WO2013100518A1 - 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법 - Google Patents

전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법 Download PDF

Info

Publication number
WO2013100518A1
WO2013100518A1 PCT/KR2012/011378 KR2012011378W WO2013100518A1 WO 2013100518 A1 WO2013100518 A1 WO 2013100518A1 KR 2012011378 W KR2012011378 W KR 2012011378W WO 2013100518 A1 WO2013100518 A1 WO 2013100518A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
plating
plated
electromagnetic
wiping
Prior art date
Application number
PCT/KR2012/011378
Other languages
English (en)
French (fr)
Inventor
장태인
김정국
지창운
권용훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP12863129.8A priority Critical patent/EP2799586A4/en
Priority to JP2014549982A priority patent/JP5887425B2/ja
Priority to US14/368,875 priority patent/US9689063B2/en
Priority to CN201280070305.9A priority patent/CN104126024B/zh
Publication of WO2013100518A1 publication Critical patent/WO2013100518A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/02Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material

Definitions

  • the present invention relates to a wiping facility for controlling the coating amount of the plated steel sheet, and more particularly, at least the edge of the plated adhesive layer of the steel plate passed through the plating bath prior to removal, and the gas wiping to implement at least steel sheet edge Prevents over-plating, while reducing the gas wiping ability while maintaining the line speed of the steel sheet, thereby reducing the amount of dross generated by the fly-by and fly-by, and ultimately improving the plating quality and productivity of the steel sheet.
  • the present invention relates to an electromagnetic wiping device, a plated steel sheet wiping device including the same, and a plated steel sheet manufacturing method.
  • FIG. 1 shows a hot dip plating of such a steel sheet, for example, a galvanizing installation.
  • the steel sheet unrolled from the pay off reel (cold rolled steel sheet (S) is heat-treated through a welder and a looper, and then passes through a snout and a zinc plating bath 110 to be fused zinc. While ZL is attached to the surface of the steel sheet S, the gas wiping device (air knife) 100 of the galvanizing bath injects gas (inert gas or air) onto the surface of the steel sheet, and plated the steel sheet.
  • the amount of deposition that is, the amount of zinc adhesion, is appropriately scraped off to adjust (control) the plating thickness of the steel sheet.
  • the steel sheet passes through the cooling facility and the transfer rolls and passes through the plating deposition amount measuring unit 130, and the measured plating deposition amount is fed back so that the gas discharge pressure of the gas wiping device 100 or the steel sheet S and the gas wire
  • the amount of plating adhesion (plating thickness) of the steel sheet is adjusted by adjusting the interval (distance) between the ping devices.
  • reference numerals 112 and 114 which are not described in FIG. 1, are sink rolls and stabilizing rolls for adjusting the tension of steel sheets and the like.
  • the gas wiping apparatus 100 is a main apparatus of the plating installation which directly affects the plating thickness which determines the plating quality of the steel sheet.
  • an apparatus nozzle unit 101 composed of upper and lower lips 103 and 104 forming a gas discharge hole 102 is flanged to the apparatus main body 105, that is, a chamber. (F) is assembled, the apparatus main body 105 is connected to the gas supply pipe 106 provided at a high pressure, and further rectified to uniformize the flow of gas or remove foreign substances between the apparatus body and the apparatus nozzle portion. Plate 107 and the mesh net 108 may be provided.
  • the momentum of the wiping jet J injected from the gas wiping apparatus 100 must be greatly increased for thin plating, thereby amplifying the gas pressure and the flow rate. To increase the gas wiping ability.
  • the plating adhesion amount of the steel plate surface can normally be adjusted by controlling the pressure of the gas injected from the nozzle part 101 of a gas wiping apparatus, or the distance between a nozzle part and a steel plate.
  • the line speed of the steel sheet is increased, and correspondingly, as the gas pressure or flow rate is increased, the by-products increase. There is a limit.
  • the amount of dross generated due to scattering is approximately 0.4 ton / hr, but if the line speed is increased to 180 mpm to increase productivity, The amount of generation increases rapidly to 1.4 ton / hr. Therefore, as the line speed is increased, the wiping pressure of the gas increases, and correspondingly, the generation amount of fly-bys and dross increases rapidly, thereby increasing the line speed of the plating of the steel sheet. There is a limit.
  • the scattering of zinc particles i.e., increase in the amount of fly ash, makes it difficult to operate at a high speed in the continuous plating process (CGL), thereby lowering the productivity. It causes pollution of the equipment or plating quality of the surface of the steel sheet and requires a separate work to remove it, which causes a problem of the workload of the field worker.
  • the object of the present invention is to remove the plated adhesion layer of the steel plate edge portion passing through the plating bath, and implement gas wiping, at least the overplating of the steel plate edge
  • the gas wiping ability can be reduced even when maintaining or increasing the line speed of the steel sheet, thereby reducing the amount of dross generated by the fly-by and fly-by, and ultimately improving the plating quality and productivity of the steel sheet.
  • the present invention relates to an electromagnetic wiping device, a plated steel sheet wiping device including the same, and a plated steel sheet manufacturing method.
  • the base device provided on one side of the plated steel plate passed through the plating bath;
  • Electromagnetic wiping means provided on the device base and configured to implement a magnetic field change to control the thickness of the plated adhesion layer on the surface of the steel sheet;
  • the electromagnetic wiping device In another aspect, the present invention, the electromagnetic wiping device; And,
  • a gas wiping device provided upstream of the electromagnetic wiping device
  • It provides a plated steel sheet wiping device including an electromagnetic wiping device configured to include.
  • the present invention includes the steps of passing the plating bath to perform the plating of the steel sheet;
  • It provides a plated steel sheet manufacturing method comprising a.
  • an electromagnetic wiping device is disposed below the gas wiping device in the plating irradiation, and the molten metal attached to the surface of the steel sheet in advance before the steel sheet from the plating bath reaches the main gas wiping area. Since the thickness control is performed, the thickness of the steel sheet can be controlled even if the gas wiping ability is reduced.
  • the present invention can lower the pressure or flow rate of the gas wiping, compared to using a single gas wiping apparatus, which is a splash problem in which molten metal particles, that is, zinc particles are scattered.
  • it is possible to reduce the amount of upper dross on the bath surface of the bath with the increase of the fly ash.
  • the present invention can increase the productivity and at the same time suppress the occurrence of the upper dross on the surface of the fly-by or plating bath at least than the conventional one to extend the plating quality and equipment service life.
  • the electromagnetic wiping means of the present invention can be positioned in correspondence with the steel sheet width while suppressing the edge overplating of the plated steel sheet, thereby making it possible to provide an optimum plating environment.
  • 1 is a block diagram showing a known plating process
  • 3A and 3B are schematic diagrams showing a case of performing the conventional gas wiping alone and the gas wiping and electromagnetic preceding wiping according to the present invention.
  • Figure 4 is a perspective view showing the installation state of the electromagnetic wiping device of the present invention
  • FIG. 5 is a perspective view showing an electromagnetic wiping device of the present invention.
  • FIG. 6 is an exploded perspective view of the present invention electromagnetic wiping device of FIG.
  • FIG. 7 is a front configuration diagram showing an apparatus of the present invention in another embodiment.
  • FIG. 8 is a side configuration diagram showing an apparatus of the present invention in another embodiment
  • FIG. 9 is a front and side view showing the device of another embodiment of the present invention.
  • Figure 10 is a front and side configuration diagram showing another embodiment of the present invention device
  • FIGS. 9 and 10 is an operating state diagram showing an operating state of the device of the invention of FIGS. 9 and 10;
  • FIG. 12 is a schematic diagram for explaining the principle of generating drag and buoyancy of the diamagnetic material through the induced current by the time-varying magnetic field in the device of the present invention
  • FIGS. 3A and 3B only the gas wiping device 100 of FIG. 2 and the electromagnetic wiping device 1 of the present invention described in detail below are downstream of the gas wiping device 100.
  • positioning further at the side is shown, respectively.
  • gas wiping device 100 illustrated in FIGS. 3A and 3B substantially corresponds to the gas wiping device described with reference to FIGS. 1 and 2, the detailed structure and operation thereof will be briefly described in the present embodiment.
  • the steel sheet (S) is passed through the plating bath 110 filled with molten zinc (ZL) to be limited to the zinc plating of the steel sheet to be galvanized steel sheet is described. do.
  • ZL molten zinc
  • the present invention is not limited to zinc plating.
  • the electromagnetic wiping apparatus 1 of the present invention is provided as opposed to an edge portion ('E' in FIG. 7) in the width direction of the plated steel sheet, but the electromagnetic wiping of the present invention is performed.
  • the apparatus 1 is provided in the form which extends longer than the maximum width of a steel plate along the steel plate width direction, as shown in FIG. 4 and FIG. 5, or a pair is provided near the edge of a steel plate, as shown in FIG. It is also possible.
  • the present invention implements gas wiping to finally adjust the plating thickness of the steel sheet using the gas wiping device 100 and the electromagnetic wiping device 1 to adjust the plating thickness of the steel sheet 200 ), Through which a manufacturing step of plated steel sheet may be implemented.
  • FIGS. 1 and 2 the components of the gas wiping device and the plating equipment shown in FIGS. 1 and 2 will be described with the same reference numerals as in FIGS. 1 and 2, and the description thereof will be briefly described.
  • the present invention shows the apparatuses only on one side of the steel sheet, it is obvious that the apparatuses of the present invention are disposed symmetrically on both sides of the steel sheet.
  • the plating bath 110 of FIG. Performing the step of removing the plating adhesion layer of the plated steel sheet by removing the plating adhesion layer of the steel plate edge part of the plating adhesion layer of the plated steel sheet that has passed through the plating bath through electromagnetic wiping, and the plating adhesion layer It may comprise a step of adjusting the plating thickness of the plated steel sheet for adjusting the residual plating layer of the plated steel sheet that has been previously removed through additional gas wiping.
  • At least a portion of the plating adhesion layer of the steel sheet edge portion is removed in advance through electromagnetic wiping, thereby eliminating overplating of the steel sheet edge portion even when the same gas jet J is injected in the steel plate width direction during gas wiping. You can do it.
  • the wiping device 100 is used.
  • the electromagnetic wiping device 1 of the present invention of FIG. Since no prior removal of the zinc adhesion layer ZL of the plated steel sheet is performed, the thickness 'T1' (FIG. 3A) of the zinc adhesion layer ZL to be removed from the gas wiping device 100 is first applied at the same position. It is thicker than the thickness 'T2' (FIG. 3b) of the zinc adhesion layer removed (cut off) by inducing the zinc adhesion layer (ZL) of the steel sheet downward in a non-contact manner.
  • the gas pressure (discharge pressure) or the flow rate in the gas wiping device 100 of FIG. 3B should be larger than that of FIG. 3B, and thus the zinc particles P in proportion to the gas pressure. Since the amount of scattering increases, there is a limit to increasing the traveling speed of the steel sheet in the case of FIG. 3A.
  • the gas wiping is finally performed.
  • the zinc adhesion layer is first cut by electromagnetic induction to reduce the gas pressure and flow rate in the gas wiping section of the main plate. In this case, the amount of zinc particles scattered or the amount of the upper dross D formed on the bath surface of the plating bath is reduced.
  • one electromagnetic wiping device that extends longer than the width of the steel sheet, or through the electromagnetic wiping device is reduced in length and disposed corresponding to both edges of the steel sheet, as shown in FIG. It is possible to properly remove at least a portion of the zinc adhesion layer in advance before the gas wiping, which determines the plating thickness, to solve splash problems such as scattering of zinc particles, increase of the upper dross, and the like.
  • the required gas wiping capacity gas pressure or flow rate
  • line speed line speed
  • the electromagnetic wiping apparatus 1 of the present invention is disposed between the plating baths on the downstream side of the main gas wiping apparatus 100 so that a part of the zinc adhesion layer on the surface of the steel sheet is scraped off as a non-electromagnetic main.
  • the wiping ability which proportionally suppresses the amount of scattering of zinc particles (P) and the amount of generation of the upper dross (D).
  • the electromagnetic wiping device 1 carries out the steel sheet through the zinc-clad layer on the surface of the steel sheet through an induction current through a time traveling magnetic flux that changes the (field) magnetic field with time. It is possible to remove the forced induction in the opposite direction of.
  • the present invention device 1 when applying an alternating current of the single-phase or three-phase of the electromagnet block 50, or the rotation of the permanent magnets (40a, 40b), the zinc adhesion layer ( ZL) by the drag force and the lifting force (Levitation Force) formed in at least one or both of them are induced in the opposite direction of the steel sheet advance direction is removed while being removed.
  • reference numeral 50 in FIG. 12 denotes an electromagnet block described in detail below
  • reference numeral 40 denotes permanent magnets having different polarities, that is, the N pole magnet 40a and the S pole magnet 40b are alternately arranged. Represents a permanent magnet.
  • FIG. 12 illustrates the principle of forming drag and buoyancy in the zinc plated layer (ZL), which is a diamagnetic material, by using an electromagnet (block) or a (rotated) permanent magnet.
  • ZL zinc plated layer
  • the permanent magnets 40 are alternately arranged with the N pole permanent magnets 40a and the S pole permanent magnets 40b, and when rotated in the device base 10 described in detail below, the magnetic field is timed.
  • the induced current is generated by the time-varying magnetic field, the drag force and the lift force are formed in the diamagnetic material of molten zinc (Zn) (other, aluminum (Al), copper (Cu, etc.)).
  • Zn molten zinc
  • Al aluminum
  • Cu copper
  • the drag and flotation force can be controlled by increasing or decreasing the rotational force of the permanent magnet, and the flotation force is weak if a significant current is not applied to the electromagnet, but if an alternating current of appropriate magnitude is applied, the buoyancy formation and its control are also sufficient. It is possible.
  • the electromagnetic wiping device 1 of the present invention may need to be appropriately selected and used according to the plating environment.
  • FIGS. 3B to 6 and 8 illustrate the electromagnetic wiping device 1 according to the present invention using the permanent magnet 40 which mainly forms a drag until the critical speed described in FIG. 12, and FIG. 7.
  • FIG. 12 illustrates the electromagnetic wiping device 1 of the present invention using the electromagnet 50 forming the drag and flotation force described in FIG. 12.
  • the electromagnetic wiping device 1 of the present invention basically includes an apparatus base 10 provided to one side of the plated steel sheet S passing through the plating bath 110, and Electromagnetic wiping means 30 provided on the device base and configured to implement a magnetic field change to control the thickness of the plated adhesion layer on the steel sheet surface.
  • the apparatus of the present invention by forming a drag or buoyancy force through the time-varying magnetic field described above, or both of them to guide the zinc adhesion layer (ZL) attached to the surface of the plated steel sheet (S) by electromagnetic force to the plating bath surface side in a non-contact manner It may include one of the permanent magnet 40 and the electromagnet 50 to remove.
  • the electromagnetic wiping means 30 of the present invention includes a permanent magnet 40 in which the magnets 40a and 40b of different polarities are provided in a predetermined pattern on the device base 10. It is provided to remove a part of the layer without contact.
  • the electromagnetic wiping means 30 of the present invention the contact base of the steel plate through the one or more electromagnets 50 provided with a single-phase or three-phase alternating current applied to the device base to generate a time-varying magnetic field, the contactless layer of the steel sheet It is provided to remove some.
  • Figure 7 shows that the permanent magnet 40 and the electromagnet 50 is installed on the rotary shaft 12 and the hollow support shaft 12 ′ of the device base 10 to facilitate understanding.
  • the device base 10 of the electromagnetic wiping device 1 of the present invention is a rotating shaft provided so as to drive rotation as a motor (11 in Fig. 7) in the width direction of the steel sheet ( 12) and a rotating block 16 assembled to the rotating shaft and mounted with a predetermined pattern of permanent magnets 40a and 40b of different polarities.
  • the rotary block 16 is provided with magnet seating grooves 14 provided along the circumferential direction, in which N pole permanent magnets 40a and S pole permanent magnets 40b are alternately seated and fixed.
  • the rotating shaft 12 fixed through the center of the rotating block 16 is, as shown in FIGS. 6 and 7, a horizontal moving body in the form of a box of the driving means 70 which will be described in detail below.
  • 78 is rotatably connected via a bearing (unsigned), and a drive motor 11 is rotatably provided to the horizontal movable body 78.
  • the galvanized layer of the steel sheet is scraped off to remove a portion of the steel sheet in a non-contact form with at least drag through the electromagnetic.
  • fixing plates 18 are fastened to both sides of the rotation block 16 as bolts on both sides of the rotation shaft 12, thereby preventing permanent magnets from being separated from the seating groove 14. .
  • the permanent magnets to the seating groove 14 is bonded through an adhesive means, it will be able to fasten with a bolt together when fastening the rotating block of the fixing plate.
  • the cover body 20 surrounding the permanent magnets to the outside of the electromagnetic wiping device 1 of the present invention is provided, such a cover body 20 is not easily attached to the zinc particles It may be possible to provide a cover body 20 made of a ceramic material having a non-surface roughness or having a non-magnetic material, for example, heat resistance.
  • Such a cover body 20 may be fixed to the horizontal moving body 78 as shown in FIG. 7 or fixed to the outer side of the rotating block.
  • the cover agent 20 will be able to minimize or block the scattering zinc particles attached to the permanent magnets.
  • FIG. 7 shows the electromagnetic wiping device 1 of the present invention using an electromagnet.
  • FIG. 7 illustrates the use of the electromagnet 50 and the permanent magnet 40 on both sides of the center.
  • the device will be constructed by selecting electromagnets or permanent magnets.
  • the electromagnet 50 may be provided with a plurality of electromagnet blocks in a ring structure as appropriate on the hollow support shaft 12 ′ included in the device base 10.
  • the shaft on which the electromagnet 50 is mounted as the hollow support shaft 12 ′ is that the electromagnet does not need to rotate like a permanent magnet, and in the case of applying single-phase or three-phase alternating current in FIG. 12.
  • the cable 52 for applying an alternating current to the electromagnets 50 is for passing through the inside.
  • the cable 52 associated with the electromagnet 50 is associated with the pulse width modulator 54 associated with the device controller C.
  • a pulse width modulator 54 although schematically shown in the figure, may be provided on the drive means 70 to enable the steel plate width direction movement of the electromagnetic wiping device.
  • the electromagnetic wiping device 1 of the present invention when the electromagnetic wiping device 1 of the present invention is provided in a structure that extends longer than the maximum width of the plated steel sheet, the zinc adhesion layer as a whole in the width direction of the steel sheet 7, or when arranging a pair of electromagnetic wiping devices 1 respectively corresponding to the edge portion E of the steel sheet, as described above, at least edge over-plating of the steel sheet is prevented. I will.
  • the drive means 70 is linked to the case that the electromagnetic wiping device 1 of the present invention is moved in the steel plate width direction corresponding to the steel plate edge, the position control in response to the steel plate width.
  • the electromagnetic wiping device 1 of the present invention is to be provided so as to control the position corresponding to the steel plate width in the width direction of the steel plate via the driving means 70. Can be.
  • the driving means 70, the moving block 76 is fastened to the screw bar 74 provided longer than the maximum width of the steel plate plated in the width direction of the steel plate, one side of the screw bar 74
  • the motor 72 is connected to the coupling structure.
  • the motor 72 and the screw bars 74 may be fixed to the installation frame provided horizontally in the space between the plating bath and the gas wiping device 100 in FIG. 1. .
  • the moving block 76 is provided to guide the movement of the lower guide bar 75 for supporting the load associated with the present invention
  • the electromagnetic wiping device 1 is provided to support the movement of the moving block It is preferable.
  • a horizontal moving body 78 in the form of a box is provided at the lower side of the moving block 76 via a connecting table 80, and the rotation shaft 12 of the apparatus of the present invention described above.
  • a hollow support shaft 12 ′ may be provided.
  • the moving block 76 is moved in the width direction of the steel plate while being guided by the guide rod along the screw bar according to the motor driving of the driving means 70, and eventually the electromagnetic wire provided in the horizontal moving body 78 of the present invention.
  • the ping apparatus 1 makes it possible to be located appropriately in the vicinity E of the steel plate correspondingly.
  • the electromagnetic wiping device 1 of the present invention at least the device base 10 and the electromagnetic wiping means 30 are position-controlled in correspondence with the steel plate width near both edges in the width direction of the steel plate. Edge overplating can be appropriately suppressed.
  • a screw bar 74 of the driving means 70 and an outer side of the guide rod 75 are surrounded by a support 71 of a box structure. It is preferably provided so as to form an opening (unsigned) in an appropriate length in consideration of the moving width of the connecting table 80 in the lower portion of the support.
  • the support 71 which may be provided as a box structure of, for example, iron plate welding, extends longer than the maximum width of the steel sheet and is driven with the screw bar 74. Is mounted on one side of the inside, the screw bar 74 of the moving block 76 and the horizontal movable body 78 is fastened while being rotated according to the motor drive while supporting the bearing block (74a) mounted on the support on both sides of the support To make the move possible.
  • the guide rod 75 penetrates through the upper end of the rectangular moving block 76 and may be mounted at both end walls of the support 71 at both ends.
  • the rotary motor 11 of the electromagnetic wiping means 30 including the permanent magnet and the motor 72 of the drive means 70 power supply PS Connected to the device control unit C through the device, and applied to the device control unit (C) pulse width for applying an alternating current to the sensor SE and the electromagnet to detect the line speed of the plated layer measuring instrument 120 and the steel sheet shown in FIG.
  • the plated thickness of the steel sheet and the line speed of the steel sheet can be controlled through the device control unit to control the electromagnetic wiping ability using permanent magnets or electromagnets, thereby enabling proper plating layer thickness control. Will do.
  • FIGs. 9 to 11 show other embodiments of the apparatus of the present invention shown in Figs. 7 and 8.
  • the support 71 of the box structure is associated with a second drive means 90, for example a horizontal drive cylinder, and in the figure across the lower portion of the support 71.
  • a second drive means 90 for example a horizontal drive cylinder
  • the support 71 moves forward or backward along the guide rail according to the forward or backward movement of the horizontal drive cylinder, which is the second drive means 90. do.
  • the electromagnetic wiping means 30 associated with the lower portion of the support 71 also moves forward or backward, and thus, the electromagnetic wiping means integrally when the second driving means 90 moves forward or backward.
  • the gap between the 30 and the steel sheet S can be adjusted.
  • This gap adjustment between the electromagnetic wiping means 30 and the steel sheet S determines the amount of shaving of the plated adhesion layer of the steel sheet in the same electromagnetic environment, so that together with the electromagnetic wiping, more precise plating adhesion layer control is achieved. Can be implemented.
  • the horizontal movable body 78 rotates in the advancing direction of the steel plate via the third driving means 93 (counterclockwise or clockwise toward the vertically conveyed steel plate).
  • the electromagnetic wiping means 30 is first at least through the electromagnetic wiping, before the gas wiping at the steel sheet edge, The ability to remove the plated layer at the steel sheet edge can be controlled.
  • the degree of tilting at the steel sheet edge of the electromagnetic wiping means 30 is adjusted integrally with the horizontal moving body 78. .
  • the connecting member 80 is divided into two upper and lower ends of the movable block 76 and the upper end of the box chain horizontal movable body 78 via a hinge (80c) and It may be provided as the lower link member (80a) (80b).
  • a third drive means 93 is connected to the bracket 93e provided on the upper link member 80a constituting the connecting rod 80 by a hinge 93b, and the third drive cylinder is a third drive cylinder.
  • the connecting member (3) is used during the forward and reverse operation of the third drive means 93, which is the vertical drive cylinder.
  • the upper and lower link members 80a and 80b of the 80 are half as viewed from the front in the edge portion of the steel plate S, as shown in FIG. Rotate clockwise or clockwise.
  • the electromagnetic wiping means 30 removes the plated adhesion layer of the edge portion of the steel sheet before the gas wiping earlier by 'DT', and thus the electromagnetic wiping means ( The larger the inclination of 30), the earlier the plating adhesion layer of the steel sheet edge is shaved, so that the amount of removal of the plating adhesion layer at the steel sheet edge portion can be controlled.
  • the apparatus of the present invention the gap between the steel plate of the electromagnetic wiping means 30 and the electromagnetic wiping means 30 through the drive means and the second to third drive means. It is possible to adjust the plating thickness more precisely by controlling the coating amount more precisely by controlling the inclination at the edge of the steel sheet and the subsequent gas wiping control.
  • the electromagnetic wiping device (1) of the present invention it is possible to precede the removal of the coating layer in the width direction of the plated steel sheet passed through the plating bath before the gas wiping, preferably the steel sheet Since the plating adhesion amount of an edge part is larger than the center part of a steel plate, it removes at least the plating adhesion layer of a steel plate edge part.
  • the removal amount of a plating adhesion layer in a steel plate edge part removes the plating adhesion layer in a steel plate edge part by 5 to 25% of the plating adhesion amount of a steel plate center part, for example.
  • the plating deposition amount at the center of the steel sheet is about 400 g / m 2, and in this case, the plating deposition amount at the edge of the steel sheet is about 440 to 500 g / m 2.
  • the plating adhesion layer of the steel plate edge part is removed smaller than 5% of the plating adhesion layer of the steel plate center part, the removal amount is insufficient and the reduction of the wiping pressure in the gas wiping step cannot be expected, and the plating adhesion part of the steel plate center part is not expected. If greater than 25% of the layer is removed, it may be excessively removed, making it difficult to control uniform plating of the plating thickness of the center and edge portions of the steel sheet in the gas wiping step.
  • the removal of the plating adhesion layer from the steel plate edge part is to remove the plating adhesion layer from the steel plate edge part by 10-20% of the plating adhesion layer of the steel plate center part.
  • the plating adhesion amount at the edge portion of the steel sheet passing through the plating tank is larger than the plating adhesion amount at the center portion of the steel sheet, the plating adhesion layer at the center portion of the steel sheet is formed flat, but in the case of the steel sheet edge portion, the plating layer is bent while wrapping the edges. Since it is formed, the overplating of the steel plate edge portion is not eliminated even after the gas wiping.
  • the plating thickness in the steel sheet width direction will be uniform after gas wiping.
  • the range of the edge portion of the steel sheet to which the plated layer is preceded may be in the range of 100 to 300mm at the end of the steel sheet, usually about 200 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

도금 강판의 도금 부착량을 제어하는 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법이 제공된다. 이와 같은 본 발명에 의하면, 도금조를 통과한 강판의 적어도 에지부분의 도금 부착층을 전자기를 이용하여 선행 제거하고, 가스 와이핑을 구현하여, 적어도 강판 에지의 과도금을 방지시키는 한편, 강판의 라인 속도는 유지하면서 가스 와이핑 능력을 줄일 수 있어, 비산물이나 비산물에 의한 드로스의 발생량을 줄이도록 하여, 궁극적으로 강판의 도금 품질과 생산성을 향상시키는 개선된 효과를 얻을 수 있다.

Description

전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법
본 발명은 도금 강판의 도금 부착량을 제어하는 와이핑 설비에 관한 것이며, 더욱 상세하게는 도금조를 통과한 강판의 적어도 에지부분의 도금 부착층을 선행 제거하고, 가스 와이핑을 구현하여 적어도 강판 에지의 과도금을 방지시키는 한편, 강판의 라인 속도는 유지하면서 가스 와이핑 능력은 줄일 수 있어, 비산물이나 비산물에 의한 드로스의 발생량을 줄이도록 하여, 궁극적으로 강판의 도금 품질과 생산성을 향상시킨 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법에 관한 것이다.
근래 강판의 내식성 등을 향상시키고, 외관을 미려하게 하며, 특히 전자제품이나 자동차용 강판용 사용되는 도금강판 수요가 증가하고 있다.
예를 들어, 도 1에서는 이와 같은 강판의 용융도금 예컨대, 아연 도금 설비를 도시하고 있다.
도 1에서 도시한 바와 같이, 페이오프 릴(Pay Off Reel)에서 풀린 강판(냉연강판((S)은 용접기와 루퍼를 거쳐 열처리된 후, 스나우트와 아연 도금욕조(110)를 통과하면서 용융아연(ZL)이 강판(S)의 표면에 부착되면서 진행되고, 이때 아연도금욕조상의 가스 와이핑 장치(에어 나이프)(100)에서 강판 표면에 가스(불활성 가스 또는 에어)를 분사하고, 강판의 도금 부착량 즉, 아연 부착량을 적절하게 깍아서 제거하여 강판의 도금두께를 조정(제어)한다.
그리고, 강판은 냉각설비와 이송롤들은 거쳐, 도금 부착량 측정기(130)를 통과하면서, 측정된 도금 부착량은 피이드백되어 가스 와이핑 장치(100)의 가스 토출 압력이나, 강판(S)과 가스 와이핑 장치간 간격(거리) 등을 조정하여 강판의 도금 부착량(도금 두께)을 조절한다.
이때, 도 1에서 미설명 부호인 112와 114는 강판을 통판시키고 강판의 텐션 등을 조정하는 싱크롤(sink roll)과 스테빌라이징 롤(stabiling roll)이다.
따라서, 가스 와이핑 장치(100)는, 강판의 도금 품질을 결정하는 도금 두께에 직접적인 영향을 미치는 도금 설비의 주요 장치이다.
이때, 도 2에서 도시한 바와 같이. 도 1의 상기 가스 와이핑 장치(100)는, 가스 토출구(102)를 형성하는 상,하부 립(103)(104)으로 구성된 장치 노즐부(101)가 장치 본체(105) 즉, 쳄버에 플랜지(F) 형태로 조립되고, 상기 장치 본체(105)에는 고압으로 제공되는 가스 공급관(106)이 연결되고, 추가로 장치본체와 장치 노즐부 사이에는 가스의 유동을 균일하게 하거나 이물을 제거하는 정류판(107)과 메쉬망(108)이 구비될 수 있다.
따라서, 도 2와 같이, 장치 노즐부(101)의 가스 토출구(102)를 통하여 분사되는 고압가스의 와이핑 제트(J)가 도금 강판(S)의 표면에 충돌하면, 제트는 강판의 표면을 따라서 상,하 방향으로 이동하여 강판의 표면에서는 벽면 제트(J)가 형성되고, 이와 같은 벽면 제트(J)는 용융아연 도금층(ZL)의 표면을 따라서 빠른 속도로 이동하면서 강판 표면에 부착된 용융 아연도금층(ZL)을 깍아 내리고, 이를 통하여 강판의 도금 부착량이 결정되는 것이다.
그런데, 근래 강판 도금 공정의 중요한 요구 사항은, 도금 강판의 생산성을 높이기 위하여 강판(S)의 이송속도는 빠르게 하면서, 동시에 박도금을 구현하는 것이다. 즉, 필요한 만큼만 도금하는 박도금일 수록 원가가 절감되고, 강판 진행속도가 빠르게 되면 생산성이 높아지기 때문이다.
그러나, 강판(S)을 고속으로 진행시키면 시킬수록 또한, 박도금을 위해서는 가스 와이핑 장치(100)에서 분사되는 와이핑 제트(J)의 운동량을 대폭 증가시켜야 하기 때문에, 가스 압력이나 유량을 증폭시키어 가스 와이핑 능력을 높여야 한다.
그런데, 도 2에서와 같이, 통상 강판 표면의 도금 부착량은 가스 와이핑 장치의 노즐부(101)에서 분사되는 가스의 압력이나, 노즐부와 강판 사이의 거리를 제어하여 조정할 수 있다.
이때, 생산성을 높이기 위하여, 예를 들어 고속의 박도금을 구현하기 위하여는 상대적으로 가스 압력이나 유량을 더 높여야 하는 것은 당연하다.
그러나, 이와 같이 고속 박도금을 위한 가스의 압력이나 유량을 높여 와이핑 능력을 높이는 경우, 비례적으로 저속 도금시 보다 더 많은 아연입자(P)가 비산되는 알려진 스플래쉬 문제를 야기시키고, 비산된 아연입자가 증가되면, 도금조(110)의 탕면 상의 상부 드로스(Top dross)(D)의 발생량도 증가하는 문제를 발생시키게 된다.
따라서, 생산성을 높이고 비용 절감을 위한 박도금을 구현하기 위하여, 강판의 라인속도를 증가하고, 이에 대응하여 가스 압력이나 유량을 높이면 높일수록 비산물은 증대하기 때문에, 사실상 강판의 라인속도를 높이는 데에는 한계가 있게 된다.
예를 들어, 도금강판의 라인속도를 140 mpm 으로 조업하는 경우, 비산에 따른 드로스(dross)의 발생량은 대략 0.4 ton/hr이나, 생산성을 높이기 위하여 라인속도를 180 mpm 으로 높이면, 드로스의 발생량은 1.4 ton/hr로 급격하게 증가하고, 따라서 라인속도를 높일수록 가스의 와이핑 압력도 높아지고, 이에 대응하여 비산물과 드로스의 발생량이 급속하게 증대되므로, 강판의 도금의 라인속도를 높이는 데에는 한계가 있는 것이다.
이와 같은 아연입자의 비산 즉, 비산물의 증가는 연속 도금공정(CGL)에서의 고속 조업을 어렵게 하여 생산성을 저하시킬 뿐만 아니라, 특히 급격하게 증가하는 상부 드로스(D)는 도금조 내 롤 등의 설비 오염이나 강판 표면의 도금 품질 저하를 초래하고, 이를 제거하기 위한 별도의 작업이 필요하므로, 현장 작업자의 업무부하 문제를 초래하게 된다.
본 발명은 상기와 같은 종래 문제를 해소하기 위하여 제안된 것으로서 그 목적 측면은, 도금조를 통과한 강판 에지부분의 도금 부착층을 선행 제거하고, 가스 와이핑을 구현하여, 적어도 강판 에지의 과도금을 방지하는 한편, 강판의 라인 속도를 유지하거나 증가하여도 가스 와이핑 능력은 줄일 수 있어, 비산물이나 비산물에 의한 드로스 발생량은 줄일 수 있어, 궁극적으로 강판의 도금 품질과 생산성을 향상시킨 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법에 관한 것이다.
상기와 같은 목적을 달성하기 위한 기술적인 일 측면으로서 본 발명은, 도금조를 통과한 도금강판의 일측에 제공된 장치 베이스; 및,
상기 장치 베이스 상에 제공되고 자기장 변화를 구현하여 강판 표면의 도금 부착층의 두께를 제어토록 구성된 전자기 와이핑 수단;
을 포함하여 구성된 전자기 와이핑 장치를 제공한다.
또한, 기술적인 다른 측면으로서 본 발명은, 상기 전자기 와이핑 장치; 및,
상기 전자기 와이핑 장치의 상류 측에 제공된 가스 와이핑 장치;
를 포함하여 구성된 전자기 와이핑 장치를 포함하는 도금강판 와이핑 장치를 제공한다.
더하여, 기술적인 또 다른 측면으로서 본 발명은, 도금조를 통과시키어 강판의 도금을 수행하는 단계;
상기 도금조를 통과한 도금강판의 도금 부착층의 일부를 전자기 와이핑을 통하여 선행 제거하는 도금강판의 도금 부착층 선행 제거단계; 및,
상기 도금 부착층이 선행 제거된 도금강판의 잔류 도금부착층을 추가적인 가스 와이핑을 통하여 제거하는 도금강판의 도금두께 조정단계;
를 포함하여 구성된 도금강판 제조방법을 제공한다.
이와 같은 본 발명에 의하면,가스 와이핑 장치의 하측으로 도금조사이에 전자기 와이핑 장치를 배치하여, 도금욕에서 나온 강판이 메인의 가스 와이핑 영역에 도달하기 전에, 미리 강판 표면에 부착된 용융 금속을 깎아주는 선행 두께제어를 하기 때문에, 가스 와이핑의 능력을 낮추어도 정상적인 강판의 도금두께 제어가 가능하게 되는 것이다.
따라서, 본 발명은 동일한 도금 조건을 만족하는 경우에는 기존의 단일의 가스 와이핑 장치를 사용하는 것에 비하여, 가스 와이핑의 압력이나 유량을 낮출 수 있어 용융 금속입자 즉, 아연입자가 비산되는 스플래쉬 문제, 비산물의 증가에 따른 도금조 탕면상의 상부 드로스의 발생 량을 감소시키는 것을 가능하게 한다.
결국, 본 발명은 생산성은 높이면서도 비산물이나 도금조 탕면상의 상부 드로스 발생은 적어도 종래 보다는 억제할 수 있어 도금 품질이나 설비 사용 수명을 연장 가능하게 하는 것이다.
또한, 본 발명의 전자기 와이핑 수단은 특히, 도금강판의 에지 과도금을 억제하면서 강판 폭에 대응하여 위치 제어될 수 있어, 최적의 도금 환경을 제공하는 것을 가능하게 하는 것이다.
도 1은 알려진 도금 공정을 도시한 설비 구성도
도 2는 종래 가스 와이핑 상태를 도시한 작동상태도
도 3a 및 도 3b는 종래 가스 와이핑 단독 및 본 발명의 가스 와이핑과 전자기 선행 와이핑을 수행하는 경우를 도시한 개략도
도 4는 본 발명의 전자기 와이핑 장치의 설치 상태를 도시한 사시도
도 5는 본 발명의 전자기 와이핑 장치를 도시한 사시도
도 6은 도 5의 본 발명 전자기 와이핑 장치를 도시한 분해 사시도
도 7은 다른 실시예의 본 발명 장치를 도시한 정면 구성도
도 8은 다른 실시예의 본 발명 장치를 도시한 측면 구성도
도 9는 또 다른 실시예의 본 발명 장치를 도시한 정면 및 측면 구성도
도 10은 또 다른 실시예의 본 발명 장치를 도시한 정면 및 측면 구성도
도 11은 도 9 및 도 10의 본 발명 장치의 작동 상태를 도시한 작동 상태도
도 12는 본 발명 장치에서 시변자계에 의한 유도전류를 통한 반자성체의 항력과 부양력 발생 원리를 설명하기 위하여 제시된 개략도
이하, 도면을 참고로 본 발명을 상세하게 설명한다.
먼저, 도 3a 및 도 3b에서는, 도 2의 가스 와이핑 장치(100)만을 이용하는 경우와, 다음에 상세하게 설명하는 본 발명의 전자기 와이핑 장치(1)를 가스 와이핑 장치(100)의 하류측에 추가로 배치하는 경우의 강판(S)의 도금 부착층 제거(도금두께 조정)상태를 각각 도시하고 있다.
다만, 도 3a 도 3b에서 도시한 가스 와이핑 장치(100)는, 사실상 도 1,2에서 설명한 가스 와이핑 장치에 해당하므로, 그 상세한 구조 및 작용에 대한 설명은 본 실시예에서는 간략한다.
또한, 이하의 본 실시예에서는, 도 1과 같이, 강판(S)이 용융아연(ZL)이 충진된 도금조(110)를 통과하여 강판의 아연 도금이 수행되는 강판의 아연도금으로 한정하여 설명한다. 물론, 본 발명이 아연 도금에 한정되는 것은 아님은 물론이다.
한편, 다음의 도 7에서는 본 발명의 전자기 와이핑 장치(1)가 도금강판의 폭방향으로 에지부근(도 7의 'E')에 각각 대항하여 제공되는 것으로 도시하였지만, 본 발명의 전자기 와이핑 장치(1)는, 도 4 및 도 5에서 도시한 바와 같이, 강판 폭방향을 따라 강판의 최대 폭 보다 길게 신장되는 형태로 제공되거나, 또는 도 7과 같이, 강판의 에지 부근에 한쌍이 제공되는 것도 가능하다.
따라서, 도 3b와 같이, 본 발명은 가스 와이핑을 구현하여 최종적으로 강판의 도금두께를 조정하는 가스 와이핑 장치(100) 및 전자기 와이핑 장치(1)를 이용하는 강판의 도금두께 조정장치(200)를 제공하고, 이를 통하여 도금강판의 제조단계를 구현할 수 있다.
또한, 이하의 본 실시예에서 도 1,2에서 도시한 가스 와이핑 장치와 도금설비 관련 구성요소는 도 1,2와 동일한 도면부호로 설명하고, 그 설명은 간략한다. 한편, 도면에서는 강판의 일측에만 본 발명 장치 들을 도시하였지만, 강판의 양측에 대칭적으로 본 발명의 장치들이 배치됨은 당연하다.
다음, 다음에 상세하게 설명하는 본 발명의 전자기 와이핑 장치와 도금강판 와이핑 장치를 이용한 도금강판의 제조단계를 정리하면, 도 1의 도금조(110)를 통과시키어 강판(S)의 도금을 수행하는 단계와, 상기 도금조를 통과한 도금강판의 도금 부착층 중 적어도 강판 에지부의 도금 부착층을 전자기 와이핑을 통하여 선행 제거하는 도금강판의 도금 부착층 선행 제거단계 및, 상기 도금 부착층이 선행 제거된 도금강판의 잔류 도금 부착층을 추가적인 가스 와이핑을 통하여 조정하는 도금강판의 도금두께 조정단계를 포함하여 구성될 수 있다.
따라서, 본 발명의 경우 최소한 강판 에지부의 도금 부착층을 전자기 와이핑을 통하여 일부를 선행 제거하기 때문에, 가스 와이핑시 강판 폭방향으로 동일한 가스 제트(J)가 분사되어도 강판 에지부의 과도금을 해소할 수 있는 것이다.
즉, 강판 에지부의 경우 강판 에지 모서리를 둘러싸면서 도금층이 부착되기 때문에, 이부분에서의 과도금이 쉽게 발생되나, 본 발명의 경우 강판 폭 전체의 전자기 와이핑이 가능하지만, 적어도 에지 도금부착량을 제거하여 에지 과도금을 해소 할 수 있는 것이다.
이때, 바람직하게는, 상기 도금강판의 도금 부착층 선행 제거단계와 도금두께 조정단계는, 다음에 상세하게 설명하는 전자기 와이핑 장치(1)와 도 1,2에서 설명한 가스 와이핑을 구현하는 가스 와이핑 장치(100)를 이용하는 것이다.
예를 들어, 도 1,2의 설명을 참조로 하고, 도 3a에서와 같이, 하나의 가스 와이핑(100)을 사용하는 경우에는, 도 3b의 본 발명의 전자기 와이핑 장치(1)를 통한 도금강판의 아연부착층(ZL)의 선행 제거가 이루어 지지 않기 때문에, 가스 와이핑 장치(100)에서 제거할 아연부착층(ZL)의 두께 'T1'(도 3a)은, 같은 위치에서 먼저 전자기를 이용하여 비접촉식으로 강판의 아연부착층(ZL)을 아래로 유도하여 제거(깍아내리는)한 아연 부착층의 두께 'T2'(도 3b) 보다 더 두껍다.
따라서, 도 3a와 도 3b를 비교할때, 도 3b의 가스 와이핑 장치(100)에서의 가스 압력(토출 압력)이나 유량이 도 3b 보다 더 커야 되고, 따라서 가스 압력에 비례하여 아연입자(P)의 비산량이 증가기 때문에, 도 3a의 경우 강판의 진행 속도를 높이는 것에 한계가 있는 것이다.
반면에, 도 3b의 본 발명의 강판의 도금두께 조정장치(200)와 같이, 보조의 전자기 와이핑 장치(1)와 메인의 가스 와이핑 장치(100)를 동시에 사용하면, 최종적으로 가스 와이핑을 구현하여 강판의 도금두께를 조정하는 가스 와이핑 전에, 먼저 아연부착층을 전자기 유도로 깍아 내려서 메인의 가스 와이핑 구간에서의 가스 압력과 유량을 줄여도 강판의 라인 속도는 도 3a와 같은 속도를 유지할 수 있고, 이때 아연입자의 비산량이나, 이에 따른 도금조 탕면 상의 상부 드로스(D)의 생성량은 감소되는 것이다.
또는, 도 7과 같이, 강판의 폭 방향으로 그 에지부근(E)으로 2개의 본 발명의 전자기 와이핑 장치(1)를 배치하는 경우에도, 특히 강판에서 용융아연이 가능 많이 부착되는 강판 에지 부분의 아연부착층을 제거할 수 있고, 특히 강판의 에지 과도금을 제거하여 적정한 도금량 사용을 가능하게 할 수 있다.
결국, 본 발명의 경우에는, 도 3a와 같이, 강판 폭 보다 길게 신장된 하나의 전자기 와이핑 장치 또는 도 7과 같이, 길이가 줄고 강판의 양측 에지에 대응 배치되는 전자기 와이핑 장치를 통하여, 최종적인 도금두께를 결정하는 가스 와이핑 전에, 미리 아연 부착층을 적어도 일부를 적정하게 제거하는 것이 가능하여, 아연입자의 비산과 같은 스플래쉬 문제, 상부 드로스 증가 문제 등을 해소하면서, 가스 와이핑시 요구되는 가스 와이핑 능력(가스 압력이나 유량)은 줄일 수 있고, 따라서 강판 진행 속도(라인 스피드)를 높이는 것을 가능하게 할 것이다.
다음, 도 4 내지 도 7에서는 본 발명에 따른 전자기 와이핑 장치(1)에 대하여 도시하고 있다.
즉, 본 발명의 전자기 와이핑 장치(1)는, 메인의 가스 와이핑 장치(100)의 하류측으로 도금조 사이에 배치되어 전자기로서 비 접촉식으로 강판 표면의 아연부착층을 일부를 깍아내려 메인의 가스 와이핑을 통한 강판의 도금두께를 조정하는 경우 와이핑 능력을 감소시키는 것을 가능하게 하고, 이는 비례적으로 아연입자(P)의 비산 량과 상부 드로스(D)의 발생량도 억제하도록 하는 것이다.
예를 들어, 본 발명의 전자기 와이핑 장치(1)는, (전)자기장을 시간에 따라 변화시키는 시변자계(Time Traveling Magnetic Flux)를 통하여 유도전류를 매개로 강판 표면의 아연부착층을 강판 진행의 반대방향으로 강제유도(깍아내려) 제거를 가능하게 하는 것이다.
즉, 도 12에서 도시한 바와 같이, 본 발명 장치(1)에서 전자석블록(50)의 단상 또는 3상의 교류전류 인가시 또는, 영구자석(40a)(40b)의 회전시 반자성체인 아연부착층(ZL)에 형성되는 항력(Drag Force)과 부양력(Levitation Force)중 적어도 어느 하나 또는 이들 모두에 의하여 강판 진행 방향의 반대방향으로 유도되어 깍여지면서 제거되는 것이다.
이때, 도 12에서 도면부호 50은 다음에 상세하게 설명하는 전자석블록을 나타내고, 도면부호 40은 서로 극성이 다른 영구자석 즉, N극 자석(40a)과 S극 자석(40b)이 교대로 배열되는 영구자석을 나타낸다.
예컨대, 도 12에서는 이와 같은 전자석(블록)이나 (회전되는) 영구자석을 이용하여 반자성체인 아연도금층(ZL)에 항력과 부양력을 형성하는 원리를 도시하고 있다.
도 12의 그래프에서, 영구자석(40)이 N극 영구자석(40a)과 S극 영구자석(40b)으로 교대로 배열되고, 다음에 상세하게 설명하는 장치 베이스(10)에서 회전시키면 자기장이 시간에 따라 변화하는 시변자계로 유도전류가 생성되면서 용융아연(Zn)(기타, 알루미늄(Al),구리(Cu) 등)의 반자성체에 항력(Drag Force)과 부양력(Leviation Force)을 형성시킨다. 참고로, 이 경우 임계의 회전속도에 이르기 전까지 부양력 보다는 주로 항력이 형성된다.
더하여, 도 7 및, 도 12와 같이, 적층되는 전자석블록(50)들에 교류전류를 펄스 폭 변조기(도 7의 54)를 이용하여 인가하는 경우, 반자성체인 아연도금층에 항력과 부양력을 형성시킨다. 물론, 부양력 형성을 위하여는 적정한 교류전류의 인가가 필요할 수 있다.
이때, 이와 같은 항력과 부양력은 영구자석의 회전력을 증감하여 제어할 수 있고, 부양력은 전자석에 상당한 전류를 인가하지 않으면 미약하기는 하나, 적절한 크기의 교류전류를 인가시키면 부양력 형성과 그 제어도 충분히 가능한 것이다.
즉, 영구자석(40)을 이용하는 경우, 장치 베이스(10)에 포함된 회전축(12)의 회전시 임계 회전속도에 이르기 전까지는 주로 항력이 형성되고, 전자석(50)인 경우에는 전자석에 인가되는 고류 전류의 인가(PWM 변조)시 항력과 같이 부양력을 발생시키므로, 본 발명 전자기 와이핑 장치(1)의 경우, 도금 환경에 따라 영구자석 또는 전자석을 적정하게 선택하여 사용할 필요가 있을 것이다.
한편, 도 3b 내지 도 6 및 도 8에서는, 도 12에서 설명한 임계속도 이전까지는 주로 항력을 형성하는 영구자석(40)을 이용한 본 발명에 따른 전자기 와이핑 장치(1)를 도시하고 있고, 도 7에서는 도 12에서 설명한 항력과 부양력을 형성하는 전자석(50)을 이용한 본 발명의 전자기 와이핑 장치(1)를 도시하고 있다.
따라서, 이하에서는 먼저 영구자석을 이용한 본 발명의 전자기 와이핑 장치(1)를 먼저 설명한다.
다만, 도 4 내지 도 7에서 도시한 바와 같이, 본 발명의 전자기 와이핑 장치(1)는 기본적으로 도금조(110)를 통과한 도금강판(S)의 일측으로 제공된 장치 베이스(10)와, 상기 장치 베이스 상에 제공되고 자기장 변화를 구현하여 강판 표면의 도금 부착층의 두께를 제어토록 구성된 전자기 와이핑 수단(30)을 포함한다.
따라서, 본 발명 장치는, 앞에서 설명한 시변자계를 통한 항력 또는 부양력 또는, 이들 모두를 형성하여 전자기력으로 도금강판(S)의 표면에 부착된 아연부착층(ZL)을 비접촉식으로 도금조 탕면측으로 유도하여 제거하는 영구자석(40)과 전자석(50) 중 하나를 포함할 수 있다.
즉, 본 발명의 전자기 와이핑 수단(30)은, 상기 장치 베이스(10)에 서로 다른 극성의 자석(40a)(40b)들이 소정 패턴으로 제공되는 영구자석(40)을 포함하여 강판의 도금부착층을 비접촉으로 일부를 제거토록 제공되는 것이다.
또는, 본 발명의 전자기 와이핑 수단(30)은, 상기 장치 베이스에 단상 또는 3상의 교류전류가 인가되어 시변자계를 생성토록 구비된 하나 이상의 전자석(50)을 매개로 강판의 도금부착층을 비접촉으로 일부를 제거토록 제공되는 것이다.
이때, 도 7에서는 이해를 돕기 위하여 영구자석(40)과 전자석(50)이 장치 베이스(10)의 회전축(12)과 중공 지지축(12')에 설치된 것을 도시하고 있다.
이에, 도 4 내지 도 8에서 도시한 바와 같이, 먼저 영구자석을 이용한 본 발명의 전자기 와이핑 장치(1)에 대하여 살펴보면 다음과 같다.
즉, 도 6 내지 도 8에서 도시한 바와 같이, 본 발명의 전자기 와이핑 장치(1)의 장치 베이스(10)는, 강판의 폭방향으로 모터(도 7의 11)로서 회전 구동토록 제공된 회전축(12) 및, 상기 회전축에 조립되고 서로 다른 극성의 영구자석(40a)(40b)들이 소정 패턴으로 장착되는 회전블록(16)을 포함한다.
이와 같은 회전블록(16)에는 원주 방향을 따라 제공되어 N극 영구자석(40a)과 S극 영구자석(40b)이 교대로 안착 고정되는 자석 안착홈(14)들이 형성되어 있다.
그리고, 회전블록(16)의 중앙을 관통하여 고정되는 상기 회전축(12)은, 도 6 및 도 7에서 도시한 바와 같이, 다음에 상세하게 설명하는 구동수단(70)의 박스 형태의 수평 이동체(78)에 베어링(미부호)를 매개로 회전 가능하게 연결되고, 구동모터(11)가 상기 수평 이동체(78)에 회전 가능하게 제공된다.
또한, 도 7에서 도시한 바와 같이, 구동모터(11)의 회전에 따라 장치 베이스(10)의 회전축(12)과 회전블록(16) 및 영구 자석(40a)(40b)들을 일체로 회전시키고, 이와 같은 영구자석들의 회전시 도 12에서 설명한 항력과 부양력(부양력은 임계 회전속도를 넘어서는 경우)이 형성된다.
따라서, 도 3b 및 도 8과 같이, 메인 가스 와이핑 전에, 전자기를 통한 적어도 항력으로 비접촉 형태로 강판의 아연도금층을 깍아내려 일부를 제거하는 것이다.
한편, 도 6에서 도시한 바와 같이, 상기 회전축(12)의 양측에는 고정판(18)들이 볼트로서 회전블록(16)의 양측에 체결되어 영구 자석들이 안착홈(14)에서 이탈되는 것을 차단할 수 있다.
물론, 도면에서는 상세하게 도시하지 않았지만, 상기 안착홈(14)에 영구자석들은 접착수단을 통하여 접착되고, 고정판의 회전블록 체결시 같이 볼트로 체결할 수 있을 것이다.
한편, 더 바람직하게는 이와 같은 본 발명의 전자기 와이핑 장치(1)의 외측으로 영구자석들을 포위하는 커버체(20)가 제공되는 것인데, 이와 같은 커버체(20)는 아연입자가 쉽게 부착되지 않은 표면 조도를 갖거나 비자성 재질 예를 들어, 내열성도 갖는 세라믹 재질의 커버체(20)로 제공하는 것이 가능할 것이다.
이와 같은 커버체(20)는 도 7과 같이 수평 이동체(78)에 고정되거나 회전블록의 외곽에 고정될 수도 있다. 따라서, 상기 커버제(20)는, 비산되는 아연입자가 영구자석들에 부착되는 것을 최소화하거나 차단시키는 것을 가능하게 할 것이다.
다음, 도 7에서는 전자석을 이용한 본 발명의 전자기 와이핑 장치(1)를 도시하고 있다. 다만, 도 7은 전자석(50)과 영구자석(40)을 사용하는 것을 중심을 기준으로 양측에 도시한 것이다. 실제로는 전자석 또는 영구자석을 선택하여 장치를 구성할 것이다.
즉, 도 7에서 도시한 바와 같이, 전자석(50)은 장치 베이스(10)에 포함된 중공 지지축(12')상에 적당하게 여러개의 전자석 블록 들이 링 구조로 제공되는 것이 가능할 것이다.
이와 같은 전자석(50)을 탑재하는 축을 중공 지지축(12')으로 하는 이유는, 전자석의 경우 영구자석과 같이 회전할 필요는 없고, 단상 또는 3상의 교류전류가 인가되는 경우 앞의 도 12에서 설명한 바와 같이, 항력과 부양력을 형성하기 때문에, 전자석(50)들에 교류 전류를 인가하기 위한 케이블(52)이 내부를 통과하기 위한 것이다.
이때, 도 7과 같이, 전자석(50)과 연계된 케이블(52)은 장치 제어부(C)와 연계되는 펄스 폭 변조기(54)와 연계된다. 이와 같은 펄스 폭 변조기(54)는, 도면에서는 개략적으로 도시하였지만 구동수단(70)상에 제공되어 전자기 와이핑 장치의 강판 폭 방향 이동을 가능하게 하는 것이 바람직할 것이다.
따라서, 펄스 폭 변조기(54)로서 전자석(50)에 단상 또는 3상 교류전류가 인가되면, 도 12와 같이 시변자계를 형성하여 발생되는 항력과 부양력이 강판의 아연 도금층에 비접촉식으로 인가되어, 아연도금층이 일부 깍아지게 된다.
다음, 도 7 및 도 8에서 도시한 바와 같이, 본 발명의 전자기 와이핑 장치(1)는, 도금 강판의 최대 폭 보다 길게 신장되는 구조로 제공되는 경우에는, 강판의 폭방향으로 전체적으로 아연부착층을 일부 제거하고, 또는 도 7과 같이, 강판의 에지부분(E)에 각각 대응되는 한쌍의 전자기 와이핑 장치(1)들을 배치하는 경우에는, 앞에서 설명한 바와 같이, 적어도 강판의 에지 과도금을 방지시킬 것이다.
물론, 구동수단(70)이 연계되는 경우는 강판 에지에 대응되어 강판 폭 방향으로 본 발명의 전자기 와이핑 장치(1)가 이동되면서 강판 폭에 대응하여 위치 제어하는 경우일 것이다.
예를 들어, 도 7 및 도 8에서 도시한 바와 같이, 본 발명의 전자기 와이핑 장치(1)는, 구동수단(70)을 매개로 강판의 폭방향으로 강판 폭에 대응하여 위치 제어토록 제공될 수 있다.
이때, 상기 구동수단(70)은, 강판의 폭 방향으로 도금되는 강판의 최대 폭 보다는 길게 제공되는 스크류바아(74)에 체결되는 이동블록(76)을 포함하고, 상기 스크류바아(74)의 일측에는 모터(72)가 커플링 구조로 연결된다.
물론, 도 7에서는 구체적으로 도시하지 않았지만, 상기 모터(72)와 스크류 바아(74)들은 도 1에서 도금조와 가스 와이핑 장치(100)의 사이 공간에 수평하게 제공되는 설비 프레임에 장착 고정될수 있다.
따라서, 도 7 및 도 8과 같이, 상기 모터(72)가 회전되는 방향에 따라서, 나사 방식으로 체결된 이동블록(76)은, 정면에서 볼때 좌우를 스크류바아를 따라서 이동하게 된다.
이때, 상기 이동블록(76)에는 그 이동을 안내하면서 하부의 본 발명 전자기 와이핑 장치(1)가 연계되는 하중을 지탱하기 위한 가이드봉(75)이 관통하여 이동블록의 이동을 지지하도록 제공되는 것이 바람직하다.
그리고, 도 7 및 도 8과 같이, 상기 이동블록(76)의 하측에는 연결대(80)를 매개로 박스형태의 수평 이동체(78)가 제공되고, 여기에 앞에서 설명한 본 발명 장치의 회전축(12)이나 중공 지지축(12')이 제공될 수 있다.
따라서, 구동수단(70)의 모터 구동에 따라 이동블록(76)은 스크류 바아를 따라 가이드 봉으로 안내되면서 강판 폭 방향으로 이동하고, 결국 본 발명의 수평 이동체(78)의 내부에 제공되는 전자기 와이핑 장치(1)는, 강판의 폭이 가변되면 이에 대응하여 강판의 에지 부근(E)에 적정하게 위치되는 것을 가능하게 하는 것이다.
결국, 본 발명 전자기 와이핑 장치(1)의 경우에는, 적어도 장치 베이스(10)와 전자기 와이핑 수단(30)이 강판의 폭 방향으로 양측 에지부근에 강판 폭에 대응하여 위치 제어되면서, 도금강판의 에지 과도금을 적절하게 억제시킬 수 있다.
이때, 도 7 및 도 8과 같이, 본 발명의 전자기 와이핑 장치(1)에서 상기 구동수단(70)의 스크류바아(74)와 가이드봉(75)의 외측에는 박스 구조물의 지지체71)가 포위토록 제공되고, 상기 지지체의 하부 일정부분에는 상기 연결대(80)의 이동폭을 감안하여 개구(미부호)를 적당한 길이로 형성시키는 것이 바람직하다.
따라서, 도 7 및 도 8에서 도시한 바와 같이, 예컨대 철판 용접의 박스 구조물로 제공될 수 있는 지지체(71)는 강판의 최대폭 보다 길게 신장되고, 스크류 바아(74)와 연계되는 구동모터(72)가 내부 일측에 장착되고, 상기 스크류 바아(74)는 지지체에 장착되는 베어링블록(74a)을 지지체의 양측에서 지지되면서 모터 구동에 따라 회전되면서 체결된 이동블록(76) 및 수평 이동체(78)의 이동을 가능하게 하는 것이다.
그리고, 가이드봉(75)은 사각체인 이동블록(76)의 상단부에 관통되어 양단부에 지지체(71)의 양측 벽에 장착될 수 있다.
이때, 도 7에서 도시한 바와 같이, 본 발명 장치에서 영구자석을 포함하는 전자기 와이핑 수단(30)의 회전용 모터(11)와 구동수단(70)의 모터(72)를 전원공급기(PS)를 통하여 장치 제어부(C)와 연계시키고, 장치 제어부(C)에는 도 1에서 도시한 도금층 측정기(120)와 강판의 라인속도를 감지하는 센서(SE) 및 전자석에 교류전류를 인가하는 펄스 폭 인가기(54)와 전기적으로 연계시키면, 강판의 최종 측정되는 도금두께와 강판의 라인속도에 대응하여 장치제어부를 통하여, 영구자석이나 전자석을 이용한 전자기 와이핑 능력을 제어하여, 적정한 도금층 두께 제어를 가능하게 할 것이다.
다음, 도 9 내지 도 11에서는, 도 7 및 도 8에서 도시한 본 발명 장치의 다른 실시예를 도시하고 있다.
즉, 도 9 내지 도 11에서 도시한 바와 같이, 상기 박스 구조물의 지지체(71)를 제2 구동수단(90) 예컨대, 수평 구동 실린더와 연계시키고, 상기 지지체(71)의 하부를 가로질러 도면에서 도시하지 않은 설비 프레임에 고정되는 가이드레일(92)을 배치하면, 상기 제2 구동수단(90)인 수평 구동실린더의 전진 또는 후진에 따라, 상기 지지체(71)는 가이드 레일을 따라 전진 또는 후진하게 된다.
따라서, 상기 지지체(71)의 하부에 연계되는 전자기 와이핑 수단(30)도 전진 또는 후진하게 되고, 따라서 상기 제2 구동수단(90)인 수평 구동실린더의 전진 또는 후진시 일체로 전자기 와이핑 수단(30)과 강판(S) 사이의 간격이 조정될 수 있다.
이와 같은 전자기 와이핑 수단(30)과 강판(S)사이의 간격 조정은, 동일한 전자기 환경에서 강판의 도금 부착층을 깍아내리는 양을 결정하므로, 전자기 와이핑과 더불어, 더 정밀한 도금 부착층 제어를 구현할 수 있다.
한편, 도 10을 참조하고 도 11에서 도시한 바와 같이, 상기 수평 이동체(78)는 제3 구동수단(93)을 매개로 강판의 진행 방향으로 회동(수직 이송하는 강판을 향하여 반시계반향 또는 시계방향)가능하게 제공될 수 있고, 이 경우 전자기 와이핑 수단(30)이 기울어 지는 정도에 따라, 전자기 와이핑 수단(30)은 강판 에지에서 가스 와이핑 전에 더 먼저, 전자기 와이핑을 통하여 적어도, 강판 에지에서의 도금층 제거 능력을 제어할 수 있다.
예를 들어, 도 11에서 제3 구동수단(93)의 전진 또는 후진되는 정도에 따라, 상기 수평 이동체(78)와 일체로 전자기 와이핑 수단(30)의 강판 에지에서의 기울임 정도가 조정되는 것이다.
이때, 도 11에서 도시한 바와 같이, 상기 연결부재(80)는 힌지(80c)를 매개로 상기 이동블록(76)의 하단과 박스체인 수평 이동체(78)의 상단에 각각 고정되는 2분할 상부 및 하부 링크부재(80a)(80b)로 제공될 수 있다.
그리고, 제3 구동수단(93)인 수직 구동 실린더를 상기 연결대(80)를 구성하는 상부 링크부재(80a)에 제공된 브라켓트(93e)에 힌지(93b)로 연결하고, 상기 수직 구동 실린더인 제3 구동수단(93)의 로드를 힌지(93c)로 수평 이동체(78)의 상단 브라켓트(93d)에 연결하면, 상기 수직 구동실린더인 제3 구동수단(93)의 전,후진 작동시 상기 연결부재(80)의 상,하부 링크부재(80a)(80b)는 중앙의 힌지축(80c)을 축으로 하측의 수평 이동체(78)가 도 11과 같이, 강판(S)의 에지부에서 정면에서 볼때 반시계방향 또는 시계방향으로 회동하게 된다.
따라서, 수평 이동체(78)의 기울어짐에 따라, 전자기 와이핑 수단(30)은 'DT' 만큼 더 먼저 가스 와이핑 전에, 강판의 에지부의 도금 부착층을 제거하게 되고, 결국 전자기 와이핑 수단(30)의 기울어 짐이 크면 클수록 강판 에지의 도금 부착층은 더 먼저 깍여지고, 따라서 강판 에지부에서의 도금 부착층의 제거량이 제어될 수 있는 것이다.
결국, 도 9 내지 도 11에서 도시한 바와 같이, 본 발명 장치는, 구동수단과 제2 내지 제3 구동수단을 통하여 전자기 와이핑 수단(30)의 강판 간 간격 조정과, 전자기 와이핑 수단(30)의 강판 에지에서의 기울어 짐 등의 제어를 통하여 더 정밀한 도금 부착량 제어와, 이후의 가스 와이핑 제어를 통한 최적의 강판 도금주께 조정을 가능하게 하는 것이다.
한편, 앞에서 설명한 바와 같이, 본 발명의 전자기 와이핑 장치(1)를 이용하여, 가스 와이핑 전에 도금조를 통과한 도금강판의 폭방향으로 도금 부착층의 선행 제거가 가능하나, 바람직하게는 강판 에지부의 도금 부착량이 강판의 중앙부 보다는 많기 때문에, 적어도 강판 에지부의 도금 부착층을 선행 제거하는 것이다.
이때, 바람직하게는 강판 에지부에서 도금 부착층의 제거량은, 예를 들어 강판 중앙부 도금 부착량의 5 ∼ 25% 로 강판 에지부에서의 도금 부착층을 제거하는 것이다.
예를 들어, 강판의 진행 속도가 120 mpm 인 경우, 강판 중앙부의 도금부착량은 400g/㎡ 정도인데, 이 경우 강판 에지부의 도금 부착량은 440∼500 g/㎡ 정도이다.
이때, 강판 에지부의 도금 부착층을, 강판 중앙부의 도금 부착층의 5% 보다 작게 제거되는 경우, 제거량이 미흡하여 가스 와이핑 단계에서의 와이핑 압력의 감소를 기대할 수 없고, 강판 중앙부의 도금 부착층의 25% 보다 크게 제거되면, 과도하게 제거되어 가스 와이핑 단계에서 강판 중앙부와 에지부의 도금 두께의 균일한 도금 제어를 어렵게 할 수 있다.
바람직하게는, 강판 에지부에서의 도금 부착층 제거는 강판 중앙부의 도금부착층 10-20% 로 강판 에지부에서 도금 부착층을 제거하는 것이다.
따라서, 본 발명의 경우 미리 강판 에지부의 도금 부착량을 선행 제거하기 때문에, 적어도 강판 에지부의 과도금 문제를 억제할 수 있는 것이다.
즉, 도금조를 통과한 강판의 에지부에서의 도금 부착량은 강판 중앙부의 도금 부착량 보다 크기도 하지만, 강판 중앙부의 도금 부착층은 평탄하게 형성되나, 강판 에지부의 경우에는 모서리를 감싸면서 도금층이 굴곡되어 형성되므로, 가스 와이핑 후에도 강판 에지부의 과도금이 해소되지 않는 것이다.
그러나, 본 발명의 경우에는 전자기 와이핑 장치를 통하여, 적어도 강판 에지부의 도금 부착층을 선행 제거하기 때문에, 가스 와이핑 후, 강판 폭방향으로의 도금 두께를 균일하게 할 것이다. 한편, 본 발명에서 도금 부착층이 선행 게거되는 강판의 에지부의 범위는 강판의 끝에서 100∼300mm 범위 일 수 있는데, 통상 200 mm 정도이다.
따라서, 지금까지 설명한 본 발명의 전자기 와이핑 장치(1)를 이용하는 도금강판 제조시, 적어도 강판 에지부에서의 도금부착층의 선행 제거를 수행하여 가스 와이핑 압력을 대략 20 ~ 30% 까지 낮추고, 이와 같은 가스 와이핑 압력의 감소는 결국 동일한 강판 진행속도 하에서도 아연입자의 비산이나 도금조 상의 상부 드로스의 발생을 억제 가능하게 하는 것이다.

Claims (14)

  1. 도금조를 통과한 도금강판의 일측에 제공된 장치 베이스; 및,
    상기 장치 베이스 상에 제공되고 자기장 변화를 구현하여 강판 표면의 도금 부착층의 두께를 제어토록 구성된 전자기 와이핑 수단;
    을 포함하여 구성된 전자기 와이핑 장치.
  2. 제1항에 있어서,
    상기 장치 베이스와 전자기 와이핑 수단은, 구동수단을 매개로 강판의 폭방향으로 위치 제어토록 제공된 것을 특징으로 하는 전자기 와이핑 장치.
  3. 제2항에 있어서,
    상기 장치 베이스와 전자기 와이핑 수단은, 강판의 폭에 대응 하여 강판의 양측 에지부 부근에 한 쌍이 배치되면서 강판의 에지 과도금을 억제토록 구성된 것을 특징으로 하는 전자기 와이핑 장치,
  4. 제3항에 있어서,
    상기 구동수단은, 지지체의 내측에 제공되고 강판 폭방향으로 신장되며 모터로서 구동되는 스크류바아에 체결되는 이동블록; 및,
    상기 이동블록의 하측에 연결부재를 매개로 연결되고, 상기 장치 베이스와 전자기 와이핑 수단이 배치되는 수평 이동체;
    를 포함하여 구성된 것을 특징으로 하는 전자기 와이핑 장치.
  5. 제4항에 있어서,
    상기 지지체는 제2 구동수단을 매개로 전후 이동 가능하게 제공되어 상기 전자기 와이핑 수단은 강판간 간격이 조정 가능하게 제공되고,
    상기 수평 이동체는 제3 구동수단을 매개로 강판 진행 방향으로 회동 가능하게 제공되어 강판의 에지 과도금을 더 방지토록 구성된 것을 특징으로 하는 전자기 와이핑 장치.
  6. 제5항에 있어서,
    상기 제2 구동수단은, 지지체에 연결되는 수평 구동 실린더로 제공되면서 지지체는 가이드레일로서 지지되고, 상기 수평 이동체가 연결되는 연결부재는, 힌지를 매개로 연결되고 이동블록과 수평 이동체에 각각 장착된 링크부재로 제공되고,
    상기 제3 구동수단은 이동블록과 수평 이동체 사이에 연계되는 수직 구동실린더로 제공된 것을 특징으로 하는 전자기 와이핑 장치.
  7. 제4항에 있어서,
    상기 전자기 와이핑 수단의 외측에는 비자성 커버체;
    가 더 제공되는 것을 특징으로 하는 전자기 와이핑 장치.
  8. 제1항에 있어서,
    상기 전자기 와이핑 수단은, 상기 장치 베이스에 서로 다른 극성의 자석이 소정 패턴으로 제공된 영구자석을 포함하고,
    상기 영구자석이 장착되는 장치 베이스는, 강판의 폭방향으로 모터 구동토록 제공된 회전축 및, 상기 회전축에 조립되고 서로 다른 극성의 영구자석들이 소정 패턴으로 장착되는 회전블록을 포함하여 구성된 것을 특징으로 하는 전자기 와이핑 장치.
  9. 제1항에 있어서,
    상기 전자기 와이핑 수단은, 상기 장치 베이스에 단상 또는 3상의 교류전류가 인가되어 시변자계를 생성토록 구비된 하나 이상의 전자석을 포함하고,
    상기 장치 베이스는 강판의 폭 방향으로 제공된 중공 지지축을 포함하고, 상기 중공 지지축에 제공되는 전자석들은, 중공 지지축을 통하여 케이블을 매개로 펄스 폭 변조기와 연계되는 것을 특징으로 전자기 와이핑 장치.
  10. 상기 제1항 내지 제9항 중 어느 하나의 항에서 기재된 전자기 와이핑 장치; 및,
    상기 전자기 와이핑 장치의 상류 측에 제공된 가스 와이핑 장치;
    를 포함하여 구성된 전자기 와이핑 장치를 포함하는 도금강판 와이핑 장치.
  11. 도금조를 통과시키어 강판의 도금을 수행하는 단계;
    상기 도금조를 통과한 도금강판의 도금 부착층의 일부를 전자기 와이핑을 통하여 선행 제거하는 도금강판의 도금 부착층 선행 제거단계; 및,
    상기 도금 부착층이 선행 제거된 도금강판의 잔류 도금부착층을 추가적인 가스 와이핑을 통하여 제거하는 도금강판의 도금두께 조정단계;
    를 포함하여 구성된 도금강판 제조방법.
  12. 제11항에 있어서,
    상기 도금 부착층 선행 제거단계에서는, 적어도 강판 에지부의 도금 부착 층을 전자기 와이핑을 통하여 선행 제거하여 도금강판의 에지 과도금을 방지토록 구성된 것을 특징으로 하는 도금강판 제조방법.
  13. 제12항에 있어서,
    상기 도금강판의 도금 부착층 선행 제거단계와 도금두께 조정단계는, 상기 제10항에서 기재된 전자기 와이핑 장치와 가스 와이핑 장치를 이용하는 것을 특징으로 하는 도금강판 제조방법.
  14. 제11항에 있어서,
    상기 강판 에지부에서의 도금부착층 선행 제거단계에서는, 강판 중앙부의 도금 부착층의 5 ~ 25% 로 강판 에지부의 도금 부착층을 제거하는 것을 특징으로 하는 도금강판 제조방법.
PCT/KR2012/011378 2011-12-26 2012-12-24 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법 WO2013100518A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12863129.8A EP2799586A4 (en) 2011-12-26 2012-12-24 ELECTROMAGNETIC WIPING DEVICE, WELDING DEVICE OF STEEL SHEET COMPRISING SAME, AND METHOD FOR MANUFACTURING STEEL SHEET
JP2014549982A JP5887425B2 (ja) 2011-12-26 2012-12-24 電磁ワイピング装置、これを含むめっき鋼板ワイピング装置、及びめっき鋼板の製造方法
US14/368,875 US9689063B2 (en) 2011-12-26 2012-12-24 Electromagnetic wiping device, plated steel sheet wiping apparatus including same, and method for manufacturing plated steel sheet
CN201280070305.9A CN104126024B (zh) 2011-12-26 2012-12-24 电磁擦拭设备、包括其的电镀钢板擦拭设备以及电镀钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110142255A KR101372765B1 (ko) 2011-12-26 2011-12-26 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치
KR10-2011-0142255 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013100518A1 true WO2013100518A1 (ko) 2013-07-04

Family

ID=48697887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011378 WO2013100518A1 (ko) 2011-12-26 2012-12-24 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법

Country Status (6)

Country Link
US (1) US9689063B2 (ko)
EP (1) EP2799586A4 (ko)
JP (1) JP5887425B2 (ko)
KR (1) KR101372765B1 (ko)
CN (1) CN104126024B (ko)
WO (1) WO2013100518A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631013B1 (en) * 2012-02-21 2014-10-01 Cockerill Maintenance & Ingenierie S.A. Coating thickness and distribution control wiping nozzle with excellent pressure uniformity
US20150298158A1 (en) * 2014-04-22 2015-10-22 Metokote Corporation Zinc rich coating process
EP3000907A1 (en) * 2014-09-25 2016-03-30 Strip Tinning Limited Coatings
US20180010225A1 (en) * 2014-12-26 2018-01-11 Posco Apparatus for removing top dross of plating pot

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256982B2 (ja) * 2014-02-27 2018-01-10 高知県公立大学法人 鋼板の非接触型位置決め装置
KR101639246B1 (ko) * 2014-12-24 2016-07-22 주식회사 포스코 도금용 와이퍼 장치
CN108998750B (zh) * 2017-06-06 2020-04-28 宝山钢铁股份有限公司 热镀锌锌锅内锌液的流动控制方法与装置
CN110205575B (zh) * 2019-05-30 2024-01-09 河北鑫鹏通信设备有限公司 一种无需氮气保护的封闭式钢丝热镀锌用电磁抹拭装置
CN116880422B (zh) * 2023-08-24 2024-01-23 安徽大学 一种电磁抹拭工艺中钢丝张力与速度耦合控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330275A (ja) * 1993-05-27 1994-11-29 Kawasaki Steel Corp 溶融金属めっき用ガスワイピング装置の制御方法
JPH11172400A (ja) * 1997-12-15 1999-06-29 Hitachi Ltd 連続溶融金属めっき装置及び連続溶融金属めっき方法
JP2000212714A (ja) * 1999-01-18 2000-08-02 Hitachi Ltd 連続溶融金属めっき装置及び連続溶融金属めっき方法
JP2000282207A (ja) * 1999-03-29 2000-10-10 Kawasaki Steel Corp 溶融金属めっきのワイピング装置
JP2009167473A (ja) * 2008-01-16 2009-07-30 Jfe Steel Corp 溶融金属めっき設備及び溶融めっき鋼帯の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518109A (en) * 1968-01-15 1970-06-30 Inland Steel Co Apparatus and method for controlling thickness of molten metal coating by a moving magnetic field
JPS57169076A (en) 1981-04-11 1982-10-18 Sumitomo Metal Ind Ltd Controlling device for coating weight of molten metal in continuous hot dipping
JPS61266560A (ja) * 1985-05-22 1986-11-26 Nippon Steel Corp 薄目付溶融メツキ法
JP2602757B2 (ja) * 1992-05-29 1997-04-23 新日本製鐵株式会社 薄目付け連続溶融メッキ法
JP3574204B2 (ja) 1995-01-24 2004-10-06 新日本製鐵株式会社 溶融めっき鋼板のめっき付着量制御装置及び方法
DE10240954B4 (de) * 2002-09-05 2012-05-31 Sms Siemag Aktiengesellschaft Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges
DE10316140B3 (de) * 2003-04-09 2004-08-05 Sms Demag Ag Vorrichtung zur Schmelztauchbesichtung eines Metallstaranges
SE527507C2 (sv) * 2004-07-13 2006-03-28 Abb Ab En anordning och ett förfarande för stabilisering av ett metalliskt föremål samt en användning av anordningen
SE529060C2 (sv) * 2005-06-30 2007-04-24 Abb Ab Anordning samt förfarande för tjockleksstyrning
EP2045349A1 (en) 2007-10-05 2009-04-08 Linde Aktiengesellschaft Method and apparatus for continuous hot-dip coating of metal strips
CN100591793C (zh) 2008-07-30 2010-02-24 攀钢集团研究院有限公司 热镀锌钢板制造方法
US20110177258A1 (en) * 2008-09-23 2011-07-21 Siemens Vai Metals Technologies Sas Method and device for wiping liquid coating metal at the outlet of a tempering metal coating tank
CN101698927B (zh) * 2009-11-03 2011-06-08 武汉福星科技发展有限公司 非接触磁力平衡式带钢夹持稳定装置
KR101322066B1 (ko) * 2010-12-10 2013-10-28 주식회사 포스코 강판 제진장치
KR101253894B1 (ko) * 2010-12-27 2013-04-16 주식회사 포스코 스나우트내 오염원 제거장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330275A (ja) * 1993-05-27 1994-11-29 Kawasaki Steel Corp 溶融金属めっき用ガスワイピング装置の制御方法
JPH11172400A (ja) * 1997-12-15 1999-06-29 Hitachi Ltd 連続溶融金属めっき装置及び連続溶融金属めっき方法
JP2000212714A (ja) * 1999-01-18 2000-08-02 Hitachi Ltd 連続溶融金属めっき装置及び連続溶融金属めっき方法
JP2000282207A (ja) * 1999-03-29 2000-10-10 Kawasaki Steel Corp 溶融金属めっきのワイピング装置
JP2009167473A (ja) * 2008-01-16 2009-07-30 Jfe Steel Corp 溶融金属めっき設備及び溶融めっき鋼帯の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631013B1 (en) * 2012-02-21 2014-10-01 Cockerill Maintenance & Ingenierie S.A. Coating thickness and distribution control wiping nozzle with excellent pressure uniformity
US20150298158A1 (en) * 2014-04-22 2015-10-22 Metokote Corporation Zinc rich coating process
US9956576B2 (en) * 2014-04-22 2018-05-01 Metokote Corporation Zinc rich coating process
US20180207671A1 (en) * 2014-04-22 2018-07-26 Metokote Corporation Zinc rich coating process
US10717104B2 (en) * 2014-04-22 2020-07-21 Metokote Corporation Zinc rich coating process
EP3000907A1 (en) * 2014-09-25 2016-03-30 Strip Tinning Limited Coatings
US20180010225A1 (en) * 2014-12-26 2018-01-11 Posco Apparatus for removing top dross of plating pot
US10655205B2 (en) * 2014-12-26 2020-05-19 Posco Apparatus for removing top dross of plating pot

Also Published As

Publication number Publication date
JP2015503675A (ja) 2015-02-02
CN104126024A (zh) 2014-10-29
US9689063B2 (en) 2017-06-27
CN104126024B (zh) 2017-03-29
EP2799586A4 (en) 2015-09-09
EP2799586A1 (en) 2014-11-05
JP5887425B2 (ja) 2016-03-16
KR20130074268A (ko) 2013-07-04
US20140356548A1 (en) 2014-12-04
KR101372765B1 (ko) 2014-03-11

Similar Documents

Publication Publication Date Title
WO2013100518A1 (ko) 전자기 와이핑 장치와 이를 포함하는 도금강판 와이핑 장치 및, 도금강판 제조방법
WO2012077947A2 (ko) 강판 안정화 장치
KR19980064606A (ko) 용융금속 도금장치 및 용융금속 도금방법
KR101461720B1 (ko) 도금조 탕면의 이물 제거장치
WO2020080766A1 (ko) 용융도금강판의 냉각장치
KR19990029955A (ko) 금속 스트립 주조장치 및 방법
WO2017047863A1 (ko) 수직형 주조 설비 및 이를 이용한 수직 주조 방법
KR100941623B1 (ko) 금속 빌렛의 용융 도금 코팅 장치
JP5526677B2 (ja) 連続溶融金属めっきの付着量制御装置
KR20000039450A (ko) 직류전자석을 이용한 강판 진동방지장치를구비한 용융아연 도금설비
KR20110065618A (ko) 강판 진행 가이드장치
JP3530778B2 (ja) 連続溶融金属めっき装置
JPS59202144A (ja) 連続鋳造における溶鋼の撹拌方法
KR101439633B1 (ko) 전자기 와이핑 장치
WO2019124858A1 (ko) 유동 제어장치 및 유동 제어방법
JPH0586446A (ja) 金属ストリツプに対する溶融金属メツキ方法
JP3302280B2 (ja) 溶融金属めっき装置および溶融金属めっき方法
JPH0721567Y2 (ja) 溶融メッキ装置
JP2000212714A (ja) 連続溶融金属めっき装置及び連続溶融金属めっき方法
JPH04313451A (ja) 単ベルト方式連続鋳造装置
WO2019132343A1 (ko) 강판 냉각 장치
JP2010013705A (ja) 溶融金属浴の制御装置および溶融めっき金属帯の製造方法
KR200326517Y1 (ko) 전자기장을이용한박판주조용스컴혼입방지장치
JP3217718B2 (ja) 溶融金属めっき装置
JPH0665699A (ja) 連続溶融亜鉛めっき装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14368875

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012863129

Country of ref document: EP