the pickup success rate that the pickup tape has good pickup properties.
  • Comparative Example 2 in which the shear force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is 0.2 N / mm 2 or less, a deviation occurs at the interface between the pressure-sensitive adhesive layer 12 and the adhesive layer 13.
  • the semiconductor device manufacturing methods B to D are the same as the expanding step, the heat shrinking step, and the picking up step in the semiconductor device manufacturing method A except that they are already divided into individual chips in the expanding step. A process is performed. Therefore, it is clear that the results obtained using the wafer processing tapes 10 of Examples 1 to 9 and Comparative Examples 1 to 3 are equivalent to the results shown in Table 1, and the semiconductor device manufacturing method B From D to D, it is useful to use the wafer processing tape 10 of the present invention from the viewpoints of severability and pick-up property.

Abstract

The purpose of the present invention is to provide a wafer-processing tape that does not result in displacement at the interface between the adhesive layer and the sticky agent layer due to expansion, that has uniform expansion properties suitable for a step for dividing the adhesive layer, and that has excellent pickup performance. In the present invention, there is used a wafer-processing tape characterized in comprising: a substrate film; a sticky agent layer formed on the substrate film; and an adhesive layer formed on the sticky agent layer; the shear force of the sticky agent layer and the adhesive layer at 25°C being no less than 0.2 N/mm2, and the peeling force between the sticky agent layer and the adhesive layer at a peeling angle of 180° and a peeling speed of 300 mm/min in a standard state compliant with JIS-Z0237 after being irradiated by an energy beam of 200 mJ/cm2 being no greater than 0.3 N/25 mm.

Description

ウエハ加工用テープ及びこれを使用した半導体装置の製造方法Wafer processing tape and semiconductor device manufacturing method using the same
 本発明は、半導体装置の製造工程において、エキスパンドにより接着剤層をチップに沿って分断する際に用いられる、エキスパンド可能なウエハ加工用テープなどに関する。 The present invention relates to an expandable wafer processing tape and the like used when dividing an adhesive layer along a chip by an expand in a manufacturing process of a semiconductor device.
 ICなどの半導体装置の製造工程では、回路パターン形成後のウエハを薄膜化するためにウエハ裏面を研削するバックグラインド工程、ウエハの裏面に粘着性および伸縮性のあるウエハ加工用テープを貼り付けた後、ウエハをチップ単位に分断するダイシング工程、ウエハ加工用テープを拡張(エキスパンド)するエキスパンド工程、分断されたチップをピックアップするピックアップ工程、さらにピックアップされたチップをリードフレームやパッケージ基板等に接着する(あるいは、スタックドパッケージにおいては、チップ同士を積層、接着する)ダイボンディング(マウント)工程が実施される。 In the manufacturing process of semiconductor devices such as ICs, a back grinding process for grinding the back surface of the wafer to reduce the thickness of the wafer after the circuit pattern is formed, and adhesive and stretchable wafer processing tape is attached to the back surface of the wafer. Then, a dicing process for dividing the wafer into chips, an expanding process for expanding (expanding) the wafer processing tape, a pickup process for picking up the divided chips, and bonding the picked-up chips to a lead frame or a package substrate (Alternatively, in a stacked package, a die bonding (mounting) step is performed in which chips are stacked and bonded together.
 上記バックグラインド工程では、ウエハの回路パターン形成面(ウエハ表面)を汚染から保護するために、表面保護テープが使用される。ウエハの裏面研削終了後、この表面保護テープをウエハ表面から剥離する際には、以下に述べるウエハ加工用テープ(ダイシング・ダイボンディングテープ)をウエハ裏面に貼合した後、吸着テーブルにウエハ加工用テープ側を固定し、表面保護テープに、ウエハに対する接着力を低下させる処理を施した後、表面保護テープを剥離する。表面保護テープが剥離されたウエハは、その後、裏面にウエハ加工用テープが貼合された状態で、吸着テーブルから取り上げられ、次のダイシング工程に供される。なお、上記の接着力を低下させる処理とは、表面保護テープが紫外線等のエネルギー線硬化性成分からなる場合は、エネルギー線照射処理であり、表面保護テープが熱硬化性成分からなる場合は、加熱処理である。 In the back grinding process, a surface protective tape is used to protect the circuit pattern forming surface (wafer surface) of the wafer from contamination. When this surface protection tape is peeled off from the wafer surface after the backside grinding of the wafer is completed, the wafer processing tape (dicing / die bonding tape) described below is bonded to the backside of the wafer and then applied to the suction table for wafer processing. The tape side is fixed, the surface protective tape is subjected to a treatment for reducing the adhesive strength to the wafer, and then the surface protective tape is peeled off. The wafer from which the surface protective tape has been peeled is then picked up from the suction table with the wafer processing tape being bonded to the back surface, and is subjected to the next dicing process. In addition, when the surface protection tape is made of an energy ray curable component such as ultraviolet rays, the treatment for reducing the adhesive force is an energy ray irradiation treatment, and when the surface protection tape is made of a thermosetting component, Heat treatment.
 上記バックグラインド工程の後のダイシング工程~マウント工程では、基材フィルム上に、粘着剤層と接着剤層とが、この順に積層されたウエハ加工用テープが使用される。一般に、ウエハを用いる場合は、まず、ウエハの裏面にウエハ加工用テープの接着剤層を貼合してウエハを固定し、ダイシングブレードを用いてウエハおよび接着剤層をチップ単位にダイシングする。その後、テープをウエハの径方向に拡張することによって、チップ同士の間隔を広げるエキスパンド工程が実施される。このエキスパンド工程は、その後のピックアップ工程において、CCDカメラ等によるチップの認識性を高めるとともに、チップをピックアップする際に、隣接するチップ同士が接触することによって生じるチップの破損を防止するために実施される。その後、チップは、ピックアップ工程にて接着剤層とともに粘着剤層から剥離してピックアップされ、マウント工程にて、リードフレームやパッケージ基板等にダイレクトに接着される。このように、ウエハ加工用テープを用いることで、接着剤層付きのチップをリードフレームやパッケージ基板等にダイレクトに接着することが可能となるので、接着剤の塗布工程や別途各チップにダイボンディングフィルムを接着する工程を省略することができる。 In the dicing process to the mounting process after the back grinding process, a wafer processing tape in which an adhesive layer and an adhesive layer are laminated in this order on a base film is used. In general, when a wafer is used, first, an adhesive layer of a wafer processing tape is bonded to the back surface of the wafer to fix the wafer, and the wafer and the adhesive layer are diced into chips using a dicing blade. Thereafter, an expanding process is performed to expand the distance between the chips by expanding the tape in the radial direction of the wafer. This expanding process is performed in the subsequent pick-up process in order to improve chip recognition by a CCD camera or the like and to prevent chip breakage caused by contact between adjacent chips when picking up a chip. The Thereafter, the chip is peeled off from the adhesive layer together with the adhesive layer in the pickup process and picked up, and directly attached to the lead frame, the package substrate, etc. in the mounting process. In this way, by using wafer processing tape, it is possible to directly bond chips with an adhesive layer to lead frames, package substrates, etc., so the adhesive coating process and die bonding to each chip separately The step of adhering the film can be omitted.
 しかしながら、前記ダイシング工程では、上述のように、ダイシングブレードを用いてウエハと接着剤層とを一緒にダイシングするため、ウエハの切削屑だけでなく、接着剤層の切削屑も発生してしまう。そして、接着剤層の切削屑がダイシングにより生じたウエハの溝に詰まった場合、チップ同士がくっついてピックアップ不良などが発生し、半導体装置の製造歩留まりが低下してしまうという問題があった。 However, in the dicing step, as described above, the wafer and the adhesive layer are diced together using the dicing blade, and therefore not only the wafer cutting waste but also the adhesive layer cutting waste is generated. Then, when the cutting waste of the adhesive layer is clogged in the groove of the wafer generated by dicing, chips are stuck to each other to cause a pick-up failure and the like, and there is a problem that the manufacturing yield of the semiconductor device is lowered.
 このような問題を解決するために、ダイシング工程ではブレードによりウエハのみをダイシングし、エキスパンド工程において、ウエハ加工用テープを拡張することにより、接着剤層を個々のチップ毎に分断する方法が提案されている(例えば、特許文献1)。このような、拡張時の張力を利用した接着剤層の分断方法によれば、接着剤の切削屑が発生せず、ピックアップ工程において悪影響を及ぼすこともない。 In order to solve such problems, a method has been proposed in which only the wafer is diced with a blade in the dicing process, and the wafer processing tape is expanded in the expanding process to divide the adhesive layer into individual chips. (For example, Patent Document 1). According to such a method for dividing the adhesive layer using the tension at the time of expansion, no cutting waste of the adhesive is generated, and there is no adverse effect in the pickup process.
 また、近年、ウエハの切断方法として、レーザー加工装置を用いて、非接触でウエハを切断できる、いわゆるステルスダイシング法が提案されている。例えば、特許文献2には、ステルスダイシング法として、接着剤層(ダイボンド樹脂層)を介在させて、シートが貼り付けられた半導体基板の内部に焦点光を合わせ、レーザー光を照射することにより、半導体基板の内部に多光子吸収による改質領域を形成し、この改質領域を切断予定部とする工程と、シートを拡張させることにより、切断予定部に沿って半導体基板および接着剤層を切断する工程とを備えた半導体基板の切断方法が開示されている。 In recent years, a so-called stealth dicing method that can cut a wafer in a non-contact manner using a laser processing apparatus has been proposed as a wafer cutting method. For example, in Patent Document 2, as a stealth dicing method, an adhesive layer (die bond resin layer) is interposed, a focus light is adjusted inside a semiconductor substrate to which a sheet is attached, and laser light is irradiated. Forming a modified region by multiphoton absorption inside the semiconductor substrate, cutting the modified region into the planned cutting part, and expanding the sheet to cut the semiconductor substrate and the adhesive layer along the planned cutting part A method for cutting a semiconductor substrate comprising the steps of:
 また、レーザー加工装置を用いた別のウエハの切断方法として、例えば、特許文献3には、ウエハの裏面にダイボンディング用の接着剤層(接着フィルム)を装着する工程と、該接着剤層が貼合されたウエハの接着剤層側に、伸長可能な保護粘着テープを貼合する工程と、保護粘着テープを貼合したウエハの表面から、ストリートに沿ってレーザー光線を照射し、個々のチップに分割する工程と、保護粘着テープを拡張して接着剤層に引張力を付与し、接着剤層をチップ毎に破断する工程と、破断された接着剤層が貼合されているチップを保護粘着テープから離脱する工程を含むウエハの分割方法が提案されている。 Further, as another wafer cutting method using a laser processing apparatus, for example, Patent Document 3 discloses a process of attaching an adhesive layer (adhesive film) for die bonding to the back surface of a wafer, and the adhesive layer includes The process of pasting a stretchable protective adhesive tape on the adhesive layer side of the bonded wafer, and irradiating laser light along the street from the surface of the wafer to which the protective adhesive tape was bonded to each chip The process of dividing, the process of expanding the protective adhesive tape to give tensile force to the adhesive layer, breaking the adhesive layer for each chip, and protecting the chip to which the broken adhesive layer is bonded A wafer dividing method including a step of separating from a tape has been proposed.
 これら特許文献2および特許文献3に記載のウエハの切断方法によれば、レーザー光の照射およびテープの拡張によって、非接触でウエハを切断するので、ウエハへの物理的負荷が小さく、現在主流のブレードダイシングを行う場合のようなウエハの切削屑(チッピング)を発生させることなくウエハの切断が可能である。また、拡張によって接着剤層を分断するので、接着剤層の切削屑を発生させることもない。このため、ブレードダイシングに代わり得る優れた技術として注目されている。 According to the wafer cutting methods described in Patent Document 2 and Patent Document 3, since the wafer is cut in a non-contact manner by laser light irradiation and tape expansion, the physical load on the wafer is small and the current mainstream. The wafer can be cut without generating wafer chipping (chipping) as in blade dicing. Further, since the adhesive layer is divided by the expansion, cutting waste of the adhesive layer is not generated. For this reason, it attracts attention as an excellent technique that can replace blade dicing.
 上記特許文献1~3に記載にされたように、拡張によって接着剤層を分断する方法では、使用されるウエハには、チップに沿って接着剤層を確実に分断するために、基材フィルムの均一かつ等方的な拡張性が接着剤層に十分に伝わる必要がある。接着剤層と粘着剤層との界面でずれが生じた場合には、その箇所では接着剤層に十分な引張力が伝搬されず、接着剤層が分断できなくなってしまうからである。 As described in Patent Documents 1 to 3, in the method of dividing the adhesive layer by expansion, the substrate film is used to reliably cut the adhesive layer along the chip on the wafer to be used. The uniform and isotropic expandability of the adhesive layer must be sufficiently transmitted to the adhesive layer. This is because when a deviation occurs at the interface between the adhesive layer and the pressure-sensitive adhesive layer, sufficient tensile force is not propagated to the adhesive layer at that location, and the adhesive layer cannot be divided.
 しかし、一般に、接着剤層と粘着剤層との界面ずれを発生させない設計のウエハ加工用テープとした場合、ピックアップ工程において分割されたチップを剥離できなくなるという問題が生じてしまう。 However, in general, when the wafer processing tape is designed so as not to cause an interface shift between the adhesive layer and the pressure-sensitive adhesive layer, there arises a problem that the divided chips cannot be peeled off in the pickup process.
特開2007-5530号公報JP 2007-5530 A 特開2003-338467号公報JP 2003-338467 A 特開2004-273895号公報JP 2004-273895 A
 そこで、本発明は、拡張によって接着剤層と粘着剤層界面でずれを生じることがなく、接着剤層を分断する工程に適した均一拡張性を有し、かつピックアップ性に優れるウエハ加工用テープを提供することを課題とする。 Therefore, the present invention provides a wafer processing tape that does not cause a shift at the interface between the adhesive layer and the pressure-sensitive adhesive layer due to expansion, has a uniform expandability suitable for the process of dividing the adhesive layer, and has excellent pickup properties. It is an issue to provide.
 以上の課題を解決するため、本発明は、第1の態様として、基材フィルムと、前記基材フィルム上に形成された粘着剤層と、前記粘着剤層上に形成された接着剤層からなり、前記粘着剤層と前記接着剤層の25℃におけるせん断力が0.2N/mm以上であり、200mJ/cmのエネルギー線照射後のJIS-Z0237に準拠した標準状態における剥離速度300mm/min、剥離角度180°での前記粘着剤層と前記接着剤層の剥離力が0.3N/25mm以下であることを特徴とするウエハ加工用テープを提供するものである。 In order to solve the above problems, the present invention, as a first aspect, includes a base film, a pressure-sensitive adhesive layer formed on the base film, and an adhesive layer formed on the pressure-sensitive adhesive layer. The shearing force at 25 ° C. of the pressure-sensitive adhesive layer and the adhesive layer is 0.2 N / mm 2 or more, and the peeling speed is 300 mm in a standard state in accordance with JIS-Z0237 after irradiation with an energy beam of 200 mJ / cm 2. The tape for wafer processing is characterized in that the peeling force between the pressure-sensitive adhesive layer and the adhesive layer at a peeling angle of 180 ° / min is 0.3 N / 25 mm or less.
 前記第1の態様において、前記粘着剤層と前記接着剤層の25℃におけるせん断力が0.2N/mm以上0.5N/mm以下であり、前記粘着剤層は、ゲル分率が60%以上である粘着剤組成物から構成され、かつ前記粘着剤組成物は、ベース樹脂として、炭素数が6~12のアルキル鎖を有する(メタ)アクリレートを60モル%以上含み、かつヨウ素価5~30のエネルギー線硬化性炭素-炭素二重結合を有する重合体を含有してなり、かつ前記粘着剤組成物は、ポリイソシアネート類、メラミン・ホルムアルデヒド樹脂およびエポキシ樹脂からなる群より選択される少なくとも1種類の化合物を含有することとすれば、特に好ましい。その理由は、ダイシング時において接着剤層との剥離を生じず、チップ飛びなどの不良を発生しない程度の保持性や、ピックアップ時において接着剤層との剥離が容易となる特性を有しつつ、粘着剤層の低分子量成分が粘着剤表面に浮き出て離脱しチップ表面や接着剤層を汚染する可能性を避けることができ、かつ製造が容易で、粘着剤の凝集力を向上させたウエハ加工用テープを得ることができるためである。 In the first aspect, the shear force of the pressure-sensitive adhesive layer and the adhesive layer at 25 ° C. is 0.2 N / mm 2 or more and 0.5 N / mm 2 or less, and the pressure-sensitive adhesive layer has a gel fraction. The pressure-sensitive adhesive composition is composed of a pressure-sensitive adhesive composition that is 60% or more, and the pressure-sensitive adhesive composition contains, as a base resin, 60 mol% or more of a (meth) acrylate having an alkyl chain having 6 to 12 carbon atoms, and an iodine value. The pressure-sensitive adhesive composition is selected from the group consisting of polyisocyanates, melamine-formaldehyde resins, and epoxy resins, and contains a polymer having 5-30 energy ray-curable carbon-carbon double bonds. It is particularly preferred if it contains at least one compound. The reason is that it does not peel off from the adhesive layer at the time of dicing, has a retainability that does not cause a defect such as chip jumping, and a property that facilitates peeling from the adhesive layer at the time of pickup, Wafer processing that avoids the possibility that low molecular weight components of the pressure-sensitive adhesive layer will float off the pressure-sensitive adhesive surface and contaminate the chip surface or the adhesive layer, is easy to manufacture, and improves the cohesive strength of the pressure-sensitive adhesive This is because a tape can be obtained.
 また、本発明は、第2の態様として、前記第1の態様のウエハ加工用テープを使用して半導体装置を製造する方法であって、
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)前記ウエハの分割予定部分にレーザー光を照射し、前記ウエハ内部に多光子吸収による改質領域を形成する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記ウエハと前記ウエハ加工用テープの前記接着剤層とを分断ラインに沿って分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含むことを特徴とする半導体装置の製造方法を提供するものである。
Further, the present invention provides, as a second aspect, a method for manufacturing a semiconductor device using the wafer processing tape according to the first aspect,
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) irradiating a laser beam to a portion to be divided of the wafer, and forming a modified region by multiphoton absorption inside the wafer;
(F) Expanding the wafer processing tape to divide the wafer and the adhesive layer of the wafer processing tape along a cutting line to obtain a plurality of chips with the adhesive layer Process,
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method for manufacturing a semiconductor device is provided.
 さらに、本発明は、第3の態様として、前記第1の態様のウエハ加工用テープを使用して半導体装置を製造する方法であって、
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)前記ウエハ表面の分断ラインに沿ってレーザー光を照射し、前記ウエハをチップに分断する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含むことを特徴とする半導体装置の製造方法を提供する。
Furthermore, the present invention provides, as a third aspect, a method for manufacturing a semiconductor device using the wafer processing tape according to the first aspect,
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) irradiating a laser beam along a cutting line on the wafer surface, and cutting the wafer into chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method for manufacturing a semiconductor device is provided.
 また、本発明は、第4の態様として、前記第1の態様のウエハ加工用テープを使用して半導体装置を製造する方法であって、
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)ダイシングブレードを用いて前記ウエハを分断ラインに沿って切削し、チップに分断する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含むことを特徴とする半導体装置の製造方法を提供する。
Moreover, this invention is the method of manufacturing a semiconductor device using the tape for wafer processing of the said 1st aspect as a 4th aspect,
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) cutting the wafer along a cutting line using a dicing blade and cutting the wafer into chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method for manufacturing a semiconductor device is provided.
 そして、本発明の第5の態様としては、前記第1の態様のウエハ加工用テープを使用して半導体装置を製造する方法であって、
 (a)回路パタ-ンが形成されたウエハを、ダイシングブレードを用いて分断予定ラインに沿って前記ウエハの厚さ未満の深さまで切削する工程と、
 (b)前記ウエハ表面に表面保護テープを貼合する工程と、
 (c)前記ウエハ裏面を研削してチップに分断するバックグラインド工程と、
 (d)前記ウエハを70~80℃に加熱した状態で、前記チップに分断された前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (e)前記チップに分断された前記ウエハ表面から表面保護テープを剥離する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることで前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含むことを特徴とする半導体装置の製造方法を提供する。
A fifth aspect of the present invention is a method of manufacturing a semiconductor device using the wafer processing tape according to the first aspect,
(A) cutting the wafer on which the circuit pattern is formed, using a dicing blade, along a line to be cut to a depth less than the thickness of the wafer;
(B) bonding a surface protective tape to the wafer surface;
(C) a back grinding process for grinding the wafer back surface and dividing it into chips;
(D) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer divided into the chips while the wafer is heated to 70 to 80 ° C .;
(E) peeling the surface protection tape from the wafer surface divided into the chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) in the expanded wafer processing tape, removing the slack generated in the expanding step by heating and shrinking a portion that does not overlap the chip, and maintaining the interval between the chips;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method for manufacturing a semiconductor device is provided.
 本発明のウエハ加工用テープでは、接着剤層と粘着剤層の界面のせん断力が0.2N/mm以上であるため、エキスパンドした際に、基材フィルムの均一かつ等方的な拡張性が、粘着剤層を通して接着剤層に十分に伝搬され、接着剤層が効率よく分断される。また、200mJ/cmのエネルギー線照射後のJIS-Z0237に準拠した標準状態における剥離速度300mm/min、剥離角度180°での前記粘着剤層と前記接着剤層の剥離力が0.3N/25mm以下であることから、十分に剥離力が低下し、良好なピックアップ性能を有する。 In the wafer processing tape of the present invention, since the shearing force at the interface between the adhesive layer and the pressure-sensitive adhesive layer is 0.2 N / mm 2 or more, the base film is uniformly and isotropically expandable when expanded. Is sufficiently propagated to the adhesive layer through the pressure-sensitive adhesive layer, and the adhesive layer is efficiently divided. Further, the peeling force between the pressure-sensitive adhesive layer and the adhesive layer at a peeling speed of 300 mm / min and a peeling angle of 180 ° in a standard state in accordance with JIS-Z0237 after irradiation with an energy beam of 200 mJ / cm 2 is 0.3 N / Since it is 25 mm or less, the peeling force is sufficiently reduced and the pickup performance is good.
ウエハに、本発明の実施形態にかかるウエハ加工用テープと、表面保護テープが貼合された状態を示す断面図である。It is sectional drawing which shows the state by which the tape for wafer processing concerning embodiment of this invention and the surface protection tape were bonded to the wafer. ウエハに、表面保護テープが貼合された状態を示す断面図である。It is sectional drawing which shows the state by which the surface protection tape was bonded by the wafer. 本発明のウエハ加工用テープに、ウエハとリングフレームとを貼合する工程を説明するための断面図である。It is sectional drawing for demonstrating the process of bonding a wafer and a ring frame to the tape for wafer processing of this invention. ウエハの表面から表面保護テープを剥離する工程を説明する断面図である。It is sectional drawing explaining the process of peeling a surface protection tape from the surface of a wafer. レーザー加工によりウエハに改質領域が形成された様子を示す断面図である。It is sectional drawing which shows a mode that the modification | reformation area | region was formed in the wafer by laser processing. (a)本発明のウエハ加工用テープがエキスパンド装置に搭載された状態を示す断面図である。(b)ウエハ加工用テープの拡張により、ウエハをチップに分断する過程を示す断面図である。(c)拡張後のウエハ加工用テープ、接着剤層、およびチップを示す断面図である。(A) It is sectional drawing which shows the state in which the tape for wafer processing of this invention was mounted in the expand apparatus. (B) It is sectional drawing which shows the process of dividing a wafer into a chip | tip by expansion of the tape for wafer processing. (C) It is sectional drawing which shows the tape for wafer processing after expansion, an adhesive bond layer, and a chip | tip. ヒートシュリンク工程を説明するための断面図である。It is sectional drawing for demonstrating a heat shrink process. せん断力の測定方法において、本発明のウエハ加工用テープの基材面側と接着剤層側に補助テープを貼合した状態を示す断面図である。In the measuring method of a shear force, it is sectional drawing which shows the state which bonded the auxiliary | assistant tape to the base-material surface side and adhesive bond layer side of the tape for wafer processing of this invention. せん断力の測定方法の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the measuring method of a shear force. 剥離力の測定方法の概要を示す側面図である。It is a side view which shows the outline | summary of the measuring method of peeling force.
 以下、本発明の実施形態について図面に基づいて詳細に説明する。
 図1は、本発明の実施形態に係るウエハ加工用テープ10を示す断面図である。本発明のウエハ加工用テープ10は、エキスパンドによりウエハをチップに分断する際に、接着剤層13がチップに沿って分断されるものである。このウエハ加工用テープ10は、基材フィルム11と、基材フィルム11上に設けられた粘着剤層12と、粘着剤層12上に設けられた接着剤層13とを有し、接着剤層13上にウエハの裏面が貼合されるものである。なお、それぞれの層は、使用工程や装置に合わせて予め所定形状に切断(プリカット)されていてもよい。さらに、本発明のウエハ加工用テープ10は、ウエハ1枚分ごとに切断された形態であってもよいし、ウエハ1枚分ごとに切断されたものが複数形成された長尺のシートを、ロール状に巻き取った形態であってもよい。以下に、各層の構成について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a wafer processing tape 10 according to an embodiment of the present invention. The wafer processing tape 10 of the present invention is one in which the adhesive layer 13 is divided along the chip when the wafer is divided into chips by expanding. The wafer processing tape 10 includes a base film 11, a pressure-sensitive adhesive layer 12 provided on the base film 11, and an adhesive layer 13 provided on the pressure-sensitive adhesive layer 12. The back surface of the wafer is pasted on 13. Each layer may be cut (precut) into a predetermined shape in advance according to the use process and the apparatus. Further, the wafer processing tape 10 of the present invention may be in a form cut for each wafer, or a long sheet in which a plurality of pieces cut for each wafer are formed, The form wound up in roll shape may be sufficient. Below, the structure of each layer is demonstrated.
<基材フィルム>
 基材フィルム11は、エキスパンド工程において均一かつ等方的な拡張性を有するものであればよく、その材質についてはとくに限定されない。一般に、架橋樹脂は、非架橋樹脂と比較して引っ張りに対する復元力が大きく、エキスパンド工程後の引き伸ばされた状態に熱を加えた際の収縮応力が大きい。したがって、エキスパンド工程後にテープに生じた弛みを加熱収縮によって除去でき、これにより、テープを緊張させて個々のチップの間隔を安定に保持することができる。したがって、架橋樹脂、なかでも熱可塑性架橋樹脂が基材フィルムとして好ましく使用される。
<Base film>
The base film 11 is not particularly limited as long as it has uniform and isotropic expandability in the expanding process. In general, the cross-linked resin has a greater restoring force against tension than the non-cross-linked resin, and has a large shrinkage stress when heat is applied to the stretched state after the expanding step. Therefore, the slack generated in the tape after the expanding step can be removed by heating and shrinking, whereby the tape can be tensioned and the interval between the individual chips can be stably maintained. Therefore, a crosslinked resin, especially a thermoplastic crosslinked resin, is preferably used as the base film.
 このような熱可塑性架橋樹脂としては、例えば、エチレン-(メタ)アクリル酸二元共重合体またはエチレン-(メタ)アクリル酸-(メタ)アクリル酸を、金属イオンで架橋したアイオノマー樹脂が、例示される。これらは、均一に拡張が可能であるためエキスパンド工程に適し、かつ架橋によって加熱時に強く復元力が働く点で、特に好適である。上記アイオノマー樹脂に含まれる金属イオンはとくに限定されないが、特に溶出性の低い亜鉛イオンが、低汚染性の面から好ましい。 Examples of such a thermoplastic crosslinked resin include an ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid binary copolymer or ethylene- (meth) acrylic acid- (meth) acrylic acid with a metal ion. Is done. These are particularly suitable in that they can be expanded uniformly and are suitable for the expanding process and have a strong restoring force when heated by crosslinking. The metal ion contained in the ionomer resin is not particularly limited, but zinc ion having particularly low elution property is preferable from the viewpoint of low contamination.
 また、このような熱可塑性架橋樹脂としては、前記のアイオノマー樹脂の他に比重0.910以上~0.930未満の低密度ポリエチレンもしくは比重0.910未満の超低密度ポリエチレンに、電子線等のエネルギー線を照射することで架橋させたものも好適である。このような熱可塑性架橋樹脂は、架橋部位と非架橋部位が樹脂中に共存していることから、一定の均一拡張性を有する。また、加熱時に強く復元力が働くことから、エキスパンド工程で生じたテープの弛みを除去する上でも好適である。低密度ポリエチレンや超低密度ポリエチレンに対して照射するエネルギー線の量を適宜に調整することで、十分な均一拡張性を有する樹脂を得ることができる。 In addition to the above-mentioned ionomer resin, such a thermoplastic crosslinked resin includes a low density polyethylene having a specific gravity of 0.910 to less than 0.930 or an ultra-low density polyethylene having a specific gravity of less than 0.910, such as an electron beam. What was bridge | crosslinked by irradiating an energy ray is also suitable. Such a thermoplastic cross-linked resin has a certain uniform expansibility since a cross-linked site and a non-cross-linked site coexist in the resin. Further, since a strong restoring force is exerted during heating, it is also suitable for removing tape slack generated in the expanding process. By appropriately adjusting the amount of energy rays irradiated to the low density polyethylene or the ultra low density polyethylene, a resin having sufficient uniform expandability can be obtained.
 さらに、熱可塑性架橋樹脂としては、前記のアイオノマー樹脂やエネルギー線架橋されたポリエチレンの他に、エチレン-酢酸ビニル共重合体に電子線等のエネルギー線を照射して架橋させたものも好適である。この熱可塑性架橋樹脂は、加熱時に強く復元力が働くことから、エキスパンド工程で生じたテープの弛みを除去でき、好適である。 Further, as the thermoplastic cross-linked resin, in addition to the above-mentioned ionomer resin and energy-cross-linked polyethylene, those obtained by irradiating an ethylene-vinyl acetate copolymer with an energy beam such as an electron beam are also suitable. . This thermoplastic cross-linked resin is suitable because it can remove the slack of the tape generated in the expanding process because it has a strong restoring force when heated.
 なお、図1に示す例では、基材フィルム11は単層であるが、これに限定されず、2種以上の熱可塑性架橋樹脂を積層させた複数層構造であってもよい。基材フィルム11の厚みは特に規定しないが、ウエハ加工用テープ10のエキスパンド工程において引き伸ばし易く、かつ破断しないだけの十分な強度を持つ厚みとして、50~200μm程度がよく、100μm~150μmがより好ましい。 In addition, in the example shown in FIG. 1, although the base film 11 is a single layer, it is not limited to this, The multilayer structure which laminated | stacked 2 or more types of thermoplastic crosslinked resin may be sufficient. The thickness of the base film 11 is not particularly defined, but it is preferably about 50 to 200 μm, more preferably 100 to 150 μm, as the thickness that is easy to stretch in the expanding process of the wafer processing tape 10 and has sufficient strength not to break. .
 複数層の基材フィルム11の製造方法としては、従来公知の押出法、ラミネート法などを用いることができる。ラミネート法を用いる場合は、層間に接着剤を介在させてもよい。接着剤としては従来公知の接着剤を用いることができる。 As a method for producing the multi-layer base film 11, a conventionally known extrusion method, laminating method, or the like can be used. When the laminating method is used, an adhesive may be interposed between the layers. A conventionally well-known adhesive agent can be used as an adhesive agent.
<粘着剤層>
 粘着剤層12は、基材フィルム11に粘着剤組成物を塗工して形成することができる。本発明のウエハ加工用テープ10を構成する粘着剤層12は、ダイシング時において接着剤層13との剥離を生じず、チップ飛びなどの不良を発生しない程度の保持性や、ピックアップ時において接着剤層13との剥離が容易となる特性を有するものであればよい。具体的には、粘着剤層12と接着剤層13の25℃におけるせん断力が0.2N/mm以上であり、かつ200mJ/cmのエネルギー線照射後のJIS-Z0237に準拠した標準状態(温度23±1℃、相対湿度50±5%)における剥離速度300mm/min、剥離角度180°での粘着剤層12と接着剤層13の剥離力(引きはがし粘着力)が0.3N/25mm以下である粘着剤層12とする。
 粘着剤層12と接着剤層13の界面のせん断力については、0.2N/mm以上0.5N/mm以下であることがより好ましい。
<Adhesive layer>
The pressure-sensitive adhesive layer 12 can be formed by applying a pressure-sensitive adhesive composition to the base film 11. The pressure-sensitive adhesive layer 12 constituting the wafer processing tape 10 of the present invention has a holding property that does not cause separation from the adhesive layer 13 during dicing and does not cause defects such as chip jumping, and an adhesive during pickup. Any material may be used as long as it can be easily separated from the layer 13. Specifically, the shearing force at 25 ° C. of the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is 0.2 N / mm 2 or more, and a standard state in accordance with JIS-Z0237 after irradiation with energy rays of 200 mJ / cm 2 The peeling force (peeling adhesive strength) between the adhesive layer 12 and the adhesive layer 13 at a peeling speed of 300 mm / min and a peeling angle of 180 ° at a temperature of 23 ± 1 ° C. and a relative humidity of 50 ± 5% is 0.3 N / The pressure-sensitive adhesive layer 12 is 25 mm or less.
The shearing force at the interface between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is more preferably 0.2 N / mm 2 or more and 0.5 N / mm 2 or less.
 また、粘着剤層12と接着剤層13の剥離力については特に下限はないが、剥離力があまり小さ過ぎると、ピックアップ工程までにチップが剥がれたり、ピックアップ工程におけるエキスパンド時にチップの飛びが生じたり、ピックアップの際に所定のチップ以外に周囲のチップも一緒に剥離して飛びを生じたりする恐れがあるため、0.03N/25mm以上であることがより好ましい。 Further, there is no particular lower limit for the peeling force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13, but if the peeling force is too small, the chip may be peeled off by the pick-up process or the chip may fly during expansion in the pick-up process. Further, since there is a risk that peripheral chips other than the predetermined chip may be peeled off at the time of picking up, and jumping may occur, so that 0.03 N / 25 mm or more is more preferable.
 本発明のウエハ加工用テープにおいて、粘着剤層12を構成する粘着剤組成物の構成はとくに限定されないが、ダイシング後のピックアップ性を向上させるために、エネルギー線硬化性のものが好ましく、硬化後に接着剤層13との剥離が容易となる材料であることが好ましい。具体的には、粘着剤組成物中に、ベース樹脂として、炭素数が6~12のアルキル鎖を有する(メタ)アクリレートを60モル%以上含み、かつヨウ素価5~30のエネルギー線硬化性炭素-炭素二重結合を有する重合体(A)を有するものが例示される。なお、ここで、エネルギー線とは、紫外線のような光線、または電子線などの電離性放射線をいう。 In the wafer processing tape of the present invention, the configuration of the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer 12 is not particularly limited, but in order to improve the pick-up property after dicing, an energy ray-curable one is preferable, and after curing, A material that can be easily peeled off from the adhesive layer 13 is preferable. Specifically, the pressure-sensitive adhesive composition contains 60 mol% or more of (meth) acrylate having an alkyl chain having 6 to 12 carbon atoms as the base resin, and has an iodine value of 5 to 30. -What has a polymer (A) which has a carbon double bond is illustrated. Here, the energy ray means a light ray such as ultraviolet rays or ionizing radiation such as an electron beam.
 また、粘着剤層12を構成する粘着剤組成物については、ゲル分率を60%以上とすることがより好ましい。ゲル分率が低いと、樹脂の架橋度が低く、低分子量成分が多くなるため、低分子量成分が粘着剤表面に浮き出て離脱し、チップ表面の汚染もしくは接着剤層の汚染につながることがあるためである。接着剤層を汚染した場合、ウエハ加工の工程で接着剤層の剥離が起きたり、半導体チップのモールド樹脂封入時における熱圧着工程にて低分子量成分が揮発しボイドが形成されたりする原因となることがある。 Further, for the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer 12, the gel fraction is more preferably 60% or more. If the gel fraction is low, the degree of cross-linking of the resin is low and the amount of low molecular weight components increases, so the low molecular weight components may float on the surface of the adhesive and leave, leading to contamination of the chip surface or adhesive layer. Because. If the adhesive layer is contaminated, the adhesive layer may be peeled off during the wafer processing process, or low molecular weight components may be volatilized and voids may be formed during the thermocompression bonding process when the semiconductor chip is encapsulated with the mold resin. Sometimes.
 このような重合体(A)において、エネルギー線硬化性炭素-炭素二重結合の好ましい導入量はヨウ素価で5~30、より好ましくは10~20である。これは、重合体(A)そのものに安定性があり、製造が容易となるためである。また、ヨウ素価が5未満の場合には、エネルギー線照射後の粘着力の低減効果が十分に得られない場合がある。ヨウ素価が30より大きい場合には、エネルギー線照射後の粘着剤の流動性が不十分となり、ウエハ加工用テープ10の拡張後におけるチップの間隙を十分得ることができなくなり、ピックアップ時に各チップの画像認識が困難になる場合がある。 In such a polymer (A), the amount of energy ray-curable carbon-carbon double bonds introduced is preferably 5 to 30, more preferably 10 to 20, in terms of iodine value. This is because the polymer (A) itself is stable and easy to manufacture. Moreover, when the iodine value is less than 5, the effect of reducing the adhesive strength after irradiation with energy rays may not be sufficiently obtained. When the iodine value is larger than 30, the flowability of the adhesive after irradiation with energy rays becomes insufficient, and it becomes impossible to obtain a sufficient gap between the chips after the expansion of the wafer processing tape 10. Image recognition may be difficult.
 さらに、重合体(A)は、ガラス転移温度が-70℃~15℃であることが好ましく、-66℃~-28℃であることがより好ましい。ガラス転移温度が-70℃以上であれば、エネルギー線照射に伴う熱に対する耐熱性が十分であり、15℃以下であれば、表面状態が粗いウエハにおけるダイシング後のチップの飛散防止効果が十分得られる。 Furthermore, the polymer (A) preferably has a glass transition temperature of −70 ° C. to 15 ° C., more preferably −66 ° C. to −28 ° C. If the glass transition temperature is −70 ° C. or higher, the heat resistance against energy radiation is sufficient, and if it is 15 ° C. or lower, the effect of preventing chip scattering after dicing on a wafer having a rough surface is obtained. It is done.
 前記の重合体(A)はどのようにして製造されたものでもよいが、例えば、アクリル系共重合体とエネルギー線硬化性炭素-炭素二重結合をもつ化合物とを混合して得られるものや、官能基を有するアクリル系共重合体または官能基を有するメタクリル系共重合体(A1)と、その官能基と反応し得る官能基を有し、かつ、エネルギー線硬化性炭素-炭素二重結合をもつ化合物(A2)とを反応させて得られるものが用いられる。 The polymer (A) may be produced by any method, for example, a polymer obtained by mixing an acrylic copolymer and a compound having an energy ray-curable carbon-carbon double bond, An acrylic copolymer having a functional group or a methacrylic copolymer having a functional group (A1), a functional group capable of reacting with the functional group, and an energy ray-curable carbon-carbon double bond What is obtained by reacting with a compound (A2) having a hydrogen atom is used.
 このうち、前記の官能基を有するメタクリル系共重合体(A1)としては、アクリル酸アルキルエステルまたはメタクリル酸アルキルエステルなどの炭素-炭素二重結合を有する単量体(A1-1)と、炭素-炭素二重結合を有し、かつ、官能基を有する単量体(A1-2)とを共重合させて得られるものが例示される。単量体(A1-1)としては、炭素数が6~12のアルキル鎖を有するヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、デシルアクリレート、ラウリルアクリレートまたはアルキル鎖の炭素数が5以下の単量体である、ペンチルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、エチルアクリレート、メチルアクリレート、またはこれらと同様のメタクリレートなどを列挙することができる。 Among these, as the methacrylic copolymer (A1) having the functional group, a monomer (A1-1) having a carbon-carbon double bond such as an alkyl acrylate ester or an alkyl methacrylate ester, and carbon Examples thereof include those obtained by copolymerizing a monomer (A1-2) having a carbon double bond and having a functional group. Monomer (A1-1) includes hexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, decyl acrylate, lauryl acrylate or alkyl chain having an alkyl chain having 6 to 12 carbon atoms Examples thereof include pentyl acrylate, n-butyl acrylate, isobutyl acrylate, ethyl acrylate, methyl acrylate, and similar methacrylates, which are monomers having 5 or less carbon atoms.
 なお、単量体(A1-1)においてアルキル鎖の炭素数が6よりも小さい成分が多いと、粘着剤層と接着剤層の剥離力が大きくなってしまい、ピックアップ工程において、チップ割れなどの不具合が生じることがある。また、炭素数が12よりも大きい成分が多いと、室温で固体となりやすいため、加工性に乏しく、粘着剤層と接着剤層の十分な接着力が得られず、界面でのずれが生じて、接着剤層の分断において不具合が生じることがある。 Note that if the monomer (A1-1) contains many components having an alkyl chain with a carbon number smaller than 6, the peeling force between the pressure-sensitive adhesive layer and the adhesive layer will increase, and in the pick-up process, such as chip cracking will occur. Problems may occur. Also, if there are many components having more than 12 carbon atoms, they tend to be solid at room temperature, so the processability is poor, and sufficient adhesive force between the pressure-sensitive adhesive layer and the adhesive layer cannot be obtained, resulting in deviation at the interface. In some cases, problems may occur when the adhesive layer is divided.
 さらに、単量体(A1-1)として、アルキル鎖の炭素数が大きな単量体を使用するほどガラス転移温度は低くなるので、適宜選択することにより、所望のガラス転移温度を有する粘着剤組成物を調製することができる。また、ガラス転移温度の他、相溶性等の各種性能を上げる目的で酢酸ビニル、スチレン、アクリロニトリルなどの炭素-炭素二重結合をもつ低分子化合物を配合することも可能である。その場合、これらの低分子化合物は、単量体(A1-1)の総質量の5質量%以下の範囲内で配合するものとする。 Further, as the monomer (A1-1) is used, the glass transition temperature becomes lower as the monomer having a larger alkyl chain carbon number is used. Therefore, the pressure-sensitive adhesive composition having a desired glass transition temperature can be selected appropriately. Product can be prepared. In addition to the glass transition temperature, a low molecular compound having a carbon-carbon double bond such as vinyl acetate, styrene or acrylonitrile can be added for the purpose of improving various properties such as compatibility. In that case, these low molecular weight compounds are blended within a range of 5% by mass or less of the total mass of the monomer (A1-1).
 一方、単量体(A1-2)が有する官能基としては、カルボキシル基、水酸基、アミノ基、環状酸無水基、エポキシ基、イソシアネート基などを挙げることができる。単量体(A1-2)の具体例としては、アクリル酸、メタクリル酸、ケイ皮酸、イタコン酸、フマル酸、フタル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリコールモノアクリレート類、グリコールモノメタクリレート類、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、アリルアルコール、N-アルキルアミノエチルアクリレート類、N-アルキルアミノエチルメタクリレート類、アクリルアミド類、メタクリルアミド類、無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテルなどを列挙することができる。 On the other hand, examples of the functional group of the monomer (A1-2) include a carboxyl group, a hydroxyl group, an amino group, a cyclic acid anhydride group, an epoxy group, and an isocyanate group. Specific examples of the monomer (A1-2) include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, glycol monoacrylate. , Glycol monomethacrylates, N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride, itaconic anhydride Examples thereof include acids, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether.
 さらに、化合物(A2)において、用いられる官能基としては、化合物(A1)の有する官能基が、カルボキシル基または環状酸無水基である場合には、水酸基、エポキシ基、イソシアネート基などを挙げることができ、水酸基である場合には、環状酸無水基、イソシアネート基などを挙げることができ、アミノ基である場合には、エポキシ基、イソシアネート基などを挙げることができ、エポキシ基である場合には、カルボキシル基、環状酸無水基、アミノ基などを挙げることができる。化合物(A2)の具体例としては、単量体(A1-2)の具体例で列挙したものと同様のものを列挙することができる。また、化合物(A2)として、ポリイソシアネート化合物のイソシアネート基の一部を水酸基またはカルボキシル基およびエネルギー線硬化性炭素-炭素二重結合を有する単量体でウレタン化したものを用いることもできる。 Furthermore, in the compound (A2), examples of the functional group used include a hydroxyl group, an epoxy group, and an isocyanate group when the functional group of the compound (A1) is a carboxyl group or a cyclic acid anhydride group. In the case of a hydroxyl group, a cyclic acid anhydride group, an isocyanate group, and the like can be exemplified. In the case of an amino group, an epoxy group, an isocyanate group, and the like can be exemplified. , Carboxyl group, cyclic acid anhydride group, amino group and the like. As specific examples of the compound (A2), the same compounds as listed in the specific examples of the monomer (A1-2) can be listed. As the compound (A2), a compound obtained by urethanizing a part of the isocyanate group of the polyisocyanate compound with a monomer having a hydroxyl group or a carboxyl group and an energy ray-curable carbon-carbon double bond can also be used.
 なお、化合物(A1)と化合物(A2)の反応において、未反応の官能基を残すことにより、酸価または水酸基価などの特性に関して、所望のものを製造することができる。重合体(A)の水酸基価が5~100となるようにOH基を残すと、エネルギー線照射後の粘着力を減少することによりピックアップミスの危険性をさらに低減することができる。また、重合体(A)の酸価が0.5~30となるようにCOOH基を残すと、本発明のウエハ加工用テープを拡張させた後の粘着剤層の復元性の改善効果が得られ、好ましい。ここで、重合体(A)の水酸基価が低すぎると、エネルギー線照射後の粘着力の低減効果が十分でなく、高すぎると、エネルギー線照射後の粘着剤の流動性を損なう傾向がある。また酸価が低すぎると、テープ復元性の改善効果が十分でなく、高すぎると粘着剤の流動性を損なう傾向がある。 In the reaction of the compound (A1) and the compound (A2), by leaving an unreacted functional group, a desired product with respect to characteristics such as acid value or hydroxyl value can be produced. If the OH group is left so that the hydroxyl value of the polymer (A) is 5 to 100, the risk of pick-up mistakes can be further reduced by reducing the adhesive strength after irradiation with energy rays. Further, if the COOH group is left so that the acid value of the polymer (A) is 0.5 to 30, the effect of improving the restoring property of the pressure-sensitive adhesive layer after expanding the wafer processing tape of the present invention can be obtained. And preferred. Here, if the hydroxyl value of the polymer (A) is too low, the effect of reducing the adhesive strength after irradiation with energy rays is not sufficient, and if too high, the fluidity of the adhesive after irradiation with energy rays tends to be impaired. . If the acid value is too low, the effect of improving the tape restoring property is not sufficient, and if it is too high, the fluidity of the pressure-sensitive adhesive tends to be impaired.
 上記の重合体(A)の合成において、反応を溶液重合で行う場合の有機溶剤としては、ケトン系、エステル系、アルコール系、芳香族系のものを使用することができるが、中でもトルエン、酢酸エチル、イソプロピルアルコール、ベンゼンメチルセロソルブ、エチルセロソルブ、アセトン、メチルエチルケトンなどの、一般にアクリル系ポリマーの良溶媒で、沸点60~120℃の溶剤が好ましい。重合開始剤としては、α,α′-アゾビスイソブチルニトリルなどのアゾビス系、ベンゾイルペルオキシドなどの有機過酸化物系などのラジカル発生剤を通常用いる。この際、必要に応じて触媒、重合禁止剤を併用することができ、重合温度および重合時間を調節することにより、所望の分子量の重合体(A)を得ることができる。また、分子量を調節することに関しては、メルカプタン、四塩化炭素系の溶剤を用いることが好ましい。なお、この反応は溶液重合に限定されるものではなく、塊状重合、懸濁重合など別の方法でもさしつかえない。 In the synthesis of the above polymer (A), as the organic solvent when the reaction is carried out by solution polymerization, ketone-based, ester-based, alcohol-based and aromatic-based solvents can be used, among which toluene, acetic acid In general, a good solvent for an acrylic polymer such as ethyl, isopropyl alcohol, benzene methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and a solvent having a boiling point of 60 to 120 ° C. is preferable. As the polymerization initiator, a radical generator such as an azobis type such as α, α'-azobisisobutylnitrile or an organic peroxide type such as benzoyl peroxide is usually used. At this time, if necessary, a catalyst and a polymerization inhibitor can be used in combination, and the polymer (A) having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time. In terms of adjusting the molecular weight, it is preferable to use a mercaptan or carbon tetrachloride solvent. This reaction is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
 以上のようにして、重合体(A)を得ることができるが、本発明において、重合体(A)の分子量は、50万~100万程度が好ましい。50万未満では、凝集力が小さくなって、エキスパンドの際に接着剤層との界面でのずれが生じやすくなり、接着剤層に十分な引張力が伝搬されず、接着剤層の分割が不十分となることがある。このずれを、極力防止するためには、分子量が、50万以上である方が好ましい。また、分子量が100万を越えると、合成時および塗工時にゲル化する可能性がある。なお、本発明における分子量とは、ポリスチレン換算の質量平均分子量である。 As described above, the polymer (A) can be obtained. In the present invention, the molecular weight of the polymer (A) is preferably about 500,000 to 1,000,000. If it is less than 500,000, the cohesive force becomes small, and the expansion tends to cause a shift at the interface with the adhesive layer, and sufficient tensile force is not propagated to the adhesive layer, so that the adhesive layer is not divided. May be sufficient. In order to prevent this deviation as much as possible, the molecular weight is preferably 500,000 or more. Further, if the molecular weight exceeds 1,000,000, there is a possibility of gelation at the time of synthesis and coating. In addition, the molecular weight in this invention is a mass mean molecular weight of polystyrene conversion.
 また、本発明のウエハ加工用テープ10において、粘着剤層12を構成する樹脂組成物は、重合体(A)に加えて、さらに、架橋剤として作用する化合物(B)を有していてもよい。具体的には、ポリイソシアネート類、メラミン・ホルムアルデヒド樹脂、およびエポキシ樹脂から選択される少なくとも1種の化合物である。これらは、単独または2種類以上を組み合わせて使用することができる。この化合物(B)は、重合体(A)または基材フィルムと反応し、その結果できる架橋構造により、粘着剤組成物塗工後に重合体(A)および(B)を主成分とした粘着剤の凝集力を向上することができる。 In the wafer processing tape 10 of the present invention, the resin composition constituting the pressure-sensitive adhesive layer 12 may further contain a compound (B) that acts as a crosslinking agent in addition to the polymer (A). Good. Specifically, it is at least one compound selected from polyisocyanates, melamine / formaldehyde resins, and epoxy resins. These can be used alone or in combination of two or more. This compound (B) reacts with the polymer (A) or the base film, and as a result, a pressure-sensitive adhesive mainly composed of the polymers (A) and (B) after coating the pressure-sensitive adhesive composition due to the resulting crosslinked structure. The cohesive strength of can be improved.
 ポリイソシアネート類としては、特に制限がなく、例えば、4,4′-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート、4,4′-〔2,2-ビス(4-フェノキシフェニル)プロパン〕ジイソシアネート等の芳香族イソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-ヘキサメチレンジイソシアネート、イソフォロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、2,4′-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等を挙げることができ、具体的には、コロネートL(日本ポリウレタン株式会社製、商品名)等を用いることができる。メラミン・ホルムアルデヒド樹脂としては、具体的には、ニカラックMX-45(三和ケミカル株式会社製、商品名)、メラン(日立化成工業株式会社製、商品名)等を用いることができる。エポキシ樹脂としては、TETRAD-X(三菱化学株式会社製、商品名)等を用いることができる。本発明においては、特にポリイソシアネート類を用いることが好ましい。 The polyisocyanates are not particularly limited, and examples thereof include 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 '-[2,2-bis (4 -Phenoxyphenyl) propane] aromatic isocyanate such as diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate Lysine diisocyanate, lysine triisocyanate, and the like. Specifically, Coronate L (trade name, manufactured by Nippon Polyurethane Co., Ltd.) and the like are used. It can be. Specific examples of the melamine / formaldehyde resin include Nicalac MX-45 (trade name, manufactured by Sanwa Chemical Co., Ltd.) and Melan (trade name, manufactured by Hitachi Chemical Co., Ltd.). As the epoxy resin, TETRAD-X (trade name, manufactured by Mitsubishi Chemical Corporation) or the like can be used. In the present invention, it is particularly preferable to use polyisocyanates.
 化合物(B)の添加量としては、重合体(A)100質量部に対して0.1~10質量部、好ましくは0.5~5質量部の配合比となるよう、選択する。この範囲内で選択することにより、適切な凝集力とすることができ、急激に架橋反応が進行することないため、粘着剤の配合や塗布等の作業性が良好となる。 The addition amount of the compound (B) is selected so that the blending ratio is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (A). By selecting within this range, it is possible to obtain an appropriate cohesive force, and since the crosslinking reaction does not proceed abruptly, workability such as blending and application of the adhesive is improved.
 また、本発明において、粘着剤層12には、光重合開始剤(C)が含まれていることが好ましい。粘着剤層12に含まれる光重合開始剤(C)に特に制限はなく、従来知られているものを用いることができる。例えば、ベンゾフェノン、4,4'-ジメチルアミノベンゾフェノン、4,4'-ジエチルアミノベンゾフェノン、4,4'-ジクロロベンゾフェノン等のベンゾフェノン類、アセトフェノン、ジエトキシアセトフェノン等のアセトフェノン類、2-エチルアントラキノン、t-ブチルアントラキノン等のアントラキノン類、2-クロロチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジル、2,4,5-トリアリ-ルイミダゾール二量体(ロフィン二量体)、アクリジン系化合物等を挙げることができる。これらは単独でまたは2種以上を組み合わせて用いることができる。光重合開始剤(C)の添加量としては、重合体(A)100質量部に対して0.1~10質量部とすることが好ましく、0.5~5質量部とすることがより好ましい。 In the present invention, the pressure-sensitive adhesive layer 12 preferably contains a photopolymerization initiator (C). There is no restriction | limiting in particular in the photoinitiator (C) contained in the adhesive layer 12, A conventionally well-known thing can be used. For example, benzophenones such as benzophenone, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, 4,4′-dichlorobenzophenone, acetophenones such as acetophenone and diethoxyacetophenone, 2-ethylanthraquinone, t- Examples include anthraquinones such as butylanthraquinone, 2-chlorothioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzyl, 2,4,5-triarylimidazole dimer (rophine dimer), acridine compounds, and the like. it can. These can be used alone or in combination of two or more. The addition amount of the photopolymerization initiator (C) is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (A). .
 さらに本発明に用いられるエネルギー線硬化性の粘着剤には必要に応じて粘着付与剤、粘着調整剤、界面活性剤など、あるいはその他の改質剤等を配合することができる。また、無機化合物フィラーを適宜加えてもよい。 Furthermore, the energy ray-curable pressure-sensitive adhesive used in the present invention can be blended with a tackifier, a tackifier, a surfactant, or other modifiers as necessary. Moreover, you may add an inorganic compound filler suitably.
 粘着剤層12の厚さはとくに限定されないが、少なくとも5μm、より好ましくは10μm以上とする。なお、粘着剤層12は複数の層が積層された構成であってもよい。 Although the thickness of the pressure-sensitive adhesive layer 12 is not particularly limited, it is at least 5 μm, more preferably 10 μm or more. The pressure-sensitive adhesive layer 12 may have a configuration in which a plurality of layers are laminated.
<接着剤層>
 本発明のウエハ加工用テープでは、接着剤層13は、ウエハが貼合され、ダイシングされた後、チップをピックアップした際に、粘着剤層12から剥離してチップに付着するものである。そして、チップを基板やリードフレームに固定する際の接着剤として使用されるものである。接着剤層13は、特に限定されるものではないが、ウエハに一般的に使用されるフィルム状接着剤であれば良く、アクリル系粘接着剤、エポキシ樹脂/フェノール樹脂/アクリル樹脂のブレンド系粘接着剤等が好ましい。その厚さは適宜設定してよいが、5~100μm程度が好ましい。
<Adhesive layer>
In the wafer processing tape of the present invention, the adhesive layer 13 peels off from the adhesive layer 12 and adheres to the chip when the chip is picked up after the wafer is bonded and diced. And it is used as an adhesive agent when fixing a chip | tip to a board | substrate or a lead frame. The adhesive layer 13 is not particularly limited, but may be a film-like adhesive generally used for wafers. Acrylic adhesive, epoxy resin / phenolic resin / acrylic resin blend system An adhesive or the like is preferable. The thickness may be appropriately set, but is preferably about 5 to 100 μm.
 本発明のウエハ加工用テープ10において、接着剤層13は、予めフィルム化されたもの(以下、接着フィルムという)を、基材フィルム11上に直接または間接的にラミネートして形成してもよい。ラミネート時の温度は10~100℃の範囲とし、0.01~10N/mの線圧をかけることが好ましい。なお、このような接着フィルムは、セパレータ上に接着剤層13が形成されたものであってもよく、その場合、ラミネート後にセパレータを剥離してもよく、あるいは、そのままウエハ加工用テープ10のカバーフィルムとして使用し、ウエハを貼合する際に剥離してもよい。 In the wafer processing tape 10 of the present invention, the adhesive layer 13 may be formed by laminating a film formed in advance (hereinafter referred to as an adhesive film) directly or indirectly on the base film 11. . The laminating temperature is preferably in the range of 10 to 100 ° C., and a linear pressure of 0.01 to 10 N / m is preferably applied. Such an adhesive film may be one in which the adhesive layer 13 is formed on the separator. In that case, the separator may be peeled off after lamination, or the cover of the wafer processing tape 10 may be used as it is. You may use as a film and peel when bonding a wafer.
 前記接着フィルムは、粘着剤層12の全面に積層してもよいが、予め貼合されるウエハに応じた形状に切断された(プリカットされた)接着フィルムを粘着剤層12に積層してもよい。このように、ウエハに応じた接着フィルムを積層した場合、図3に示すように、ウエハWが貼合される部分には接着剤層13があり、リングフレーム20が貼合される部分には接着剤層13がなく粘着剤層12のみが存在する。一般に、接着剤層13は被着体と剥離しにくいため、プリカットされた接着フィルムを使用することで、リングフレーム20は粘着剤層12と貼合することができ、使用後のテープ剥離時にリングフレーム20への糊残りを生じにくいという効果が得られる。 Although the said adhesive film may be laminated | stacked on the whole surface of the adhesive layer 12, even if it laminate | stacks the adhesive film cut | disconnected in the shape according to the wafer previously bonded (pre-cut) on the adhesive layer 12 Good. Thus, when the adhesive film according to a wafer is laminated | stacked, as shown in FIG. 3, there exists the adhesive bond layer 13 in the part to which the wafer W is bonded, and in the part to which the ring frame 20 is bonded. Only the pressure-sensitive adhesive layer 12 is present without the adhesive layer 13. In general, since the adhesive layer 13 is difficult to peel off from the adherend, the ring frame 20 can be bonded to the pressure-sensitive adhesive layer 12 by using a pre-cut adhesive film, and the ring is peeled off when the tape is peeled off after use. The effect that the adhesive residue to the frame 20 hardly occurs is obtained.
<用途>
 本発明のウエハ加工用テープ10は、少なくとも拡張により接着剤層13を分断するエキスパンド工程を含む半導体装置の製造方法に使用されるものである。したがって、その他の工程や工程の順序などは特に限定されない。例えば、以下の半導体装置の製造方法(A)~(D)において好適に使用できる。
<Application>
The wafer processing tape 10 of the present invention is used in a method for manufacturing a semiconductor device including an expanding process for dividing the adhesive layer 13 by at least expansion. Therefore, other processes and the order of processes are not particularly limited. For example, it can be suitably used in the following semiconductor device manufacturing methods (A) to (D).
半導体装置の製造方法(A)
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)前記ウエハの分割予定部分にレーザー光を照射し、前記ウエハ内部に多光子吸収による改質領域を形成する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記ウエハと前記ウエハ加工用テープの前記接着剤層とを分断ラインに沿って分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含む半導体装置の製造方法。
Manufacturing method of semiconductor device (A)
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) irradiating a laser beam to a portion to be divided of the wafer, and forming a modified region by multiphoton absorption inside the wafer;
(F) Expanding the wafer processing tape to divide the wafer and the adhesive layer of the wafer processing tape along a cutting line to obtain a plurality of chips with the adhesive layer Process,
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method of manufacturing a semiconductor device including:
半導体装置の製造方法(B)
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)前記ウエハ表面の分断ラインに沿ってレーザー光を照射し、前記ウエハをチップに分断する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含む半導体装置の製造方法。
Manufacturing method of semiconductor device (B)
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) irradiating a laser beam along a cutting line on the wafer surface, and cutting the wafer into chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method of manufacturing a semiconductor device including:
半導体装置の製造方法(C)
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
 (b)前記ウエハ裏面を研削するバックグラインド工程と、
 (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
 (e)ダイシングブレードを用いて前記ウエハを分断ラインに沿って切削し、チップに分断する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含む半導体装置の製造方法。
Manufacturing method of semiconductor device (C)
(A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
(B) a back grinding process for grinding the back surface of the wafer;
(C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
(D) peeling the surface protection tape from the wafer surface;
(E) cutting the wafer along a cutting line using a dicing blade and cutting the wafer into chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method of manufacturing a semiconductor device including:
半導体装置の製造方法(D)
 (a)回路パタ-ンが形成されたウエハを、ダイシングブレードを用いて分断予定ラインに沿って前記ウエハの厚さ未満の深さまで切削する工程と、
 (b)前記ウエハ表面に表面保護テープを貼合する工程と、
 (c)前記ウエハ裏面を研削してチップに分断するバックグラインド工程と、
 (d)前記ウエハを70~80℃に加熱した状態で、前記チップに分断された前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
 (e)前記チップに分断された前記ウエハ表面から表面保護テープを剥離する工程と、
 (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
 (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることで前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
 (h)接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップする工程と、
を含む半導体装置の製造方法。
Manufacturing method of semiconductor device (D)
(A) cutting the wafer on which the circuit pattern is formed, using a dicing blade, along a line to be cut to a depth less than the thickness of the wafer;
(B) bonding a surface protective tape to the wafer surface;
(C) a back grinding process for grinding the wafer back surface and dividing it into chips;
(D) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer divided into the chips while the wafer is heated to 70 to 80 ° C .;
(E) peeling the surface protection tape from the wafer surface divided into the chips;
(F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
(G) in the expanded wafer processing tape, removing the slack generated in the expanding step by heating and shrinking a portion that does not overlap the chip, and maintaining the interval between the chips;
(H) picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
A method of manufacturing a semiconductor device including:
<使用方法>
 本発明のウエハ加工用テープ10を、上記半導体装置の製造方法(A)に適用した場合の、テープの使用方法について、図2~図5を参照しながら説明する。まず、図2に示すように、回路パターンが形成されたウエハWの表面に、紫外線硬化性成分を粘着剤に含む、回路パターン保護用の表面保護テープ14を貼合し、ウエハWの裏面を研削するバックグラインド工程を実施する。
<How to use>
A method of using the tape when the wafer processing tape 10 of the present invention is applied to the method (A) for manufacturing a semiconductor device will be described with reference to FIGS. First, as shown in FIG. 2, a surface protection tape 14 for protecting a circuit pattern containing an ultraviolet curable component in an adhesive is bonded to the surface of a wafer W on which a circuit pattern is formed. Perform back grinding process to grind.
 バックグラインド工程の終了後、図3に示すように、ウエハマウンターのヒーターテーブル25上に、表面側を下にしてウエハWを載置した後、ウエハWの裏面にウエハ加工用テープ10を貼合する。ここで使用するウエハ加工用テープ10は、貼合するウエハWに応じた形状に予め切断(プリカット)された接着フィルムを積層したものであり、ウエハWと貼合する面においては、接着剤層13が露出した領域の周囲に粘着剤層12が露出している。このウエハ加工用テープ10の接着剤層13が露出した部分とウエハWの裏面を貼り合わせるとともに、接着剤層13の周囲の粘着剤層12が露出した部分とリングフレーム20を貼り合わせる。このとき、ヒーターテーブル25は70~80℃に設定されており、これにより加熱貼合が実施される。 After the back grinding process is finished, as shown in FIG. 3, after placing the wafer W on the heater table 25 of the wafer mounter with the front side down, the wafer processing tape 10 is bonded to the back side of the wafer W. To do. The wafer processing tape 10 used here is obtained by laminating an adhesive film that has been cut (precut) in advance in a shape corresponding to the wafer W to be bonded, and the adhesive layer on the surface to be bonded to the wafer W. The adhesive layer 12 is exposed around the area where 13 is exposed. The portion of the wafer processing tape 10 where the adhesive layer 13 is exposed and the back surface of the wafer W are bonded together, and the portion where the adhesive layer 12 around the adhesive layer 13 is exposed and the ring frame 20 are bonded together. At this time, the heater table 25 is set to 70 to 80 ° C., and thus heat bonding is performed.
 次に、ウエハ加工用テープ10が貼合されたウエハWをヒーターテーブル25上から搬出し、図4に示すように、ウエハ加工用テープ10側を下にして吸着テーブル26上へ載置する。そして、吸着テーブル26に吸着固定されたウエハWの上方から、エネルギー線光源27を用いて、例えば1000mJ/cmの紫外線を表面保護テープ14の基材面側に照射し、表面保護テープ14のウエハWに対する接着力を低下させ、ウエハW表面から表面保護テープ14を剥離する。 Next, the wafer W to which the wafer processing tape 10 is bonded is unloaded from the heater table 25 and placed on the suction table 26 with the wafer processing tape 10 side down as shown in FIG. Then, from the upper side of the wafer W sucked and fixed to the suction table 26, for example, the substrate surface side of the surface protective tape 14 is irradiated with ultraviolet rays of 1000 mJ / cm 2 using the energy ray light source 27, and the surface protective tape 14 The adhesive strength to the wafer W is reduced, and the surface protection tape 14 is peeled off from the surface of the wafer W.
 次に、図5に示すように、ウエハWの分割予定部分にレーザー光を照射して、ウエハWの内部に多光子吸収による改質領域32を形成する。 Next, as shown in FIG. 5, a laser beam is irradiated on a portion to be divided of the wafer W to form a modified region 32 by multiphoton absorption inside the wafer W.
 次に、図6(a)に示すように、ウエハWおよびリングフレーム20が貼り合わされたウエハ加工用テープ10を、基材フィルム11側を下にして、エキスパンド装置のステージ21上に載置する。 Next, as shown in FIG. 6A, the wafer processing tape 10 to which the wafer W and the ring frame 20 are bonded is placed on the stage 21 of the expanding apparatus with the base film 11 side facing down. .
 次に、図6(b)に示すように、リングフレーム20を固定した状態で、エキスパンド装置の中空円柱形状の突き上げ部材22を上昇させ、ウエハ加工用テープ10を拡張(エキスパンド)する。拡張条件としては、エキスパンド速度が、例えば5~500mm/secであり、エキスパンド量(突き上げ量)が、例えば5~25mmである。このようにウエハ加工用テープ10がウエハWの径方向に引き伸ばされることで、ウエハWが、改質領域32を起点としてチップ34単位に分断される。このとき、接着剤層13は、ウエハWの裏面に接着している部分では拡張による伸び(変形)が抑制されて破断は起こらないが、チップ34間の位置では、テープの拡張による張力が集中して破断する。したがって、図6(c)に示すように、ウエハWとともに接着剤層13も分断されることになる。これにより、接着剤層13が付いた複数のチップ34を得ることができる。そのため、接着剤層13の破断伸びが、基材フィルム11と粘着剤層12の破断伸びよりも小さいことが好ましい。 Next, as shown in FIG. 6B, with the ring frame 20 fixed, the hollow cylindrical push-up member 22 of the expanding device is raised, and the wafer processing tape 10 is expanded (expanded). As expansion conditions, the expanding speed is, for example, 5 to 500 mm / sec, and the expanding amount (push-up amount) is, for example, 5 to 25 mm. In this way, the wafer processing tape 10 is stretched in the radial direction of the wafer W, so that the wafer W is divided into chips 34 starting from the modified region 32. At this time, in the adhesive layer 13, elongation (deformation) due to expansion is suppressed at the portion bonded to the back surface of the wafer W, and no breakage occurs. However, tension due to expansion of the tape is concentrated between the chips 34. And break. Therefore, as shown in FIG. 6C, the adhesive layer 13 is also cut off together with the wafer W. Thereby, the some chip | tip 34 with the adhesive bond layer 13 can be obtained. Therefore, it is preferable that the elongation at break of the adhesive layer 13 is smaller than the elongation at break of the base film 11 and the pressure-sensitive adhesive layer 12.
 次に、図7に示すように、突き上げ部材22を元の位置に戻し、先のエキスパンド工程において発生したウエハ加工用テープ10の弛みを除去して、チップ34の間隔を安定に保持するための工程を行う。この工程では、例えば、ウエハ加工用テープ10におけるチップ34が存在する領域と、リングフレーム20との間の円環状の加熱収縮領域28に、温風ノズル29を用いて90~120℃の温風を当てて基材フィルム11を加熱収縮させ、ウエハ加工用テープ10を緊張させる。その後、粘着剤層12にエネルギー線硬化処理または熱硬化処理等を施し、粘着剤層12の接着剤層13に対する粘着力を弱めた後、チップ34をピックアップする。 Next, as shown in FIG. 7, the push-up member 22 is returned to the original position, the slack of the wafer processing tape 10 generated in the previous expanding process is removed, and the distance between the chips 34 is stably maintained. Perform the process. In this step, for example, warm air of 90 to 120 ° C. is used in the annular heat shrinkage region 28 between the region where the chip 34 exists in the wafer processing tape 10 and the ring frame 20 by using the warm air nozzle 29. Is applied to heat and shrink the base film 11 to tension the wafer processing tape 10. Thereafter, the adhesive layer 12 is subjected to an energy ray curing process or a thermosetting process to weaken the adhesive force of the adhesive layer 12 to the adhesive layer 13, and then the chip 34 is picked up.
 次に、本発明の効果をさらに明確にするために、実施例および比較例について詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples and comparative examples will be described in detail, but the present invention is not limited to these examples.
〔ウエハ加工用テープの作製〕
(1)基材フィルムの作製
 ラジカル重合法によって合成されたエチレン-メタアクリル酸-メタアクリル酸エチル(質量比8:1:1)3元共重合体の亜鉛アイオノマー(密度0.96g/cm、亜鉛イオン含有量4質量%、塩素含有量1質量%未満、ビカット軟化点56℃、融点86℃)の樹脂ビーズを140℃で溶融し、押出機を用いて厚さ100μmの長尺フィルム状に成形して基材フィルムを作製した。
[Production of tape for wafer processing]
(1) Production of substrate film Zinc ionomer (density 0.96 g / cm 3 ) of ethylene-methacrylic acid-ethyl methacrylate (mass ratio 8: 1: 1) terpolymer synthesized by radical polymerization method A resin bead having a zinc ion content of 4% by mass, a chlorine content of less than 1% by mass, a Vicat softening point of 56 ° C., and a melting point of 86 ° C. is melted at 140 ° C., and is a long film having a thickness of 100 μm using an extruder. Was formed into a base film.
(2)アクリル系共重合体の調製
(a-1)
 官能基を有するアクリル系共重合体(A1)として、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、2-エチルヘキシルアクリレートの比率が60モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-60℃、水酸基価60mgKOH/g、酸価5mgKOH/gのアクリル系共重合体(a-1)を調製した。
(2) Preparation of acrylic copolymer (a-1)
As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 60 mol%, and the weight average molecular weight being 800,000 Was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value was 20, and an acrylic copolymer (a-) having a glass transition temperature of −60 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. 1) was prepared.
(a-2)
 官能基を有するアクリル系共重合体(A1)として、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、2-エチルヘキシルアクリレートの比率が80モル%、質量平均分子量70万の共重合体を調製した。次に、ヨウ素価が15となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-70℃、水酸基価20mgKOH/g、酸価5mgKOH/gのアクリル系共重合体(a-2)を調製した。
(A-2)
As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 80 mol%, and the weight average molecular weight being 700,000 Was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 15, and an acrylic copolymer (a-) having a glass transition temperature of −70 ° C., a hydroxyl value of 20 mgKOH / g, and an acid value of 5 mgKOH / g. 2) was prepared.
(a-3)
 官能基を有するアクリル系共重合体(A1)として、ドデシルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、ドデシルアクリレートの比率が60モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-5℃、水酸基価60mgKOH/g、酸価5mgKOH/gのアクリル系共重合体(a-3)を調製した。
(A-3)
As the acrylic copolymer (A1) having a functional group, a copolymer composed of dodecyl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a dodecyl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer (a-) having a glass transition temperature of −5 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. 3) was prepared.
(a-4)
 官能基を有するアクリル系共重合体(A1)として、ラウリルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、ラウリルアクリレートの比率が60モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度5℃、水酸基価60mgKOH/g、酸価5mgKOH/gのアクリル系共重合体(a-4)を調製した。
(A-4)
As the acrylic copolymer (A1) having a functional group, a copolymer composed of lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a lauryl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value was 20, and an acrylic copolymer (a-4 having a glass transition temperature of 5 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g) ) Was prepared.
(a-5)
 官能基を有するアクリル系共重合体(A1)として、ラウリルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、ラウリルアクリレートの比率が80モル%、質量平均分子量75万の共重合体を調製した。次に、ヨウ素価が15となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度10℃、水酸基価20mgKOH/g、酸価5mgKOH/gのアクリル系共重合体化合物(a-5)を調製した。
(A-5)
As the acrylic copolymer (A1) having a functional group, a copolymer composed of lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a lauryl acrylate ratio of 80 mol% and a mass average molecular weight of 750,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 15, and an acrylic copolymer compound (a-) having a glass transition temperature of 10 ° C., a hydroxyl value of 20 mgKOH / g, and an acid value of 5 mgKOH / g. 5) was prepared.
(a-6)
 官能基を有するアクリル系共重合体(A1)として、2-エチルヘキシルアクリレート、ラウリルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、2-エチルヘキシルアクリレートとラウリルアクリレートを合わせた比率が60モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-30℃、水酸基価50mgKOH/g、酸価5mgKOH/gのアクリル系共重合体化合物(a-6)を作製した。
(A-6)
The acrylic copolymer (A1) having a functional group is composed of 2-ethylhexyl acrylate, lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid, and the combined ratio of 2-ethylhexyl acrylate and lauryl acrylate is 60 mol%, mass A copolymer having an average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of −30 ° C., a hydroxyl value of 50 mgKOH / g, and an acid value of 5 mgKOH / g −6) was produced.
(a-7)
 官能基を有するアクリル系共重合体(A1)として、2-エチルヘキシルアクリレート、ラウリルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、2-エチルヘキシルアクリレートとラウリルアクリレートを合わせた比率が80モル%、質量平均分子量70万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-10℃、水酸基価20mgKOH/g、酸価5mgKOH/gのアクリル系共重合体化合物(a-7)を作製した。
(A-7)
The acrylic copolymer (A1) having a functional group is composed of 2-ethylhexyl acrylate, lauryl acrylate, 2-hydroxyethyl acrylate and acrylic acid, and the combined ratio of 2-ethylhexyl acrylate and lauryl acrylate is 80 mol%, mass A copolymer having an average molecular weight of 700,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of −10 ° C., a hydroxyl value of 20 mgKOH / g, and an acid value of 5 mgKOH / g −7) was produced.
(a-8)
 官能基を有するアクリル系共重合体(A1)として、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、2-エチルヘキシルアクリレートの比率が55モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-55℃、水酸基価80mgKOH/g、酸価5mgKOH/gのアクリル系共重合体化合物(a-8)を作製した。
(A-8)
As the acrylic copolymer (A1) having a functional group, a copolymer comprising 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and acrylic acid, the ratio of 2-ethylhexyl acrylate being 55 mol%, and the weight average molecular weight being 800,000 Was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of −55 ° C., a hydroxyl value of 80 mgKOH / g, and an acid value of 5 mgKOH / g -8) was produced.
(a-9)
 官能基を有するアクリル系共重合体(A1)として、ブチルアクリレート、2-ヒドロキシエチルアクリレートおよびアクリル酸からなり、ブチルアクリレートの比率が60モル%、質量平均分子量80万の共重合体を調製した。次に、ヨウ素価が20となるように、2-イソシアナトエチルメタクリレートを添加して、ガラス転移温度-40℃、水酸基価60mgKOH/g、酸価5mgKOH/gのアクリル系共重合体化合物(a-9)を作製した。
(A-9)
As the acrylic copolymer (A1) having a functional group, a copolymer composed of butyl acrylate, 2-hydroxyethyl acrylate and acrylic acid and having a butyl acrylate ratio of 60 mol% and a mass average molecular weight of 800,000 was prepared. Next, 2-isocyanatoethyl methacrylate was added so that the iodine value would be 20, and an acrylic copolymer compound (a) having a glass transition temperature of −40 ° C., a hydroxyl value of 60 mgKOH / g, and an acid value of 5 mgKOH / g. −9) was produced.
(3)接着剤組成物の調製
(d-1)
 エポキシ樹脂「YDCN-703」(東都化成株式会社製、商品名、クレゾールノボラック型エポキシ樹脂、エポキシ当量210)36質量部と、エポキシ樹脂の硬化剤としてのフェノール樹脂「ミレックスXLC-LL」(三井化学株式会社製、商品名、フェノール樹脂)30.1質量部と、シランカップリング剤である「A-1160」(日本ユニカー株式会社製、商品名)2.1質量部、および、「A-189」(日本ユニカー株式会社製、商品名)1.1質量部と、シリカフィラー(粒子)である「アエロジルR972」(日本アエロジル株式会社製、商品名、平均粒径:0.016μm、比表面積120m/g)21.2質量部とからなる組成物に、シクロヘキサノンを加え、攪拌混合してからビーズミルを用いてさらに90分混練した。
(3) Preparation of adhesive composition (d-1)
36 parts by mass of epoxy resin “YDCN-703” (trade name, cresol novolac type epoxy resin, epoxy equivalent 210, manufactured by Toto Kasei Co., Ltd.) and phenol resin “Mirex XLC-LL” as a curing agent for epoxy resin (Mitsui Chemicals) 30.1 parts by mass (trade name, phenol resin, manufactured by Co., Ltd.), 2.1 parts by mass of “A-1160” (trade name, manufactured by Nihon Unicar Co., Ltd.), which is a silane coupling agent, and “A-189 "1.1 parts by mass (made by Nippon Unicar Co., Ltd., trade name) and" Aerosil R972 "which is silica filler (particles) (trade name, average particle size: 0.016 µm, specific surface area 120 m made by Japan Aerosil Co., Ltd.) 2 / g) To a composition consisting of 21.2 parts by mass, cyclohexanone is added, stirred and mixed, and further 90 minutes using a bead mill. Kneaded.
 これにグリシジルアクリレートまたはグリシジルメタクリレートに由来するモノマー単位を、3質量%含むアクリルゴム(高分子量成分)である「HTR-860P-3」(ナガセケムテックス株式会社製、商品名、質量平均分子量80万)200質量部、および硬化促進剤としての「キュアゾール2PZ-CN」(四国化成工業株式会社製、商品名、1-シアノエチル-2-フェニルイミダゾール)0.075質量部を加え、攪拌混合して、接着剤組成物(d-1)を得た。 “HTR-860P-3” (trade name, mass average molecular weight 800,000 manufactured by Nagase ChemteX Corporation), which is an acrylic rubber (high molecular weight component) containing 3% by mass of a monomer unit derived from glycidyl acrylate or glycidyl methacrylate. ) 200 parts by mass and 0.075 parts by mass of “Curazole 2PZ-CN” (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator, and mixed by stirring. An adhesive composition (d-1) was obtained.
(d-2)
 エポキシ樹脂「YDCN-703」(東都化成株式会社製、商品名、クレゾールノボラック型エポキシ樹脂、エポキシ当量210)50質量部と、エポキシ樹脂の硬化剤としてのフェノール樹脂「ミレックスXLC-LL」(三井化学株式会社製、商品名、フェノール樹脂)30.1質量部と、シランカップリング剤である「A-1160」(日本ユニカー株式会社製、商品名)4.3質量部、および、「A-189」(日本ユニカー株式会社製、商品名)1.1質量部と、シリカフィラー(粒子)である「アエロジルR972」(日本アエロジル株式会社製、商品名、平均粒径:0.016μm、比表面積120m/g)50質量部とからなる組成物に、シクロヘキサノンを加え、攪拌混合してからビーズミルを用いてさらに90分混練した。
(D-2)
50 parts by mass of epoxy resin “YDCN-703” (trade name, cresol novolac type epoxy resin, epoxy equivalent 210, manufactured by Toto Kasei Co., Ltd.) and phenol resin “Mirex XLC-LL” as a curing agent for epoxy resin (Mitsui Chemicals) 30.1 parts by mass (trade name, phenol resin, manufactured by Co., Ltd.), 4.3 parts by mass of “A-1160” (trade name, manufactured by Nihon Unicar Co., Ltd.), which is a silane coupling agent, and “A-189” "1.1 parts by mass (made by Nippon Unicar Co., Ltd., trade name) and" Aerosil R972 "which is silica filler (particles) (trade name, average particle size: 0.016 µm, specific surface area 120 m made by Japan Aerosil Co., Ltd.) 2 / g) To a composition consisting of 50 parts by mass, add cyclohexanone, stir and mix, and then knead for 90 minutes using a bead mill. did.
 これにグリシジルアクリレートまたはグリシジルメタクリレートに由来するモノマー単位を、3質量%含むアクリルゴム(高分子量成分)である「HTR-860P-3」(ナガセケムテックス株式会社製、商品名、質量平均分子量80万)200質量部、および硬化促進剤としての「キュアゾール2PZ-CN」(四国化成工業株式会社製、商品名、1-シアノエチル-2-フェニルイミダゾール)0.01質量部を加え、攪拌混合して、接着剤組成物のワニスを得た。 “HTR-860P-3” (trade name, mass average molecular weight 800,000 manufactured by Nagase ChemteX Corporation), which is an acrylic rubber (high molecular weight component) containing 3% by mass of a monomer unit derived from glycidyl acrylate or glycidyl methacrylate. ) 200 parts by weight and 0.01 part by weight of “Curazole 2PZ-CN” (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 1-cyanoethyl-2-phenylimidazole) as a curing accelerator, and stirred and mixed. A varnish of the adhesive composition was obtained.
<実施例1>
 アクリル系共重合体(a-1)100質量部に対して、ポリイソシアネートとしてコロネートL(日本ポリウレタン製)を5質量部加え、光重合開始剤としてイルガキュアー184(日本チバガイギー社製)を3質量部加えた混合物を、酢酸エチルに溶解させ、攪拌して粘着剤組成物を調製した。
 次に、離型処理したポリエチレン-テレフタレートフィルムよりなる剥離ライナーに、この粘着剤組成物を、乾燥後の厚さが10μmになるように塗工し、110℃で3分間乾燥させた後、基材フィルムと貼り合わせ、基材フィルム上に粘着剤層が形成された粘着シートを作製した。
<Example 1>
5 parts by weight of Coronate L (manufactured by Nippon Polyurethane) as a polyisocyanate is added to 100 parts by weight of the acrylic copolymer (a-1), and 3 parts by weight of Irgacure 184 (manufactured by Ciba Geigy Japan) is used as a photopolymerization initiator. The added mixture was dissolved in ethyl acetate and stirred to prepare an adhesive composition.
Next, this pressure-sensitive adhesive composition was applied to a release liner made of a polyethylene-terephthalate film subjected to a release treatment so that the thickness after drying was 10 μm, and dried at 110 ° C. for 3 minutes. A pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive layer was formed on a base film was prepared by bonding to a material film.
 次に、離型処理したポリエチレン-テレフタレートフィルムよりなる剥離ライナーに、接着剤組成物(d-1)を、乾燥後の厚さが20μmになるように塗工し、110℃で5分間乾燥させて、剥離ライナー上に接着剤層が形成された接着フィルムを作製した。 Next, the adhesive composition (d-1) was applied to a release liner made of a polyethylene-terephthalate film subjected to a release treatment so that the thickness after drying was 20 μm, and dried at 110 ° C. for 5 minutes. Thus, an adhesive film having an adhesive layer formed on a release liner was produced.
 粘着シートをリングフレームに対して開口部を覆うように貼り合わせることができるような図3等に示した形状に裁断した。また、接着フィルムを、ウエハ裏面を覆うことのできるような図3等に示した形状に裁断した。そして、前記粘着シートの粘着剤層側と前記接着フィルムの接着剤層側とを、図3等に示したように接着フィルムの周囲に粘着剤層12が露出する部分が形成されるように貼り合わせ、ウエハ加工用テープを作製した。 The adhesive sheet was cut into the shape shown in FIG. 3 and the like that can be bonded to the ring frame so as to cover the opening. Moreover, the adhesive film was cut into the shape shown in FIG. Then, the adhesive layer side of the adhesive sheet and the adhesive layer side of the adhesive film are pasted so that a portion where the adhesive layer 12 is exposed is formed around the adhesive film as shown in FIG. In addition, a wafer processing tape was produced.
<実施例2>
 アクリル系共重合体(a-2)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 2>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-2) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例3>
 アクリル系共重合体(a-3)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 3>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-3) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例4>
 アクリル系共重合体(a-4)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 4>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-4) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例5>
 アクリル系共重合体(a-5)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 5>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-5) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例6>
 アクリル系共重合体(a-6)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 6>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-6) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例7>
 アクリル系共重合体(a-7)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 7>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-7) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<実施例8>
 接着剤組成物(d-2)を使用した以外は、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Example 8>
A wafer processing tape was produced in the same manner as in Example 1 except that the adhesive composition (d-2) was used.
<実施例9>
 接着剤組成物(d-2)を使用した以外は、実施例4と同様の手法により、ウエハ加工用テープを作製した。
<Example 9>
A wafer processing tape was produced in the same manner as in Example 4 except that the adhesive composition (d-2) was used.
<比較例1>
 ポリイソシアネートの配合量を1質量部とした以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Comparative Example 1>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1, except that the amount of polyisocyanate was 1 part by mass. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<比較例2>
 アクリル系共重合体(a-8)を使用し、ポリイソシアネートの配合量を2質量部とした以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Comparative example 2>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-8) was used and the amount of polyisocyanate was changed to 2 parts by mass. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
<比較例3>
 アクリル系共重合体(a-9)を使用した以外は、実施例1と同様にして粘着剤組成物を調製した。この粘着剤組成物を使用して、実施例1と同様の手法により、ウエハ加工用テープを作製した。
<Comparative Example 3>
A pressure-sensitive adhesive composition was prepared in the same manner as in Example 1 except that the acrylic copolymer (a-9) was used. Using this pressure-sensitive adhesive composition, a wafer processing tape was produced in the same manner as in Example 1.
〔ウエハ加工用テープの物性と評価〕
(1)ゲル分率の測定
 粘着剤層約0.05gを秤取し、キシレン50mLに120℃で24時間浸漬した後、200メッシュのステンレス製金網で濾過し、金網上の不溶解分を110℃にて120分間乾燥した。次に、乾燥した不溶解分の質量を秤量し、下記に示す式にてゲル分率を算出した。
 ゲル分率(%)=(不溶解分の質量/秤取した粘着剤層の質量)×100
 得られた測定結果を表1に示した。
[Physical properties and evaluation of wafer processing tape]
(1) Measurement of gel fraction About 0.05 g of the pressure-sensitive adhesive layer was weighed and immersed in 50 mL of xylene at 120 ° C. for 24 hours, and then filtered through a 200-mesh stainless steel wire mesh, and 110 parts of insoluble matter on the wire mesh were removed. Dry at 120 ° C. for 120 minutes. Next, the mass of the dried insoluble matter was weighed, and the gel fraction was calculated by the following formula.
Gel fraction (%) = (mass of insoluble matter / mass of weighed pressure-sensitive adhesive layer) × 100
The obtained measurement results are shown in Table 1.
(2)せん断力の測定
 図8に示すように、紫外線照射前の各ウエハ加工用テープの粘着剤面と接着剤面の貼合面積を10mm×10mmとし、補助テープ15として積水化学社製オリエンスパットテープNo.830Sをウエハ加工用テープの基材面側と接着剤層の粘着剤貼合面と反対の面にそれぞれ貼合した。その後、図9に示すように、貼合されていない部分を剥離測定用固定部材30で固定し、0°剥離、剥離速度500mm/minでせん断力を測定した。なお、ここで使用した補助テープ単体の引張り応力は測定値と比較して非常に大きいため無視できるものとする。
(2) Measurement of shearing force As shown in FIG. 8, the bonding area between the adhesive surface and the adhesive surface of each wafer processing tape before ultraviolet irradiation was 10 mm × 10 mm, and the auxiliary tape 15 was manufactured by Sekisui Chemical Co., Ltd. Pat tape No. 830S was bonded to the substrate surface side of the wafer processing tape and the surface opposite to the adhesive bonding surface of the adhesive layer. Then, as shown in FIG. 9, the part which is not bonded was fixed with the fixing member 30 for peeling measurement, and the shear force was measured at 0 ° peeling and peeling speed of 500 mm / min. In addition, since the tensile stress of the auxiliary tape used here is very large compared with the measured value, it can be ignored.
(3)剥離力の測定
 各サンプルに紫外線を照射し、紫外線照射前後の粘着力をJIS-Z0237に基づき測定した。図10に示すように、補助テープ15をウエハ加工用テープの接着剤層13に貼合し、接着剤層13側を、固定用両面テープ38を介して支持板36に取り付け、一方の剥離測定用固定部材30で支持板36を把持し、他方の剥離測定用固定部材30で粘着剤層12と基材フィルム11を把持し、粘着剤層12と接着剤層13との間の剥離力の測定を行った。測定は標準状態(温度23℃、相対湿度50%)における剥離速度300mm/min、剥離角度180°とした。紫外線ランプとしては、高圧水銀灯(365nm、30mW/cm,照射距離10cm)を使用し、照射強度を200mJ/cmとした。測定結果を表1に示した。
(3) Measurement of peeling force Each sample was irradiated with ultraviolet rays, and the adhesive strength before and after the ultraviolet irradiation was measured based on JIS-Z0237. As shown in FIG. 10, the auxiliary tape 15 is bonded to the adhesive layer 13 of the wafer processing tape, the adhesive layer 13 side is attached to the support plate 36 via the fixing double-sided tape 38, and one peel measurement is performed. The supporting plate 36 is gripped by the fixing member 30 and the adhesive layer 12 and the base film 11 are gripped by the other peeling measurement fixing member 30, and the peeling force between the adhesive layer 12 and the adhesive layer 13 is reduced. Measurements were made. The measurement was performed at a peeling rate of 300 mm / min and a peeling angle of 180 ° in a standard state (temperature 23 ° C., relative humidity 50%). As the ultraviolet lamp, a high-pressure mercury lamp (365 nm, 30 mW / cm 2 , irradiation distance 10 cm) was used, and the irradiation intensity was 200 mJ / cm 2 . The measurement results are shown in Table 1.
(4)分断率の測定
 以下に示す方法により、前記実施例および前記比較例の各ウエハ加工用テープについて、前記の半導体装置の製造方法(A)に相当する下記の半導体加工工程における適合性試験を実施した。
(4) Measurement of slicing rate By the method shown below, the compatibility test in the following semiconductor processing steps corresponding to the semiconductor device manufacturing method (A) for each of the wafer processing tapes of the examples and the comparative examples is performed. Carried out.
 (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合した。
 (b)前記ウエハ裏面を研削するバックグラインド工程を行った。
 (c)ウエハを70℃に加熱した状態で、前記ウエハの裏面に前記ウエハ加工用テープの接着剤層を貼合し、同時にウエハ加工用リングフレームを、前記ウエハ加工用テープの粘着剤層が接着剤層と重ならずに露出した部分と貼合した。
 (d)前記ウエハ表面から表面保護テープを剥離した。
 (e)前記ウエハの分割予定部分にレーザー光を照射して、該ウエハの内部に多光子吸収による改質領域を形成した。
 (f)前記ウエハ加工用テープを10%エキスパンドすることにより、前記ウエハと前記接着剤層とを分断ラインに沿って分断し、前記接着剤層が付いた複数のチップを得た。
 (g)前記ウエハ加工用テープの前記チップと重ならない部分(チップが存在する領域とリングフレームとの間の円環状の領域)を120℃に加熱、収縮させることで(f)のエキスパンド工程において生じた弛みを除去し、該チップの間隔を保持した。
 (h)接着剤層が付いた前記チップをウエハ加工用テープの粘着剤層からピックアップした。
(A) A surface protection tape was bonded to the wafer surface on which the circuit pattern was formed.
(B) A back grinding process for grinding the wafer back surface was performed.
(C) With the wafer heated to 70 ° C., the wafer processing tape adhesive layer is bonded to the back surface of the wafer, and at the same time, the wafer processing ring frame is attached to the wafer processing tape adhesive layer. It bonded with the exposed part, without overlapping with an adhesive bond layer.
(D) The surface protection tape was peeled from the wafer surface.
(E) A laser beam was irradiated on the part to be divided of the wafer to form a modified region by multiphoton absorption inside the wafer.
(F) The wafer processing tape was expanded by 10% to divide the wafer and the adhesive layer along a cutting line, thereby obtaining a plurality of chips with the adhesive layer.
(G) In the expanding step (f), a portion of the wafer processing tape that does not overlap with the chip (an annular region between the region where the chip is present and the ring frame) is heated to 120 ° C. and contracted. The resulting slack was removed and the tip spacing was maintained.
(H) The chip with the adhesive layer was picked up from the adhesive layer of the wafer processing tape.
 なお、(f)工程では、株式会社ディスコ社製DDS-2300で、ウエハ加工用テープに貼合されたダイシング用リングフレームを、株式会社ディスコ社製DDS-2300のエキスパンドリングにより押し下げ、ウエハ加工用テープのウエハ貼合部位の外周の、ウエハに重ならない部分を円形の突き上げ部材に押し付けることでエキスパンドを実施した。また、(f)および(g)工程の条件としては、エキスパンド速度300mm/sec、エキスパンド量(突き上げ量)20mmとした。ここで、エキスパンド量とは、押下げ前と押下げ後のリングフレームと突き上げ部材の相対位置の変化量をいう。 In the step (f), the dicing ring frame bonded to the wafer processing tape with DDS-2300 manufactured by DISCO Corporation is pushed down by the expanding ring of DDS-2300 manufactured by DISCO Corporation, and used for wafer processing. Expanding was performed by pressing a portion of the outer periphery of the wafer bonding portion of the tape that did not overlap the wafer against a circular push-up member. Further, as the conditions of the steps (f) and (g), the expanding speed was 300 mm / sec, and the expanding amount (push-up amount) was 20 mm. Here, the amount of expansion refers to the amount of change in the relative position between the ring frame and the push-up member before and after pressing.
 実施例1~9および比較例1~3のウエハ加工用テープについて、上記の(f)工程における接着剤層の分断率を、(g)工程直後にチップ100個の分断有無を観察することにより評価した。結果を表1に示した。 For the wafer processing tapes of Examples 1 to 9 and Comparative Examples 1 to 3, the dividing rate of the adhesive layer in the above step (f) was determined by observing whether or not 100 chips were divided immediately after the step (g). evaluated. The results are shown in Table 1.
(5)ピックアップ性の評価
 (g)工程の後(h)工程前に、ウエハ加工用テープの、基材フィルムにおける粘接着剤層が積層された面とは反対側の面に対して、メタルハライド高圧水銀灯により、窒素雰囲気下、365nmで30mW/cm、200mJ/cmの条件で紫外線を照射した。そして、(h)工程にてダイシングされたチップ100個についてダイスピッカー装置(キヤノンマシナリー社製、商品名CAP-300II)によるピックアップ試験を行い、粘着剤層から剥離した接着剤層が保持されているものをピックアップが成功したものとし、ピックアップ成功率を算出した。結果を表1に示した。表中の○、△、×は、以下を意味する。
(5) Evaluation of pick-up property (g) Before the step (h) before the step, with respect to the surface of the wafer processing tape opposite to the surface on which the adhesive layer in the base film is laminated, A metal halide high pressure mercury lamp was irradiated with ultraviolet rays under conditions of 30 mW / cm 2 and 200 mJ / cm 2 at 365 nm in a nitrogen atmosphere. Then, a pick-up test using a die picker device (trade name CAP-300II, manufactured by Canon Machinery Co., Ltd.) was performed on 100 chips diced in step (h), and the adhesive layer peeled off from the adhesive layer was retained. The pick-up success rate was calculated assuming that the pick-up was successful. The results are shown in Table 1. In the table, O, Δ, and X mean the following.
 「○」・・・突き上げピンによる突き上げ高さ0.5mm、0.3mmにおけるピックアップ成功率が100%である。
 「△」・・・突き上げ高さ0.5mmにおけるピックアップ成功率が100%であるが、突き上げ高さ0.3mmにおけるピックアップ成功率が100%未満である。
 「×」・・・突き上げ高さ0.5mm、0.3mmにおけるピックアップ成功率が100%未満である。
 結果を表1に示した。
“◯”: The success rate of pick-up at a push-up height of 0.5 mm and 0.3 mm by a push-up pin is 100%.
“Δ”: The pickup success rate at a push-up height of 0.5 mm is 100%, but the pick-up success rate at a push-up height of 0.3 mm is less than 100%.
“×” —The pick-up success rate at a push-up height of 0.5 mm and 0.3 mm is less than 100%.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、粘着剤層12と接着剤層13のせん断力が0.2N/mm以上であり、かつ200mJ/cmのエネルギー線照射後の剥離力が0.3N/25mm以下である実施例1~9のウエハ加工用テープは接着剤層の分断率が100%であり、ピックアップ成功率の評価から、良好なピックアップ性を有することが明らかとなった。これに対して、粘着剤層12と接着剤層13のせん断力が0.2N/mm以下の比較例2においては、粘着剤層12と接着剤層13との界面でずれが生じ、その箇所では接着剤層に十分な引張力が伝搬されず、接着剤層13が十分に分断できなかった。一方、比較例1と比較例3においては、せん断力が0.2N/mm以上で分断性に優れたとしても、エネルギー線照射後の剥離力が0.3N/25mm以上であると、ピックアップ成功率が悪くなることが明らかとなった。 As shown in Table 1, the shearing force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is 0.2 N / mm 2 or more, and the peeling force after irradiation with energy rays of 200 mJ / cm 2 is 0.3 N / 25 mm or less. The wafer processing tapes of Examples 1 to 9 have a dividing rate of the adhesive layer of 100%, and it was revealed from the evaluation of the pickup success rate that the pickup tape has good pickup properties. On the other hand, in Comparative Example 2 in which the shear force between the pressure-sensitive adhesive layer 12 and the adhesive layer 13 is 0.2 N / mm 2 or less, a deviation occurs at the interface between the pressure-sensitive adhesive layer 12 and the adhesive layer 13. At the location, sufficient tensile force was not propagated to the adhesive layer, and the adhesive layer 13 could not be sufficiently divided. On the other hand, in Comparative Example 1 and Comparative Example 3, even if the shearing force is 0.2 N / mm 2 or more and the splitting property is excellent, the pickup force after the energy beam irradiation is 0.3 N / 25 mm or more. It became clear that the success rate worsened.
 なお、前記の半導体装置の製造方法BからDは、エキスパンド工程において、すでに個々のチップに分断されている点を除き、半導体装置の製造方法Aにおけるエキスパンド工程、ヒートシュリンク工程、ピックアップ工程と同等の工程を行うものである。したがって、実施例1~9および比較例1~3のウエハ加工用テープ10を用いた場合の結果は、表1に示す結果と同等の結果となることは明らかであり、半導体装置の製造方法BからDにおいても本発明のウエハ加工用テープ10を用いることは分断性、ピックアップ性の観点において有用である。 The semiconductor device manufacturing methods B to D are the same as the expanding step, the heat shrinking step, and the picking up step in the semiconductor device manufacturing method A except that they are already divided into individual chips in the expanding step. A process is performed. Therefore, it is clear that the results obtained using the wafer processing tapes 10 of Examples 1 to 9 and Comparative Examples 1 to 3 are equivalent to the results shown in Table 1, and the semiconductor device manufacturing method B From D to D, it is useful to use the wafer processing tape 10 of the present invention from the viewpoints of severability and pick-up property.
  10 ウエハ加工用テープ
  11 基材フィルム
  12 粘着剤層
  13 接着剤層
  14 表面保護テープ
  15 補助テープ
  20 リングフレーム
  21 ステージ
  22 突き上げ部材
  25 ヒーターテーブル
  26 吸着テーブル
  27 紫外線光源
  28 加熱収縮領域
  29 温風ノズル
  30 剥離測定用固定部材
  32 改質領域
  34 チップ
  36 支持板
  38 固定用両面テープ
  W  ウエハ
DESCRIPTION OF SYMBOLS 10 Wafer processing tape 11 Base film 12 Adhesive layer 13 Adhesive layer 14 Surface protection tape 15 Auxiliary tape 20 Ring frame 21 Stage 22 Push-up member 25 Heater table 26 Adsorption table 27 Ultraviolet light source 28 Heat shrinkage area 29 Hot air nozzle 30 Peeling measurement fixing member 32 Modified region 34 Chip 36 Support plate 38 Fixing double-sided tape W Wafer

Claims (10)

  1.  基材フィルムと、前記基材フィルム上に形成された粘着剤層と、前記粘着剤層上に形成された接着剤層からなり、
     前記粘着剤層と前記接着剤層の25℃におけるせん断力が0.2N/mm以上であり、
     200mJ/cmのエネルギー線照射後のJIS-Z0237に準拠した標準状態における剥離速度300mm/min、剥離角度180°での前記粘着剤層と前記接着剤層の剥離力が0.3N/25mm以下であることを特徴とするウエハ加工用テープ。
    A base film, a pressure-sensitive adhesive layer formed on the base film, and an adhesive layer formed on the pressure-sensitive adhesive layer,
    The shear force at 25 ° C. of the pressure-sensitive adhesive layer and the adhesive layer is 0.2 N / mm 2 or more,
    The peeling force between the pressure-sensitive adhesive layer and the adhesive layer at a peeling speed of 300 mm / min and a peeling angle of 180 ° in a standard state in accordance with JIS-Z0237 after irradiation with an energy beam of 200 mJ / cm 2 is 0.3 N / 25 mm or less. A wafer processing tape characterized by
  2.  前記粘着剤層と前記接着剤層の25℃におけるせん断力が0.2N/mm以上0.5N/mm以下であることを特徴とする請求項1に記載のウエハ加工用テープ。 2. The wafer processing tape according to claim 1, wherein a shear force of the pressure-sensitive adhesive layer and the adhesive layer at 25 ° C. is 0.2 N / mm 2 or more and 0.5 N / mm 2 or less.
  3.  前記粘着剤層は、ゲル分率が60%以上である粘着剤組成物から構成されることを特徴とする請求項1又は請求項2に記載のウエハ加工用テープ。 3. The wafer processing tape according to claim 1, wherein the pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive composition having a gel fraction of 60% or more.
  4.  前記粘着剤組成物は、ベース樹脂として、炭素数が6~12のアルキル鎖を有する(メタ)アクリレートを60モル%以上含み、かつヨウ素価5~30のエネルギー線硬化性炭素-炭素二重結合を有する重合体を含有することを特徴とする請求項3に記載のウエハ加工用テープ。 The pressure-sensitive adhesive composition includes, as a base resin, an energy ray-curable carbon-carbon double bond containing 60 mol% or more of (meth) acrylate having an alkyl chain having 6 to 12 carbon atoms and having an iodine value of 5 to 30 The wafer processing tape according to claim 3, comprising a polymer having
  5.  前記粘着剤組成物は、ポリイソシアネート類、メラミン・ホルムアルデヒド樹脂およびエポキシ樹脂からなる群より選択される少なくとも1種類の化合物を含有することを特徴とする請求項3に記載のウエハ加工用テープ。 The wafer processing tape according to claim 3, wherein the pressure-sensitive adhesive composition contains at least one compound selected from the group consisting of polyisocyanates, melamine / formaldehyde resins, and epoxy resins.
  6.  前記接着剤層の破断伸びが、前記基材フィルムと前記粘着剤層の破断伸びよりも小さいことを特徴とする請求項1又は請求項2に記載のウエハ加工用テープ。 The wafer processing tape according to claim 1 or 2, wherein the elongation at break of the adhesive layer is smaller than the elongation at break of the base film and the pressure-sensitive adhesive layer.
  7.  請求項1~6のいずれか1項に記載のウエハ加工用テープを使用して半導体装置を製造する方法であって、
     (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
     (b)前記ウエハ裏面を研削するバックグラインド工程と、
     (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
     (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
     (e)前記ウエハの分割予定部分にレーザー光を照射し、前記ウエハ内部に多光子吸収による改質領域を形成する工程と、
     (f)前記ウエハ加工用テープを拡張することにより、前記ウエハと前記ウエハ加工用テープの前記接着剤層とを分割予定部分に沿って分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
     (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
     (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップするピックアップ工程と、
    を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device using the wafer processing tape according to any one of claims 1 to 6,
    (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
    (B) a back grinding process for grinding the back surface of the wafer;
    (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
    (D) peeling the surface protection tape from the wafer surface;
    (E) irradiating a laser beam to a portion to be divided of the wafer, and forming a modified region by multiphoton absorption inside the wafer;
    (F) The wafer processing tape is expanded to divide the wafer and the adhesive layer of the wafer processing tape along the scheduled division portion, thereby obtaining a plurality of chips with the adhesive layer. Expanding process;
    (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
    (H) a pickup step of picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
    A method for manufacturing a semiconductor device, comprising:
  8.  請求項1~6のいずれか1項に記載のウエハ加工用テープを使用して半導体装置を製造する方法であって、
     (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
     (b)前記ウエハ裏面を研削するバックグラインド工程と、
     (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
     (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
     (e)前記ウエハ表面の分断ラインに沿ってレーザー光を照射し、前記ウエハをチップに分断する工程と、
     (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
     (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
    (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップするピックアップ工程と、
    を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device using the wafer processing tape according to any one of claims 1 to 6,
    (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
    (B) a back grinding process for grinding the back surface of the wafer;
    (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
    (D) peeling the surface protection tape from the wafer surface;
    (E) irradiating a laser beam along a cutting line on the wafer surface, and cutting the wafer into chips;
    (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
    (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
    (H) a pickup step of picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
    A method for manufacturing a semiconductor device, comprising:
  9.  請求項1~6のいずれか1項に記載のウエハ加工用テープを使用して半導体装置を製造する方法であって、
     (a)回路パターンが形成されたウエハ表面に表面保護テープを貼合する工程と、
     (b)前記ウエハ裏面を研削するバックグラインド工程と、
     (c)前記ウエハを70~80℃に加熱した状態で、前記ウエハ裏面に前記ウエハ加工用テープの接着剤層を貼合する工程と、
     (d)前記ウエハ表面から前記表面保護テープを剥離する工程と、
     (e)ダイシングブレードを用いて前記ウエハを分断ラインに沿って切削し、チップに分断する工程と、
     (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
     (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることにより、前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
     (h)前記接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップするピックアップ工程と、
    を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device using the wafer processing tape according to any one of claims 1 to 6,
    (A) a step of bonding a surface protection tape to the wafer surface on which a circuit pattern is formed;
    (B) a back grinding process for grinding the back surface of the wafer;
    (C) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer while the wafer is heated to 70 to 80 ° C .;
    (D) peeling the surface protection tape from the wafer surface;
    (E) cutting the wafer along a cutting line using a dicing blade and cutting the wafer into chips;
    (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
    (G) In the expanded wafer processing tape, by heating and shrinking a portion that does not overlap the chip, the slack generated in the expanding step is removed, and the interval between the chips is maintained;
    (H) a pickup step of picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
    A method for manufacturing a semiconductor device, comprising:
  10.  請求項1~6のいずれか1項に記載のウエハ加工用テープを使用して半導体装置を製造する方法であって、
     (a)回路パタ-ンが形成されたウエハを、ダイシングブレードを用いて分断予定ラインに沿って前記ウエハの厚さ未満の深さまで切削する工程と、
     (b)前記ウエハ表面に表面保護テープを貼合する工程と、
     (c)前記ウエハ裏面を研削してチップに分断するバックグラインド工程と、
     (d)前記ウエハを70~80℃に加熱した状態で、前記チップに分断された前記ウエハ裏面に、前記ウエハ加工用テープの接着剤層を貼合する工程と、
     (e)前記チップに分断された前記ウエハ表面から表面保護テープを剥離する工程と、
     (f)前記ウエハ加工用テープを拡張することにより、前記接着剤層を前記チップ毎に分断し、前記接着剤層が付いた複数のチップを得るエキスパンド工程と、
     (g)拡張後の前記ウエハ加工用テープにおいて、前記チップと重ならない部分を加熱収縮させることで前記エキスパンド工程において生じた弛みを除去し、前記チップの間隔を保持する工程と、
     (h)接着剤層が付いた前記チップを、前記ウエハ加工用テープの粘着剤層からピックアップするピックアップ工程と、
    を含むことを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device using the wafer processing tape according to any one of claims 1 to 6,
    (A) cutting the wafer on which the circuit pattern is formed, using a dicing blade, along a line to be cut to a depth less than the thickness of the wafer;
    (B) bonding a surface protective tape to the wafer surface;
    (C) a back grinding process for grinding the wafer back surface and dividing it into chips;
    (D) bonding the adhesive layer of the wafer processing tape to the back surface of the wafer divided into the chips while the wafer is heated to 70 to 80 ° C .;
    (E) peeling the surface protection tape from the wafer surface divided into the chips;
    (F) Expanding the wafer processing tape to divide the adhesive layer for each chip and to obtain a plurality of chips with the adhesive layer;
    (G) in the expanded wafer processing tape, removing the slack generated in the expanding step by heating and shrinking a portion that does not overlap the chip, and maintaining the interval between the chips;
    (H) a pickup step of picking up the chip with the adhesive layer from the adhesive layer of the wafer processing tape;
    A method for manufacturing a semiconductor device, comprising:
PCT/JP2012/083646 2012-01-06 2012-12-26 Wafer-processing tape and method for manufacturing semiconductor device using same WO2013103116A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG2013082540A SG194831A1 (en) 2012-01-06 2012-12-26 Wafer-processing tape and method for manufacturing semiconductor device using same
CN201280017728.4A CN103460348B (en) 2012-01-06 2012-12-26 Adhesive tape for wafer processing and use its manufacture method of semiconductor device
KR1020137033285A KR101545805B1 (en) 2012-01-06 2012-12-26 Wafer-processing tape and method for manufacturing semiconductor device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012001484 2012-01-06
JP2012-001484 2012-01-26
JP2012038394A JP5294358B2 (en) 2012-01-06 2012-02-24 Wafer processing tape and semiconductor device manufacturing method using the same
JP2012-038394 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013103116A1 true WO2013103116A1 (en) 2013-07-11

Family

ID=48745177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083646 WO2013103116A1 (en) 2012-01-06 2012-12-26 Wafer-processing tape and method for manufacturing semiconductor device using same

Country Status (7)

Country Link
JP (1) JP5294358B2 (en)
KR (1) KR101545805B1 (en)
CN (1) CN103460348B (en)
MY (1) MY161486A (en)
SG (1) SG194831A1 (en)
TW (1) TWI523095B (en)
WO (1) WO2013103116A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140248A1 (en) * 2015-03-04 2016-09-09 リンテック株式会社 Film-like adhesive composite sheet and method for manufacturing semiconductor device
WO2017170021A1 (en) * 2016-03-30 2017-10-05 リンテック株式会社 Semiconductor processing sheet
CN112351859A (en) * 2019-05-29 2021-02-09 古河电气工业株式会社 Adhesive tape for glass processing
TWI761558B (en) * 2017-07-25 2022-04-21 日商迪思科股份有限公司 Wafer processing method and auxiliary device for wafer processing

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006953B2 (en) * 2012-03-23 2016-10-12 リンテック株式会社 Adhesive sheet for processing electronic parts and method for manufacturing semiconductor device
JP6295135B2 (en) * 2014-04-24 2018-03-14 日東電工株式会社 Dicing die bond film
JP6425435B2 (en) * 2014-07-01 2018-11-21 株式会社ディスコ Tip spacing maintenance device
CN106661395B (en) * 2014-09-22 2021-05-28 琳得科株式会社 Workpiece fixing sheet with resin layer
JP6445315B2 (en) * 2014-12-12 2018-12-26 日東電工株式会社 Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
JP2016125026A (en) * 2015-01-07 2016-07-11 日東電工株式会社 Pressure-sensitive adhesive tape
JP6738591B2 (en) * 2015-03-13 2020-08-12 古河電気工業株式会社 Semiconductor wafer processing method, semiconductor chip, and surface protection tape
JP2017005160A (en) * 2015-06-12 2017-01-05 古河電気工業株式会社 Tape for wafer processing
KR102149775B1 (en) 2015-11-09 2020-08-31 후루카와 덴키 고교 가부시키가이샤 Mask-integrated surface protection film
JP6851689B2 (en) * 2016-05-18 2021-03-31 日東電工株式会社 Back grind tape
JP2018014370A (en) * 2016-07-19 2018-01-25 株式会社ディスコ Wafer processing method
JP7019333B2 (en) * 2017-04-17 2022-02-15 日東電工株式会社 Dicing die bond film
JP7042271B2 (en) * 2017-07-03 2022-03-25 リンテック株式会社 Manufacturing method of adhesive sheet for stealth dicing and semiconductor device
WO2019008808A1 (en) * 2017-07-03 2019-01-10 リンテック株式会社 Adhesive sheet for stealth dicing, and production method for semiconductor device
JP7112205B2 (en) * 2018-02-13 2022-08-03 株式会社ディスコ splitter
JP7092526B2 (en) * 2018-03-14 2022-06-28 マクセル株式会社 Adhesive tape for back grind
WO2019220599A1 (en) * 2018-05-17 2019-11-21 日立化成株式会社 Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device
KR102649514B1 (en) 2019-03-22 2024-03-21 가부시끼가이샤 레조낙 Method for producing N-vinylcarboxylic acid amide copolymer aqueous solution
JP6835296B1 (en) * 2019-05-10 2021-02-24 昭和電工マテリアルズ株式会社 Evaluation method of pick-up property, dicing / die bonding integrated film, evaluation method and sorting method of dicing / die bonding integrated film, and manufacturing method of semiconductor device
JP7269096B2 (en) * 2019-05-29 2023-05-08 古河電気工業株式会社 glass processing tape
JP7060547B2 (en) * 2019-05-29 2022-04-26 古河電気工業株式会社 Glass processing tape
JP6902641B1 (en) * 2020-03-13 2021-07-14 古河電気工業株式会社 A dicing die attach film, a semiconductor package using the dicing die attach film, and a method for manufacturing the same.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166578A (en) * 2006-12-28 2008-07-17 Shin Etsu Chem Co Ltd Semiconductor device manufacturing method and semiconductor device
JP2008162240A (en) * 2007-01-05 2008-07-17 Fujicopian Co Ltd Adhesion sheet
JP2010251727A (en) * 2009-03-24 2010-11-04 Furukawa Electric Co Ltd:The Tape for semiconductor wafer processing
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069951A1 (en) * 2003-02-05 2004-08-19 The Furukawa Electric Co., Ltd. Pressure-sensitive adhesive tape for pasting wafer thereto
JP2011216529A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166578A (en) * 2006-12-28 2008-07-17 Shin Etsu Chem Co Ltd Semiconductor device manufacturing method and semiconductor device
JP2008162240A (en) * 2007-01-05 2008-07-17 Fujicopian Co Ltd Adhesion sheet
JP2010251727A (en) * 2009-03-24 2010-11-04 Furukawa Electric Co Ltd:The Tape for semiconductor wafer processing
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140248A1 (en) * 2015-03-04 2016-09-09 リンテック株式会社 Film-like adhesive composite sheet and method for manufacturing semiconductor device
JPWO2016140248A1 (en) * 2015-03-04 2017-12-14 リンテック株式会社 Film adhesive composite sheet and method for manufacturing semiconductor device
WO2017170021A1 (en) * 2016-03-30 2017-10-05 リンテック株式会社 Semiconductor processing sheet
KR20180127984A (en) 2016-03-30 2018-11-30 린텍 가부시키가이샤 Semiconductor processing sheet
JPWO2017170021A1 (en) * 2016-03-30 2019-02-14 リンテック株式会社 Semiconductor processing sheet
CN112694840A (en) * 2016-03-30 2021-04-23 琳得科株式会社 Semiconductor processing sheet
TWI761558B (en) * 2017-07-25 2022-04-21 日商迪思科股份有限公司 Wafer processing method and auxiliary device for wafer processing
CN112351859A (en) * 2019-05-29 2021-02-09 古河电气工业株式会社 Adhesive tape for glass processing

Also Published As

Publication number Publication date
MY161486A (en) 2017-04-14
KR101545805B1 (en) 2015-08-19
TW201340194A (en) 2013-10-01
CN103460348A (en) 2013-12-18
CN103460348B (en) 2016-08-17
KR20140040157A (en) 2014-04-02
SG194831A1 (en) 2013-12-30
JP2013157589A (en) 2013-08-15
JP5294358B2 (en) 2013-09-18
TWI523095B (en) 2016-02-21

Similar Documents

Publication Publication Date Title
JP5294358B2 (en) Wafer processing tape and semiconductor device manufacturing method using the same
JP5731080B2 (en) Adhesive tape and wafer processing tape
JP5554118B2 (en) Wafer processing tape
JP4748518B2 (en) Dicing die bond tape and dicing tape
JP2009231700A (en) Wafer processing tape
JP2012174945A (en) Processing method of semiconductor wafer
JP2007019151A (en) Tape for processing wafer and method of manufacturing chip using the same
JP5158864B2 (en) Wafer processing tape
JP2007073930A (en) Tape for wafer processing
WO2021095302A1 (en) Semiconductor device production method, dicing die-bonding integrated film, and production method therefor
JP5323779B2 (en) Wafer processing tape
JP2004256793A (en) Adhesive tape for sticking wafer
JP5582836B2 (en) Dicing die bonding tape
JP2006156754A (en) Dicing die bond tape
JP2010182761A (en) Film for processing semiconductor wafer and base film of the same
JP2009231699A (en) Wafer processing tape
JP2012023161A (en) Wafer processing sheet used for semiconductor device manufacturing, manufacturing method of the same and semiconductor device manufacturing method
JP5184664B2 (en) Dicing tape and semiconductor chip manufacturing method
JP2009158503A (en) Tape for processing wafer
JP5534986B2 (en) Wafer processing tape
JP4999117B2 (en) Wafer processing tape
JP5578911B2 (en) Wafer processing tape
JP2013199580A (en) Pressure-sensitive adhesive tape for sticking wafer
KR101314398B1 (en) Wafer processing tape
JP5950519B2 (en) Wafer processing tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864566

Country of ref document: EP

Kind code of ref document: A1