WO2019220599A1 - Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device - Google Patents

Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device Download PDF

Info

Publication number
WO2019220599A1
WO2019220599A1 PCT/JP2018/019179 JP2018019179W WO2019220599A1 WO 2019220599 A1 WO2019220599 A1 WO 2019220599A1 JP 2018019179 W JP2018019179 W JP 2018019179W WO 2019220599 A1 WO2019220599 A1 WO 2019220599A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
region
dicing
pressure
sensitive adhesive
Prior art date
Application number
PCT/JP2018/019179
Other languages
French (fr)
Japanese (ja)
Inventor
尚弘 木村
強 田澤
大久保 恵介
達也 矢羽田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/019179 priority Critical patent/WO2019220599A1/en
Priority to JP2020519925A priority patent/JP6789500B2/en
Priority to KR1020207033514A priority patent/KR102278942B1/en
Priority to PCT/JP2019/019574 priority patent/WO2019221246A1/en
Priority to SG11202011259WA priority patent/SG11202011259WA/en
Priority to CN201980032401.6A priority patent/CN112219264B/en
Priority to TW108117038A priority patent/TWI778263B/en
Publication of WO2019220599A1 publication Critical patent/WO2019220599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/21Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being formed by alternating adhesive areas of different nature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to a dicing / die bonding integrated film, a manufacturing method thereof, and a manufacturing method of a semiconductor device using the film.
  • Semiconductor devices are manufactured through the following steps. First, the dicing process is carried out with the dicing adhesive film attached to the wafer. Thereafter, an expanding process, a picking process, a mounting process, a die bonding process, and the like are performed.
  • a film called a dicing / die bonding integrated film is used.
  • This film has a structure in which a base material layer, a pressure-sensitive adhesive layer, and an adhesive layer are laminated in this order.
  • the film is used as follows. First, the wafer is diced in a state where the surface on the adhesive layer side is attached to the wafer and the wafer is fixed by a dicing ring. As a result, the wafer is divided into a large number of chips.
  • the chip is removed from the pressure-sensitive adhesive layer together with the adhesive piece obtained by dividing the adhesive layer into pieces. Pick up. Thereafter, the semiconductor device is manufactured through a step of mounting the chip on a substrate or the like via the adhesive piece.
  • the laminated body which consists of the chip
  • an adhesive layer (dicing film) whose adhesive strength is weakened by irradiation with ultraviolet rays is referred to as a UV curable type.
  • the pressure-sensitive adhesive layer in which the adhesive force remains constant without being irradiated with ultraviolet rays in the semiconductor device manufacturing process is called a pressure-sensitive type.
  • the dicing / die bonding integrated film with pressure-sensitive adhesive layer does not require users (mainly semiconductor device manufacturers) to carry out the process of irradiating ultraviolet rays, and there is no need for equipment for this purpose. There are benefits.
  • the pressure-sensitive adhesive layer is a UV curable type in that it contains a component that is cured by ultraviolet light.
  • a dicing die-bonding film that can be said to be a pressure-sensitive type because it does not require irradiation with ultraviolet rays in the manufacturing process.
  • the pressure-sensitive adhesive layer of the dicing die-bonding integrated film is required to have a high adhesive force to the adhesive layer and the dicing ring in the dicing process. If the adhesive strength of the pressure-sensitive adhesive layer is insufficient, peeling occurs between the adhesive layer and the pressure-sensitive adhesive layer as the dicing blade rotates at a high speed, and the chip flies with the adhesive piece (hereinafter referred to as “DAF”). Or a phenomenon in which the dicing ring peels from the adhesive layer due to the flow of cutting water (hereinafter, this phenomenon is referred to as “ring peeling”). The present inventors paid attention to the fact that these phenomena become remarkable as the size of a chip to be manufactured by dicing becomes smaller.
  • the present inventors are applicable to a process of dicing a wafer into a large number of small chips (area 9 mm 2 or less), and a predetermined amount of active energy rays (for example, ultraviolet rays) are irradiated on a specific portion in advance. Therefore, the present inventors have developed a dicing / die bonding integrated film that has an adhesive layer in which the adhesive strength of the part is lower than that of the other part and satisfies the following characteristics.
  • the region where the dicing ring is attached has a high adhesive strength that can withstand the flow of cutting water in the dicing process, while the region that is pre-irradiated with a predetermined amount of active energy rays can withstand external force from a dicing blade or the like.
  • the inventors worked on the development of a dicing / die bonding integrated film having adhesive strength suitable for subsequent pickup.
  • the present disclosure can be applied to a process of dicing a wafer into a large number of small chips (area 9 mm 2 or less), and has a pressure-sensitive adhesive layer that can sufficiently suppress DAF skipping in the dicing process and has excellent pickup properties.
  • An object of the present invention is to provide a dicing / die bonding integrated film and a method for producing the same. Moreover, this indication aims at providing the manufacturing method of the semiconductor device using this dicing die-bonding integrated film.
  • One aspect of the present disclosure relates to a method for manufacturing a semiconductor device.
  • the manufacturing method covers a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side, and a central portion of the second surface of the pressure-sensitive adhesive layer.
  • a step of preparing a dicing / die bonding integrated film provided with an adhesive layer provided on the substrate, a wafer attached to the adhesive layer of the dicing / die bonding integrated film, and a second surface of the adhesive layer A step of attaching a dicing ring to the substrate, a step of dividing the wafer into a plurality of chips having an area of 9 mm 2 or less (dicing step), and an adhesive piece obtained by dividing the adhesive layer into pieces, A step of picking up from the layer and a step of mounting the chip on the substrate or another chip through the adhesive piece, the pressure-sensitive adhesive layer being the first corresponding to the region of the adhesive layer to which the wafer is attached.
  • the adhesive strength of the first region with respect to the adhesive layer measured at a temperature of 23 ° C. under a peeling angle of 30 ° and a peeling speed of 60 mm / min, is 1.2 N / 25 mm to 4.5 N / 25 mm.
  • a semiconductor device can be manufactured with a sufficiently high yield due to the fact that DAF jumping in the dicing process can be sufficiently suppressed and excellent pick-up properties from the adhesive layer can be achieved.
  • One aspect of the present disclosure relates to a dicing / die bonding integrated film.
  • This film has a base material layer, an adhesive layer having a first surface facing the base material layer and a second surface on the opposite side, and an adhesive provided so as to cover the center of the second surface
  • the pressure-sensitive adhesive layer includes a first region including at least a region corresponding to a wafer attachment position in the adhesive layer, and a second region positioned so as to surround the first region.
  • the first region is a region in which the adhesive strength is lower than that of the second region by irradiation with active energy rays, and the temperature is 23 ° C. and the peeling angle is 30 ° and the peeling speed is 60 mm / min.
  • the measured adhesive strength of the first region to the adhesive layer is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less.
  • DAF jumping in the dicing process can be sufficiently suppressed, and excellent pick-up property from the adhesive layer can be achieved.
  • a semiconductor device can be manufactured with a yield.
  • the adhesive force of the adhesive layer to the stainless steel substrate in the second region is 0.2 N / 25 mm or more.
  • This adhesive strength means the peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min.
  • the first and second regions of the pressure-sensitive adhesive layer are made of, for example, the same composition before irradiation with active energy rays, and the first region is 10 to 1000 mJ / second relative to the region that becomes the first region. It is formed through a step of irradiating an active energy ray in an amount of cm 2 .
  • One aspect of the present disclosure relates to a method of manufacturing the dicing / die bonding integrated film.
  • the first aspect of this production method is formed on the surface of the base material layer, the pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiation with active energy rays, and the surface of the pressure-sensitive adhesive layer.
  • the step of producing a laminate including the adhesive layer and the step of irradiating active energy rays to the region to be the first region of the pressure-sensitive adhesive layer included in the laminate are included in this order.
  • the second aspect of the production method includes a step of forming a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiating active energy rays on the surface of the base material layer, and a pressure-sensitive adhesive layer.
  • the step of irradiating the region to be the first region with active energy rays and the step of laminating the adhesive layer on the surface of the pressure-sensitive adhesive layer after irradiating the active energy rays are included in this order.
  • the present invention can be applied to a process of dicing a wafer into a large number of small chips, can sufficiently suppress DAF jump in the dicing process, and is equipped with a pressure-sensitive adhesive layer having excellent pickup properties.
  • An integral film is provided.
  • the manufacturing method of a dicing die-bonding integrated film and the manufacturing method of a semiconductor device using the said film are provided.
  • FIG. 1A is a plan view showing an embodiment of a dicing / die bonding integrated film
  • FIG. 1B is a schematic cross-sectional view along the line BB shown in FIG. 1A
  • FIG. 2 is a schematic view showing a state in which a dicing ring is attached to the peripheral portion of the pressure-sensitive adhesive layer of the dicing / die bonding integrated film and a wafer is attached to the surface of the adhesive layer.
  • FIG. 3 is a cross-sectional view schematically showing how the 30 ° peel strength of the pressure-sensitive adhesive layer relative to the adhesive layer is measured.
  • FIG. 4 is a schematic cross-sectional view of an embodiment of a semiconductor device.
  • 5 (a) to 5 (d) are cross-sectional views schematically showing a process of manufacturing DAF (a laminate of a chip and an adhesive piece).
  • 6 is a cross-sectional view schematically showing a process of manufacturing the semiconductor device shown in FIG.
  • FIG. 7 is a cross-sectional view schematically showing the process of manufacturing the semiconductor device shown in FIG. 8 is a cross-sectional view schematically showing a process of manufacturing the semiconductor device shown in FIG.
  • (meth) acryl means acryl or methacryl.
  • FIG. 1A is a plan view showing a dicing / die bonding integrated film according to this embodiment
  • FIG. 1B is a schematic cross-sectional view taken along line BB of FIG. Dicing / die bonding integrated film 10 (hereinafter, simply referred to as “film 10” in some cases) is a semiconductor including a dicing process for dividing wafer W into a plurality of chips having an area of 9 mm 2 or less and a subsequent pick-up process.
  • the present invention is applied to the device manufacturing process (see FIGS. 5C and 5D).
  • the film 10 includes a base material layer 1, a pressure-sensitive adhesive layer 3 having a first surface F1 facing the base material layer 1 and a second surface F2 opposite to the first surface F1, and a second surface F2 of the pressure-sensitive adhesive layer 3. And an adhesive layer 5 provided so as to cover the central portion of the substrate in this order.
  • an adhesive layer 5 provided so as to cover the central portion of the substrate in this order.
  • the base material layer 1 has a predetermined length (
  • the laminated body of the adhesive layer 3 and the adhesive layer 5 may be arranged at a predetermined interval so as to be aligned in the longitudinal direction.
  • the pressure-sensitive adhesive layer 3 includes a first region 3a that includes at least a region Rw corresponding to the attachment position of the wafer W in the adhesive layer 5, and a second region 3b that is positioned so as to surround the first region 3a. .
  • a broken line in FIGS. 1A and 1B indicates a boundary between the first region 3a and the second region 3b.
  • the first region 3a and the second region 3b are made of the same composition before irradiation with active energy rays.
  • the first region 3a is a region in which the adhesive force is reduced as compared with the second region 3b when irradiated with active energy rays such as ultraviolet rays.
  • the second region 3b is a region where the dicing ring DR is attached (see FIG. 2).
  • the second region 3b is a region that is not irradiated with active energy rays and has a high adhesive force to the dicing ring DR.
  • the adhesive strength of the first region 3a to the adhesive layer 5 is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less.
  • This adhesive strength is a 30 ° peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 30 ° and a peeling speed of 60 mm / min.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the 30 ° peel strength of the pressure-sensitive adhesive layer 3 is measured with the adhesive layer 5 of the measurement sample (width 25 mm ⁇ length 100 mm) fixed to the support plate 80. It is.
  • the lower limit value of the adhesive strength may be 1.5 N / 25 mm or 2.0 N / 25 mm, and the upper limit value may be 3.5 N / 25 mm or 2.5 N / 25 mm.
  • the film 10 is suitable for a dicing process for dividing a wafer into a plurality of small chips having an area of 9 mm 2 or less and a subsequent pickup process.
  • the present inventors have studied by paying attention to the fact that the pickup behavior of a small chip having a size of 3 mm ⁇ 3 mm or less (area 9 mm 2 or less) is different from that of a large chip having a size of, for example, about 8 mm ⁇ 6 mm.
  • the adhesive strength of the first region 3a to the adhesive layer 5 was specified in the above range (1.2 N / 25 mm or more and 4.5 N / 25 mm or less).
  • the 30 ° peel strength of the first region 3a with respect to the adhesive layer 5 is within the above range.
  • the interface peeling between the adhesive layer and the adhesive piece progresses from the edge part of the DAF toward the center part, but the adhesive force of the adhesive layer is too strong, so the interface peeling increases the pin.
  • the chip does not catch up, and the chip is deformed excessively and is liable to be cracked or picked up.
  • the pick-up property of the large chip is mainly governed by the interface peeling between the adhesive layer and the adhesive piece, and the adhesive force of the adhesive layer to the adhesive layer is smaller than the lower limit (1.2 N / 25 mm) of the above range.
  • the present inventors have found that it should be set.
  • the pick-up property of the small chip is mainly governed by the peeling of the edge portion of the DAF, and once the edge portion is peeled off by the push-up by the pin, the peeling of the interface between the adhesive layer and the adhesive piece is smooth thereafter. The present inventors have found that the process proceeds.
  • region 3a which has the adhesive force of the said range with respect to the adhesive bond layer 5 is formed by irradiation of an active energy ray.
  • the present inventors have found that reducing the adhesive strength of the pressure-sensitive adhesive layer by irradiation with active energy rays affects the peeling of the edge portion of the DAF. That is, if the adhesive strength of the first region 3a is excessively reduced by the irradiation of the active energy ray, the 30 ° peel strength of the first region 3a with respect to the adhesive layer 5 is lowered, while the pickup target is small. In the case of a chip, the edge portion of the DAF tends to be difficult to peel off, and the chip is liable to be deformed excessively to cause cracks or pickup errors.
  • region 3a with respect to the adhesive bond layer 5 is what does not reduce excessively the adhesive force before irradiating an active energy ray. As a result, peeling of the edge portion of the DAF easily occurs even in a small chip.
  • the adhesive strength of the first region 3a of the adhesive layer 3 can be reduced by, for example, relatively reducing the amount of the crosslinking agent in the adhesive layer or reducing the irradiation amount of the active energy ray. Can be adjusted.
  • the adhesive strength of the second region R2 to the stainless steel substrate is preferably 0.2 N / 25 mm or more.
  • This adhesive strength is 90 ° peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min.
  • the lower limit value of the adhesive strength may be 0.3 N / 25 mm or 0.4 N / 25 mm, and the upper limit value is, for example, 2.0 N / 25 mm, or 1.0 N / 25 mm.
  • the pressure-sensitive adhesive layer before irradiation with active energy rays is made of a pressure-sensitive adhesive composition containing, for example, a (meth) acrylic resin, a photopolymerization initiator, and a crosslinking agent.
  • the second region R2 where the active energy ray is not irradiated has the same composition as the pressure-sensitive adhesive layer before the active energy ray irradiation.
  • the components contained in the pressure-sensitive adhesive composition will be described in detail.
  • the pressure-sensitive adhesive composition contains a (meth) acrylic resin having a chain polymerizable functional group, and the functional group is preferably at least one selected from an acryloyl group and a methacryloyl group.
  • the content of the functional group in the pressure-sensitive adhesive layer before irradiation with active energy rays is, for example, 0.1 to 1.2 mmol / g, 0.3 to 1.0 mmol / g, or 0.5 to 0.8 mmol / g. g may be sufficient.
  • first region R1 When the content of the functional group is 0.1 mmol / g or more, it is easy to form a region (first region R1) in which the adhesive strength is moderately reduced by irradiation with active energy rays, while 1.2 mmol / g It is easy to achieve the excellent pick-up property by being g or less.
  • (Meth) acrylic resin can be obtained by synthesis by a known method.
  • the synthesis method include solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization, precipitation polymerization, gas phase polymerization, plasma polymerization, and supercritical polymerization.
  • the polymerization reaction includes radical polymerization, cationic polymerization, anionic polymerization, living radical polymerization, living cationic polymerization, living anion polymerization, coordination polymerization, immodal polymerization, ATRP (atom transfer radical polymerization) and RAFT ( A technique such as reversible addition-fragmentation chain transfer polymerization) may also be mentioned.
  • ATRP atom transfer radical polymerization
  • RAFT A technique such as reversible addition-fragmentation chain transfer polymerization
  • synthesis by radical polymerization using a solution polymerization method can be blended using the resin solution obtained by polymerization as it is, in addition to good economic efficiency, high reaction rate, easy polymerization control, etc
  • the synthesis method of the (meth) acrylic resin will be described in detail by taking as an example a method of obtaining the (meth) acrylic resin by radical polymerization using the solution polymerization method.
  • the monomer used when synthesizing the (meth) acrylic resin is not particularly limited as long as it has one (meth) acryloyl group in one molecule. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, butoxyethyl (meth) acrylate, and isoamyl (meth) acrylate.
  • Aromatic (meth) acrylates such as 2-tetrahydrofurfuryl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, 2- (meth) acryloyloxyethyl-N-carbazole, etc.
  • a compound having an ethylenically unsaturated group and an epoxy group (2-ethyl-2-oxetanyl) methyl (meth) acrylate, (2-methyl-2-oxetanyl) methyl (meth) acrylate, 2- (2-ethyl- 2-Oxetanyl) ethyl ( ) Acrylate, 2- (2-methyl-2-oxetanyl) ethyl (meth) acrylate, 3- (2-ethyl-2-oxetanyl) propyl (meth) acrylate, 3- (2-methyl-2-oxetanyl) propyl
  • compounds having an ethylenically unsaturated group and oxetanyl group such as (meth) acrylate
  • compounds having an ethylenically unsaturated group and isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate
  • the (meth) acrylic resin preferably has at least one functional group selected from a hydroxyl group, a glycidyl group, an amino group, and the like as a reaction point with a functional group-introducing compound or a crosslinking agent described later.
  • Monomers for synthesizing a (meth) acrylic resin having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 3-chloro-2.
  • Monomers for synthesizing a (meth) acrylic resin having a glycidyl group include glycidyl (meth) acrylate, ⁇ -ethylglycidyl (meth) acrylate, ⁇ -propylglycidyl (meth) acrylate, ⁇ -butylglycidyl (meth) Acrylate, 2-methylglycidyl (meth) acrylate, 2-ethylglycidyl (meth) acrylate, 2-propylglycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 3,4-epoxyheptyl (meth) acrylate , ⁇ -ethyl-6,7-epoxyheptyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-viny
  • the (meth) acrylic resin synthesized from these monomers preferably contains a functional group capable of chain polymerization.
  • the chain polymerizable functional group is, for example, at least one selected from an acryloyl group and a methacryloyl group.
  • the functional group capable of chain polymerization is introduced into the (meth) acrylic resin by, for example, reacting the following compound (functional group-introducing compound) with the (meth) acrylic resin synthesized as described above. be able to.
  • functional group-introducing compounds include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate; diisocyanate compound Or an acryloyl monoisocyanate compound obtained by reacting a polyisocyanate compound with hydroxyethyl (meth) acrylate or 4-hydroxybutylethyl (meth) acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) Examples include acryloyl monoisocyanate compounds obtained by reaction with acrylates. Among these, 2-methacryloyloxyethyl isocyanate is particularly preferable. These compounds can also be used individually by 1 type, and can also be used in combination of 2 or
  • the photopolymerization initiator is not particularly limited as long as it generates an active species capable of chain polymerization by irradiation with active energy rays (at least one selected from ultraviolet rays, electron beams and visible rays). And radical photopolymerization initiators.
  • the chain-polymerizable active species means one that initiates a polymerization reaction by reacting with a chain-polymerizable functional group.
  • radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane-1 -One, ⁇ -hydroxy ketones such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1- ⁇ -amino ketones such as (4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; 1- [4 Oxime esters such as-(phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-trimethyl) Phosphine oxides such as benzoyl) phenylphos
  • the content of the photopolymerization initiator in the pressure-sensitive adhesive composition is, for example, 0.1 to 30 parts by mass and 0.3 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin content. It is preferably 0.5 to 5 parts by mass.
  • the content of the photopolymerization initiator is less than 0.1 parts by mass, the pressure-sensitive adhesive layer becomes insufficiently cured after irradiation with active energy rays, and pickup failure tends to occur.
  • the content of the photopolymerization initiator exceeds 30 parts by mass, contamination of the adhesive layer (transfer of the photopolymerization initiator to the adhesive layer) tends to occur.
  • the crosslinking agent is used, for example, for the purpose of controlling the elastic modulus and / or tackiness of the pressure-sensitive adhesive layer.
  • the crosslinking agent may be a compound having two or more functional groups that can react with at least one functional group selected from the hydroxyl group, glycidyl group, amino group, and the like of the (meth) acrylic resin in one molecule.
  • Examples of the bond formed by the reaction between the crosslinking agent and the (meth) acrylic resin include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond, and a urea bond.
  • a compound having two or more isocyanate groups in one molecule as a crosslinking agent.
  • a compound having two or more isocyanate groups in one molecule it can easily react with the hydroxyl group, glycidyl group, amino group and the like of the (meth) acrylic resin to form a strong crosslinked structure.
  • Examples of the compound having two or more isocyanate groups in one molecule include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, lysine isocyanate Isocyanate compounds such as
  • a reaction product (isocyanate group-containing oligomer) of the above-described isocyanate compound and a polyhydric alcohol having two or more OH groups in one molecule may be employed.
  • polyhydric alcohols having two or more OH groups in one molecule include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, Examples include 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, and 1,3-cyclohexanediol.
  • a crosslinking agent a reaction product of a polyfunctional isocyanate having two or more isocyanate groups in one molecule and a polyhydric alcohol having three or more OH groups in one molecule (isocyanate group-containing oligomer). It is further desirable that By using such an isocyanate group-containing oligomer as a cross-linking agent, the pressure-sensitive adhesive layer 3 forms a dense cross-linked structure, thereby sufficiently suppressing the pressure-sensitive adhesive from adhering to the adhesive layer 5 in the pickup process. .
  • the content of the crosslinking agent is, for example, 3 to 30 parts by mass, preferably 4 to 15 parts by mass, and preferably 7 to 7 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin content. It is more preferable that it is 10 mass parts.
  • the content of the crosslinking agent is less than 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, the formation of the crosslinked structure tends to be insufficient.
  • the interfacial adhesion with the agent layer 5 is not sufficiently lowered, and defects are likely to occur during pick-up.
  • the content of the cross-linking agent exceeds 30 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, the pressure-sensitive adhesive layer 3 tends to become excessively hard.
  • the semiconductor chip is easy to peel off.
  • the content of the crosslinking agent with respect to the total mass of the pressure-sensitive adhesive composition is, for example, 0.1 to 20 mass%, and may be 3 to 17 mass% or 5 to 15 mass%.
  • the content of the crosslinking agent is 0.1% by mass or more, it is easy to form a region (first region R1) in which the adhesive strength is appropriately reduced by irradiation with active energy rays, and on the other hand, at 15% by mass or less. It is easy to achieve excellent pick-up properties.
  • the thickness of the pressure-sensitive adhesive layer 3 may be appropriately set according to the conditions (temperature, tension, etc.) of the expanding process, and is, for example, 1 to 200 ⁇ m, preferably 5 to 50 ⁇ m, and preferably 10 to 20 ⁇ m. It is more preferable. If the thickness of the pressure-sensitive adhesive layer 3 is less than 1 ⁇ m, the tackiness tends to be insufficient, and if it exceeds 200 ⁇ m, the kerf width is narrow when expanded (the stress is relaxed when the pin is pushed up), and the pickup is likely to be insufficient. .
  • the pressure-sensitive adhesive layer 3 is formed on the base material layer 1.
  • a method for forming the pressure-sensitive adhesive layer 3 a known method can be employed.
  • a laminate of the base material layer 1 and the pressure-sensitive adhesive layer 3 may be formed by a two-layer extrusion method, or a varnish for forming the pressure-sensitive adhesive layer 3 is prepared and applied to the surface of the base material layer 1.
  • the pressure-sensitive adhesive layer 3 may be formed on a film that has been processed or subjected to a release treatment, and this may be transferred to the base material layer 1.
  • the varnish for forming the pressure-sensitive adhesive layer 3 is preferably prepared using an organic solvent that can dissolve a (meth) acrylic resin, a photopolymerization initiator, and a crosslinking agent and volatilizes by heating.
  • organic solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene Alcohols such as glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, etc
  • toluene for example, toluene, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, ethylene glycol monomethyl ether, ethylene glycol mono Ethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and N, N-dimethylacetamide are preferred.
  • These organic solvents may be used individually by 1 type, and may use 2 or more types together.
  • the solid content concentration of the varnish is usually preferably 10 to 60% by mass.
  • Base material layer As the base material layer 1, a known polymer sheet or film can be used, and there is no particular limitation as long as the expanding process can be performed under a low temperature condition. Specifically, as the base material layer 1, crystalline polypropylene, amorphous polypropylene, high density polyethylene, medium density polyethylene, low density polyethylene, ultra low density polyethylene, low density linear polyethylene, polybutene, polymethylpentene, etc.
  • polyesters such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate,
  • the base material layer 1 has a surface mainly composed of at least one resin selected from polyethylene, polypropylene, a polyethylene-polypropylene random copolymer, and a polyethylene-polypropylene block copolymer. Are preferably in contact with each other. These resins are good base materials from the viewpoints of properties such as Young's modulus, stress relaxation property, melting point, etc., as well as cost and recycling of used materials after use.
  • the base material layer 1 may be a single layer, but may have a multilayer structure in which layers made of different materials are laminated as necessary.
  • the surface of the base material layer 1 may be subjected to a surface roughening treatment such as a mat treatment or a corona treatment.
  • the adhesive composition that constitutes the adhesive layer 5 preferably contains an epoxy group-containing acrylic copolymer, an epoxy resin, and an epoxy resin curing agent. According to the adhesive layer 5 containing these components, it has excellent chip / substrate and chip / chip adhesive properties, and can provide electrode embedding properties and wire embedding properties, and can be bonded at a low temperature in the die bonding process. It is preferable because it can be cured in a short time and has excellent reliability after molding with a sealant.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenol, diglycidyl etherified product of alcohol, and alkyl-substituted products and halides thereof , Bifunctional epoxy resins such as hydrogenated products, and novolak type epoxy resins.
  • epoxy resins such as a polyfunctional epoxy resin and a heterocyclic ring-containing epoxy resin. These can be used alone or in combination of two or more.
  • components other than the epoxy resin may be included as impurities within a range that does not impair the characteristics.
  • Examples of the epoxy resin curing agent include a phenol resin that can be obtained by reacting a phenol compound and a xylylene compound that is a divalent linking group in the presence of a non-catalyst or an acid catalyst.
  • Examples of the phenol compound used for the production of the phenol resin include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, p-ethylphenol, on-propylphenol, mn-propylphenol, pn-propylphenol, o-isopropylphenol, m-isopropylphenol, p-isopropylphenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, octylphenol, nonylphenol, 2,4-xylenol, 2,6-
  • phenol compounds may be used alone or in combination of two or more.
  • the following xylylene dihalide, xylylene diglycol and derivatives thereof can be used as the xylylene compound which is a divalent linking group used in the production of the phenol resin.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and polyphosphoric acid
  • organic acids such as dimethyl sulfuric acid, diethyl sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and ethanesulfonic acid Carboxylic acids
  • Super strong acids such as trifluoromethane sulfonic acid
  • Strong acidic ion exchange resins such as alkane sulfonic acid type ion exchange resin
  • Super strong acidic ion exchange such as perfluoroalkane sulfonic acid type ion exchange resin Resins (trade name: Nafion, Nafion, manufactured by Du Pont, “Nafion” is a registered trademark); natural and synthetic zeolites; practically at 50 to 250 ° C.
  • reaction is performed until the xylylene compound as a raw material disappears and the reaction composition becomes constant.
  • the reaction time depends on the raw materials and the reaction temperature, but is generally about 1 to 15 hours. In practice, it may be determined while tracking the reaction composition by GPC (gel permeation chromatography) or the like.
  • the epoxy group-containing acrylic copolymer is preferably a copolymer obtained by using glycidyl acrylate or glycidyl methacrylate as a raw material in an amount of 0.5 to 6% by mass with respect to the obtained copolymer.
  • This amount is 0.5% by mass or more, high adhesive force can be easily obtained, and when it is 6% by mass or less, gelation can be suppressed.
  • the balance can be a mixture of alkyl acrylate having 1 to 8 carbon atoms such as methyl acrylate and methyl methacrylate, alkyl methacrylate, styrene, acrylonitrile and the like.
  • ethyl (meth) acrylate and / or butyl (meth) acrylate are particularly preferable.
  • the mixing ratio is preferably adjusted in consideration of the Tg of the copolymer.
  • Tg is less than ⁇ 10 ° C.
  • the tackiness of the adhesive layer 5 in the B-stage state tends to increase, and the handleability tends to deteriorate.
  • the upper limit of the glass transition point (Tg) of an epoxy-group-containing acrylic copolymer is 30 degreeC, for example.
  • the polymerization method is not particularly limited, and examples thereof include pearl polymerization and solution polymerization. Examples of commercially available epoxy group-containing acrylic copolymers include HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation).
  • the weight average molecular weight of the epoxy group-containing acrylic copolymer is 100,000 or more, and if it is in this range, the adhesiveness and heat resistance are high, preferably 300,000 to 3,000,000, and 500,000 to 2,000,000. Is more preferable. It can suppress that the filling property between a semiconductor chip and the board
  • the weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • the adhesive layer 5 may further contain a curing accelerator such as a tertiary amine, imidazole, or quaternary ammonium salt, if necessary.
  • a curing accelerator such as a tertiary amine, imidazole, or quaternary ammonium salt.
  • Specific examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used alone or in combination of two or more.
  • the adhesive layer 5 may further contain an inorganic filler as necessary.
  • the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, Examples thereof include crystalline silica and amorphous silica. These may be used alone or in combination of two or more.
  • the thickness of the adhesive layer 5 is, for example, 1 to 300 ⁇ m, preferably 5 to 150 ⁇ m, and more preferably 10 to 100 ⁇ m. If the thickness of the adhesive layer 5 is less than 1 ⁇ m, the adhesiveness tends to be insufficient, while if it exceeds 300 ⁇ m, the splitting property and the pickup property at the time of expansion tend to be insufficient.
  • the aspect which does not contain a thermosetting resin may be sufficient as the adhesive bond layer 5.
  • the adhesive layer 5 includes a reactive group-containing (meth) acrylic copolymer
  • the adhesive layer 5 includes a reactive group-containing (meth) acrylic copolymer, a curing accelerator, and a filler. Any material can be used (see Example 4).
  • the production method of the film 10 is formed on the surface of the base material layer 1, the pressure-sensitive adhesive layer made of a pressure-sensitive adhesive composition whose adhesive strength is reduced by irradiating active energy rays, and the surface of the pressure-sensitive adhesive layer.
  • the step of producing a laminate including the adhesive layer 5 and the step of irradiating active energy rays to the region to be the first region R1 of the pressure-sensitive adhesive layer included in the laminate are included in this order.
  • the dose of the active energy ray to the area to be the first region R1, for example, a 10 ⁇ 1000mJ / cm 2 may be 100 ⁇ 700mJ / cm 2 or 200 ⁇ 500mJ / cm 2.
  • the manufacturing method of the film 10 includes a step of forming a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiating active energy rays on the surface of the base material layer 1, and a step of the pressure-sensitive adhesive layer.
  • 1 includes a step of irradiating an active energy ray to a region to be a region 3a and a step of laminating an adhesive layer 5 on the surface of the pressure-sensitive adhesive layer 3 after the irradiation of the active energy ray in this order. It's okay.
  • FIG. 4 is a cross-sectional view schematically showing the semiconductor device according to this embodiment.
  • the semiconductor device 100 shown in this figure includes a substrate 70, four chips S1, S2, S3, S4 stacked on the surface of the substrate 70, electrodes (not shown) on the surface of the substrate 70, and four chips S1. , S2, S3, and S4, wires W1, W2, W3, and W4, and a sealing layer 50 that seals them.
  • the substrate 70 is, for example, an organic substrate, and may be a metal substrate such as a lead frame. From the viewpoint of suppressing warpage of the semiconductor device 100, the thickness of the substrate 70 is, for example, 70 to 140 ⁇ m, and may be 80 to 100 ⁇ m.
  • the four chips S1, S2, S3, S4 are stacked via a cured product 5C of the adhesive piece 5P.
  • the shape of the chips S1, S2, S3, S4 in plan view is, for example, a square or a rectangle.
  • the area of the chips S1, S2, S3, S4 is 9 mm 2 or less, and may be 0.1-4 mm 2 or 0.1-2 mm 2 .
  • the length of one side of the chips S1, S2, S3, S4 is, for example, 3 mm or less, and may be 0.1 to 2.0 mm or 0.1 to 1.0 mm.
  • the thickness of the chips S1, S2, S3, S4 is, for example, 10 to 170 ⁇ m, and may be 25 to 100 ⁇ m.
  • the lengths of one side of the four chips S1, S2, S3, and S4 may be the same or different from each other, and the thickness is the same.
  • the manufacturing method of the semiconductor device 100 includes a step of preparing the above-described film 10, a wafer W attached to the adhesive layer 5 of the film 10, and a dicing ring DR with respect to the second surface F ⁇ b> 2 of the pressure-sensitive adhesive layer 3.
  • a step of picking up from the first region 3a of the pressure-sensitive adhesive layer 3 and a step of mounting the chip S1 on the substrate 70 via the adhesive piece 5P are included.
  • the above-described film 10 is prepared. As shown in FIG. 5A and FIG. 5B, the film 10 is attached so that the adhesive layer 5 is in contact with one surface of the wafer W. Further, the dicing ring DR is attached to the second surface F2 of the pressure-sensitive adhesive layer 3.
  • the wafer W, the adhesive layer 5 and the pressure-sensitive adhesive layer 3 are diced. As a result, the wafer W is divided into chips S as shown in FIG.
  • the adhesive layer 5 is also separated into pieces 5P. Examples of the dicing method include a method using a dicing blade or a laser.
  • the wafer W may be thinned by grinding the wafer W prior to dicing.
  • the chips S are separated from each other by expanding the base material layer 1 under normal temperature or cooling conditions as shown in FIG. 5D without irradiating the adhesive layer 3 with active energy rays.
  • the adhesive piece 5P is peeled off from the pressure-sensitive adhesive layer 3 by being pushed up by the pin 42 while the DAF 8 is sucked by the suction collet 44 and picked up.
  • the first chip S ⁇ b> 1 (chip S) is pressure-bonded to a predetermined position of the substrate 70 through the adhesive piece 5 ⁇ / b> P.
  • the adhesive piece 5P is cured by heating. Thereby, the adhesive piece 5P is cured to become a cured product 5C.
  • the curing treatment of the adhesive piece 5P may be performed in a pressurized atmosphere from the viewpoint of reducing voids.
  • the second-stage chip S2 is mounted on the surface of the chip S1.
  • the structure 60 shown in FIG. 7 is manufactured by mounting the third-stage and fourth-stage chips S3 and S4. After the chips S1, S2, S3, S4 and the substrate 70 are electrically connected by the wires W1, W2, W3, W4 (see FIG. 8), the semiconductor element and the wires are sealed by the sealing layer 50.
  • the semiconductor device 100 shown in FIG. 4 is completed.
  • the film 10 provided with the base material layer 1, the adhesive layer 3, and the adhesive bond layer 5 in this order was illustrated, the aspect which does not comprise the adhesive bond layer 5 may be sufficient.
  • the film 10 may further include a cover film (not shown) that covers the adhesive layer 5.
  • reaction solution was transferred to a pressure vessel having a capacity of 2000 ml equipped with a three-one motor, a stirring blade, and a nitrogen introduction tube, heated at 120 ° C. and 0.28 MPa for 4.5 hours, and then room temperature (25 ° C., and so on) ).
  • the solution containing the acrylic resin (A) obtained as described above was vacuum-dried at 60 ° C. overnight.
  • the solid content thus obtained was subjected to elemental analysis with a fully automatic elemental analyzer (trade name: varioEL, manufactured by Elemental Co., Ltd.), and the content of introduced 2-methacryloxyethyl isocyanate was calculated from the nitrogen content. 0.50 mmol / g.
  • the polystyrene conversion weight average molecular weight of (A) acrylic resin was calculated
  • a varnish for forming the pressure-sensitive adhesive layer was prepared by mixing the following components (see Table 2). The amount of ethyl acetate (solvent) was adjusted so that the total solid content of the varnish was 25% by mass.
  • a polyethylene terephthalate film (width 450 mm, length 500 mm, thickness 38 ⁇ m) having a release treatment on one surface was prepared.
  • An adhesive layer-forming varnish was applied to the surface subjected to the mold release treatment using an applicator and then dried at 80 ° C. for 5 minutes. This obtained the laminated body (dicing film) which consists of a polyethylene terephthalate film and the 30-micrometer-thick adhesive layer formed on it.
  • a polyolefin film (width 450 mm, length 500 mm, thickness 80 ⁇ m) having a corona treatment on one surface was prepared.
  • the surface subjected to the corona treatment and the adhesive layer of the laminate were bonded together at room temperature.
  • the pressure-sensitive adhesive layer was transferred to a polyolefin film (cover film) by pressing with a rubber roll.
  • the dicing film with a cover film was obtained by leaving it to stand at room temperature for 3 days.
  • Silane coupling agent NUC A-189 ( (Product name) NUC Co., Ltd., ⁇ -mercaptopropyltrimethoxysilane
  • Silane coupling agent NUCA-1160 (trade name), Nihon Unicar Co., Ltd., ⁇ -ureidopropyltriethoxysilane
  • SC2050-HLG trade name
  • Admatex Corporation Silica, average particle diameter 0.500
  • a varnish for forming an adhesive layer was obtained through the steps of stirring and mixing and vacuum degassing.
  • Epoxy group-containing acrylic copolymer (HTR-860P-3 (trade name), manufactured by Nagase ChemteX Corporation, weight average molecular weight 800,000): 16 parts by mass Curing accelerator (Curesol 2PZ-CN (trade name), Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole, “Curazole” is a registered trademark)
  • a polyethylene terephthalate film (thickness: 35 ⁇ m) having a release treatment on one surface was prepared.
  • a varnish for forming an adhesive layer was applied to the surface subjected to the release treatment using an applicator, and then heated and dried at 140 ° C. for 5 minutes.
  • This obtained the laminated body (die bonding film) which consists of a polyethylene terephthalate film (carrier film) and the 20-micrometer-thick adhesive layer (B stage state) formed on it.
  • a die bonding film composed of an adhesive layer and a carrier film was cut into a circle having a diameter of 335 mm together with the carrier film.
  • a dicing film from which the polyethylene terephthalate film had been peeled was attached to this at room temperature, and then allowed to stand at room temperature for 1 day. Thereafter, the dicing film was cut into a circle having a diameter of 370 mm.
  • the region corresponding to the wafer application position was irradiated with ultraviolet rays as follows.
  • ultraviolet rays were partially irradiated using a pulsed xenon lamp at an irradiation amount of 70 W and 150 mJ / cm 2 .
  • a black screen was used to irradiate ultraviolet light onto a portion having an inner diameter of 318 mm from the center of the film. In this way, a plurality of dicing / die bonding integrated films for use in various evaluation tests described later were obtained.
  • Example 2 The irradiation amount of ultraviolet rays instead of the 150 mJ / cm 2, other that was 300 mJ / cm 2 in the same manner as in Example 1 to obtain a plurality of dicing die bonding integrated film.
  • Example 3 The irradiation amount of ultraviolet rays instead of the 150 mJ / cm 2, other that was 500 mJ / cm 2 in the same manner as in Example 1 to obtain a plurality of dicing die bonding integrated film.
  • Example 4 A plurality of dicing die bondings were carried out in the same manner as in Example 1 except that a die bonding film having an adhesive layer B formed as follows was used instead of the one having the adhesive layer A. An integral film was obtained.
  • Die Bonding Film Adhesive Layer B
  • cyclohexanone solvent
  • Filler (“SC2050-HLG (trade name), manufactured by Admatechs Co., Ltd., silica, average particle size 0.500 ⁇ m): 50 parts by mass
  • stirring was performed.
  • a varnish for forming an adhesive layer was obtained through the steps of mixing and vacuum degassing.
  • Epoxy group-containing acrylic copolymer (HTR-860P-3 (trade name), manufactured by Nagase ChemteX Corp., weight average molecular weight 800,000): 100 parts by mass Curing accelerator (Curesol 2PZ-CN (trade name), 0.1 part by mass of Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole, “Cureazole” is a registered trademark)
  • Example 5 Instead of the raw material monomer composition shown in Production Example 1 in Table 1, a raw material monomer composition shown in Production Example 2 was used, and a solution of (A) acrylic resin according to Production Example 2 produced by the same method as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as Example 2 except that this solution was used.
  • Example 6 The amount of the crosslinking agent in the pressure-sensitive adhesive layer is 4.0 parts by mass instead of 8.0 parts by mass, and the amount of UV irradiation is 500 mJ / cm 2 instead of 300 mJ / cm 2. In the same manner as in Example 5, a plurality of dicing / die bonding integrated films were obtained.
  • Example 7 Instead of the raw material monomer composition shown in Production Example 1 in Table 1, a raw material monomer composition shown in Production Example 3 was used, and a solution of (A) an acrylic resin according to Production Example 3 produced by the same method as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as Example 2 except that this solution was used.
  • Example 8> Instead of the raw material monomer composition shown in Production Example 1 in Table 1, the raw material monomer composition shown in Production Example 4 was used, and a solution of (A) an acrylic resin according to Production Example 4 produced in the same manner as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 3 except that this solution was used.
  • Example 1 A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 1 except that the amount of the crosslinking agent in the pressure-sensitive adhesive layer was changed to 15.0 parts by mass instead of 8.0 parts by mass.
  • the adhesive strength of the adhesive layer (ultraviolet non-irradiated region) to the stainless steel substrate was evaluated by measuring 90 ° peel strength. That is, a measurement sample having a width of 25 mm and a length of 100 mm was cut out from the dicing / die bonding integrated film. The measurement sample was a laminate of an adhesive layer (non-irradiated region) and an adhesive layer. After the surface of the adhesive layer side of the sample was attached to a stainless steel substrate (SUS430BA), the peel strength of the adhesive layer (ultraviolet non-irradiated area) to the stainless steel substrate using an autograph “AGS-1000” manufactured by Shimadzu Corporation was measured. The measurement conditions were a peeling angle of 90 ° and a peeling speed of 50 mm / min.
  • the present invention can be applied to a process of dicing a wafer into a large number of small chips, can sufficiently suppress DAF jump in the dicing process, and is equipped with a pressure-sensitive adhesive layer having excellent pickup properties.
  • An integral film is provided.
  • the manufacturing method of a dicing die-bonding integrated film and the manufacturing method of a semiconductor device using the said film are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dicing (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The dicing die-bonding integrated film according to the present invention includes: a base layer; a tackifier layer that has first surface that faces the base layer and a second surface opposite the first surface; and an adhesive layer that is provided so as to cover a center portion of the second surface. The tackifier layer has: a first region that includes at least a region that corresponds to an affixing position of a wafer on the adhesive layer; and a second region that is located so as to surround the first region. The first region is a region in which adhesive force is reduced compared to the second region due to irradiation of active energy rays, and the adhesive force of the first region to the adhesive layer measured under the conditions of a peel angle of 30° and a peel rate of 60 mm/min. at a temperature of 23°C is 1.2 N/25 mm to 4.5 N/25 mm.

Description

ダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに、半導体装置の製造方法Dicing / die bonding integrated film, manufacturing method thereof, and manufacturing method of semiconductor device
 本開示はダイシング・ダイボンディング一体型フィルム及びその製造方法、並びに、このフィルムを用いた半導体装置の製造方法に関する。 The present disclosure relates to a dicing / die bonding integrated film, a manufacturing method thereof, and a manufacturing method of a semiconductor device using the film.
 半導体装置は以下の工程を経て製造される。まず、ウェハにダイシング用粘着フィルムを貼り付けた状態でダイシング工程を実施する。その後、エキスパンド工程、ピックアップ工程、マウンティング工程及びダイボンディング工程等が実施される。 Semiconductor devices are manufactured through the following steps. First, the dicing process is carried out with the dicing adhesive film attached to the wafer. Thereafter, an expanding process, a picking process, a mounting process, a die bonding process, and the like are performed.
 半導体装置の製造プロセスにおいて、ダイシング・ダイボンディング一体型フィルムと称されるフィルムが使用されている。このフィルムは、基材層と粘着剤層と接着剤層がこの順序で積層された構造を有し、例えば、次のように使用される。まず、ウェハに対して接着剤層側の面を貼り付けるとともにダイシングリングでウェハを固定した状態でウェハをダイシングする。これにより、ウェハが多数のチップに個片化される。続いて、粘着剤層に対して紫外線を照射することによって接着剤層に対する粘着剤層の粘着力を弱めた後、接着剤層が個片化されてなる接着剤片とともにチップを粘着剤層からピックアップする。その後、接着剤片を介してチップを基板等にマウントする工程を経て半導体装置が製造される。なお、ダイシング工程を経て得られるチップと、これに付着した接着剤片とからなる積層体はDAF(Die Attach Film)と称される。 In a semiconductor device manufacturing process, a film called a dicing / die bonding integrated film is used. This film has a structure in which a base material layer, a pressure-sensitive adhesive layer, and an adhesive layer are laminated in this order. For example, the film is used as follows. First, the wafer is diced in a state where the surface on the adhesive layer side is attached to the wafer and the wafer is fixed by a dicing ring. As a result, the wafer is divided into a large number of chips. Then, after weakening the adhesive force of the pressure-sensitive adhesive layer to the adhesive layer by irradiating the pressure-sensitive adhesive layer with ultraviolet rays, the chip is removed from the pressure-sensitive adhesive layer together with the adhesive piece obtained by dividing the adhesive layer into pieces. Pick up. Thereafter, the semiconductor device is manufactured through a step of mounting the chip on a substrate or the like via the adhesive piece. In addition, the laminated body which consists of the chip | tip obtained through a dicing process and the adhesive piece adhering to this is called DAF (Die Attach Film).
 上述のように、紫外線の照射によって粘着力が弱まる粘着剤層(ダイシングフィルム)はUV硬化型と称される。これに対し、半導体装置の製造プロセスにおいて紫外線が照射されることなく、粘着力が一定のままの粘着剤層は感圧型と称される。感圧型の粘着剤層を備えるダイシング・ダイボンディング一体型フィルムは、ユーザー(主に半導体装置メーカー)にとって、紫外線を照射する工程を実施する必要がなく、また、このための設備が不要であるというメリットがある。特許文献1は、粘着剤層が紫外線によって硬化する成分を含有する点でUV硬化型であると言える一方、粘着剤層の所定の部分のみに予め紫外線が照射されており、ユーザーは半導体装置の製造プロセスにおいて紫外線を照射する必要がない点で感圧型であるとも言えるダイシング・ダイボンドフィルムを開示する。 As described above, an adhesive layer (dicing film) whose adhesive strength is weakened by irradiation with ultraviolet rays is referred to as a UV curable type. On the other hand, the pressure-sensitive adhesive layer in which the adhesive force remains constant without being irradiated with ultraviolet rays in the semiconductor device manufacturing process is called a pressure-sensitive type. The dicing / die bonding integrated film with pressure-sensitive adhesive layer does not require users (mainly semiconductor device manufacturers) to carry out the process of irradiating ultraviolet rays, and there is no need for equipment for this purpose. There are benefits. In Patent Document 1, it can be said that the pressure-sensitive adhesive layer is a UV curable type in that it contains a component that is cured by ultraviolet light. On the other hand, only a predetermined portion of the pressure-sensitive adhesive layer is irradiated with ultraviolet light in advance. Disclosed is a dicing die-bonding film that can be said to be a pressure-sensitive type because it does not require irradiation with ultraviolet rays in the manufacturing process.
特許第4443962号公報Japanese Patent No. 4443996
 ダイシングダイボンド一体型フィルムの粘着剤層は、ダイシング工程において接着剤層及びダイシングリングに対する高い粘着力が求められる。粘着剤層の粘着力が不十分であると、ダイシングブレードの高速回転に伴って接着剤層と粘着剤層の間で剥離が生じてチップが接着剤片とともに飛ぶ現象(以下、これを「DAF飛び」という。)、あるいは、切削水の水流によってダイシングリングが粘着剤層から剥離する現象(以下、この現象を「リング剥がれ」という。)が生じる。本発明者らは、ダイシングによって作製すべきチップのサイズが小さくなるに伴って、これらの現象が顕著になることに着目した。本発明者らは、これらの現象が顕著になる主因について、チップのサイズが小さくなるに伴い、従来と比較してダイシングに長時間を要するようになり、切断途中のウェハ及び切断後のチップがダイシングブレードの衝撃及び切削水に長時間にわたって曝されることによるものであると推察する。 The pressure-sensitive adhesive layer of the dicing die-bonding integrated film is required to have a high adhesive force to the adhesive layer and the dicing ring in the dicing process. If the adhesive strength of the pressure-sensitive adhesive layer is insufficient, peeling occurs between the adhesive layer and the pressure-sensitive adhesive layer as the dicing blade rotates at a high speed, and the chip flies with the adhesive piece (hereinafter referred to as “DAF”). Or a phenomenon in which the dicing ring peels from the adhesive layer due to the flow of cutting water (hereinafter, this phenomenon is referred to as “ring peeling”). The present inventors paid attention to the fact that these phenomena become remarkable as the size of a chip to be manufactured by dicing becomes smaller. The main reason why these phenomena become prominent is that, as the size of the chip becomes smaller, the dicing will take a longer time compared to the conventional one, and the wafer in the middle of cutting and the chip after cutting will be reduced. It is assumed that this is due to the impact of the dicing blade and exposure to the cutting water for a long time.
 そこで、本発明者らは、ウェハを多数の小さいチップ(面積9mm以下)へとダイシングする工程に適用可能であって、所定量の活性エネルギー線(例えば紫外線)が特定の部分に予め照射されていることで当該部分の粘着力が他の部分と比較して低下している粘着剤層を備え、以下の特性を満たすダイシング・ダイボンディング一体型フィルムの開発に取り組んだ。すなわち、ダイシングリングが貼り付けられる領域はダイシング工程における切削水の水流に耐え得る高い粘着力を有し、他方、所定量の活性エネルギー線が予め照射されている領域はダイシングブレード等による外力に耐え、他方、その後のピックアップに適した粘着力を有するダイシング・ダイボンディング一体型フィルムの開発に発明者らは取り組んだ。 Therefore, the present inventors are applicable to a process of dicing a wafer into a large number of small chips (area 9 mm 2 or less), and a predetermined amount of active energy rays (for example, ultraviolet rays) are irradiated on a specific portion in advance. Therefore, the present inventors have developed a dicing / die bonding integrated film that has an adhesive layer in which the adhesive strength of the part is lower than that of the other part and satisfies the following characteristics. That is, the region where the dicing ring is attached has a high adhesive strength that can withstand the flow of cutting water in the dicing process, while the region that is pre-irradiated with a predetermined amount of active energy rays can withstand external force from a dicing blade or the like. On the other hand, the inventors worked on the development of a dicing / die bonding integrated film having adhesive strength suitable for subsequent pickup.
 本開示は、ウェハを多数の小さいチップ(面積9mm以下)へとダイシングする工程に適用可能であり、ダイシング工程においてDAF飛びを十分に抑制できるとともに、ピックアップ性に優れた粘着剤層を備えたダイシング・ダイボンディング一体型フィルム及びその製造方法を提供することを目的とする。また、本開示は、このダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法を提供することを目的とする。 The present disclosure can be applied to a process of dicing a wafer into a large number of small chips (area 9 mm 2 or less), and has a pressure-sensitive adhesive layer that can sufficiently suppress DAF skipping in the dicing process and has excellent pickup properties. An object of the present invention is to provide a dicing / die bonding integrated film and a method for producing the same. Moreover, this indication aims at providing the manufacturing method of the semiconductor device using this dicing die-bonding integrated film.
 本開示の一側面は半導体装置の製造方法に関する。この製造方法は、基材層と、基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、粘着剤層の第2の面の中央部を覆うように設けられた接着剤層とを備えるダイシング・ダイボンディング一体型フィルムを準備する工程と、ダイシング・ダイボンディング一体型フィルムの接着剤層に対してウェハを貼るとともに、粘着剤層の第2の面に対してダイシングリングを貼る工程と、ウェハを面積9mm以下の複数のチップに個片化する工程(ダイシング工程)と、接着剤層が個片化されてなる接着剤片とともにチップを粘着剤層からピックアップする工程と、接着剤片を介してチップを、基板又は他のチップ上にマウントする工程とを含み、粘着剤層は、接着剤層におけるウェハが貼り付けられる領域に対応する第1の領域と、ダイシングリングが貼り付けられる第2の領域とを有し、第1の領域は、活性エネルギー線の照射により、第2の領域と比較して粘着力が低下した状態の領域であり、温度23℃において剥離角度30°及び剥離速度60mm/分の条件で測定される、接着剤層に対する第1の領域の粘着力が1.2N/25mm以上4.5N/25mm以下である。 One aspect of the present disclosure relates to a method for manufacturing a semiconductor device. The manufacturing method covers a base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface on the opposite side, and a central portion of the second surface of the pressure-sensitive adhesive layer. And a step of preparing a dicing / die bonding integrated film provided with an adhesive layer provided on the substrate, a wafer attached to the adhesive layer of the dicing / die bonding integrated film, and a second surface of the adhesive layer A step of attaching a dicing ring to the substrate, a step of dividing the wafer into a plurality of chips having an area of 9 mm 2 or less (dicing step), and an adhesive piece obtained by dividing the adhesive layer into pieces, A step of picking up from the layer and a step of mounting the chip on the substrate or another chip through the adhesive piece, the pressure-sensitive adhesive layer being the first corresponding to the region of the adhesive layer to which the wafer is attached. Territory And a second region to which the dicing ring is attached, and the first region is a region in which the adhesive force is reduced as compared with the second region by irradiation with active energy rays, The adhesive strength of the first region with respect to the adhesive layer, measured at a temperature of 23 ° C. under a peeling angle of 30 ° and a peeling speed of 60 mm / min, is 1.2 N / 25 mm to 4.5 N / 25 mm.
 上記半導体装置の製造方法によれば、ダイシング工程におけるDAF飛びを十分に抑制できること、並びに、粘着剤層からの優れたピックアップ性を達成できること起因して十分に高い歩留まりで半導体装置を製造できる。 According to the method for manufacturing a semiconductor device, a semiconductor device can be manufactured with a sufficiently high yield due to the fact that DAF jumping in the dicing process can be sufficiently suppressed and excellent pick-up properties from the adhesive layer can be achieved.
 本開示の一側面はダイシング・ダイボンディング一体型フィルムに関する。このフィルムは、基材層と、基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、第2の面の中央部を覆うように設けられた接着剤層とを備え、粘着剤層は、接着剤層におけるウェハの貼付け位置に対応する領域を少なくとも含む第1の領域と、第1の領域を囲むように位置する第2の領域とを有し、第1の領域は、活性エネルギー線の照射により、第2の領域と比較して粘着力が低下した状態の領域であり、温度23℃において剥離角度30°及び剥離速度60mm/分の条件で測定される、接着剤層に対する第1の領域の粘着力が1.2N/25mm以上4.5N/25mm以下である。 One aspect of the present disclosure relates to a dicing / die bonding integrated film. This film has a base material layer, an adhesive layer having a first surface facing the base material layer and a second surface on the opposite side, and an adhesive provided so as to cover the center of the second surface The pressure-sensitive adhesive layer includes a first region including at least a region corresponding to a wafer attachment position in the adhesive layer, and a second region positioned so as to surround the first region. The first region is a region in which the adhesive strength is lower than that of the second region by irradiation with active energy rays, and the temperature is 23 ° C. and the peeling angle is 30 ° and the peeling speed is 60 mm / min. The measured adhesive strength of the first region to the adhesive layer is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less.
 上記ダイシング・ダイボンディング一体型フィルムを半導体装置の製造に使用することで、ダイシング工程におけるDAF飛びを十分に抑制できること、並びに、粘着剤層からの優れたピックアップ性を達成できること起因して十分に高い歩留まりで半導体装置を製造できる。 By using the dicing / die bonding integrated film for manufacturing a semiconductor device, DAF jumping in the dicing process can be sufficiently suppressed, and excellent pick-up property from the adhesive layer can be achieved. A semiconductor device can be manufactured with a yield.
 ダイシング工程におけるリング剥がれを抑制する観点から、粘着剤層における上記第2の領域のステンレス基板に対する粘着力は0.2N/25mm以上であることが好ましい。この粘着力は、温度23℃において剥離角度90°及び剥離速度50mm/分の条件で測定されるピール強度を意味する。 From the viewpoint of suppressing ring peeling in the dicing step, it is preferable that the adhesive force of the adhesive layer to the stainless steel substrate in the second region is 0.2 N / 25 mm or more. This adhesive strength means the peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min.
 上記粘着剤層の第1及び第2の領域は、例えば、活性エネルギー線の照射前において同一の組成物からなり、第1の領域は当該第1の領域となる領域に対して10~1000mJ/cmの量の活性エネルギー線を照射する工程を経て形成されたものである。 The first and second regions of the pressure-sensitive adhesive layer are made of, for example, the same composition before irradiation with active energy rays, and the first region is 10 to 1000 mJ / second relative to the region that becomes the first region. It is formed through a step of irradiating an active energy ray in an amount of cm 2 .
 本開示の一側面は上記ダイシング・ダイボンディング一体型フィルムの製造方法に関する。この製造方法の第1の態様は、基材層の表面上に、活性エネルギー線が照射されることによって粘着力が低下する組成物からなる粘着剤層と、粘着剤層の表面上に形成された接着剤層とを含む積層体を作製する工程と、積層体に含まれる粘着剤層の第1の領域となる領域に活性エネルギー線を照射する工程とをこの順序で含む。他方、この製造方法の第2の態様は、基材層の表面上に、活性エネルギー線が照射されることによって粘着力が低下する組成物からなる粘着剤層を形成する工程と、粘着剤層の第1の領域となる領域に活性エネルギー線を照射する工程と、活性エネルギー線を照射した後の粘着剤層の表面上に接着剤層を積層する工程とをこの順序で含む。 One aspect of the present disclosure relates to a method of manufacturing the dicing / die bonding integrated film. The first aspect of this production method is formed on the surface of the base material layer, the pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiation with active energy rays, and the surface of the pressure-sensitive adhesive layer. The step of producing a laminate including the adhesive layer and the step of irradiating active energy rays to the region to be the first region of the pressure-sensitive adhesive layer included in the laminate are included in this order. On the other hand, the second aspect of the production method includes a step of forming a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiating active energy rays on the surface of the base material layer, and a pressure-sensitive adhesive layer. The step of irradiating the region to be the first region with active energy rays and the step of laminating the adhesive layer on the surface of the pressure-sensitive adhesive layer after irradiating the active energy rays are included in this order.
 本開示によれば、ウェハを多数の小さいチップへとダイシングする工程に適用可能であり、ダイシング工程におけるDAF飛びを十分に抑制できるとともに、ピックアップ性に優れた粘着剤層を備えたダイシング・ダイボンディング一体型フィルムが提供される。また、本開示によれば、ダイシング・ダイボンディング一体型フィルムの製造方法、及び、当該フィルムを用いた半導体装置の製造方法が提供される。 According to the present disclosure, the present invention can be applied to a process of dicing a wafer into a large number of small chips, can sufficiently suppress DAF jump in the dicing process, and is equipped with a pressure-sensitive adhesive layer having excellent pickup properties. An integral film is provided. Moreover, according to this indication, the manufacturing method of a dicing die-bonding integrated film and the manufacturing method of a semiconductor device using the said film are provided.
図1(a)はダイシング・ダイボンディング一体型フィルムの一実施形態を示す平面図であり、図1(b)は図1(a)に示すB-B線に沿った模式断面図である。FIG. 1A is a plan view showing an embodiment of a dicing / die bonding integrated film, and FIG. 1B is a schematic cross-sectional view along the line BB shown in FIG. 1A. 図2はダイシング・ダイボンディング一体型フィルムの粘着剤層の周縁部にダイシングリングが貼り付けられるとともに、接着剤層の表面にウェハが貼り付けられた状態を示す模式図である。FIG. 2 is a schematic view showing a state in which a dicing ring is attached to the peripheral portion of the pressure-sensitive adhesive layer of the dicing / die bonding integrated film and a wafer is attached to the surface of the adhesive layer. 図3は接着剤層に対する粘着剤層の30°ピール強度を測定している様子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing how the 30 ° peel strength of the pressure-sensitive adhesive layer relative to the adhesive layer is measured. 図4は半導体装置の一実施形態の模式断面図である。FIG. 4 is a schematic cross-sectional view of an embodiment of a semiconductor device. 図5(a)~図5(d)は、DAF(チップと接着剤片の積層体)を製造する過程を模式的に示す断面図である。5 (a) to 5 (d) are cross-sectional views schematically showing a process of manufacturing DAF (a laminate of a chip and an adhesive piece). 図6は図4に示す半導体装置を製造する過程を模式的に示す断面図である。6 is a cross-sectional view schematically showing a process of manufacturing the semiconductor device shown in FIG. 図7は図4に示す半導体装置を製造する過程を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing the process of manufacturing the semiconductor device shown in FIG. 図8は図4に示す半導体装置を製造する過程を模式的に示す断面図である。8 is a cross-sectional view schematically showing a process of manufacturing the semiconductor device shown in FIG.
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。なお、本発明は以下の実施形態に限定されるものではない。本明細書において、(メタ)アクリルとは、アクリル又はメタクリルを意味する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. In addition, this invention is not limited to the following embodiment. In this specification, (meth) acryl means acryl or methacryl.
<ダイシング・ダイボンディング一体型フィルム>
 図1(a)は、本実施形態に係るダイシング・ダイボンディング一体型フィルムを示す平面図であり、図1(b)は、図1のB-B線に沿った模式断面図である。ダイシング・ダイボンディング一体型フィルム10(以下、場合により、単に「フィルム10」という。)は、ウェハWを面積9mm以下の複数のチップに個片化するダイシング工程及びその後のピックアップ工程を含む半導体装置の製造プロセスに適用されるものである(図5(c)及び図5(d)参照)。
<Dicing and die bonding integrated film>
FIG. 1A is a plan view showing a dicing / die bonding integrated film according to this embodiment, and FIG. 1B is a schematic cross-sectional view taken along line BB of FIG. Dicing / die bonding integrated film 10 (hereinafter, simply referred to as “film 10” in some cases) is a semiconductor including a dicing process for dividing wafer W into a plurality of chips having an area of 9 mm 2 or less and a subsequent pick-up process. The present invention is applied to the device manufacturing process (see FIGS. 5C and 5D).
 フィルム10は、基材層1と、基材層1と対面する第1の面F1及びその反対側の第2の面F2を有する粘着剤層3と、粘着剤層3の第2の面F2の中央部を覆うように設けられた接着剤層5とをこの順序で備える。本実施形態においては、正方形の基材層1の上に、粘着剤層3及び接着剤層5の積層体が一つ形成された態様を例示したが、基材層1が所定の長さ(例えば、100m以上)を有し、その長手方向に並ぶように、粘着剤層3及び接着剤層5の積層体が所定の間隔で配置された態様であってもよい。 The film 10 includes a base material layer 1, a pressure-sensitive adhesive layer 3 having a first surface F1 facing the base material layer 1 and a second surface F2 opposite to the first surface F1, and a second surface F2 of the pressure-sensitive adhesive layer 3. And an adhesive layer 5 provided so as to cover the central portion of the substrate in this order. In the present embodiment, an example in which one laminate of the pressure-sensitive adhesive layer 3 and the adhesive layer 5 is formed on the square base material layer 1 is illustrated, but the base material layer 1 has a predetermined length ( For example, the laminated body of the adhesive layer 3 and the adhesive layer 5 may be arranged at a predetermined interval so as to be aligned in the longitudinal direction.
(粘着剤層)
 粘着剤層3は、接着剤層5におけるウェハWの貼付け位置に対応する領域Rwを少なくとも含む第1の領域3aと、第1の領域3aを囲むように位置する第2の領域3bとを有する。図1(a)及び図1(b)における破線は第1の領域3aと第2の領域3bの境界を示す。第1の領域3a及び第2の領域3bは、活性エネルギー線の照射前において同一の組成物からなる。第1の領域3aは、紫外線等の活性エネルギー線が照射されることによって、第2の領域3bと比較して粘着力が低下した状態の領域である。第2の領域3bはダイシングリングDRが貼り付けられる領域である(図2参照)。第2の領域3bは活性エネルギー線が照射されていない領域であり、ダイシングリングDRに対する高い粘着力を有する。
(Adhesive layer)
The pressure-sensitive adhesive layer 3 includes a first region 3a that includes at least a region Rw corresponding to the attachment position of the wafer W in the adhesive layer 5, and a second region 3b that is positioned so as to surround the first region 3a. . A broken line in FIGS. 1A and 1B indicates a boundary between the first region 3a and the second region 3b. The first region 3a and the second region 3b are made of the same composition before irradiation with active energy rays. The first region 3a is a region in which the adhesive force is reduced as compared with the second region 3b when irradiated with active energy rays such as ultraviolet rays. The second region 3b is a region where the dicing ring DR is attached (see FIG. 2). The second region 3b is a region that is not irradiated with active energy rays and has a high adhesive force to the dicing ring DR.
 接着剤層5に対する第1の領域3aの粘着力は1.2N/25mm以上4.5N/25mm以下である。この粘着力は、温度23℃において剥離角度30°及び剥離速度60mm/分の条件で測定される30°ピール強度である。図3は支持板80に測定試料(幅25mm×長さ100mm)の接着剤層5を固定した状態で、粘着剤層3の30°ピール強度を測定している様子を模式的に示す断面図である。接着剤層5に対する第1の領域3aの粘着力(30°ピール強度)を上記範囲とすることで、ダイシング時におけるDAF飛びの抑制及び優れたピックアップ性の両方を十分高度に両立することができる。これにより、十分に高い歩留まりで半導体装置を製造することが可能となる。この粘着力の下限値は1.5N/25mm又は2.0N/25mmであってもよく、上限値は3.5N/25mm又は2.5N/25mmであってもよい。 The adhesive strength of the first region 3a to the adhesive layer 5 is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less. This adhesive strength is a 30 ° peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 30 ° and a peeling speed of 60 mm / min. FIG. 3 is a cross-sectional view schematically showing a state in which the 30 ° peel strength of the pressure-sensitive adhesive layer 3 is measured with the adhesive layer 5 of the measurement sample (width 25 mm × length 100 mm) fixed to the support plate 80. It is. By controlling the adhesive strength (30 ° peel strength) of the first region 3a to the adhesive layer 5 within the above range, both suppression of DAF skipping during dicing and excellent pickup properties can be achieved at a sufficiently high level. . This makes it possible to manufacture a semiconductor device with a sufficiently high yield. The lower limit value of the adhesive strength may be 1.5 N / 25 mm or 2.0 N / 25 mm, and the upper limit value may be 3.5 N / 25 mm or 2.5 N / 25 mm.
 上述のとおり、フィルム10は、ウェハを面積9mm以下の複数の小チップに個片化するダイシング工程及びその後のピックアップ工程に適したものである。本発明者らは、サイズが3mm×3mm以下(面積9mm以下)の小チップのピックアップ挙動と、例えば、サイズ8mm×6mm程度の大チップのピックアップ挙動が異なることを着目して検討を行った結果、接着剤層5に対する第1の領域3aの粘着力を上記範囲(1.2N/25mm以上4.5N/25mm以下)に特定した。すなわち、大チップの中心部を突上げ治具のピンで下方から突き上げることによって大チップをピックアップする場合、接着剤層5に対する第1の領域3aの30°ピール強度が上記範囲であると、ピンの上昇に伴って、DAFのエッジ部分から中央部分に向けて粘着剤層と接着剤片の界面剥離が進展するものの、粘着剤層の粘着力が強すぎるために、界面剥離がピンの上昇に追いつかず、チップが過度に変形して割れ又はピックアップミスが生じやすい。つまり、大チップのピックアップ性は粘着剤層と接着剤片の界面剥離に主に支配され、接着剤層に対する粘着剤層の粘着力は上記範囲の下限値(1.2N/25mm)よりも小さく設定すべきことを本発明者らは見出した。これに対し、小チップのピックアップ性はDAFのエッジ部分の剥離に主に支配され、ピンによる突き上げによってエッジ部分の剥離が一旦生じれば、その後、粘着剤層と接着剤片の界面剥離はスムーズに進展することを本発明者らは見出した。このため、接着剤層5に対する第1の領域3aの粘着力が比較的強くても、小チップの場合は優れたピックアップ性を達成できる。また、接着剤層5に対する第1の領域3aの粘着力が比較的強いことで、ダイシング工程におけるDAF飛びを十分に抑制できる。 As described above, the film 10 is suitable for a dicing process for dividing a wafer into a plurality of small chips having an area of 9 mm 2 or less and a subsequent pickup process. The present inventors have studied by paying attention to the fact that the pickup behavior of a small chip having a size of 3 mm × 3 mm or less (area 9 mm 2 or less) is different from that of a large chip having a size of, for example, about 8 mm × 6 mm. As a result, the adhesive strength of the first region 3a to the adhesive layer 5 was specified in the above range (1.2 N / 25 mm or more and 4.5 N / 25 mm or less). That is, when picking up a large chip by pushing up the center of the large chip from below with a pin of a push-up jig, the 30 ° peel strength of the first region 3a with respect to the adhesive layer 5 is within the above range. With the increase of the interface, the interface peeling between the adhesive layer and the adhesive piece progresses from the edge part of the DAF toward the center part, but the adhesive force of the adhesive layer is too strong, so the interface peeling increases the pin. The chip does not catch up, and the chip is deformed excessively and is liable to be cracked or picked up. That is, the pick-up property of the large chip is mainly governed by the interface peeling between the adhesive layer and the adhesive piece, and the adhesive force of the adhesive layer to the adhesive layer is smaller than the lower limit (1.2 N / 25 mm) of the above range. The present inventors have found that it should be set. On the other hand, the pick-up property of the small chip is mainly governed by the peeling of the edge portion of the DAF, and once the edge portion is peeled off by the push-up by the pin, the peeling of the interface between the adhesive layer and the adhesive piece is smooth thereafter. The present inventors have found that the process proceeds. For this reason, even if the adhesive strength of the first region 3a to the adhesive layer 5 is relatively strong, excellent pick-up performance can be achieved in the case of a small chip. Moreover, since the adhesive force of the 1st area | region 3a with respect to the adhesive bond layer 5 is comparatively strong, DAF jump in a dicing process can fully be suppressed.
 接着剤層5に対して上記範囲の粘着力を有する第1の領域3aは、活性エネルギー線の照射によって形成されるものである。本発明者らは、活性エネルギー線の照射によって粘着剤層の粘着力を低下させることが、DAFのエッジ部分の剥離に影響を与えることを見出した。すなわち、第1の領域3aの粘着力が活性エネルギー線の照射によって過度に低下したものであると、接着剤層5に対する第1の領域3aの30°ピール強度は低くなる一方、ピックアップ対象が小チップである場合、DAFのエッジ部分が剥離しにくくなる傾向にあり、チップが過度に変形して割れ又はピックアップミスが生じやすい。接着剤層5に対する第1の領域3aの粘着力(1.2N/25mm以上4.5N/25mm以下)は、活性エネルギー線を照射する前の粘着力を過度に低下させていないものであるとも言うことができ、これにより、小チップであってもDAFのエッジ部分の剥離が生じやすくしている。本実施形態においては、例えば、粘着剤層における架橋剤の量を比較的少なくしたり、活性エネルギー線の照射量を低減するなどすることにより、粘着剤層3の第1の領域3aの粘着力を調整することができる。 1st area | region 3a which has the adhesive force of the said range with respect to the adhesive bond layer 5 is formed by irradiation of an active energy ray. The present inventors have found that reducing the adhesive strength of the pressure-sensitive adhesive layer by irradiation with active energy rays affects the peeling of the edge portion of the DAF. That is, if the adhesive strength of the first region 3a is excessively reduced by the irradiation of the active energy ray, the 30 ° peel strength of the first region 3a with respect to the adhesive layer 5 is lowered, while the pickup target is small. In the case of a chip, the edge portion of the DAF tends to be difficult to peel off, and the chip is liable to be deformed excessively to cause cracks or pickup errors. The adhesive strength (1.2N / 25mm or more and 4.5N / 25mm or less) of the 1st area | region 3a with respect to the adhesive bond layer 5 is what does not reduce excessively the adhesive force before irradiating an active energy ray. As a result, peeling of the edge portion of the DAF easily occurs even in a small chip. In the present embodiment, for example, the adhesive strength of the first region 3a of the adhesive layer 3 can be reduced by, for example, relatively reducing the amount of the crosslinking agent in the adhesive layer or reducing the irradiation amount of the active energy ray. Can be adjusted.
 第2の領域R2のステンレス基板に対する粘着力は0.2N/25mm以上であることが好ましい。この粘着力は、温度23℃において剥離角度90°及び剥離速度50mm/分の条件で測定される90°ピール強度である。この粘着力が0.2N/25mm以上であることで、ダイシング時におけるリング剥がれを十分に抑制することができる。この粘着力の下限値は0.3N/25mm又は0.4N/25mmであってもよく、上限値は、例えば、2.0N/25mmであり、1.0N/25mmであってもよい。 The adhesive strength of the second region R2 to the stainless steel substrate is preferably 0.2 N / 25 mm or more. This adhesive strength is 90 ° peel strength measured at a temperature of 23 ° C. under conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min. When the adhesive strength is 0.2 N / 25 mm or more, ring peeling during dicing can be sufficiently suppressed. The lower limit value of the adhesive strength may be 0.3 N / 25 mm or 0.4 N / 25 mm, and the upper limit value is, for example, 2.0 N / 25 mm, or 1.0 N / 25 mm.
 活性エネルギー線照射前の粘着剤層は、例えば、(メタ)アクリル系樹脂と、光重合開始剤と、架橋剤とを含む粘着剤組成物からなる。活性エネルギー線が照射されない第2の領域R2は活性エネルギー線照射前の粘着剤層と同じ組成からなる。以下、粘着剤組成物の含有成分について詳細に説明する。 The pressure-sensitive adhesive layer before irradiation with active energy rays is made of a pressure-sensitive adhesive composition containing, for example, a (meth) acrylic resin, a photopolymerization initiator, and a crosslinking agent. The second region R2 where the active energy ray is not irradiated has the same composition as the pressure-sensitive adhesive layer before the active energy ray irradiation. Hereinafter, the components contained in the pressure-sensitive adhesive composition will be described in detail.
[(メタ)アクリル系樹脂]
 粘着剤組成物は、連鎖重合可能な官能基を有する(メタ)アクリル系樹脂を含み、官能基がアクリロイル基及びメタクリロイル基から選ばれる少なくとも1種であることが好ましい。活性エネルギー線照射前の粘着剤層における上記官能基の含有量は、例えば、0.1~1.2mmol/gであり、0.3~1.0mmol/g又は0.5~0.8mmol/gであってもよい。上記官能基の含有量が0.1mmol/g以上であることで、活性エネルギー線の照射によって粘着力が適度に低下した領域(第1の領域R1)を形成しやすく、他方、1.2mmol/g以下であることで、優れたピックアップ性を達成しやすい。
[(Meth) acrylic resin]
The pressure-sensitive adhesive composition contains a (meth) acrylic resin having a chain polymerizable functional group, and the functional group is preferably at least one selected from an acryloyl group and a methacryloyl group. The content of the functional group in the pressure-sensitive adhesive layer before irradiation with active energy rays is, for example, 0.1 to 1.2 mmol / g, 0.3 to 1.0 mmol / g, or 0.5 to 0.8 mmol / g. g may be sufficient. When the content of the functional group is 0.1 mmol / g or more, it is easy to form a region (first region R1) in which the adhesive strength is moderately reduced by irradiation with active energy rays, while 1.2 mmol / g It is easy to achieve the excellent pick-up property by being g or less.
 (メタ)アクリル系樹脂は、既知の方法で合成することで得ることができる。合成方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法、塊状重合法、析出重合法、気相重合法、プラズマ重合法、超臨界重合法が挙げられる。また、重合反応の種類としては、ラジカル重合、カチオン重合、アニオン重合、リビングラジカル重合、リビングカチオン重合、リビングアニオン重合、配位重合、イモーダル重合等の他、ATRP(原子移動ラジカル重合)及びRAFT(可逆的付加開裂連鎖移動重合)といった手法も挙げられる。この中でも、溶液重合法を用いてラジカル重合により合成することは、経済性の良さ、反応率の高さ、重合制御の容易さなどの他、重合で得られた樹脂溶液をそのまま用いて配合できる等の利点を有する。 (Meth) acrylic resin can be obtained by synthesis by a known method. Examples of the synthesis method include solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization, precipitation polymerization, gas phase polymerization, plasma polymerization, and supercritical polymerization. The polymerization reaction includes radical polymerization, cationic polymerization, anionic polymerization, living radical polymerization, living cationic polymerization, living anion polymerization, coordination polymerization, immodal polymerization, ATRP (atom transfer radical polymerization) and RAFT ( A technique such as reversible addition-fragmentation chain transfer polymerization) may also be mentioned. Among these, synthesis by radical polymerization using a solution polymerization method can be blended using the resin solution obtained by polymerization as it is, in addition to good economic efficiency, high reaction rate, easy polymerization control, etc. And so on.
 ここで、溶液重合法を用いてラジカル重合によって、(メタ)アクリル系樹脂を得る方法を例に、(メタ)アクリル系樹脂の合成法について詳細に説明する。 Here, the synthesis method of the (meth) acrylic resin will be described in detail by taking as an example a method of obtaining the (meth) acrylic resin by radical polymerization using the solution polymerization method.
 (メタ)アクリル系樹脂を合成する際に用いられるモノマーとしては、一分子中に1個の(メタ)アクリロイル基を有するものであれば特に制限はない。その具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、2-(メタ)アクリロイロキシエチル-N-カルバゾール等の複素環式(メタ)アクリレート、これらのカプロラクトン変性体、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、α-エチルグリシジル(メタ)アクリレート、α-プロピルグリシジル(メタ)アクリレート、α-ブチルグリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-プロピルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等のエチレン性不飽和基とエポキシ基を有する化合物;(2-エチル-2-オキセタニル)メチル(メタ)アクリレート、(2-メチル-2-オキセタニル)メチル(メタ)アクリレート、2-(2-エチル-2-オキセタニル)エチル(メタ)アクリレート、2-(2-メチル-2-オキセタニル)エチル(メタ)アクリレート、3-(2-エチル-2-オキセタニル)プロピル(メタ)アクリレート、3-(2-メチル-2-オキセタニル)プロピル(メタ)アクリレート等のエチレン性不飽和基とオキセタニル基を有する化合物;2-(メタ)アクリロイルオキシエチルイソシアネート等のエチレン性不飽和基とイソシアネート基を有する化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のエチレン性不飽和基とヒドロキシル基を有する化合物が挙げられ、これらを適宜組み合わせて目的とする(メタ)アクリル系樹脂を得ることができる。 The monomer used when synthesizing the (meth) acrylic resin is not particularly limited as long as it has one (meth) acryloyl group in one molecule. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, butoxyethyl (meth) acrylate, and isoamyl (meth) acrylate. , Hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl heptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) Acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, Nyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, mono (2- (meth) acryloyloxyethyl) Aliphatic (meth) acrylates such as succinate; cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, isobornyl (meth) acrylate , Mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, mono (2- (meth) acryloyloxyethyl) hexahydride Alicyclic (meth) acrylates such as phthalates; benzyl (meth) acrylate, phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl ( (Meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o-phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonyl Phenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydro Xyl-3- (o-phenylphenoxy) propyl (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, 2-hydroxy-3- (2-naphthoxy) propyl (meth) acrylate, etc. Aromatic (meth) acrylates such as 2-tetrahydrofurfuryl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, 2- (meth) acryloyloxyethyl-N-carbazole, etc. (Meth) acrylates, modified caprolactones thereof, ω-carboxy-polycaprolactone mono (meth) acrylate, glycidyl (meth) acrylate, α-ethylglycidyl (meth) acrylate, α-propylglycidyl (meth) acrylate, α-butylglycidyl (Meta) Acry 2-methylglycidyl (meth) acrylate, 2-ethylglycidyl (meth) acrylate, 2-propylglycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 3,4-epoxyheptyl (meth) Acrylate, α-ethyl-6,7-epoxyheptyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, etc. A compound having an ethylenically unsaturated group and an epoxy group; (2-ethyl-2-oxetanyl) methyl (meth) acrylate, (2-methyl-2-oxetanyl) methyl (meth) acrylate, 2- (2-ethyl- 2-Oxetanyl) ethyl ( ) Acrylate, 2- (2-methyl-2-oxetanyl) ethyl (meth) acrylate, 3- (2-ethyl-2-oxetanyl) propyl (meth) acrylate, 3- (2-methyl-2-oxetanyl) propyl Compounds having an ethylenically unsaturated group and oxetanyl group such as (meth) acrylate; compounds having an ethylenically unsaturated group and isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate; 2-hydroxyethyl (meth) acrylate, Ethylenically unsaturated groups such as 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and hydroxyl groups Compounds that have It is possible to obtain an appropriate combination for the purpose to (meth) acrylic resin.
 (メタ)アクリル系樹脂は、後述する官能基導入化合物又は架橋剤との反応点として、水酸基、グリシジル基及びアミノ基等から選ばれる少なくとも1種の官能基を有することが好ましい。水酸基を有する(メタ)アクリル系樹脂を合成するためのモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のエチレン性不飽和基とヒドロキシル基を有する化合物が挙げられ、これらは1種を単独で、あるいは、2種以上を併用することができる。 The (meth) acrylic resin preferably has at least one functional group selected from a hydroxyl group, a glycidyl group, an amino group, and the like as a reaction point with a functional group-introducing compound or a crosslinking agent described later. Monomers for synthesizing a (meth) acrylic resin having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 3-chloro-2. -Compounds having an ethylenically unsaturated group and a hydroxyl group, such as hydroxypropyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate, may be used alone or in combination of two or more. Can do.
 グリシジル基を有する(メタ)アクリル系樹脂を合成するためのモノマーとしては、グリシジル(メタ)アクリレート、α-エチルグリシジル(メタ)アクリレート、α-プロピルグリシジル(メタ)アクリレート、α-ブチルグリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-プロピルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等のエチレン性不飽和基とエポキシ基を有する化合物が挙げられ、これらは1種を単独で、あるいは、2種以上を併用することができる。 Monomers for synthesizing a (meth) acrylic resin having a glycidyl group include glycidyl (meth) acrylate, α-ethylglycidyl (meth) acrylate, α-propylglycidyl (meth) acrylate, α-butylglycidyl (meth) Acrylate, 2-methylglycidyl (meth) acrylate, 2-ethylglycidyl (meth) acrylate, 2-propylglycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 3,4-epoxyheptyl (meth) acrylate , Α-ethyl-6,7-epoxyheptyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl Include compounds having an ethylenically unsaturated group and an epoxy group such as glycidyl ether, and these can be alone one, or combination of two or more.
 これらのモノマーから合成される(メタ)アクリル系樹脂は、連鎖重合可能な官能基を含むことが好ましい。連鎖重合可能な官能基は、例えば、アクリロイル基及びメタクリロイル基から選ばれる少なくとも1種である。連鎖重合可能な官能基は、例えば、上述のように合成された(メタ)アクリル系樹脂に以下の化合物(官能基導入化合物)を反応させることにより、当該(メタ)アクリル系樹脂中に導入することができる。官能基導入化合物の具体例として、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートもしくは4-ヒドロキシブチルエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物などが挙げられる。これらの中でも、特に2-メタクリロイルオキシエチルイソシアネートが好ましい。これらの化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The (meth) acrylic resin synthesized from these monomers preferably contains a functional group capable of chain polymerization. The chain polymerizable functional group is, for example, at least one selected from an acryloyl group and a methacryloyl group. The functional group capable of chain polymerization is introduced into the (meth) acrylic resin by, for example, reacting the following compound (functional group-introducing compound) with the (meth) acrylic resin synthesized as described above. be able to. Specific examples of functional group-introducing compounds include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate; diisocyanate compound Or an acryloyl monoisocyanate compound obtained by reacting a polyisocyanate compound with hydroxyethyl (meth) acrylate or 4-hydroxybutylethyl (meth) acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) Examples include acryloyl monoisocyanate compounds obtained by reaction with acrylates. Among these, 2-methacryloyloxyethyl isocyanate is particularly preferable. These compounds can also be used individually by 1 type, and can also be used in combination of 2 or more type.
[光重合開始剤]
 光重合開始剤としては、活性エネルギー線(紫外線、電子線及び可視光線から選ばれる少なくとも1種)を照射することで連鎖重合可能な活性種を発生するものであれば、特に制限はなく、例えば、光ラジカル重合開始剤が挙げられる。ここで連鎖重合可能な活性種とは、連鎖重合可能な官能基と反応することで重合反応が開始されるものを意味する。
[Photopolymerization initiator]
The photopolymerization initiator is not particularly limited as long as it generates an active species capable of chain polymerization by irradiation with active energy rays (at least one selected from ultraviolet rays, electron beams and visible rays). And radical photopolymerization initiators. Here, the chain-polymerizable active species means one that initiates a polymerization reaction by reacting with a chain-polymerizable functional group.
 光ラジカル重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノケトン;1-[4-(フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N´-テトラメチル-4,4´-ジアミノベンゾフェノン、N,N´-テトラエチル-4,4´-ジアミノベンゾフェノン、4-メトキシ-4´-ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9、9´-アクリジニルヘプタン)等のアクリジン化合物:N-フェニルグリシン、クマリンが挙げられる。 Examples of radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane-1 -One, α-hydroxy ketones such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1- Α-amino ketones such as (4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; 1- [4 Oxime esters such as-(phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-trimethyl) Phosphine oxides such as benzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer 2,4,5-triarylimidazole such as 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer Dimer; benzophenone, N, N'-tetramethyl-4,4'-diaminoben Benzophenone compounds such as zophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone; 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthra Quinone compounds such as quinone, 2-methyl-1,4-naphthoquinone and 2,3-dimethylanthraquinone; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether and benzoin phenyl ether; Benzoin compounds such as zoin, methylbenzoin and ethylbenzoin; benzyl compounds such as benzyldimethyl ketal; acridine compounds such as 9-phenylacridine and 1,7-bis (9,9'-acridinylheptane): N-phenylglycine , Coumarin.
 粘着剤組成物における光重合開始剤の含有量は、(メタ)アクリル系樹脂の含有量100質量部に対し、例えば、0.1~30質量部であり、0.3~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。光重合開始剤の含有量が0.1質量部未満であると粘着剤層が活性エネルギー線照射後に硬化不足となり、ピックアップ不良が起こりやすい。光重合開始剤の含有量が30質量部を超えると接着剤層への汚染(光重合開始剤の接着剤層への転写)が生じやすい。 The content of the photopolymerization initiator in the pressure-sensitive adhesive composition is, for example, 0.1 to 30 parts by mass and 0.3 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin content. It is preferably 0.5 to 5 parts by mass. When the content of the photopolymerization initiator is less than 0.1 parts by mass, the pressure-sensitive adhesive layer becomes insufficiently cured after irradiation with active energy rays, and pickup failure tends to occur. When the content of the photopolymerization initiator exceeds 30 parts by mass, contamination of the adhesive layer (transfer of the photopolymerization initiator to the adhesive layer) tends to occur.
[架橋剤]
 架橋剤は、例えば、粘着剤層の弾性率及び/又は粘着性の制御を目的に用いられる。架橋剤は、上記(メタ)アクリル系樹脂が有する水酸基、グリシジル基及びアミノ基等から選ばれる少なくとも1種の官能基と反応し得る官能基を一分子中に2つ以上有する化合物であればよい。架橋剤と(メタ)アクリル系樹脂との反応によって形成される結合としては、エステル結合、エーテル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合等が挙げられる。
[Crosslinking agent]
The crosslinking agent is used, for example, for the purpose of controlling the elastic modulus and / or tackiness of the pressure-sensitive adhesive layer. The crosslinking agent may be a compound having two or more functional groups that can react with at least one functional group selected from the hydroxyl group, glycidyl group, amino group, and the like of the (meth) acrylic resin in one molecule. . Examples of the bond formed by the reaction between the crosslinking agent and the (meth) acrylic resin include an ester bond, an ether bond, an amide bond, an imide bond, a urethane bond, and a urea bond.
 本実施形態においては、架橋剤として、一分子中に2つ以上のイソシアネート基を有する化合物を採用することが好ましい。このような化合物を用いると、上記(メタ)アクリル系樹脂が有する水酸基、グリシジル基及びアミノ基等と容易に反応し、強固な架橋構造を形成することができる。 In this embodiment, it is preferable to employ a compound having two or more isocyanate groups in one molecule as a crosslinking agent. When such a compound is used, it can easily react with the hydroxyl group, glycidyl group, amino group and the like of the (meth) acrylic resin to form a strong crosslinked structure.
 一分子中に2つ以上のイソシアネート基を有する化合物としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4´-ジイソシアネート、ジフェニルメタン-2,4´-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4´-ジイソシアネート、ジシクロヘキシルメタン-2,4´-ジイソシアネート、リジンイソシアネート等のイソシアネート化合物が挙げられる。 Examples of the compound having two or more isocyanate groups in one molecule include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, lysine isocyanate Isocyanate compounds such as
 架橋剤として、上述のイソシアネート化合物と、一分子中に2つ以上のOH基を有する多価アルコールの反応物(イソシアナート基含有オリゴマー)を採用してもよい。一分子中に2つ以上のOH基を有する多価アルコールの例としては、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオールが挙げられる。 As the crosslinking agent, a reaction product (isocyanate group-containing oligomer) of the above-described isocyanate compound and a polyhydric alcohol having two or more OH groups in one molecule may be employed. Examples of polyhydric alcohols having two or more OH groups in one molecule include ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, Examples include 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, glycerin, pentaerythritol, dipentaerythritol, 1,4-cyclohexanediol, and 1,3-cyclohexanediol.
 これらの中でも、架橋剤として、一分子中に2つ以上のイソシアネート基を有する多官能イソシアネートと、一分子中に3つ以上のOH基を有する多価アルコールの反応物(イソシアナート基含有オリゴマー)であることが更に望ましい。このようなイソシアネート基含有オリゴマーを架橋剤として用いることで、粘着剤層3が緻密な架橋構造を形成し、これにより、ピックアップ工程において接着剤層5に粘着剤が付着することを十分に抑制できる。 Among these, as a crosslinking agent, a reaction product of a polyfunctional isocyanate having two or more isocyanate groups in one molecule and a polyhydric alcohol having three or more OH groups in one molecule (isocyanate group-containing oligomer). It is further desirable that By using such an isocyanate group-containing oligomer as a cross-linking agent, the pressure-sensitive adhesive layer 3 forms a dense cross-linked structure, thereby sufficiently suppressing the pressure-sensitive adhesive from adhering to the adhesive layer 5 in the pickup process. .
 粘着剤組成物における架橋剤の含有量は、粘着剤層に対して求められる凝集力及び破断伸び率、並びに、接着剤層5との密着性等に応じて適宜設定すればよい。具体的には、架橋剤の含有量は、(メタ)アクリル系樹脂の含有量100質量部に対し、例えば、3~30質量部であり、4~15質量部であることが好ましく、7~10質量部であることがより好ましい。架橋剤の含有量を上記範囲とすることで、ダイシング工程において粘着剤層に求められる特性と、ダイボンディング工程において粘着剤層3に求められる特性とをバランスよく両立することが可能であるとともに、優れたピックアップ性も達成し得る。 What is necessary is just to set suitably content of the crosslinking agent in an adhesive composition according to the cohesive force and breaking elongation rate calculated | required with respect to an adhesive layer, adhesiveness with the adhesive bond layer 5, etc. Specifically, the content of the crosslinking agent is, for example, 3 to 30 parts by mass, preferably 4 to 15 parts by mass, and preferably 7 to 7 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin content. It is more preferable that it is 10 mass parts. By setting the content of the cross-linking agent in the above range, it is possible to balance both the characteristics required of the pressure-sensitive adhesive layer in the dicing process and the characteristics required of the pressure-sensitive adhesive layer 3 in the die bonding process, Excellent pick-up properties can also be achieved.
 架橋剤の含有量が(メタ)アクリル系樹脂の含有量100質量部に対して3質量部未満であると、架橋構造の形成が不十分となりやすく、これに起因して、ピックアップ工程において、接着剤層5との界面密着力が十分に低下せずにピックアップ時に不良が発生しやすい。他方、架橋剤の含有量が(メタ)アクリル系樹脂の含有量100質量部に対して30質量部を超えると、粘着剤層3が過度に硬くなりやすく、これに起因して、エキスパンド工程において半導体チップが剥離しやすい。 When the content of the crosslinking agent is less than 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, the formation of the crosslinked structure tends to be insufficient. The interfacial adhesion with the agent layer 5 is not sufficiently lowered, and defects are likely to occur during pick-up. On the other hand, when the content of the cross-linking agent exceeds 30 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, the pressure-sensitive adhesive layer 3 tends to become excessively hard. The semiconductor chip is easy to peel off.
 粘着剤組成物の全質量に対する架橋剤の含有量は、例えば、0.1~20質量%であり、3~17質量%又は5~15質量%であってもよい。架橋剤の含有量が0.1質量%以上であることで、活性エネルギー線の照射によって粘着力が適度に低下した領域(第1の領域R1)を形成しやすく、他方、15質量%以下であることで、優れたピックアップ性を達成しやすい。 The content of the crosslinking agent with respect to the total mass of the pressure-sensitive adhesive composition is, for example, 0.1 to 20 mass%, and may be 3 to 17 mass% or 5 to 15 mass%. When the content of the crosslinking agent is 0.1% by mass or more, it is easy to form a region (first region R1) in which the adhesive strength is appropriately reduced by irradiation with active energy rays, and on the other hand, at 15% by mass or less. It is easy to achieve excellent pick-up properties.
 粘着剤層3の厚さは、エキスパンド工程の条件(温度及び張力等)に応じて適宜設定すればよく、例えば、1~200μmであり、5~50μmであることが好ましく、10~20μmであることがより好ましい。粘着剤層3の厚さが1μm未満であると粘着性が不十分となりやすく、200μmを超えると、エキスパンド時にカーフ幅が狭く(ピン突き上げ時に応力を緩和してしまい)ピックアップが不十分になりやすい。 The thickness of the pressure-sensitive adhesive layer 3 may be appropriately set according to the conditions (temperature, tension, etc.) of the expanding process, and is, for example, 1 to 200 μm, preferably 5 to 50 μm, and preferably 10 to 20 μm. It is more preferable. If the thickness of the pressure-sensitive adhesive layer 3 is less than 1 μm, the tackiness tends to be insufficient, and if it exceeds 200 μm, the kerf width is narrow when expanded (the stress is relaxed when the pin is pushed up), and the pickup is likely to be insufficient. .
 粘着剤層3は基材層1上に形成されている。粘着剤層3の形成方法としては、既知の手法を採用できる。例えば、基材層1と粘着剤層3との積層体を二層押し出し法で形成してもよいし、粘着剤層3の形成用ワニスを調製し、これを基材層1の表面に塗工する、あるいは、離型処理されたフィルム上に粘着剤層3を形成し、これを基材層1に転写してもよい。 The pressure-sensitive adhesive layer 3 is formed on the base material layer 1. As a method for forming the pressure-sensitive adhesive layer 3, a known method can be employed. For example, a laminate of the base material layer 1 and the pressure-sensitive adhesive layer 3 may be formed by a two-layer extrusion method, or a varnish for forming the pressure-sensitive adhesive layer 3 is prepared and applied to the surface of the base material layer 1. Alternatively, the pressure-sensitive adhesive layer 3 may be formed on a film that has been processed or subjected to a release treatment, and this may be transferred to the base material layer 1.
 粘着剤層3の形成用ワニスは、(メタ)アクリル系樹脂、光重合開始剤及び架橋剤を溶解し得る有機溶剤であって加熱により揮発するものを使用して調製することが好ましい。有機溶剤の具体例としては、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドが挙げられる。 The varnish for forming the pressure-sensitive adhesive layer 3 is preferably prepared using an organic solvent that can dissolve a (meth) acrylic resin, a photopolymerization initiator, and a crosslinking agent and volatilizes by heating. Specific examples of the organic solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene Alcohols such as glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone, etc. Esters; carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene group Many compounds such as coal dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Monohydric alcohol alkyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoe Examples thereof include polyhydric alcohol alkyl ether acetates such as tilether acetate, diethylene glycol monomethyl ether acetate and diethylene glycol monoethyl ether acetate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone.
 これらの中で、溶解性及び沸点の観点から、例えば、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、N,N-ジメチルアセトアミドであることが好ましい。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。ワニスの固形分濃度は、通常10~60質量%であることが好ましい。 Among these, from the viewpoint of solubility and boiling point, for example, toluene, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, ethylene glycol monomethyl ether, ethylene glycol mono Ethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and N, N-dimethylacetamide are preferred. These organic solvents may be used individually by 1 type, and may use 2 or more types together. The solid content concentration of the varnish is usually preferably 10 to 60% by mass.
(基材層)
 基材層1としては、既知のポリマーシート又はフィルムを用いることができ、低温条件下において、エキスパンド工程を実施可能なものであれば、特に制限はない。具体的には、基材層1として、結晶性ポリプロピレン、非晶性ポリプロピレン、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、低密度直鎖ポリエチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、又は、これらに可塑剤を混合した混合物、あるいは、電子線照射により架橋を施した硬化物が挙げられる。
(Base material layer)
As the base material layer 1, a known polymer sheet or film can be used, and there is no particular limitation as long as the expanding process can be performed under a low temperature condition. Specifically, as the base material layer 1, crystalline polypropylene, amorphous polypropylene, high density polyethylene, medium density polyethylene, low density polyethylene, ultra low density polyethylene, low density linear polyethylene, polybutene, polymethylpentene, etc. Polyolefin, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene- Hexene copolymers, polyesters such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfide, alla (Paper), glass, glass cloth, fluororesin, polyvinyl chloride, polyvinylidene chloride, cellulosic resin, silicone resin, or a mixture of these with a plasticizer, or cured by crosslinking by electron beam irradiation Things.
 基材層1は、ポリエチレン、ポリプロピレン、ポリエチレン-ポリプロピレンランダム共重合体、ポリエチレン-ポリプロピレンブロック共重合体から選ばれる少なくとも1種の樹脂を主成分とする表面を有し、この表面と粘着剤層3が接していることが好ましい。これらの樹脂は、ヤング率、応力緩和性及び融点等の特性、並びに、価格面、使用後の廃材リサイクル等の観点からも良好な基材である。基材層1は、単層でも構わないが、必要に応じて異なる材質からなる層が積層された多層構造を有していてもよい。粘着剤層3との密着性を制御するため、基材層1の表面に対して、マット処理、コロナ処理等の表面粗化処理を施してもよい。 The base material layer 1 has a surface mainly composed of at least one resin selected from polyethylene, polypropylene, a polyethylene-polypropylene random copolymer, and a polyethylene-polypropylene block copolymer. Are preferably in contact with each other. These resins are good base materials from the viewpoints of properties such as Young's modulus, stress relaxation property, melting point, etc., as well as cost and recycling of used materials after use. The base material layer 1 may be a single layer, but may have a multilayer structure in which layers made of different materials are laminated as necessary. In order to control the adhesion with the pressure-sensitive adhesive layer 3, the surface of the base material layer 1 may be subjected to a surface roughening treatment such as a mat treatment or a corona treatment.
(接着剤層)
 接着剤層5には、既知のダイボンディングフィルムを構成する接着剤組成物を適用できる。具体的には、接着剤層5を構成する接着剤組成物は、エポキシ基含有アクリル共重合体、エポキシ樹脂及びエポキシ樹脂硬化剤を含有することが好ましい。これらの成分を含む接着剤層5によれば、チップ/基板間、チップ/チップ間の接着性に優れ、また電極埋め込み性及びワイヤー埋め込み性等も付与可能で、かつダイボンディング工程では低温で接着でき、短時間で優れた硬化が得られる、封止剤でモールド後は優れた信頼性を有する等の特徴があり好ましい。
(Adhesive layer)
An adhesive composition constituting a known die bonding film can be applied to the adhesive layer 5. Specifically, the adhesive composition that constitutes the adhesive layer 5 preferably contains an epoxy group-containing acrylic copolymer, an epoxy resin, and an epoxy resin curing agent. According to the adhesive layer 5 containing these components, it has excellent chip / substrate and chip / chip adhesive properties, and can provide electrode embedding properties and wire embedding properties, and can be bonded at a low temperature in the die bonding process. It is preferable because it can be cured in a short time and has excellent reliability after molding with a sealant.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジリエーテル化物、ナフタレンジオールのジグリシジリエーテル化物、フェノール類のジグリシジリエーテル化物、アルコール類のジグリシジルエーテル化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物等の二官能エポキシ樹脂、ノボラック型エポキシ樹脂が挙げられる。また、多官能エポキシ樹脂及び複素環含有エポキシ樹脂等、一般に知られているその他のエポキシ樹脂を適用してもよい。これらは単独で又は2種以上を組み合わせて使用することができる。なお、特性を損なわない範囲でエポキシ樹脂以外の成分が不純物として含まれていてもよい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenol, diglycidyl etherified product of alcohol, and alkyl-substituted products and halides thereof , Bifunctional epoxy resins such as hydrogenated products, and novolak type epoxy resins. Moreover, you may apply other generally known epoxy resins, such as a polyfunctional epoxy resin and a heterocyclic ring-containing epoxy resin. These can be used alone or in combination of two or more. In addition, components other than the epoxy resin may be included as impurities within a range that does not impair the characteristics.
 エポキシ樹脂硬化剤としては、例えば、フェノール化合物と2価の連結基であるキシリレン化合物を、無触媒又は酸触媒の存在下に反応させて得ることができるフェノール樹脂のようなものが挙げられる。フェノール樹脂の製造に用いられるフェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、p-エチルフェノール、o-n-プロピルフェノール、m-n-プロピルフェノール、p-n-プロピルフェノール、o-イソプロピルフェノール、m-イソプロピルフェノール、p-イソプロピルフェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、オクチルフェノール、ノニルフェノール、2,4-キシレノール、2,6-キシレノール、3,5-キシレノール、2,4,6-トリメチルフェノール、レゾルシン、カテコール、ハイドロキノン、4-メトキシフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、p-シクロヘキシルフェノール、o-アリルフェノール、p-アリルフェノール、o-ベンジルフェノール、p-ベンジルフェノール、o-クロロフェノール、p-クロロフェノール、o-ブロモフェノール、p-ブロモフェノール、o-ヨードフェノール、p-ヨードフェノール、o-フルオロフェノール、m-フルオロフェノール、p-フルオロフェノール等が例示される。これらのフェノール化合物は、単独で用いてもよく、2種以上を混合して用いてもよい。フェノール樹脂の製造に用いられる2価の連結基であるキシリレン化合物としては、次に示すキシリレンジハライド、キシリレンジグリコール及びその誘導体が用いることができる。すなわち、α,α´-ジクロロ-p-キシレン、α,α´-ジクロロ-m-キシレン、α,α´-ジクロロ-o-キシレン、α,α´-ジブロモ-p-キシレン、α,α´-ジブロモ-m-キシレン、α,α´-ジブロモ-o-キシレン、α,α´-ジヨード-p-キシレン、α,α´-ジヨード-m-キシレン、α,α´-ジヨード-o-キシレン、α,α´-ジヒドロキシ-p-キシレン、α,α´-ジヒドロキシ-m-キシレン、α,α´-ジヒドロキシ-o-キシレン、α,α´-ジメトキシ-p-キシレン、α,α´-ジメトキシ-m-キシレン、α,α´-ジメトキシ-o-キシレン、α,α´-ジエトキシ-p-キシレン、α,α´-ジエトキシ-m-キシレン、α,α´-ジエトキシ-o-キシレン、α,α´-ジ-n-プロポキシ-p-キシレン、α,α´-ジ-n-プロポキシ-m-キシレン、α,α´-ジ-n-プロポキシ-o-キシレン、α,α´-ジ-イソプロポキシ-p-キシレン、α,α´-ジイソプロポキシ-m-キシレン、α,α´-ジイソプロポキシ-o-キシレン、α,α´-ジ-n-ブトキシ-p-キシレン、α,α´-ジ-n-ブトキシ-m-キシレン、α,α´-ジ-n-ブトキシ-o-キシレン、α,α´-ジイソブトキシ-p-キシレン、α,α´-ジイソブトキシ-m-キシレン、α,α´-ジイソブトキシ-o-キシレン、α,α´-ジ-tert-ブトキシ-p-キシレン、α,α´-ジ-tert-ブトキシ-m-キシレン、α,α´-ジ-tert-ブトキシ-o-キシレンを挙げることができる。これらは単独で又は2種以上を組み合わせて使用することができる。 Examples of the epoxy resin curing agent include a phenol resin that can be obtained by reacting a phenol compound and a xylylene compound that is a divalent linking group in the presence of a non-catalyst or an acid catalyst. Examples of the phenol compound used for the production of the phenol resin include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, p-ethylphenol, on-propylphenol, mn-propylphenol, pn-propylphenol, o-isopropylphenol, m-isopropylphenol, p-isopropylphenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, octylphenol, nonylphenol, 2,4-xylenol, 2,6-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol, resorcin, catechol, hydroquinone, 4 Methoxyphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, p-cyclohexylphenol, o-allylphenol, p-allylphenol, o-benzylphenol, p-benzylphenol, o-chlorophenol, p- Examples include chlorophenol, o-bromophenol, p-bromophenol, o-iodophenol, p-iodophenol, o-fluorophenol, m-fluorophenol, p-fluorophenol and the like. These phenol compounds may be used alone or in combination of two or more. The following xylylene dihalide, xylylene diglycol and derivatives thereof can be used as the xylylene compound which is a divalent linking group used in the production of the phenol resin. That is, α, α′-dichloro-p-xylene, α, α′-dichloro-m-xylene, α, α′-dichloro-o-xylene, α, α′-dibromo-p-xylene, α, α ′ -Dibromo-m-xylene, α, α'-dibromo-o-xylene, α, α'-diiodo-p-xylene, α, α'-diiodo-m-xylene, α, α'-diiodo-o-xylene Α, α′-dihydroxy-p-xylene, α, α′-dihydroxy-m-xylene, α, α′-dihydroxy-o-xylene, α, α′-dimethoxy-p-xylene, α, α′- Dimethoxy-m-xylene, α, α'-dimethoxy-o-xylene, α, α'-diethoxy-p-xylene, α, α'-diethoxy-m-xylene, α, α'-diethoxy-o-xylene, α, α'-di-n-propoxy-p-xylene, α, α'-di-n Propoxy-m-xylene, α, α'-di-n-propoxy-o-xylene, α, α'-di-isopropoxy-p-xylene, α, α'-diisopropoxy-m-xylene, α, α'-diisopropoxy-o-xylene, α, α'-di-n-butoxy-p-xylene, α, α'-di-n-butoxy-m-xylene, α, α'-di-n- Butoxy-o-xylene, α, α'-diisobutoxy-p-xylene, α, α'-diisobutoxy-m-xylene, α, α'-diisobutoxy-o-xylene, α, α'-di-tert-butoxy- Examples thereof include p-xylene, α, α′-di-tert-butoxy-m-xylene, and α, α′-di-tert-butoxy-o-xylene. These can be used alone or in combination of two or more.
 上記したフェノール化合物とキシリレン化合物を反応させる際には、塩酸、硫酸、リン酸、ポリリン酸等の鉱酸類;ジメチル硫酸、ジエチル硫酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸等の有機カルボン酸類;トリフロロメタンスルホン酸等の超強酸類;アルカンスルホン酸型イオン交換樹脂のような、強酸性イオン交換樹脂類;パーフルオロアルカンスルホン酸型イオン交換樹脂の様な、超強酸性イオン交換樹脂類(商品名:ナフィオン、Nafion、Du Pont社製、「ナフィオン」は登録商標);天然及び合成ゼオライト類;活性白土(酸性白土)類等の酸性触媒を用い、50~250℃において実質的に原料であるキシリレン化合物が消失し、且つ反応組成が一定になるまで反応させて得られる。反応時間は原料及び反応温度にもよるが、おおむね1時間~15時間程度であり、実際には、GPC(ゲルパーミエーションクロマトグラフィー)等により反応組成を追跡しながら決定すればよい。 When the above phenol compound and xylylene compound are reacted, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and polyphosphoric acid; organic acids such as dimethyl sulfuric acid, diethyl sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and ethanesulfonic acid Carboxylic acids; Super strong acids such as trifluoromethane sulfonic acid; Strong acidic ion exchange resins such as alkane sulfonic acid type ion exchange resin; Super strong acidic ion exchange such as perfluoroalkane sulfonic acid type ion exchange resin Resins (trade name: Nafion, Nafion, manufactured by Du Pont, “Nafion” is a registered trademark); natural and synthetic zeolites; practically at 50 to 250 ° C. using an acidic catalyst such as activated clay (acid clay) The reaction is performed until the xylylene compound as a raw material disappears and the reaction composition becomes constant. The reaction time depends on the raw materials and the reaction temperature, but is generally about 1 to 15 hours. In practice, it may be determined while tracking the reaction composition by GPC (gel permeation chromatography) or the like.
 エポキシ基含有アクリル共重合体は、原料としてグリシジルアクリレート又はグリシジルメタクリレートを、得られる共重合体に対し0.5~6質量%となる量用いて得られた共重合体であることが好ましい。この量が0.5質量%以上であることで高い接着力を得やすく、他方、6質量%以下であることでゲル化を抑制できる。その残部はメチルアクリレート、メチルメタクリレート等の炭素数1~8のアルキル基を有するアルキルアクリレート、アルキルメタクリレート、及びスチレン、アクリロニトリル等の混合物を用いることができる。これらの中でもエチル(メタ)アクリレート及び/又はブチル(メタ)アクリレートが特に好ましい。混合比率は、共重合体のTgを考慮して調整することが好ましい。Tgが-10℃未満であるとBステージ状態での接着剤層5のタック性が大きくなる傾向があり、取り扱い性が悪化する傾向にある。なお、エポキシ基含有アクリル共重合体のガラス転移点(Tg)の上限値は、例えば、30℃である。重合方法は特に制限がなく、例えば、パール重合、溶液重合が挙げられる。市販のエポキシ基含有アクリル共重合体としては、例えば、HTR-860P-3(商品名、ナガセケムテックス株式会社製)が挙げられる。 The epoxy group-containing acrylic copolymer is preferably a copolymer obtained by using glycidyl acrylate or glycidyl methacrylate as a raw material in an amount of 0.5 to 6% by mass with respect to the obtained copolymer. When this amount is 0.5% by mass or more, high adhesive force can be easily obtained, and when it is 6% by mass or less, gelation can be suppressed. The balance can be a mixture of alkyl acrylate having 1 to 8 carbon atoms such as methyl acrylate and methyl methacrylate, alkyl methacrylate, styrene, acrylonitrile and the like. Among these, ethyl (meth) acrylate and / or butyl (meth) acrylate are particularly preferable. The mixing ratio is preferably adjusted in consideration of the Tg of the copolymer. When Tg is less than −10 ° C., the tackiness of the adhesive layer 5 in the B-stage state tends to increase, and the handleability tends to deteriorate. In addition, the upper limit of the glass transition point (Tg) of an epoxy-group-containing acrylic copolymer is 30 degreeC, for example. The polymerization method is not particularly limited, and examples thereof include pearl polymerization and solution polymerization. Examples of commercially available epoxy group-containing acrylic copolymers include HTR-860P-3 (trade name, manufactured by Nagase ChemteX Corporation).
 エポキシ基含有アクリル共重合体の重量平均分子量は10万以上であり、この範囲であると接着性及び耐熱性が高く、30万~300万であることが好ましく、50万~200万であることがより好ましい。重量平均分子量が300万以下であると、半導体チップと、これを支持する基板との間の充填性が低下することを抑制できる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight average molecular weight of the epoxy group-containing acrylic copolymer is 100,000 or more, and if it is in this range, the adhesiveness and heat resistance are high, preferably 300,000 to 3,000,000, and 500,000 to 2,000,000. Is more preferable. It can suppress that the filling property between a semiconductor chip and the board | substrate which supports this as a weight average molecular weight is 3 million or less falls. The weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
 接着剤層5は、必要に応じて、第三級アミン、イミダゾール類、第四級アンモニウム塩類等の硬化促進剤を更に含有してもよい。硬化促進剤の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテートが挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。 The adhesive layer 5 may further contain a curing accelerator such as a tertiary amine, imidazole, or quaternary ammonium salt, if necessary. Specific examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-phenylimidazolium trimellitate. These may be used alone or in combination of two or more.
 接着剤層5は、必要に応じて、無機フィラーを更に含有してもよい。無機フィラーの具体例としては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ほう素、結晶質シリカ、非晶質シリカが挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。 The adhesive layer 5 may further contain an inorganic filler as necessary. Specific examples of the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, Examples thereof include crystalline silica and amorphous silica. These may be used alone or in combination of two or more.
 接着剤層5の厚さは、例えば、1~300μmであり、5~150μmであることが好ましく、10~100μmであることがより好ましい。接着剤層5の厚さが1μm未満であると接着性が不十分となりやすく、他方、300μmを超えるとエキスパンド時の分断性及びピックアップ性が不十分となりやすい。 The thickness of the adhesive layer 5 is, for example, 1 to 300 μm, preferably 5 to 150 μm, and more preferably 10 to 100 μm. If the thickness of the adhesive layer 5 is less than 1 μm, the adhesiveness tends to be insufficient, while if it exceeds 300 μm, the splitting property and the pickup property at the time of expansion tend to be insufficient.
 なお、接着剤層5は熱硬化性樹脂を含まない態様であってもよい。例えば、接着剤層5が反応性基含有(メタ)アクリル共重合体を含む場合、接着剤層5は、反応性基含有(メタ)アクリル共重合体と、硬化促進剤と、フィラーとを含むものであればよい(実施例4参照)。 In addition, the aspect which does not contain a thermosetting resin may be sufficient as the adhesive bond layer 5. FIG. For example, when the adhesive layer 5 includes a reactive group-containing (meth) acrylic copolymer, the adhesive layer 5 includes a reactive group-containing (meth) acrylic copolymer, a curing accelerator, and a filler. Any material can be used (see Example 4).
<ダイシング・ダイボンディング一体型フィルムの製造方法>
 フィルム10の製造方法は、基材層1の表面上に、活性エネルギー線が照射されることによって粘着力が低下する粘着剤組成物からなる粘着剤層と、粘着剤層の表面上に形成された接着剤層5とを含む積層体を作製する工程と、積層体に含まれる粘着剤層の第1の領域R1となる領域に活性エネルギー線を照射する工程とをこの順序で含む。第1の領域R1となる領域に対する活性エネルギー線の照射量は、例えば、10~1000mJ/cmであり、100~700mJ/cm又は200~500mJ/cmであってもよい。
<Manufacturing method of dicing / die bonding integrated film>
The production method of the film 10 is formed on the surface of the base material layer 1, the pressure-sensitive adhesive layer made of a pressure-sensitive adhesive composition whose adhesive strength is reduced by irradiating active energy rays, and the surface of the pressure-sensitive adhesive layer. The step of producing a laminate including the adhesive layer 5 and the step of irradiating active energy rays to the region to be the first region R1 of the pressure-sensitive adhesive layer included in the laminate are included in this order. The dose of the active energy ray to the area to be the first region R1, for example, a 10 ~ 1000mJ / cm 2, may be 100 ~ 700mJ / cm 2 or 200 ~ 500mJ / cm 2.
 上記製造方法は、粘着剤層と接着剤層5の積層体を先に作製し、その後、粘着剤層の特定の領域に活性エネルギー線を照射するものである。以下のとおり、接着剤層5と貼り合わせる前の粘着剤層に対して活性エネルギー線を照射して第1の領域3aを形成してもよい。すなわち、フィルム10の製造方法は、基材層1の表面上に、活性エネルギー線が照射されることによって粘着力が低下する組成物からなる粘着剤層を形成する工程と、粘着剤層の第1の領域3aとなる領域に活性エネルギー線を照射する工程と、活性エネルギー線を照射した後の粘着剤層3の表面上に接着剤層5を積層する工程とをこの順序で含むものであってよい。 In the above production method, a laminate of the pressure-sensitive adhesive layer and the adhesive layer 5 is prepared first, and then a specific region of the pressure-sensitive adhesive layer is irradiated with active energy rays. As described below, the first region 3a may be formed by irradiating the pressure-sensitive adhesive layer before being bonded to the adhesive layer 5 with active energy rays. That is, the manufacturing method of the film 10 includes a step of forming a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiating active energy rays on the surface of the base material layer 1, and a step of the pressure-sensitive adhesive layer. 1 includes a step of irradiating an active energy ray to a region to be a region 3a and a step of laminating an adhesive layer 5 on the surface of the pressure-sensitive adhesive layer 3 after the irradiation of the active energy ray in this order. It's okay.
<半導体装置及びその製造方法>
 図4は本実施形態に係る半導体装置を模式的に示す断面図である。この図に示す半導体装置100は、基板70と、基板70の表面上に積層された四つのチップS1,S2,S3,S4と、基板70の表面上の電極(不図示)と四つのチップS1,S2,S3,S4とを電気的に接続するワイヤW1,W2,W3,W4と、これらを封止している封止層50とを備える。
<Semiconductor device and manufacturing method thereof>
FIG. 4 is a cross-sectional view schematically showing the semiconductor device according to this embodiment. The semiconductor device 100 shown in this figure includes a substrate 70, four chips S1, S2, S3, S4 stacked on the surface of the substrate 70, electrodes (not shown) on the surface of the substrate 70, and four chips S1. , S2, S3, and S4, wires W1, W2, W3, and W4, and a sealing layer 50 that seals them.
 基板70は、例えば、有機基板であり、リードフレーム等の金属基板であってもよい。基板70は、半導体装置100の反りを抑制する観点から、基板70の厚さは、例えば、70~140μmであり、80~100μmであってもよい。 The substrate 70 is, for example, an organic substrate, and may be a metal substrate such as a lead frame. From the viewpoint of suppressing warpage of the semiconductor device 100, the thickness of the substrate 70 is, for example, 70 to 140 μm, and may be 80 to 100 μm.
 四つのチップS1,S2,S3,S4は、接着剤片5Pの硬化物5Cを介して積層されている。平面視におけるチップS1,S2,S3,S4の形状は、例えば正方形又は長方形である。チップS1,S2,S3,S4の面積は9mm以下であり、0.1~4mm又は0.1~2mmであってもよい。チップS1,S2,S3,S4の一辺の長さは、例えば、3mm以下であり、0.1~2.0mm又0.1~1.0mmであってもよい。チップS1,S2,S3,S4の厚さは、例えば、10~170μmであり、25~100μmであってもよい。なお、四つのチップS1,S2,S3,S4の一辺の長さは同じであっても、互いに異なっていてもよく、厚さについても同様である。 The four chips S1, S2, S3, S4 are stacked via a cured product 5C of the adhesive piece 5P. The shape of the chips S1, S2, S3, S4 in plan view is, for example, a square or a rectangle. The area of the chips S1, S2, S3, S4 is 9 mm 2 or less, and may be 0.1-4 mm 2 or 0.1-2 mm 2 . The length of one side of the chips S1, S2, S3, S4 is, for example, 3 mm or less, and may be 0.1 to 2.0 mm or 0.1 to 1.0 mm. The thickness of the chips S1, S2, S3, S4 is, for example, 10 to 170 μm, and may be 25 to 100 μm. The lengths of one side of the four chips S1, S2, S3, and S4 may be the same or different from each other, and the thickness is the same.
 半導体装置100の製造方法は、上述のフィルム10を準備する工程と、フィルム10の接着剤層5に対してウェハWを貼るとともに、粘着剤層3の第2の面F2に対してダイシングリングDRを貼る工程と、ウェハWを面積9mm以下の複数のチップSに個片化する工程(ダイシング工程)と、DAF8(チップS1と接着剤片5Pの積層体、図5(d)参照)を粘着剤層3の第1の領域3aからピックアップする工程と、接着剤片5Pを介してチップS1を、基板70上にマウントする工程とを含む。 The manufacturing method of the semiconductor device 100 includes a step of preparing the above-described film 10, a wafer W attached to the adhesive layer 5 of the film 10, and a dicing ring DR with respect to the second surface F <b> 2 of the pressure-sensitive adhesive layer 3. A step of dicing the wafer W into a plurality of chips S having an area of 9 mm 2 or less (dicing step), and DAF 8 (a laminate of the chip S1 and the adhesive piece 5P, see FIG. 5D). A step of picking up from the first region 3a of the pressure-sensitive adhesive layer 3 and a step of mounting the chip S1 on the substrate 70 via the adhesive piece 5P are included.
 図5(a)~図5(d)を参照しながら、DAF8の作製方法の一例について説明する。まず、上述のフィルム10を準備する。図5(a)及び図5(b)に示すように、ウェハWの一方の面に接着剤層5が接するようにフィルム10を貼り付ける。また、粘着剤層3の第2の面F2に対してダイシングリングDRを貼り付ける。 An example of a method for manufacturing the DAF 8 will be described with reference to FIGS. 5 (a) to 5 (d). First, the above-described film 10 is prepared. As shown in FIG. 5A and FIG. 5B, the film 10 is attached so that the adhesive layer 5 is in contact with one surface of the wafer W. Further, the dicing ring DR is attached to the second surface F2 of the pressure-sensitive adhesive layer 3.
 ウェハW、接着剤層5及び粘着剤層3をダイシングする。これにより、図5(c)に示すように、ウェハWが個片化されてチップSとなる。接着剤層5も個片化されて接着剤片5Pとなる。ダイシング方法としては、ダイシングブレード又はレーザを用いる方法が挙げられる。なお、ウェハWのダイシングに先立ってウェハWを研削することによって薄膜化してもよい。 The wafer W, the adhesive layer 5 and the pressure-sensitive adhesive layer 3 are diced. As a result, the wafer W is divided into chips S as shown in FIG. The adhesive layer 5 is also separated into pieces 5P. Examples of the dicing method include a method using a dicing blade or a laser. The wafer W may be thinned by grinding the wafer W prior to dicing.
 ダイシング後、粘着剤層3に対して活性エネルギー線を照射することなく、図5(d)に示されるように、常温又は冷却条件下において基材層1をエキスパンドすることによってチップSを互いに離間させつつ、ピン42で突き上げることによって粘着剤層3から接着剤片5Pを剥離させるとともに、DAF8を吸引コレット44で吸引してピックアップする。 After dicing, the chips S are separated from each other by expanding the base material layer 1 under normal temperature or cooling conditions as shown in FIG. 5D without irradiating the adhesive layer 3 with active energy rays. The adhesive piece 5P is peeled off from the pressure-sensitive adhesive layer 3 by being pushed up by the pin 42 while the DAF 8 is sucked by the suction collet 44 and picked up.
 図6~図8を参照しながら、半導体装置100の製造方法について具体的に説明する。まず、図6に示すように、接着剤片5Pを介して一段目のチップS1(チップS)を基板70の所定の位置に圧着する。次に、加熱によって接着剤片5Pを硬化させる。これにより、接着剤片5Pが硬化して硬化物5Cとなる。接着剤片5Pの硬化処理は、ボイドの低減の観点から、加圧雰囲気下で実施してもよい。 A method for manufacturing the semiconductor device 100 will be specifically described with reference to FIGS. First, as shown in FIG. 6, the first chip S <b> 1 (chip S) is pressure-bonded to a predetermined position of the substrate 70 through the adhesive piece 5 </ b> P. Next, the adhesive piece 5P is cured by heating. Thereby, the adhesive piece 5P is cured to become a cured product 5C. The curing treatment of the adhesive piece 5P may be performed in a pressurized atmosphere from the viewpoint of reducing voids.
 基板70に対するチップS1のマウントと同様にして、チップS1の表面上に二段目のチップS2をマウントする。更に、三段目及び四段目のチップS3,S4をマウントすることによって図7に示す構造体60が作製される。チップS1,S2,S3,S4と基板70とをワイヤW1,W2,W3,W4で電気的に接続した後(図8参照)、封止層50によって半導体素子及びワイヤを封止することによって図4に示す半導体装置100が完成する。 In the same manner as the mounting of the chip S1 on the substrate 70, the second-stage chip S2 is mounted on the surface of the chip S1. Further, the structure 60 shown in FIG. 7 is manufactured by mounting the third-stage and fourth-stage chips S3 and S4. After the chips S1, S2, S3, S4 and the substrate 70 are electrically connected by the wires W1, W2, W3, W4 (see FIG. 8), the semiconductor element and the wires are sealed by the sealing layer 50. The semiconductor device 100 shown in FIG. 4 is completed.
 以上、本開示の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、基材層1と、粘着剤層3と、接着剤層5とをこの順序で備えるフィルム10を例示したが、接着剤層5を備えない態様であってもよい。また、フィルム10は、接着剤層5を覆うカバーフィルム(不図示)を更に備えてもよい。 As mentioned above, although embodiment of this indication was described in detail, this invention is not limited to the said embodiment. For example, in the said embodiment, although the film 10 provided with the base material layer 1, the adhesive layer 3, and the adhesive bond layer 5 in this order was illustrated, the aspect which does not comprise the adhesive bond layer 5 may be sufficient. . The film 10 may further include a cover film (not shown) that covers the adhesive layer 5.
 以下、本開示ついて、実施例に基づいて更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に記述がない限り、薬品は全て試薬を使用した。 Hereinafter, the present disclosure will be described more specifically based on examples, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents.
<実施例1>
[アクリル樹脂の合成(製造例1)]
 スリーワンモータ、撹拌翼、窒素導入管が備え付けられた容量2000mlのフラスコに以下の成分を入れた。
・酢酸エチル(溶剤):635g
・2-エチルヘキシルアクリレート:395g
・2-ヒドロキシエチルアクリレート:100g
・メタクリル酸:5g
・アゾビスイソブチロニトリル:0.08g
<Example 1>
[Synthesis of acrylic resin (Production Example 1)]
The following components were placed in a flask having a capacity of 2000 ml equipped with a three-one motor, a stirring blade, and a nitrogen introduction tube.
・ Ethyl acetate (solvent): 635 g
・ 2-ethylhexyl acrylate: 395 g
・ 2-hydroxyethyl acrylate: 100 g
・ Methacrylic acid: 5g
・ Azobisisobutyronitrile: 0.08 g
 十分に均一になるまで内容物を撹拌した後、流量500ml/分にて60分間バブリングを実施し、系中の溶存酸素を脱気した。1時間かけて78℃まで昇温し、昇温後6時間重合させた。次に、スリーワンモータ、撹拌翼、窒素導入管が備え付けられた容量2000mlの加圧釜に反応溶液を移し、120℃、0.28MPaにて4.5時間加温後、室温(25℃、以下同様)に冷却した。 After the contents were stirred until it became sufficiently uniform, bubbling was performed at a flow rate of 500 ml / min for 60 minutes to degas dissolved oxygen in the system. The temperature was raised to 78 ° C. over 1 hour, and polymerization was performed for 6 hours after the temperature was raised. Next, the reaction solution was transferred to a pressure vessel having a capacity of 2000 ml equipped with a three-one motor, a stirring blade, and a nitrogen introduction tube, heated at 120 ° C. and 0.28 MPa for 4.5 hours, and then room temperature (25 ° C., and so on) ).
 次に酢酸エチルを490g加えて撹拌し希釈した。これに重合禁止剤としてメトキノンを0.025g、ウレタン化触媒として、ジオクチルスズジラウレートを0.10g添加した後、2-メタクリロキシエチルイソシアネート(昭和電工株式会社製、カレンズMOI(商品名))を81g加え、70℃で6時間反応させた後、室温に冷却した。次いで、酢酸エチルを加え、アクリル樹脂溶液中の不揮発分含有量が35質量%となるよう調整し、連鎖重合可能な官能基を有する(A)アクリル樹脂(製造例1)を含む溶液を得た。 Next, 490 g of ethyl acetate was added and diluted by stirring. After adding 0.025 g of methoquinone as a polymerization inhibitor and 0.10 g of dioctyltin dilaurate as a urethanization catalyst, 81 g of 2-methacryloxyethyl isocyanate (manufactured by Showa Denko KK, Karenz MOI (trade name)) was added. In addition, the mixture was reacted at 70 ° C. for 6 hours, and then cooled to room temperature. Next, ethyl acetate was added to adjust the non-volatile content in the acrylic resin solution to 35% by mass, and a solution containing (A) an acrylic resin (Production Example 1) having a functional group capable of chain polymerization was obtained. .
 上記のようにして得た(A)アクリル樹脂を含む溶液を60℃で一晩真空乾燥した。これによって得られた固形分を全自動元素分析装置(エレメンタール社製、商品名:varioEL)にて元素分析し、導入された2-メタクリロキシエチルイソシアネートの含有量を窒素含有量から算出したところ、0.50mmol/gであった。 The solution containing the acrylic resin (A) obtained as described above was vacuum-dried at 60 ° C. overnight. The solid content thus obtained was subjected to elemental analysis with a fully automatic elemental analyzer (trade name: varioEL, manufactured by Elemental Co., Ltd.), and the content of introduced 2-methacryloxyethyl isocyanate was calculated from the nitrogen content. 0.50 mmol / g.
 また、以下の装置を使用して(A)アクリル樹脂のポリスチレン換算重量平均分子量を求めた。すなわち、東ソー株式会社製SD-8022/DP-8020/RI-8020を使用し、カラムには日立化成株式会社製Gelpack GL-A150-S/GL-A160-Sを用い、溶離液にテトラヒドロフランを用いてGPC測定を行った。その結果、ポリスチレン換算重量平均分子量は80万であった。JIS K0070に記載の方法に準拠して測定した水酸基価及び酸価は46.9mgKOH/g及び6.5mgKOH/gであった。これらの結果を表1にまとめて示す。 Moreover, the polystyrene conversion weight average molecular weight of (A) acrylic resin was calculated | required using the following apparatuses. That is, SD-8022 / DP-8020 / RI-8020 manufactured by Tosoh Corporation is used, Gelpack GL-A150-S / GL-A160-S manufactured by Hitachi Chemical Co., Ltd. is used for the column, and tetrahydrofuran is used for the eluent. GPC measurement was performed. As a result, the polystyrene equivalent weight average molecular weight was 800,000. The hydroxyl value and acid value measured according to the method described in JIS K0070 were 46.9 mgKOH / g and 6.5 mgKOH / g. These results are summarized in Table 1.
[ダイシングフィルム(粘着剤層)の作製]
 以下の成分を混合することで、粘着剤層形成用のワニスを調製した(表2参照)。酢酸エチル(溶剤)の量は、ワニスの総固形分含有量が25質量%となるように調整した。
・(A)アクリル樹脂溶液(製造例1):100g(固形分)
・(B)光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、チバスペシャリティケミカルズ株式会社製、イルガキュア184、「イルガキュア」は登録商標):0.8g
・(B)光重合開始剤(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、チバスペシャリティケミカルズ株式会社製、イルガキュア819、「イルガキュア」は登録商標):0.2g
・(C)架橋剤(多官能イソシアネート、日本ポリウレタン工業株式会社製、コロネートL、固形分:75%):8.0g(固形分)
・酢酸エチル(溶剤)
[Production of dicing film (adhesive layer)]
A varnish for forming the pressure-sensitive adhesive layer was prepared by mixing the following components (see Table 2). The amount of ethyl acetate (solvent) was adjusted so that the total solid content of the varnish was 25% by mass.
(A) Acrylic resin solution (Production Example 1): 100 g (solid content)
(B) Photopolymerization initiator (1-hydroxycyclohexyl phenyl ketone, manufactured by Ciba Specialty Chemicals Co., Ltd., Irgacure 184, “Irgacure” is a registered trademark): 0.8 g
(B) Photopolymerization initiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, manufactured by Ciba Specialty Chemicals Co., Ltd., Irgacure 819, “Irgacure” is a registered trademark): 0.2 g
-(C) Crosslinking agent (polyfunctional isocyanate, manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L, solid content: 75%): 8.0 g (solid content)
・ Ethyl acetate (solvent)
 一方の面に離型処理が施されたポリエチレンテレフタレートフィルム(幅450mm、長さ500mm、厚さ38μm)を準備した。離型処理が施された面に、アプリケータを用いて粘着剤層形成用のワニスを塗布した後、80℃で5分間乾燥した。これにより、ポリエチレンテレフタレートフィルムと、その上に形成された厚さ30μmの粘着剤層とからなる積層体(ダイシングフィルム)を得た。 A polyethylene terephthalate film (width 450 mm, length 500 mm, thickness 38 μm) having a release treatment on one surface was prepared. An adhesive layer-forming varnish was applied to the surface subjected to the mold release treatment using an applicator and then dried at 80 ° C. for 5 minutes. This obtained the laminated body (dicing film) which consists of a polyethylene terephthalate film and the 30-micrometer-thick adhesive layer formed on it.
 一方の面にコロナ処理が施されたポリオレフィンフィルム(幅450mm、長さ500mm、厚さ80μm)を準備した。コロナ処理が施された面と、上記積層体の接着剤層とを室温にて貼り合わせた。次いで、ゴムロールで押圧することで粘着剤層をポリオレフィンフィルム(カバーフィルム)に転写した。その後、室温で3日間放置することでカバーフィルム付きのダイシングフィルムを得た。 A polyolefin film (width 450 mm, length 500 mm, thickness 80 μm) having a corona treatment on one surface was prepared. The surface subjected to the corona treatment and the adhesive layer of the laminate were bonded together at room temperature. Next, the pressure-sensitive adhesive layer was transferred to a polyolefin film (cover film) by pressing with a rubber roll. Then, the dicing film with a cover film was obtained by leaving it to stand at room temperature for 3 days.
[ダイボンディングフィルム(接着剤層A)の作製]
 まず、以下の組成物にシクロヘキサノン(溶剤)を加えて攪拌混合した後、更にビーズミルを用いて90分混練した。
・エポキシ樹脂(YDCN-700-10(商品名)、新日鉄住金化学株式会社製クレゾールノボラック型エポキシ樹脂、エポキシ当量210、分子量1200、軟化点80℃):14質量部・フェノール樹脂(ミレックスXLC-LL(商品名)、三井化学株式会社製、フェノール樹脂、水酸基当量175、吸水率1.8%、350℃における加熱重量減少率4%):23質量部
・シランカップリング剤(NUC A-189(商品名)株式会社NUC製、γ-メルカプトプロピルトリメトキシシラン):0.2質量部
・シランカップリング剤(NUCA-1160(商品名)、日本ユニカー株式会社製、γ-ウレイドプロピルトリエトキシシラン):0.1質量部
・フィラー(「SC2050-HLG(商品名)、アドマテックス株式会社製、シリカ、平均粒径0.500μm):32質量部
[Production of Die Bonding Film (Adhesive Layer A)]
First, cyclohexanone (solvent) was added to the following composition and stirred and mixed, and then kneaded for 90 minutes using a bead mill.
・ Epoxy resin (YDCN-700-10 (trade name), cresol novolak type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., epoxy equivalent 210, molecular weight 1200, softening point 80 ° C.): 14 parts by mass ・ Phenolic resin (Mirex XLC-LL (Trade name), manufactured by Mitsui Chemicals, Inc., phenol resin, hydroxyl group equivalent 175, water absorption 1.8%, heating weight reduction rate at 350 ° C. 4%): 23 parts by mass. Silane coupling agent (NUC A-189 ( (Product name) NUC Co., Ltd., γ-mercaptopropyltrimethoxysilane): 0.2 parts by mass Silane coupling agent (NUCA-1160 (trade name), Nihon Unicar Co., Ltd., γ-ureidopropyltriethoxysilane) : 0.1 parts by mass / filler (“SC2050-HLG (trade name), Admatex Corporation , Silica, average particle diameter 0.500): 32 parts by weight
 上記のようにして得た組成物に以下の成分を加えた後、攪拌混合及び真空脱気の工程を経て接着剤層形成用のワニスを得た。
・エポキシ基含有アクリル共重合体(HTR-860P-3(商品名)、ナガセケムテックス株式会社製、重量平均分子量80万):16質量部
・硬化促進剤(キュアゾール2PZ-CN(商品名)、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール、「キュアゾール」は登録商標)0.0.1質量部
After adding the following components to the composition obtained as described above, a varnish for forming an adhesive layer was obtained through the steps of stirring and mixing and vacuum degassing.
Epoxy group-containing acrylic copolymer (HTR-860P-3 (trade name), manufactured by Nagase ChemteX Corporation, weight average molecular weight 800,000): 16 parts by mass Curing accelerator (Curesol 2PZ-CN (trade name), Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole, “Curazole” is a registered trademark)
 一方の面に離型処理が施されたポリエチレンテレフタレートフィルム(厚さ35μm)を準備した。離型処理が施された面に、アプリケータを用いて接着剤層形成用のワニスを塗布した後、140℃で5分間加熱乾燥した。これにより、ポリエチレンテレフタレートフィルム(キャリアフィルム)と、その上に形成された厚さ20μmの接着剤層(Bステージ状態)とからなる積層体(ダイボンディングフィルム)を得た。 A polyethylene terephthalate film (thickness: 35 μm) having a release treatment on one surface was prepared. A varnish for forming an adhesive layer was applied to the surface subjected to the release treatment using an applicator, and then heated and dried at 140 ° C. for 5 minutes. This obtained the laminated body (die bonding film) which consists of a polyethylene terephthalate film (carrier film) and the 20-micrometer-thick adhesive layer (B stage state) formed on it.
[ダイシング・ダイボンディング一体型フィルムの作製]
 接着剤層とキャリアフィルムとからなるダイボンディングフィルムを、キャリアフィルムごと直径335mmの円形にカットした。これにポリエチレンテレフタレートフィルムを剥離したダイシングフィルムを室温で貼り付け後、室温で1日放置した。その後、直径370mmの円形にダイシングフィルムをカットした。このようにして得たダイシング・ダイボンディング一体型フィルムの接着剤層におけるウェハの貼付け位置に対応する領域(粘着剤層の第1の領域)に以下のようにして紫外線を照射した。すなわち、パルスドキセノンランプを用いて70W、150mJ/cmの照射量で部分的に紫外線を照射した。なお、暗幕を用いてフィルムの中心から内径318mmの部分に紫外線を照射した。このようにして、後述の種々の評価試験に供するための複数のダイシング・ダイボンディング一体型フィルムを得た。
[Production of dicing and die bonding integrated film]
A die bonding film composed of an adhesive layer and a carrier film was cut into a circle having a diameter of 335 mm together with the carrier film. A dicing film from which the polyethylene terephthalate film had been peeled was attached to this at room temperature, and then allowed to stand at room temperature for 1 day. Thereafter, the dicing film was cut into a circle having a diameter of 370 mm. In the adhesive layer of the dicing / die bonding integrated film thus obtained, the region corresponding to the wafer application position (first region of the pressure-sensitive adhesive layer) was irradiated with ultraviolet rays as follows. That is, ultraviolet rays were partially irradiated using a pulsed xenon lamp at an irradiation amount of 70 W and 150 mJ / cm 2 . A black screen was used to irradiate ultraviolet light onto a portion having an inner diameter of 318 mm from the center of the film. In this way, a plurality of dicing / die bonding integrated films for use in various evaluation tests described later were obtained.
<実施例2>
 紫外線の照射量を150mJ/cmとする代わりに、300mJ/cmとしたことの他は実施例1と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 2>
The irradiation amount of ultraviolet rays instead of the 150 mJ / cm 2, other that was 300 mJ / cm 2 in the same manner as in Example 1 to obtain a plurality of dicing die bonding integrated film.
<実施例3>
 紫外線の照射量を150mJ/cmとする代わりに、500mJ/cmとしたことの他は実施例1と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 3>
The irradiation amount of ultraviolet rays instead of the 150 mJ / cm 2, other that was 500 mJ / cm 2 in the same manner as in Example 1 to obtain a plurality of dicing die bonding integrated film.
<実施例4>
 ダイボンディングフィルムとして、接着剤層Aを有するものの代わりに、以下のようにして形成した接着剤層Bを有するものを使用したことの他は実施例1と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
[ダイボンディングフィルム(接着剤層B)の作製]
 まず、以下の成分にシクロヘキサノン(溶剤)を加えて攪拌混合した後、更にビーズミルを用いて90分混練した。
・フィラー(「SC2050-HLG(商品名)、アドマテックス株式会社製、シリカ、平均粒径0.500μm):50質量部
 上記のようにして得た組成物に以下の成分を加えた後、攪拌混合及び真空脱気の工程を経て接着剤層形成用のワニスを得た。
・エポキシ基含有アクリル共重合体(HTR-860P-3(商品名)、ナガセケムテックス株式会社製、重量平均分子量80万):100質量部
・硬化促進剤(キュアゾール2PZ-CN(商品名)、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール、「キュアゾール」は登録商標)0.1質量部
<Example 4>
A plurality of dicing die bondings were carried out in the same manner as in Example 1 except that a die bonding film having an adhesive layer B formed as follows was used instead of the one having the adhesive layer A. An integral film was obtained.
[Production of Die Bonding Film (Adhesive Layer B)]
First, cyclohexanone (solvent) was added to the following components, mixed with stirring, and then kneaded for 90 minutes using a bead mill.
Filler (“SC2050-HLG (trade name), manufactured by Admatechs Co., Ltd., silica, average particle size 0.500 μm): 50 parts by mass After adding the following components to the composition obtained as described above, stirring was performed. A varnish for forming an adhesive layer was obtained through the steps of mixing and vacuum degassing.
Epoxy group-containing acrylic copolymer (HTR-860P-3 (trade name), manufactured by Nagase ChemteX Corp., weight average molecular weight 800,000): 100 parts by mass Curing accelerator (Curesol 2PZ-CN (trade name), 0.1 part by mass of Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole, “Cureazole” is a registered trademark)
<実施例5>
 表1の製造例1に示す原料モノマー組成の代わりに、製造例2に示す原料モノマー組成とし、製造例1と同じ手法で製造した製造例2に係る(A)アクリル樹脂の溶液を得た。この溶液を使用したことの他は実施例2と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 5>
Instead of the raw material monomer composition shown in Production Example 1 in Table 1, a raw material monomer composition shown in Production Example 2 was used, and a solution of (A) acrylic resin according to Production Example 2 produced by the same method as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as Example 2 except that this solution was used.
<実施例6>
 粘着剤層における架橋剤の量を8.0質量部とする代わりに4.0質量部とするとともに、紫外線の照射量を300mJ/cmとする代わりに500mJ/cmとしたことの他は実施例5と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 6>
The amount of the crosslinking agent in the pressure-sensitive adhesive layer is 4.0 parts by mass instead of 8.0 parts by mass, and the amount of UV irradiation is 500 mJ / cm 2 instead of 300 mJ / cm 2. In the same manner as in Example 5, a plurality of dicing / die bonding integrated films were obtained.
<実施例7>
 表1の製造例1に示す原料モノマー組成の代わりに、製造例3に示す原料モノマー組成とし、製造例1と同じ手法で製造した製造例3に係る(A)アクリル樹脂の溶液を得た。この溶液を使用したことの他は実施例2と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 7>
Instead of the raw material monomer composition shown in Production Example 1 in Table 1, a raw material monomer composition shown in Production Example 3 was used, and a solution of (A) an acrylic resin according to Production Example 3 produced by the same method as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as Example 2 except that this solution was used.
<実施例8>
 表1の製造例1に示す原料モノマー組成の代わりに、製造例4に示す原料モノマー組成とし、製造例1と同じ手法で製造した製造例4に係る(A)アクリル樹脂の溶液を得た。この溶液を使用したことの他は実施例3と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Example 8>
Instead of the raw material monomer composition shown in Production Example 1 in Table 1, the raw material monomer composition shown in Production Example 4 was used, and a solution of (A) an acrylic resin according to Production Example 4 produced in the same manner as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 3 except that this solution was used.
<比較例1>
 粘着剤層における架橋剤の量を8.0質量部とする代わりに15.0質量部としたことの他は実施例1と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Comparative Example 1>
A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 1 except that the amount of the crosslinking agent in the pressure-sensitive adhesive layer was changed to 15.0 parts by mass instead of 8.0 parts by mass.
<比較例2>
 紫外線の照射量を300mJ/cmとする代わりに500mJ/cmとしたことの他は実施例5と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Comparative Example 2>
A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 5 except that the irradiation amount of ultraviolet rays was changed to 500 mJ / cm 2 instead of 300 mJ / cm 2 .
<比較例3>
 紫外線の照射量を500mJ/cmとする代わりに150mJ/cmとしたことの他は実施例8と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Comparative Example 3>
Other possible was 150 mJ / cm 2 instead of the irradiation amount of ultraviolet rays with 500 mJ / cm 2 in the same manner as in Example 8, to obtain a plurality of dicing die bonding integrated film.
<比較例4>
 表1の製造例1に示す原料モノマー組成の代わりに、製造例5に示す原料モノマー組成とし、製造例1と同じ手法で製造した製造例5に係る(A)アクリル樹脂の溶液を得た。この溶液を使用するとともに、紫外線を照射しなかったことの他は実施例1と同様にして、複数のダイシング・ダイボンディング一体型フィルムを得た。
<Comparative Example 4>
Instead of the raw material monomer composition shown in Production Example 1 in Table 1, the raw material monomer composition shown in Production Example 5 was used, and a solution of (A) an acrylic resin according to Production Example 5 produced in the same manner as Production Example 1 was obtained. A plurality of dicing / die bonding integrated films were obtained in the same manner as in Example 1 except that this solution was used and ultraviolet rays were not irradiated.
[評価試験]
(1)接着剤層に対する粘着剤層の粘着力(30°ピール強度)の測定
 接着剤層に対する粘着剤層(紫外線照射領域)の粘着力を30°ピール強度を測定することによって評価した。すなわち、ダイシング・ダイボンディング一体型フィルムから幅25mm及び長さ100mmの測定試料を切り出した。測定試料は、粘着剤層(紫外線照射領域)と、接着剤層の積層体とした。引張試験機を用いて接着剤層に対する粘着剤層(紫外線照射領域)のピール強度を測定した。測定条件は、剥離角度30°、引張速度60mm/分とした。なお、試料の保存及びピール強度の測定は、温度23℃、相対湿度40%の環境下で行った。
[Evaluation test]
(1) Measurement of adhesive force (30 ° peel strength) of adhesive layer to adhesive layer The adhesive strength of the adhesive layer (ultraviolet irradiation region) to the adhesive layer was evaluated by measuring 30 ° peel strength. That is, a measurement sample having a width of 25 mm and a length of 100 mm was cut out from the dicing / die bonding integrated film. The measurement sample was a laminate of an adhesive layer (ultraviolet irradiation region) and an adhesive layer. The peel strength of the pressure-sensitive adhesive layer (ultraviolet irradiation region) relative to the adhesive layer was measured using a tensile tester. The measurement conditions were a peeling angle of 30 ° and a tensile speed of 60 mm / min. The sample was stored and the peel strength was measured in an environment of a temperature of 23 ° C. and a relative humidity of 40%.
(2)接着剤層に対する粘着剤層の15°ピール強度の測定
 剥離角度を15°とするとともに引張速度を150mm/分(2.5mm/秒)としたことの他は、上記の30°ピール強度の測定と同様にして15°ピール強度を測定した。なお、この測定条件は特許文献1の請求項1に記載された条件と同じである。
(2) Measurement of 15 ° peel strength of pressure-sensitive adhesive layer relative to adhesive layer 30 ° peel as described above, except that the peel angle was 15 ° and the tensile speed was 150 mm / min (2.5 mm / sec). The 15 ° peel strength was measured in the same manner as the strength measurement. This measurement condition is the same as the condition described in claim 1 of Patent Document 1.
(3)ステンレス基板に対する粘着剤層の粘着力(90°ピール強度)の測定
 ステンレス基板に対する粘着剤層(紫外線非照射領域)の粘着力を90°ピール強度を測定することによって評価した。すなわち、ダイシング・ダイボンディング一体型フィルムから幅25mm及び長さ100mmの測定試料を切り出した。測定試料は、粘着剤層(紫外線非照射領域)と、接着剤層の積層体とした。試料の粘着剤層側の面をステンレス基板(SUS430BA)に貼り付けた後、株式会社島津製作所製オートグラフ「AGS-1000」を用いてステンレス基板に対する粘着剤層(紫外線非照射領域)のピール強度を測定した。測定条件は、剥離角度90°、剥離速度50mm/分とした。
(3) Measurement of adhesive force (90 ° peel strength) of adhesive layer to stainless steel substrate The adhesive strength of the adhesive layer (ultraviolet non-irradiated region) to the stainless steel substrate was evaluated by measuring 90 ° peel strength. That is, a measurement sample having a width of 25 mm and a length of 100 mm was cut out from the dicing / die bonding integrated film. The measurement sample was a laminate of an adhesive layer (non-irradiated region) and an adhesive layer. After the surface of the adhesive layer side of the sample was attached to a stainless steel substrate (SUS430BA), the peel strength of the adhesive layer (ultraviolet non-irradiated area) to the stainless steel substrate using an autograph “AGS-1000” manufactured by Shimadzu Corporation Was measured. The measurement conditions were a peeling angle of 90 ° and a peeling speed of 50 mm / min.
(4)ダイシング性の評価
 ダイシング・ダイボンディング一体型フィルムを80℃×10秒の条件でウェハ(直径:8インチ、厚さ:50μm)に貼り合わせた。その後、以下の条件でウェハのダイシングを行った。
<ダイシング条件>
・ダイサー:DISCO社製、DFD-651
・ブレード:DISCO社製、27HECC
・ブレード回転数:40000rpm
・ダイシング速度:30mm/sec
・ダイシング深さ:25μm
・カットモード:ダウンカット
・ダイシングサイズ:1.0mm×1.0mm
(4) Evaluation of dicing property A dicing / die bonding integrated film was bonded to a wafer (diameter: 8 inches, thickness: 50 μm) under conditions of 80 ° C. × 10 seconds. Thereafter, the wafer was diced under the following conditions.
<Dicing conditions>
・ Dicer: DFD-651, manufactured by DISCO
・ Blade: 27HECC made by DISCO
・ Blade rotation speed: 40000 rpm
・ Dicing speed: 30mm / sec
・ Dicing depth: 25μm
・ Cut mode: Down cut ・ Dicing size: 1.0mm × 1.0mm
(粘着剤層からの接着剤片の剥離の評価)
 ダイシング時において、粘着剤層からの接着剤片の剥離が生じたか否かを確認した。一枚のウェハをダイシングする間に、上記積層体の飛び及び上記剥離が認められなかった試料を「A」と評価し、上記積層体の飛び又はわずかな面積でも上記剥離が認められたものを「B」と評価した。
(Evaluation of peeling of adhesive piece from pressure-sensitive adhesive layer)
During dicing, it was confirmed whether or not peeling of the adhesive piece from the pressure-sensitive adhesive layer occurred. While dicing one wafer, the sample in which the stacking and the peeling were not recognized was evaluated as “A”, and the sample in which the peeling or the small area of the stack was observed was observed. Rated “B”.
(接着剤層からのチップの剥離の評価)
 ダイシング時において、接着剤層からのチップの剥離が生じたか否かを確認した。一枚のウェハをダイシングする間に、チップの飛びが一回も生じなかった試料を「A」と評価し、チップの飛びが一回でも生じた試料を「B」と評価した。
(Evaluation of peeling of chip from adhesive layer)
During dicing, it was confirmed whether or not peeling of the chip from the adhesive layer occurred. During the dicing of one wafer, a sample in which no chip jump occurred was evaluated as “A”, and a sample in which chip jump occurred even once was evaluated as “B”.
(クラック)
 ダイシング後のチップの切削断面を顕微鏡にて確認し、チップの欠けが生じているか否かを評価した。25個のチップの切削断面を観察し、まったく欠けが認められなかった試料を「A」と評価し、わずかでも欠けが認められる試料を「B」と評価した。
(crack)
The cutting cross section of the chip after dicing was confirmed with a microscope, and it was evaluated whether or not chip chipping occurred. A cut cross section of 25 chips was observed, and a sample in which no chipping was observed was evaluated as “A”, and a sample in which even a chipping was observed was evaluated as “B”.
(リング剥がれの有無について)
 ダイシング時にダイシングリングが粘着剤層から剥離する現象(リング剥がれ)が生じたか否かについて目視により評価した。リング剥がれが生じなかった試料を「A」と評価し、リング剥がれが生じた試料を「B」と評価した。
(About ring peeling)
It was visually evaluated whether or not a phenomenon (ring peeling) occurred in which the dicing ring peeled from the pressure-sensitive adhesive layer during dicing. A sample in which ring peeling did not occur was evaluated as “A”, and a sample in which ring peeling occurred was evaluated as “B”.
(5)ピックアップ性の評価
 ダイシング工程後のチップのピックアップ性をルネサス東日本セミコンダクタ社製レキシブルダイボンダー「DB-730」を使用して評価した。ピックアップ用コレットには、マイクロメカニクス社製「RUBBER TIP 13-087E-33(サイズ:1×1mm)」を用い、突上げピンには、マイクロメカニクス社製の「EJECTOR NEEDLE SEN2-83-05(直径:0.7mm、先端形状:直径350μmの半円)」を用いた。突上げピンは、中心部に1本配置した。ピックアップ時のピンの突上げ速度:10mm/秒、突上げ高さ:75μmの条件でピックアップ性を評価した。連続して100個のチップをピックアップし、チップ割れ又はピックアップミス等が発生しなかった場合を「A」と評価し、一つのチップでもチップ割れ又はピックアップミスが発生した場合を「B」と判定した。なお、ダイシング時にリング剥がれが発生したサンプルについては、再度一体型サンプルを作製後、リング密着部を粘着テープで補強しダイシングをした後、評価を行った。
(5) Evaluation of pick-up property The pick-up property of the chip after the dicing process was evaluated using a Rexable Die Bonder “DB-730” manufactured by Renesas East Japan Semiconductor. The pickup collet uses “RUBBER TIP 13-087E-33 (size: 1 × 1 mm)” manufactured by Micromechanics and the push-up pin “EJECTOR NEEDLE SEN2-83-05 (diameter : 0.7 mm, tip shape: semicircle with a diameter of 350 μm) ”. One push-up pin was arranged at the center. The pick-up property was evaluated under the conditions of a pin push-up speed at the time of pick-up: 10 mm / second and a push-up height: 75 μm. When 100 chips are picked up continuously and no chip crack or pick-up error occurs, it is evaluated as “A”, and when one chip breaks or pick-up error occurs, it is determined as “B”. did. In addition, about the sample which ring peeling generate | occur | produced at the time of dicing, after producing an integrated sample again, the ring contact | adherence part was reinforced with the adhesive tape, and it evaluated after dicing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本開示によれば、ウェハを多数の小さいチップへとダイシングする工程に適用可能であり、ダイシング工程におけるDAF飛びを十分に抑制できるとともに、ピックアップ性に優れた粘着剤層を備えたダイシング・ダイボンディング一体型フィルムが提供される。また、本開示によれば、ダイシング・ダイボンディング一体型フィルムの製造方法、及び、当該フィルムを用いた半導体装置の製造方法が提供される。 According to the present disclosure, the present invention can be applied to a process of dicing a wafer into a large number of small chips, can sufficiently suppress DAF jump in the dicing process, and is equipped with a pressure-sensitive adhesive layer having excellent pickup properties. An integral film is provided. Moreover, according to this indication, the manufacturing method of a dicing die-bonding integrated film and the manufacturing method of a semiconductor device using the said film are provided.
1…基材層、3…粘着剤層、3a…第1の領域、3b…第2の領域、5…接着剤層、5P…接着剤片、5C…硬化物、8…DAF、10…ダイシング・ダイボンディング一体型フィルム、70…基板、100…半導体装置、DR…ダイシングリング、F1…第1の面、F2…第2の面、R1…第1の領域、R2…第2の領域、S,S1,S2,S3,S4…チップ、W…ウェハ DESCRIPTION OF SYMBOLS 1 ... Base material layer, 3 ... Adhesive layer, 3a ... 1st area | region, 3b ... 2nd area | region, 5 ... Adhesive layer, 5P ... Adhesive piece, 5C ... Hardened | cured material, 8 ... DAF, 10 ... Dicing Die bonding integrated film, 70 ... substrate, 100 ... semiconductor device, DR ... dicing ring, F1 ... first surface, F2 ... second surface, R1 ... first region, R2 ... second region, S , S1, S2, S3, S4 ... chip, W ... wafer

Claims (13)

  1.  基材層と、前記基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、前記粘着剤層の前記第2の面の中央部を覆うように設けられた接着剤層とを備えるダイシング・ダイボンディング一体型フィルムを準備する工程と、
     前記ダイシング・ダイボンディング一体型フィルムの前記接着剤層に対してウェハを貼るとともに、前記粘着剤層の前記第2の面に対してダイシングリングを貼る工程と、
     前記ウェハを面積9mm以下の複数のチップに個片化する工程と、
     前記接着剤層が個片化されてなる接着剤片とともに前記チップを前記粘着剤層からピックアップする工程と、
     前記接着剤片を介して前記チップを、基板又は他のチップ上にマウントする工程と、
    を含み、
     前記粘着剤層は、前記接着剤層における前記ウェハが貼り付けられる領域に対応する第1の領域と、前記ダイシングリングが貼り付けられる第2の領域とを有し、
     前記第1の領域は、活性エネルギー線の照射により、前記第2の領域と比較して粘着力が低下した状態の領域であり、
     温度23℃において剥離角度30°及び剥離速度60mm/分の条件で測定される、前記接着剤層に対する前記第1の領域の粘着力が1.2N/25mm以上4.5N/25mm以下である、半導体装置の製造方法。
    A base material layer, a pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface opposite to the first surface, and a central portion of the second surface of the pressure-sensitive adhesive layer are provided so as to cover A step of preparing a dicing die-bonding integrated film comprising the adhesive layer formed,
    A step of pasting a wafer on the adhesive layer of the dicing die bonding integrated film and a step of pasting a dicing ring on the second surface of the pressure-sensitive adhesive layer;
    Dividing the wafer into a plurality of chips having an area of 9 mm 2 or less;
    A step of picking up the chip from the pressure-sensitive adhesive layer together with an adhesive piece formed by separating the adhesive layer;
    Mounting the chip on the substrate or another chip via the adhesive piece;
    Including
    The pressure-sensitive adhesive layer has a first region corresponding to a region where the wafer is attached to the adhesive layer, and a second region where the dicing ring is attached.
    The first region is a region in which the adhesive force is reduced as compared with the second region by irradiation with active energy rays,
    The adhesive strength of the first region with respect to the adhesive layer is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less measured at a temperature of 23 ° C. under conditions of a peeling angle of 30 ° and a peeling speed of 60 mm / min. A method for manufacturing a semiconductor device.
  2.  温度23℃において剥離角度90°及び剥離速度50mm/分の条件で測定される、前記第2の領域のステンレス基板に対する粘着力が0.2N/25mm以上である、請求項1に記載の半導体装置の製造方法。 2. The semiconductor device according to claim 1, wherein the second region has an adhesive force of 0.2 N / 25 mm or more measured at a temperature of 23 ° C. under conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min. Manufacturing method.
  3.  前記複数のチップは、正方形又は長方形の形状を有し且つ3mm以下の辺を有する、請求項1又は2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the plurality of chips have a square or rectangular shape and have sides of 3 mm or less.
  4.  前記粘着剤層の前記第1及び第2の領域は、活性エネルギー線の照射前において同一の組成物からなり、
     前記第1の領域は、当該第1の領域となる領域に対して10~1000mJ/cmの量の活性エネルギー線を照射する工程を経て形成されたものである、請求項1~3のいずれか一項に記載の半導体装置の製造方法。
    The first and second regions of the pressure-sensitive adhesive layer are composed of the same composition before irradiation with active energy rays,
    4. The method according to claim 1, wherein the first region is formed through a step of irradiating the region to be the first region with an active energy ray in an amount of 10 to 1000 mJ / cm 2. A method for manufacturing a semiconductor device according to claim 1.
  5.  基材層と、
     前記基材層と対面する第1の面及びその反対側の第2の面を有する粘着剤層と、
     前記第2の面の中央部を覆うように設けられた接着剤層と、
    を備え、
     前記粘着剤層は、前記接着剤層におけるウェハの貼付け位置に対応する領域を少なくとも含む第1の領域と、前記第1の領域を囲むように位置する第2の領域とを有し、
     前記第1の領域は、活性エネルギー線の照射により、前記第2の領域と比較して粘着力が低下した状態の領域であり、
     温度23℃において剥離角度30°及び剥離速度60mm/分の条件で測定される、前記接着剤層に対する前記第1の領域の粘着力が1.2N/25mm以上4.5N/25mm以下である、ダイシング・ダイボンディング一体型フィルム。
    A base material layer;
    A pressure-sensitive adhesive layer having a first surface facing the base material layer and a second surface opposite to the first surface;
    An adhesive layer provided so as to cover a central portion of the second surface;
    With
    The pressure-sensitive adhesive layer has a first region including at least a region corresponding to a wafer attachment position in the adhesive layer, and a second region positioned so as to surround the first region,
    The first region is a region in which the adhesive force is reduced as compared with the second region by irradiation with active energy rays,
    The adhesive strength of the first region with respect to the adhesive layer is 1.2 N / 25 mm or more and 4.5 N / 25 mm or less measured at a temperature of 23 ° C. under conditions of a peeling angle of 30 ° and a peeling speed of 60 mm / min. Dicing / die bonding integrated film.
  6.  温度23℃において剥離角度90°及び剥離速度50mm/分の条件で測定される、前記第2の領域のステンレス基板に対する粘着力が0.2N/25mm以上である、請求項5に記載のダイシング・ダイボンディング一体型フィルム。 The dicing / adhering force according to claim 5, wherein an adhesive force of the second region to the stainless steel substrate measured at a temperature of 23 ° C at a peeling angle of 90 ° and a peeling speed of 50 mm / min is 0.2 N / 25 mm or more. Die bonding integrated film.
  7.  ウェハを面積9mm以下の複数のチップに個片化する工程を含む半導体装置製造プロセスに適用される、請求項5又は6に記載のダイシング・ダイボンディング一体型フィルム。 The dicing / die bonding integrated film according to claim 5 or 6, applied to a semiconductor device manufacturing process including a step of dividing a wafer into a plurality of chips having an area of 9 mm 2 or less.
  8.  前記第2の領域が連鎖重合可能な官能基を有する(メタ)アクリル系樹脂を含み、
     前記官能基がアクリロイル基及びメタクリロイル基から選ばれる少なくとも1種であり、
     前記第2の領域における前記官能基の含有量が0.1mmol/g~1.2mmol/gである、請求項5~7のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。
    The second region includes a (meth) acrylic resin having a functional group capable of chain polymerization,
    The functional group is at least one selected from an acryloyl group and a methacryloyl group;
    The dicing / die bonding integrated film according to any one of claims 5 to 7, wherein a content of the functional group in the second region is 0.1 mmol / g to 1.2 mmol / g.
  9.  前記第2の領域が架橋剤を含み、
     前記第2の領域における前記架橋剤の含有量が0.1~20質量%である、請求項5~8のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。
    The second region comprises a cross-linking agent;
    The dicing / die bonding integrated film according to any one of claims 5 to 8, wherein the content of the crosslinking agent in the second region is 0.1 to 20% by mass.
  10.  前記架橋剤が、一分子中に2つ以上のイソシアネート基を有する多官能イソシアネートと、一分子中に3つ以上のOH基を有する多価アルコールの反応物である、請求項9に記載のダイシング・ダイボンディング一体型フィルム。 The dicing according to claim 9, wherein the crosslinking agent is a reaction product of a polyfunctional isocyanate having two or more isocyanate groups in one molecule and a polyhydric alcohol having three or more OH groups in one molecule.・ Die bonding integrated film.
  11.  前記接着剤層が、エネルギー硬化性基含有(メタ)アクリル共重合体と、硬化促進剤と、フィラーとを含む組成物からなる、請求項5~10のいずれか一項に記載のダイシング・ダイボンディング一体型フィルム。 The dicing die according to any one of claims 5 to 10, wherein the adhesive layer is made of a composition containing an energy curable group-containing (meth) acrylic copolymer, a curing accelerator, and a filler. Bonding integrated film.
  12.  請求項5~11のいずれか一項に記載のダイシング・ダイボンディング一体型フィルムの製造方法であって、
     基材層の表面上に、活性エネルギー線が照射されることによって粘着力が低下する組成物からなる粘着剤層と、前記粘着剤層の表面上に形成された前記接着剤層とを含む積層体を作製する工程と、
     前記積層体に含まれる前記粘着剤層の前記第1の領域となる領域に活性エネルギー線を照射する工程と、
    をこの順序で含む、ダイシング・ダイボンディング一体型フィルムの製造方法。
    A method for producing a dicing / die bonding integrated film according to any one of claims 5 to 11,
    A laminate comprising a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiating active energy rays on the surface of the base material layer, and the adhesive layer formed on the surface of the pressure-sensitive adhesive layer. Producing a body;
    Irradiating an active energy ray to a region to be the first region of the pressure-sensitive adhesive layer included in the laminate;
    A method for producing a dicing / die-bonding integrated film.
  13.  請求項5~11のいずれか一項に記載のダイシング・ダイボンディング一体型フィルムの製造方法であって、
     基材層の表面上に、活性エネルギー線が照射されることによって粘着力が低下する組成物からなる粘着剤層を形成する工程と、
     前記粘着剤層の前記第1の領域となる領域に活性エネルギー線を照射する工程と、
     前記活性エネルギー線を照射した後の前記粘着剤層の表面上に前記接着剤層を積層する工程と、
    をこの順序で含む、ダイシング・ダイボンディング一体型フィルムの製造方法。
    A method for producing a dicing / die bonding integrated film according to any one of claims 5 to 11,
    On the surface of the base material layer, a step of forming a pressure-sensitive adhesive layer made of a composition whose adhesive strength is reduced by irradiation with active energy rays;
    Irradiating active energy rays to a region to be the first region of the pressure-sensitive adhesive layer;
    Laminating the adhesive layer on the surface of the pressure-sensitive adhesive layer after irradiating the active energy ray;
    A method for producing a dicing / die-bonding integrated film.
PCT/JP2018/019179 2018-05-17 2018-05-17 Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device WO2019220599A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2018/019179 WO2019220599A1 (en) 2018-05-17 2018-05-17 Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device
JP2020519925A JP6789500B2 (en) 2018-05-17 2019-05-16 Dicing / die bonding integrated film and its manufacturing method, and semiconductor device manufacturing method
KR1020207033514A KR102278942B1 (en) 2018-05-17 2019-05-16 Dicing and die-bonding integrated film, manufacturing method thereof, and semiconductor device manufacturing method
PCT/JP2019/019574 WO2019221246A1 (en) 2018-05-17 2019-05-16 Dicing/die-bonding double functioning film and method for producing same, and method for manufacturing semiconductor device
SG11202011259WA SG11202011259WA (en) 2018-05-17 2019-05-16 Dicing/die-bonding double functioning film and method for producing same, and method for manufacturing semiconductor device
CN201980032401.6A CN112219264B (en) 2018-05-17 2019-05-16 Die-cut/die-bond integrated film, method for producing same, and method for producing semiconductor device
TW108117038A TWI778263B (en) 2018-05-17 2019-05-17 Slicing and sticking monolithic film, method for manufacturing the same, and method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019179 WO2019220599A1 (en) 2018-05-17 2018-05-17 Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2019220599A1 true WO2019220599A1 (en) 2019-11-21

Family

ID=68539983

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/019179 WO2019220599A1 (en) 2018-05-17 2018-05-17 Dicing die-bonding integrated film, method of manufacturing same, and method of manufacturing semiconductor device
PCT/JP2019/019574 WO2019221246A1 (en) 2018-05-17 2019-05-16 Dicing/die-bonding double functioning film and method for producing same, and method for manufacturing semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019574 WO2019221246A1 (en) 2018-05-17 2019-05-16 Dicing/die-bonding double functioning film and method for producing same, and method for manufacturing semiconductor device

Country Status (6)

Country Link
JP (1) JP6789500B2 (en)
KR (1) KR102278942B1 (en)
CN (1) CN112219264B (en)
SG (1) SG11202011259WA (en)
TW (1) TWI778263B (en)
WO (2) WO2019220599A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095302A1 (en) * 2019-11-15 2021-05-20 昭和電工マテリアルズ株式会社 Semiconductor device production method, dicing die-bonding integrated film, and production method therefor
WO2021095369A1 (en) * 2019-11-15 2021-05-20 昭和電工マテリアルズ株式会社 Integrated dicing/die-bonding film, method for manufacturing same, and method for manufacturing semiconductor device
JP7088388B1 (en) 2021-03-19 2022-06-21 住友ベークライト株式会社 Adhesive tape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019607A (en) * 2003-06-25 2005-01-20 Nitto Denko Corp Adhesive sheet for dicing, and method of manufacturing semiconductor device
JP2012069586A (en) * 2010-09-21 2012-04-05 Nitto Denko Corp Dicing die-bonding film, manufacturing method of dicing die-bonding film, and manufacturing method of semiconductor device
JP2014135469A (en) * 2012-12-10 2014-07-24 Nitto Denko Corp Adhesive sheet, dicing tape integrated adhesive sheet, method for manufacturing semiconductor device, and semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443962B2 (en) 2004-03-17 2010-03-31 日東電工株式会社 Dicing die bond film
JP4800694B2 (en) * 2005-07-26 2011-10-26 日東電工株式会社 Dicing die bond film
JP4717051B2 (en) * 2007-11-08 2011-07-06 日東電工株式会社 Dicing die bond film
JP4717086B2 (en) * 2008-01-18 2011-07-06 日東電工株式会社 Dicing die bond film
JP5303330B2 (en) 2009-03-26 2013-10-02 積水化学工業株式会社 Dicing tape and semiconductor chip manufacturing method
JP5437111B2 (en) * 2010-03-01 2014-03-12 日東電工株式会社 Die bond film, dicing die bond film and semiconductor device
US8975161B2 (en) * 2010-07-13 2015-03-10 Hitachi Chemical Company, Ltd. Dicing/die bonding integral film, dicing/die bonding integral film manufacturing method, and semiconductor chip manufacturing method
JP5294358B2 (en) * 2012-01-06 2013-09-18 古河電気工業株式会社 Wafer processing tape and semiconductor device manufacturing method using the same
KR102108102B1 (en) * 2012-12-10 2020-05-11 닛토덴코 가부시키가이샤 Dicing tape integrated adhesive sheet, manufacturing method of semiconductor device using dicing tape integrated adhesive sheet, and semiconductor device
JP5696205B2 (en) * 2013-12-11 2015-04-08 日東電工株式会社 Die bond film, dicing die bond film and semiconductor device
KR101722137B1 (en) * 2014-01-03 2017-03-31 주식회사 엘지화학 Dicing film and dicing die-bonding film
JP5823591B1 (en) * 2014-10-01 2015-11-25 古河電気工業株式会社 Adhesive tape for protecting semiconductor wafer surface and method for processing semiconductor wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019607A (en) * 2003-06-25 2005-01-20 Nitto Denko Corp Adhesive sheet for dicing, and method of manufacturing semiconductor device
JP2012069586A (en) * 2010-09-21 2012-04-05 Nitto Denko Corp Dicing die-bonding film, manufacturing method of dicing die-bonding film, and manufacturing method of semiconductor device
JP2014135469A (en) * 2012-12-10 2014-07-24 Nitto Denko Corp Adhesive sheet, dicing tape integrated adhesive sheet, method for manufacturing semiconductor device, and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095302A1 (en) * 2019-11-15 2021-05-20 昭和電工マテリアルズ株式会社 Semiconductor device production method, dicing die-bonding integrated film, and production method therefor
WO2021095369A1 (en) * 2019-11-15 2021-05-20 昭和電工マテリアルズ株式会社 Integrated dicing/die-bonding film, method for manufacturing same, and method for manufacturing semiconductor device
JP2021082650A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Dicing/die bonding integral film and manufacturing method thereof, and manufacturing method of semiconductor device
JP2021082648A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Manufacturing method of semiconductor device, dicing/die bonding integrated film, and manufacturing method thereof
JP7409030B2 (en) 2019-11-15 2024-01-09 株式会社レゾナック Dicing/die bonding integrated film and its manufacturing method, and semiconductor device manufacturing method
JP7409029B2 (en) 2019-11-15 2024-01-09 株式会社レゾナック Method for manufacturing semiconductor devices, integrated dicing/die bonding film, and method for manufacturing the same
JP7088388B1 (en) 2021-03-19 2022-06-21 住友ベークライト株式会社 Adhesive tape
JP2022145406A (en) * 2021-03-19 2022-10-04 住友ベークライト株式会社 Adhesive tape

Also Published As

Publication number Publication date
CN112219264A (en) 2021-01-12
TWI778263B (en) 2022-09-21
KR20200140383A (en) 2020-12-15
KR102278942B1 (en) 2021-07-20
CN112219264B (en) 2021-12-03
TW202013474A (en) 2020-04-01
JP6789500B2 (en) 2020-11-25
SG11202011259WA (en) 2020-12-30
WO2019221246A1 (en) 2019-11-21
JPWO2019221246A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2021095302A1 (en) Semiconductor device production method, dicing die-bonding integrated film, and production method therefor
JP6287200B2 (en) Dicing tape for dicing and die bonding integrated tape
JP2013021060A (en) Dicing/die bonding integrated tape
JP2019067996A (en) Pressure-sensitive adhesive tape for dicing and dicing/die bonding integrated tape
WO2019221246A1 (en) Dicing/die-bonding double functioning film and method for producing same, and method for manufacturing semiconductor device
JP6007576B2 (en) Manufacturing method of semiconductor device
JP6265296B2 (en) Dicing tape, dicing die bonding integrated tape, and method for manufacturing semiconductor device using dicing die bonding integrated tape
JP6264917B2 (en) Dicing tape
JP6217872B2 (en) Dicing tape for dicing and die bonding integrated tape
JP6860122B1 (en) Evaluation method of pick-up property, dicing / die bonding integrated film, evaluation method and sorting method of dicing / die bonding integrated film, and manufacturing method of semiconductor device
JP6187715B2 (en) Dicing tape
WO2019240234A1 (en) Dicing-die bonding integrated film and tackifier film used for same
JP7409030B2 (en) Dicing/die bonding integrated film and its manufacturing method, and semiconductor device manufacturing method
JP2021082649A (en) Dicing/die bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
JP6835296B1 (en) Evaluation method of pick-up property, dicing / die bonding integrated film, evaluation method and sorting method of dicing / die bonding integrated film, and manufacturing method of semiconductor device
WO2022255322A1 (en) Method for producing semiconductor device, and dicing-die bonding integrated film
WO2022255321A1 (en) Integrated dicing/die bonding film and method for producing semiconductor device
KR102716567B1 (en) Dicing-die bonding integrated film and tackifier film used for same
JP2023137425A (en) Dicing/die bonding integrated film and semiconductor device manufacturing method
JP2023101285A (en) Dicing/die-bonding integrated film, method for manufacturing same, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP