WO2013100499A1 - 연속주조 주형 - Google Patents

연속주조 주형 Download PDF

Info

Publication number
WO2013100499A1
WO2013100499A1 PCT/KR2012/011290 KR2012011290W WO2013100499A1 WO 2013100499 A1 WO2013100499 A1 WO 2013100499A1 KR 2012011290 W KR2012011290 W KR 2012011290W WO 2013100499 A1 WO2013100499 A1 WO 2013100499A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
short side
continuous casting
protrusion
short
Prior art date
Application number
PCT/KR2012/011290
Other languages
English (en)
French (fr)
Inventor
우대희
원영목
권상흠
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP12861285.0A priority Critical patent/EP2799162B1/en
Priority to JP2014549977A priority patent/JP5933751B2/ja
Priority to CN201280065213.1A priority patent/CN104023874B/zh
Publication of WO2013100499A1 publication Critical patent/WO2013100499A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/05Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having adjustable walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0406Moulds with special profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting

Definitions

  • the present invention relates to a continuous casting mold, which is a continuous casting mold for preventing corner cracks of the cast.
  • FIG. 1 is a view showing a continuous casting apparatus according to the prior art
  • Figure 2 is a perspective view showing a mold in the continuous casting apparatus of FIG.
  • FIG. 3 is a front view, a plan view, and a side view showing the mold of FIG. 2, and
  • FIG. 4 is a graph showing a brittle region of steel according to temperature.
  • liquid molten steel is injected from the ladle 1 through the tundish 2 into the mold 3 to form a solidification layer from the surface of the cast steel and to provide a secondary cooling stand 4 having a plurality of guide rolls. After the solidification is completed, the cast steel is continuously produced.
  • the crack in the cast steel is not removed in the rolling process, but remains as a defect in the product, so it must be removed by a method such as scarfing before rolling.
  • a process for inspecting the cast steel and removing cracks is added. As a result, it is not possible to charge the cast directly into the rolling furnace, resulting in additional manpower and costs.
  • molten steel is introduced into the mold through the immersion nozzle 2a, and in the short side mold 3a and the long side mold 3b, a solidification layer starts to form from the water surface and grows thicker downward.
  • the coagulation layer is lowered in temperature toward the bottom and shrinkage occurs. If it is not compensated by the mold, a tensile force is generated in the coagulation layer and cracks are generated.
  • the mold is inclined by reducing the bottom width relative to the top width as shown.
  • the shrinkage of the long side coagulation layer is compensated by inclining the short side mold (3a) by making the bottom long side width (W 1B ) smaller than the top long side width (W 1T ), and the shrinkage of the short side solidification layer is the bottom width of the short side mold (3a).
  • (W 2B ) is reduced relative to the top width (W 2T ) to incline the long side mold (3b) to compensate.
  • Corner cracks in the cast steel are closely related to the brittle area of the river.
  • steels generally have brittle regions at three locations depending on the temperature, of which the surface temperature of the cast steel is 700 to 800 o C (hereinafter referred to as 'third region brittle section'). Since the ductility is small, cracking easily occurs even if the strain rate is small.
  • Patent No. EP0776714 is a method for reducing the internal crack of the slab when the unsolidified portion of the slab is pressed by using the short side mold (5) to have a protruding shape of the short side of the slab. .
  • the chamfered surface of the cast steel includes a surface perpendicular to the long side rather than a planar inclined surface, the effect of preventing the temperature decrease due to the chamfer is reduced at this portion, and a defect occurs that the edge portion is folded during the rolling of the cast steel. do.
  • the shape and size of the protruding portion 5a are the same in the upper and lower portions, there is a disadvantage in that cracks are not generated because the shrinkage at the chamfer surface cannot be compensated.
  • Patent number EP0409708 as shown in Fig. 5 (b), by inserting the short side mold (6) into the long side groove (7a) to prevent the folds in the rolling material by making the chamfered surface of the cast slab flat plane At the same time, it is possible to expect the effect of increasing the durability by increasing the thickness of the edge of the protrusion 6a.
  • the width of the short side mold 6 cannot be changed and the upper and lower portions of the protrusion 6a have the same size and shape, cracks are generated in the chamfered surface because it cannot compensate the shrinkage of the slab on the chamfered slope. have.
  • Japanese Unexamined Patent Application Publication No. 11-290995 proposes a mold in which both end portions of the short side mold 8 are formed in an arc shape to form corner portions of the slab in an arc shape, as shown in Fig. 5 (c). .
  • This mold is not variable in width, and the corner portion is arc-shaped, which can be effective in preventing the temperature reduction of the corner portion and improving the durability of the corner copper plate.
  • the arc portion of the slab having the arc shape has the same shape at the upper and lower portions thereof. Since it does not compensate for the shrinkage of the coagulation layer, there is a disadvantage in that cracks occur in duty free.
  • Application number KR 2002-0084914 is provided with a projection (9a) for forming a chamfer surface at the edge of the slab in the short side deformation (9), the projection (9a) toward the lower It has been proposed to increase the size so as to prevent cracks in the corner cracks and duty free of the cast. Since the protruding portion 9a increases downwardly, the length of the short side mold 9 except for the protruding portion 9a decreases downwardly to compensate for the shrinkage ratio of the slab, but the protruding portion 9a in the chamfered portion of the slab. Since the length of the inclination increases downward, there is a disadvantage in that cracks are generated in the chamfered surface because the shrinkage of the cast steel cannot be compensated.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a continuous casting mold for compensating the shrinkage of the cast and to reduce the wear of the mold.
  • Continuous casting mold according to a preferred embodiment of the present invention in order to achieve the above object, in the downward tapered combustion casting mold, two long sides mold; And two short sides of the two sides of the long side to form a chamfer at both ends to form a chamfered surface at the edge of the slab; Becomes smaller.
  • the width of the inclined surface of the protruding portion decreases toward the lower side, and the width of the unextruded center surface also decreases.
  • the angle of inclination of the inclined surface of the protruding portion decreases toward the lower side of the short side die.
  • the inclination angle of the inclined surface of the protrusion is preferably 20 ° ⁇ 70 °.
  • the difference between the upper angle and the lower angle in the inclination angle of the inclined surface of the protrusion is preferably within 10 °.
  • the continuous casting mold according to the present invention prevents the temperature of the corner portion from being drastically reduced by forming a protrusion, thereby forming a chamfered surface at the edge of the cast steel during continuous casting, thereby preventing the temperature of the third region during bending or straightening of the cast steel. Since the brittle section is avoided, the incidence of corner cracks can be reduced.
  • the shrinkage of the long side solidified layer in the slab which is further reduced compared to the tapered inclination rate of the short side mold, is compensated, so that the wear degree of the short side mold is greatly increased. Can be reduced.
  • FIG. 1 is a view showing a continuous casting apparatus according to the prior art.
  • Figure 2 is a perspective view showing the mold in the continuous casting device of FIG.
  • FIG. 3 is a front view, a plan view, and a side view showing the mold of FIG. 2.
  • 5 is a diagram illustrating the existing short sides.
  • FIG. 6 is a perspective view showing a short side mold in a continuous casting mold according to a preferred embodiment of the present invention.
  • FIG. 7 is a plan view illustrating the short side of FIG. 6.
  • 8 (a), 8 (b), and 8 (c) show a short deformation type according to another exemplary embodiment of the present invention, in which the lower angle is smaller than the upper angle in the inclined surface of the protrusion in the short deformation type of FIG. Drawing.
  • FIG. 9 (a) is a table showing the conditions of the short strain mold in the continuous casting process
  • FIG. 9 (b) shows the temperature measurement results of the edges of the slab according to the conditions of the short strain mold in FIG. 9 (a).
  • FIG. 6 is a perspective view showing a short deformation mold in a continuous casting mold according to a preferred embodiment of the present invention
  • Figure 7 is a plan view showing the short deformation mold of FIG.
  • the present invention includes a long side mold spaced apart to correspond to the thickness of the cast steel, and a short side mold 40 spaced to correspond to the width of the cast steel.
  • the long side molds are arranged to be spaced apart from each other to correspond to the thickness of the slab formed while the molten steel is solidified.
  • the short side mold 40 is closed between the two long side molds and the two are spaced apart from each other to correspond to the width of the slab is fastened to the long side mold.
  • the continuous casting mold including the long side mold and the short side mold 40 is opened up and down and takes a downward tapered structure.
  • the short side mold 40 has protrusions 42 formed at both ends thereof to form a chamfered surface at the edge of the cast steel.
  • the short side mold 40 is formed to be inclined with the inner central surface (44a) while protruding both ends to form a chamfering surface in the corner of the cast, the chamfering surface is formed with a protrusion 42
  • the protrusion 42 has an inclined surface 42a corresponding to the chamfered surface of the cast steel.
  • the cast steel has a rectangular shape
  • the heat escapes in both the long side and the short side of the solidification layer at the corner portion the surface temperature is drastically lowered compared to other positions of the cast steel.
  • corner cracks are easily generated in the process of adding stress to the cast steel during bending or straightening of the cast steel.
  • the short side mold 40 of the present invention is formed by the projection 42, the chamfering surface is formed at the corner of the cast during continuous casting to prevent the temperature of the corner portion is sharply reduced, bending or straightening work It is possible to avoid the brittle section of the third time zone to reduce the occurrence of corner cracks.
  • the size of the protrusion 42 should preferably be 15 mm or more in the thickness direction and the width direction of the short side strain 40.
  • the protrusion 42 of the present invention is characterized in that its size decreases toward the lower side to compensate for the shrinkage of the long side solidified layer in the cast steel.
  • the short side die 40 has a smaller width of the inclined surface 42a of the protruding portion 42 toward the lower side thereof, and a smaller width of the unextruded central surface 44a.
  • the inclined surface (42a) is formed gradually smaller in width as the bottom, and the width of the central surface (44a) is not protruding gradually formed smaller as the width goes down do.
  • the short side strain 40 is not limited by the present invention, and the lower width IW B is smaller than the upper width IW B in the inclined surface 42a of the protrusion 42, and the unextruded center surface 44a is not limited to the present invention.
  • bottom width (CW B) is also less than the upper width (CW B).
  • the slab in the mold descends to the lower side, it contracts as it solidifies, so that the width of the inclined surface 42a of the protrusion 42 contacting the chamfered surface of the slab and the width of the unextruded central surface 44a become smaller.
  • the shrinkage of the short-sided solidified layer can be compensated to prevent the occurrence of cracks vertically in the chamfered surface.
  • the distance difference between the upper edge and the lower edge at the corner of the protrusion 42 ( , W 1T and W 1B correspond to FIG. 3) to be greater than 0 to compensate for shrinkage of the short side solidification layer, and the upper middle surface 44a and the lower middle surface 44a of the non-projection 44 and 42.
  • Difference in distance ) Is greater than 0 to compensate for the shrinkage of the long side coagulation layer.
  • the long side mold is inclined with an inclination amount of d 1 (d 1 > 0) to compensate for the shrinkage of the short side solidification layer
  • the short side strain 40 is d 2 (d to compensate for the shrinkage of the long side solidification layer. 2 > 0).
  • d 1 and d 2 has a value of 0.5% ⁇ 1.5% as in the existing mold.
  • S described in FIG. 7 has a limit having a value greater than zero.
  • the short side strain 40 is formed such that the inclination angle of the inclined surface 42a of the protrusion 42 becomes smaller toward the lower side.
  • the lower angle ⁇ B is smaller than the upper angle ⁇ T in the inclined surface 42a of the projections 42 of the short sides 40 ', 40', 40 '''.
  • the lower angle of the protrusion 42 becomes smaller toward the lower portions of the short deformation molds 40 ', 40' 'and 40' '', the lower angle decreases more than the tapered inclination of the short deformation mold.
  • the shrinkage ratio of the bias is compensated, the degree of wear of the short side mold can be greatly reduced.
  • another inclined surface 42a may be formed on the inclined surface 42a of the protrusion 42, wherein the height of another lower inclined surface 42a is set to 'h'.
  • the present invention is not limited thereto, and a plurality of inclined surfaces 42a may be further formed on the inclined surfaces 42a of the protrusions 42.
  • the inclination angle of the inclined surface 42a of the protrusion 42 is preferably 20 ° to 70 °.
  • the angle of inclination of the inclined surface 42a of the protrusion 42 is determined in the range of 0 to 90 °. If the angle is too small, preferably smaller than 20 °, the chamfering effect is reduced at the corners of the cast steel, resulting in corner cracks.
  • the difference between the upper angle ⁇ T and the lower angle ⁇ B in the inclination angle of the inclined surface 42a of the protrusion 42 is preferably within 10 °.
  • the difference between the inclination angle at the top surface and the inclination angle at the lower surface of the protrusion 42 becomes large, the chamfered surface of the cast steel is distorted, so that the upper angle ⁇ T and the lower angle ⁇ B are prevented.
  • the difference is preferably determined within 10 degrees.
  • FIG. 9 (a) is a table showing the conditions of the short strain mold in the continuous casting process
  • FIG. 9 (b) shows the temperature measurement results of the edges of the slab according to the conditions of the short strain mold in FIG. 9 (a).
  • test 1 is an existing mold condition
  • test 2 is a short variant 40 according to a preferred embodiment of the present invention
  • test 3 is a short variant 40 'according to another preferred embodiment of the present invention. Condition.
  • the slope amount of the short side mold was changed in the range of 1.0 ⁇ 1.3% according to the steel composition and casting width.
  • the surface temperature of the edges of the slab was measured by a pyrometer horizontally moving the upper surface of the slab in the width direction at the position immediately before the slab entered the calibration section in the instrument, and is shown in FIG. 9 (b).
  • the temperature rises outside the edge of the cast steel is measured by a pyrometer perpendicular to the upper surface of the slab protruding portion by the bulging in the short side of the cast steel.
  • the temperature of the corner was measured at about 740 ° C., whereas in the case of a cast produced by applying the mold of the present invention, the outside of the chamfered surface.
  • the temperature of the side edge is measured as high as about 890 ° C. and the inside edge (long side edge) is about 860 ° C., which is advantageous to avoid the brittle section of the third region.
  • the present invention configured as described above is formed by the protrusion 42, thereby preventing the temperature of the corner portion is sharply reduced as the chamfered surface is formed at the corner of the cast during continuous casting, bending or straightening operation of the cast It is possible to avoid the brittle section of the time zone 3 can reduce the occurrence rate of the corner crack.
  • the shrinkage ratio of the long side solidified layer in the slab is reduced more than the tapered inclination rate of the short side mold 40 toward the lower side. As compensated, the degree of wear of the short side strain 40 can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명에 따른 연속주조 주형은, 하방 테이퍼진 연소주조 주형에 있어서, 두 개의 장변주형; 및 두 개의 상기 장변주형 사이를 밀폐하며 주편의 모서리에 모따기면을 형성시키도록 양측 단부에 돌출부가 형성된 두 개의 단변주형;을 포함하며, 주편의 수축량이 보상되도록 상기 단변주형의 돌출부가 하측으로 갈수록 작아진다.

Description

연속주조 주형
본 발명은 연속주조 주형으로서, 주편의 코너크랙을 방지하기 위한 연속주조 주형에 관한 것이다.
도 1은 종래기술에 따른 연속주조장치를 나타낸 도이고, 도 2는 도 1의 연속주조장치에서 주형을 나타낸 사시도이다.
또한, 도 3은 도 2의 주형을 나타낸 정면도, 평면도, 측면도이고, 도 4는 온도에 따른 강의 취성영역을 나타낸 그래프이다.
도면을 참조하면, 액상용강이 래이들(1)에서 턴디쉬(2)를 거쳐 주형(3)으로 주입되어 주편 표면으로부터 응고층이 형성되고 다수개의 가이드롤이 있는 2차 냉각대(4)를 거치면서 응고가 완료됨으로써 주편이 연속적으로 생산된다.
이때 발생하는 주편에서의 크랙은, 이후 압연공정에서 제거되지 않고 제품상의 결함으로 잔존하게 되므로 압연전에 스카핑 등의 방법을 통해 제거해야 하는데, 이를 위해서는 주편을 검사하고 크랙을 제거하기 위한 공정이 추가되기 때문에 압연 가열로에 주편을 직접 장입할 수 없고 추가적인 인력과 비용이 발생한다.
구체적으로, 도면을 살펴보면 침지노즐(2a)을 통해 주형 내부로 용강이 유입되고, 단변주형(3a)과 장변주형(3b)에서는 탕면에서부터 응고층이 형성되기 시작하여 하방으로 갈수록 성장하며 두꺼워진다.
상기 응고층은 하방으로 갈수록 온도가 낮아지며 수축이 발생하는데, 이를 주형에서 보상해주지 못하면 응고층에 인장력이 발생하여 크랙이 발생한다.
이러한 크랙을 방지하기 위해, 도시된 바와 같이 상단폭 대비 하단폭을 감소시킴으로써 주형에 경사를 준다. 장변응고층의 수축율은 상단 장변폭(W1T) 대비 하단 장변폭(W1B)을 작게하여 단변 주형(3a)에 경사를 주어 보상하고, 단변응고층의 수축율은 단변 주형(3a)의 하단폭(W2B)을 상단폭(W2T) 대비 감소시켜 장변 주형(3b)에 경사를 주어 보상한다.
주편에서 발생하는 코너크랙은 강의 취성역역과 밀접한 관계를 가진다.
도 4에 도시된 바와 같이, 일반적으로 강은 온도에 따라 세 군데에서 취성영역을 가지고 있는데, 이 중에서 주편의 표면온도가 700~800oC(이하, '제3 영역 취성구간'으로 칭함)영역에서는 연성이 작기 때문에, 스트레인 속도가 작아도 쉽게 크랙이 발생한다.
통상적으로 직사각형 형태의 주편인 경우, 모서리부분에서는 응고층의 장변과 단변 양방향으로 열이 빠져나가기 때문에 주편의 다른 위치에 비해 표면온도가 급격하게 낮아지므로 주조중에 연주기 내에서 제3영역 취성구간에 포함되기 쉽다.
따라서, 연주기에서 주편의 굽힘 혹은 교정 작업시 주편에 응력이 부가되고 이 구간에서 주편 모서리부의 온도가 제3영역 취성구간에 포함되어 코너크랙이 쉽게 발생한다.
이를 해결하기 위해, 주편을 모서부가 모따기 된 형상으로 주조하여 모서리부의 온도가 주편내 다른 위치에 비해 급격하게 감소하는 것을 억제하여 연주기에서 주편의 굽힘 혹은 교정 작업시 모서리부 온도가 취성구간을 벗어날 수 있도록 하는 방법이 있다. 이렇게 주편의 모서리부를 모따기 된 형상으로 주조하기 위해 연속주조 주형을 개량한 선행기술로는, 도 5에 도시된 바와 같이, 특허번호 EP0776714호, 특허번호 EP0409708호, 일본 공개특허공보 평11-290995호, 출원번호 KR 2002-0084914호 등이 있다.
특허번호 EP0776714호는 도 5(a)에 도시된 바와 같이, 단변주형(5)을 이용하여 주편의 단변부가 돌출된 형상을 갖도록 하여 주편의 미응고부 압하시 주편의 내부크랙을 저감시키려는 방법이다. 이때, 주편의 모따기면이 평면으로 된 경사면이 아니고 장변에 수직으로 된 면을 포함하기 때문에, 이 부분에서 모따기에 의한 온도 감소 방지 효과가 저감되고, 주편을 압연하는 과정에서 모서리부가 접히는 결함이 발생한다. 또한, 돌출부(5a)의 모양과 크기가 상부와 하부에서 동일하기 때문에 모따기면에서의 수축율을 보상하지 못하여 크랙이 발생하는 단점이 있다.
특허번호 EP0409708호는 도 5(b)에 도시된 바와 같이, 단변주형(6)을 장변홈(7a)에 끼워넣어 주편의 모따기면을 평면인 경사면이 되도록 함으로써 압연재에서의 접힘흠을 방지하는 동시에, 돌출부(6a) 모서리의 두께를 두껍게 하여 내구성을 증대시키는 효과를 기대할 수 있다. 하지만, 단변주형(6)의 폭변경이 불가능하고 돌출부(6a)의 상부와 하부가 동일한 크기 및 형상을 가지고 있어 모따기 경사면에서 주편의 수축율을 보상해주기 못하기 때문에 모따기면에서 크랙이 발생하는 단점이 있다.
일본 공개특허공보 평11-290995호는 도 5(c)에 도시된 바와 같이, 단변주형(8)의 양측 단부를 아크 형태로 가공하여 주편의 코너부를 아크 형태로 형성하도록 한 주형이 제안되어 있다. 이 주형은 폭가변이 불가능한 것으로, 코너부가 아크형태로서 코너부 온도 저감 방지 및 코너부 동판의 내구성 향상에는 효과적일 수 있으나 아크형상을 갖는 주편의 모서리부가 상부와 하부에서 동일한 형상으로 되어 있어서 아크부 응고층의 수축율을 보상해주지 못하기 때문에 면세로 크랙이 발생하는 단점이 있다.
출원번호 KR 2002-0084914호는 도 5(d)에 도시된 바와 같이, 단변주형(9)에서 주편 모서리에 모따기면을 형성하는 돌출부(9a)가 구비되고, 상기 돌출부(9a)는 하방으로 갈수록 크기가 증가하도록 구성하여 주편의 코너크랙 및 면세로 크랙을 방지하도록 제안되었다. 상기 돌출부(9a)가 하방으로 갈수록 증가하기 때문에 돌출부(9a)를 제외한 단변주형(9)의 길이는 하방으로 갈수록 감소하여 주편의 수축율을 보상해주는 것이 가능하지만, 주편의 모따기부에서는 돌출부(9a) 경사의 길이가 하방으로 갈수록 증가하기 때문에 주편의 수축율을 보상해주지 못하여 모따기면에서 면세로 크랙이 발생하는 단점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 주편의 수축률을 보상하고 주형의 마모를 저감시키는 연속주조 주형을 제공하는 데에 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 연속주조 주형은, 하방 테이퍼진 연소주조 주형에 있어서, 두 개의 장변주형; 및 두 개의 상기 장변주형 사이를 밀폐하며 주편의 모서리에 모따기면을 형성시키도록 양측 단부에 돌출부가 형성된 두 개의 단변주형;을 포함하며, 주편의 수축량이 보상되도록 상기 단변주형의 돌출부가 하측으로 갈수록 작아진다.
이때, 상기 단변주형은, 하측으로 갈수록 상기 돌출부 경사면의 폭이 작아지고 미돌출된 중앙면의 폭도 작아지는 것이 바람직하다.
나아가, 상기 단변주형은, 하측으로 갈수록 상기 돌출부 경사면의 경사각이 작아지는 것이 바람직하다.
여기에서, 상기 돌출부 경사면의 경사각은 20°~ 70°인 것이 바람직하다.
아울러, 상기 돌출부 경사면의 경사각에서 상부각도와 하부각도의 차이는 10°이내인 것이 바람직하다.
본 발명에 따른 연속주조 주형은, 돌출부가 형성됨으로써, 연속주조 시 주편의 모서리에 모따기면이 형성됨에 따라 모서리부의 온도가 급격하게 감소하는 것을 방지하여, 주편의 굽힘 또는 교정 작업시 제3 영역의 취성구간을 회피하게 되어 코너크랙의 발생률을 저감시킬 수 있는 효과를 가진다.
또한, 주형 내에서의 주편이 하측으로 내려갈수록 응고됨에 따라 수축하게 되는데, 이와 대응되도록 주편의 모따기면과 접하는 돌출부의 경사면과 미돌출된 중앙면의 폭이 작아짐으로써, 주편에서 단변응고층의 수축량이 보상되게 되어 모따기면에서 면세로 크랙이 발생하는 것을 방지할 수 있는 장점을 지닌다.
나아가, 단변주형의 하부로 갈수록 돌출부 경사각이 작게 형성됨으로써, 하측으로 갈수록 단변주형의 테이퍼진 경사율에 비하여 더 감소하는 주편에서의 장변응고층의 수축률이 보상됨에 따라, 단변주형의 마모 정도를 크게 감소시킬 수 있다.
도 1은 종래기술에 따른 연속주조장치를 나타낸 도면이다.
도 2는 도 1의 연속주조장치에서 주형을 나타낸 사시도이다.
도 3은 도 2의 주형을 나타낸 정면도, 평면도, 측면도이다.
도 4는 온도에 따른 강의 취성영역을 나타낸 그래프이다.
도 5는 기존의 단변주형들을 나타낸 도면이다.
도 6은 본 발명의 바람직한 실시예에 따른 연속주조 주형에서 단변주형을 나타낸 사시도이다.
도 7은 도 6의 단변주형을 나타낸 평면도이다.
도 8(a), 도 8(b), 도 8(c)는 도 7의 단변주형에서 돌출부의 경사면에서 하부각도가 상부각도보다 작은, 본 발명의 바람직한 다른 실시예에 따른 단변주형을 것을 나타낸 도면이다.
도 9(a)는 연속주조 공정에서 단변주형의 조건에 대한 표이고, 도 9(b)는 도 9(a)에서의 단변주형의 조건에 따른 주편 모서리부의 온도측정 결과이다.
이하, 도면을 참고하여 본 발명을 상세하게 설명하기로 한다.
도 6은 본 발명의 바람직한 실시예에 따른 연속주조 주형에서 단변주형을 나타낸 사시도이고, 도 7은 도 6의 단변주형을 나타낸 평면도이다.
도면을 참조하면, 본 발명은 주편의 두께에 대응되게 이격된 장변주형과, 주편의 폭에 대응되게 이격된 단변주형(40)을 포함한다.
이때, 상기 장변주형은 용강이 응고되면서 형성되는 주편의 두께에 대응되게 두 개가 서로 이격되어 배치된다.
또한, 상기 단변주형(40)은 두 개의 상기 장변주형 사이를 밀폐하면서 주편의 폭에 대응되게 두 개가 서로 이격되어 장변주형에 체결된다.
이와 같이 장변주형과 단변주형(40)으로 이루어지는 연속주조 주형은 상하개방되며 하방 테이퍼진 구조를 취한다.
구체적으로, 상기 단변주형(40)은 주편의 모서리에 모따기면을 형성시키도록 양측 단부에 돌출부(42)가 형성된다.
즉, 단변주형(40)은 주편의 모서리에 모따기면을 형성시키기 위해, 상기 모따기면과 형합되도록 양측 끝단이 돌출되면서 내측의 중앙면(44a)과 경사져서 형성됨에 따라 돌출부(42)가 형성되고, 이러한 돌출부(42)는 주편의 모따기면과 대응되는 경사면(42a)을 가진다.
일례로서 주편이 직사각형 형상인 경우, 모서리 부분에서 응고층의 장변과 단변 양방향으로 열이 빠져나가기 때문에 주편의 다른 위치에 비해 표면온도가 급격하게 낮아진다. 이에 의해, 주편의 모서리 부분의 온도가 주조 중에 제3 영역 취성구간에 포함되기 쉽기 때문에, 주편의 굽힘 또는 교정 작업시 주편에 응력이 부가되는 과정에서 코너크랙이 쉽게 발생하게 된다.
그런데, 본 발명의 단변주형(40)에는 돌출부(42)가 형성됨으로써, 연속주조 시 주편의 모서리에 모따기면이 형성됨에 따라 모서리부의 온도가 급격하게 감소하는 것을 방지하여, 주편의 굽힘 또는 교정 작업시 제3 영역의 취성구간을 회피하게 되어 코너크랙의 발생을 저감시킬 수 있다.
이때, 상술된 효과를 나타나기 위해서는 바람직하게 돌출부(42)의 크기가 단변주형(40)의 두께방향과 폭방향으로 15㎜이상 되어야 한다.
그리고, 본 발명의 상기 돌출부(42)는 주편에서 장변응고층의 수축량을 보상하기 위해 하측으로 갈수록 그 크기가 작아지는 것을 특징으로 한다.
구체적으로, 상기 단변주형(40)은 하측으로 갈수록 돌출부(42) 경사면(42a)의 폭이 작아지고, 미돌출된 중앙면(44a)의 폭도 작아진다.
이에 대해, 도 6 및 도 7을 참조하면, 경사면(42a)은 아래로 갈수록 그 폭이 점차적으로 작게 형성되며, 아울러 돌출되지 않은 중앙면(44a)의 폭도 아래로 갈수록 그 폭이 점차적으로 작게 형성된다.
나아가, 단변주형(40)은 본 발명에 의해 한정되지 않고, 돌출부(42) 경사면(42a)에서 하부폭(IWB)은 상부폭(IWB)보다 작으며, 미돌출된 중앙면(44a)에서도 하부폭(CWB)은 상부폭(CWB)보다 작으면 된다.
주형 내에서의 주편이 하측으로 내려갈수록 응고됨에 따라 수축하게 되는데, 이와 대응되도록 주편의 모따기면과 접하는 돌출부(42)의 경사면(42a)과 미돌출된 중앙면(44a)의 폭이 작아짐으로써, 단변응고층의 수축량이 보상되어 모따기면에서 면세로 크랙이 발생하는 것을 방지할 수 있다.
참고로, 도 7과 같은 평면도에서 볼 때, 돌출부(42)의 모서리에서 상부모서리와 하부모서리의 거리차이(
Figure PCTKR2012011290-appb-I000001
, W1T과 W1B는 도 3과 대응됨)는 0보다 크게 형성되어 단변응고층의 수축량을 보상하고, 미돌출부(44)(42)의 상부중앙면(44a)과 하부중앙면(44a)의 거리차이(
Figure PCTKR2012011290-appb-I000002
)는 0보다 큼으로써 장변응고층의 수축량을 보상한다.
즉, 장변주형은 단변응고층의 수축량을 보상하기 위해 d1(d1>0)의 경사량을 가지고 기울어져 있고, 단변주형(40)은 장변응고층의 수축량을 보상하기 위해 d2(d2>0)의 경사량을 가진다. 이때, d1과 d2는 기존 몰드에서와 같이 0.5% ~ 1.5%의 값을 가진다. (참고로, 상술된 부호인 W1T, W1B, W2T, W2B, d1, d2는 도 2에 기재되었다.)
아울러, 장변응고층의 수축량을 보상하기 위해서, 도 7에 기재된 S는 0보다 큰 값을 가지는 제한이 있다.
또한, 상기 단변주형(40)은 하측으로 갈수록 상기 돌출부(42) 경사면(42a)의 경사각이 작아지게 형성된다.
이에 대해, 도 8(a), 도 8(b), 도 8(c)에 도시된 바와 같이, 미돌출된 중앙면(44a)에 대한 돌출부(42) 경사면(42a)의 경사각에 있어서 아래로 갈수록 그 경사각이 점차적으로 작게 형성된다.
더욱 바람직하게, 단변주형(40')(40'')(40''')의 돌출부(42) 경사면(42a)에서 하부각도(θB)는 상부각도(θT)보다 작으면 된다.
단변주형의 하부로 갈수록 테이퍼진 경사율에 비하여 주편의 수축률이 감소하기 때문에, 단변주형의 상부에서와 비교할 때 하부는 주편의 마찰력이 증가하게 되는데, 이러한 마찰력 증가에 의해 마모가 크게 발생하게 된다.
즉, 응고층 내부가 미응고층에 의해 지지되는 부분보다는 응고층이 서로 맞닿아 있는 돌출부(42)에서 단변주형과 주편 사이의 마찰력이 증가하기 때문에 이 부분에서 마모가 크게 발생한다.
따라서, 단변주형(40')(40'')(40''')의 하부로 갈수록 돌출부(42)의 경사각이 작게 형성됨으로써, 하측으로 갈수록 단변주형의 테이퍼진 경사율에 비하여 더 감소하는 주편의 수축률이 보상됨에 따라, 단변주형의 마모 정도를 크게 감소시킬 수 있다.
또한, 하부각도가 상부각도보다 작음으로써, 돌출부(42)의 경사면(42a)에는 또 하나의 경사면(42a)이 형성될 수 있는데, 이때 하측의 또 하나의 경사면(42a)의 높이를 'h'로 지칭한다. 물론, 이에 한정되지 않고 돌출부(42)의 경사면(42a)에는 복수 개의 경사면(42a)이 더 형성될 수 있다.
이에 더하여, 상기 돌출부(42) 경사면(42a)의 경사각은 20°~ 70°인 것이 바람직하다.
돌출부(42) 경사면(42a)의 경사각은 0~90°구간에서 결정되는데, 너무 작아지면 즉 바람직하게 20°보다 작아지면 주편의 모서리부에서 모따기 효과가 감소하여 코너크랙이 발생하게 된다.
또한, 너무 커지면 돌출된 정도가 심하게 되어 주편에 대한 밀착이 커짐으로써 마모가 커지게 되어, 돌출부(42)의 모서리에 대한 내구성이 떨어지게 되어 손상될 수 있다.
나아가, 상기 돌출부(42) 경사면(42a)의 경사각에서 상부각도(θT)와 하부각도(θB)의 차이는 10°이내인 것이 바람직하다.
즉, 돌출부(42)의 상면에서의 경사각과 하면에서의 경사각의 차이가 커지면, 주편의 모따기면이 뒤틀림이 발생하게 되므로, 이를 방지하기 위해 상부각도(θT)와 하부각도(θB)의 차이는 10°이내로 결정되는 것이 바람직하다.
도 9(a)는 연속주조 공정에서 단변주형의 조건에 대한 표이고, 도 9(b)는 도 9(a)에서의 단변주형의 조건에 따른 주편 모서리부의 온도측정 결과이다.
이때, 표에서 테스트 1은 기존의 주형 조건이고, 테스트 2는 본 발명의 바람직한 실시예에 따른 단변주형(40)이고, 테스트 3은 본 발명의 바람직한 다른 실시예에 따른 단변주형(40')에 대한 조건이다.
이들 주형을 이용하여 주편폭 1000~2000mm, 주편두께 250mm의 저탄 및 중탄강의 생산하고 주편의 크랙 발생율 및 동판의 마모 정도를 나타내었다.
단변주형의 경사량은 강의 조성 및 주조폭에 따라 1.0~1.3% 범위에서 변경하였다.
연속주조 공정에서 주편이 연주기내 교정구간에 진입하기 직전의 위치에서 주편의 상면을 폭방향으로 수평운동하는 파이로미터로 주편의 모서리부 표면온도를 측정하여 도 9(b)에 나타내었다.
도면을 참조하면, 주편 모서리부 외측으로 온도가 높게 올라가는 것은 주편의 단변부에서 벌징에 의해 돌출된 부분이 주편의 상면에 수직으로 놓여진 파이로미터에 의해 측정되어 나타난 것이다.
모서리부의 온도를 비교하면, 기존 몰드에서 생산된 직각의 모서리를 갖는 테스트 1의 경우에는 모서리부의 온도가 740oC 정도로 측정되는 반면, 본 발명의 주형을 적용하여 생산된 주편의 경우에는 모따기면 바깥쪽 모서리(단변측 모서리)의 온도는 약 890oC, 안쪽 모서리(장변측 모서리)의 경우는 약 860 oC 정도로 높게 측정되어 제3영역 취성구간을 회피하는데 유리하다.
결과적으로 주편의 코너크랙 발생률은 기존 주형을 이용한 경우 약 4.1%인데 반해, 테스트 2와 테스트 3의 경우 약 0.7% 정도로 감소하였다.
한편, 단변주형(40) 돌출부(42)의 마모에 있어서는 테스트 2에서 기존 주형의 마모 정도에 비해 3배 수준으로 발생하였다.
그러나, 테스트 3의 동판을 이용한 경우에는 기존 동판과 동일한 수준으로 마모 정도가 감소하였다.
즉, 단변주형(40)에서 하측으로 갈수록 상기 돌출부(42) 경사면(42a)의 경사각이 작아지는 경우에는, 마모되는 정도에 있어서 현저하게 감소한 결과를 나타내었다.
결과적으로, 상기와 같이 구성되는 본 발명은 돌출부(42)가 형성됨으로써, 연속주조 시 주편의 모서리에 모따기면이 형성됨에 따라 모서리부의 온도가 급격하게 감소하는 것을 방지하여, 주편의 굽힘 또는 교정 작업시 제3 영역의 취성구간을 회피하게 되어 코너크랙의 발생률을 저감시킬 수 있다.
또한, 주형 내에서의 주편이 하측으로 내려갈수록 응고됨에 따라 수축하게 되는데, 이와 대응되도록 주편의 모따기면과 접하는 돌출부(42)의 경사면(42a)과 미돌출된 중앙면(44a)의 폭이 작아짐으로써, 주편에서 단변응고층의 수축량이 보상되게 되어 모따기면에서 면세로 크랙이 발생하는 것을 방지할 수 있다.
나아가, 단변주형(40)의 하부로 갈수록 돌출부(42) 경사각이 작게 형성됨으로써, 하측으로 갈수록 단변주형(40)의 테이퍼진 경사율에 비하여 더 감소하는 주편에서의 장변응고층의 수축률이 적정하게 보상됨에 따라, 단변주형(40)의 마모 정도를 크게 감소시킬 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.

Claims (5)

  1. 하방 테이퍼진 연소주조 주형에 있어서,
    두 개의 장변주형; 및 두 개의 상기 장변주형 사이를 밀폐하며 주편의 모서리에 모따기면을 형성시키도록 양측 단부에 돌출부(42)가 형성된 두 개의 단변주형(40);을 포함하며,
    주편의 수축량이 보상되도록 상기 단변주형(40)의 돌출부(42)가 하측으로 갈수록 작아지는 것을 특징으로 하는 연속주조 주형.
  2. 제1항에 있어서,
    상기 단변주형(40)은, 하측으로 갈수록 상기 돌출부(42) 경사면(42a)의 폭이 작아지고 미돌출된 중앙면(44a)의 폭도 작아지는 것을 특징으로 하는 연속주조 주형.
  3. 제1항에 있어서,
    상기 단변주형(40)은, 하측으로 갈수록 상기 돌출부(42) 경사면(42a)의 경사각이 작아지는 것을 특징으로 하는 연속주조 주형.
  4. 제1항에 있어서,
    상기 돌출부(42) 경사면(42a)의 경사각은 20°~ 70°인 것을 특징으로 하는 연속주조 주형.
  5. 제4항에 있어서,
    상기 돌출부(42) 경사면(42a)의 경사각에서 상부각도와 하부각도의 차이는 10°이내인 것을 특징으로 하는 연속주조 주형.
PCT/KR2012/011290 2011-12-27 2012-12-21 연속주조 주형 WO2013100499A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12861285.0A EP2799162B1 (en) 2011-12-27 2012-12-21 Continuous casting mold
JP2014549977A JP5933751B2 (ja) 2011-12-27 2012-12-21 連続鋳造鋳型
CN201280065213.1A CN104023874B (zh) 2011-12-27 2012-12-21 连铸模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110142997A KR101360564B1 (ko) 2011-12-27 2011-12-27 연속주조 주형
KR10-2011-0142997 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013100499A1 true WO2013100499A1 (ko) 2013-07-04

Family

ID=48697875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011290 WO2013100499A1 (ko) 2011-12-27 2012-12-21 연속주조 주형

Country Status (5)

Country Link
EP (1) EP2799162B1 (ko)
JP (1) JP5933751B2 (ko)
KR (1) KR101360564B1 (ko)
CN (1) CN104023874B (ko)
WO (1) WO2013100499A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013186A1 (ja) * 2014-07-24 2016-01-28 Jfeスチール株式会社 鋼の連続鋳造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527857B1 (ko) * 2013-12-24 2015-06-10 주식회사 포스코 주조용 몰드
KR101969112B1 (ko) * 2017-09-12 2019-04-15 주식회사 포스코 주형
KR102074364B1 (ko) * 2018-05-14 2020-02-06 주식회사 포스코 주형
CN110252981A (zh) * 2019-06-10 2019-09-20 邢台钢铁有限责任公司 减轻轴承钢大方坯内部质量缺陷的连铸工艺
WO2021256243A1 (ja) * 2020-06-18 2021-12-23 Jfeスチール株式会社 連続鋳造方法
JP6954514B1 (ja) * 2020-06-18 2021-10-27 Jfeスチール株式会社 連続鋳造方法
KR20230083055A (ko) * 2021-12-02 2023-06-09 주식회사 포스코 주형의 제조 방법 및 주형

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409708A1 (fr) 1989-07-19 1991-01-23 Sollac Lingotière à plaques pour la coulée continue de métal
JPH08150440A (ja) * 1994-05-30 1996-06-11 Danieli & C Off Mecc Spa 高炭素鋼の連続鋳造法
EP0776714A1 (en) 1995-06-21 1997-06-04 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
JPH11290995A (ja) 1998-04-08 1999-10-26 Sanyo Special Steel Co Ltd 鋳型表面温度を均一化した連続鋳造用鋳型
KR20020084914A (ko) 2001-05-02 2002-11-16 정태균 음용수 용기
KR20020084915A (ko) 2001-05-02 2002-11-16 엘지전자 주식회사 시간 천이된 pn 스테이트 발생기
KR20040059083A (ko) * 2002-12-27 2004-07-05 주식회사 포스코 박슬라브 연속주조용 깔대기형 주형
KR100685474B1 (ko) * 2005-11-21 2007-02-26 김용호 연속주조용 몰드
KR20070056923A (ko) * 2005-11-30 2007-06-04 카엠 오이로파 메탈 악티엔 게젤샤프트 금속을 연속으로 주조하기 위한 캐스팅 다이
KR100775091B1 (ko) * 2006-08-07 2007-11-08 주식회사 포스코 연속주조장치의 주형

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664915A5 (de) * 1984-10-26 1988-04-15 Concast Service Union Ag Durchlaufkokille zum stranggiessen von stahlstraengen mit polygonalem querschnitt.
JPH0444300Y2 (ko) * 1987-04-15 1992-10-19
JPH03169457A (ja) * 1989-11-28 1991-07-23 Hitachi Ltd 薄鋳片連続鋳造機の短辺鋳型
ATE105750T1 (de) * 1991-02-06 1994-06-15 Concast Standard Ag Kokille zum stranggiessen von metallen, insbesondere von stahl.
JPH08243688A (ja) * 1995-03-06 1996-09-24 Nippon Steel Corp 連続鋳造用鋳型
KR100518331B1 (ko) * 2002-12-27 2005-10-04 주식회사 포스코 슬래브 연속주조 주형
PT1547705E (pt) * 2003-12-27 2008-06-06 Concast Ag Processo para o vazamento contínuo de lingotes em forma de barras e blocos e cavidade de molde de uma lingoteira destinada ao vazamento contínuo
JP4864559B2 (ja) * 2006-06-15 2012-02-01 株式会社神戸製鋼所 連続鋳造用鋳型
KR20090008826A (ko) * 2007-07-19 2009-01-22 주식회사 포스코 연속주조용 몰드설비의 주형

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409708A1 (fr) 1989-07-19 1991-01-23 Sollac Lingotière à plaques pour la coulée continue de métal
JPH08150440A (ja) * 1994-05-30 1996-06-11 Danieli & C Off Mecc Spa 高炭素鋼の連続鋳造法
EP0776714A1 (en) 1995-06-21 1997-06-04 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
JPH11290995A (ja) 1998-04-08 1999-10-26 Sanyo Special Steel Co Ltd 鋳型表面温度を均一化した連続鋳造用鋳型
KR20020084914A (ko) 2001-05-02 2002-11-16 정태균 음용수 용기
KR20020084915A (ko) 2001-05-02 2002-11-16 엘지전자 주식회사 시간 천이된 pn 스테이트 발생기
KR20040059083A (ko) * 2002-12-27 2004-07-05 주식회사 포스코 박슬라브 연속주조용 깔대기형 주형
KR100685474B1 (ko) * 2005-11-21 2007-02-26 김용호 연속주조용 몰드
KR20070056923A (ko) * 2005-11-30 2007-06-04 카엠 오이로파 메탈 악티엔 게젤샤프트 금속을 연속으로 주조하기 위한 캐스팅 다이
KR100775091B1 (ko) * 2006-08-07 2007-11-08 주식회사 포스코 연속주조장치의 주형

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799162A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013186A1 (ja) * 2014-07-24 2016-01-28 Jfeスチール株式会社 鋼の連続鋳造方法
JP5999294B2 (ja) * 2014-07-24 2016-09-28 Jfeスチール株式会社 鋼の連続鋳造方法
TWI569907B (zh) * 2014-07-24 2017-02-11 Jfe Steel Corp Continuous casting method of steel
CN106536085A (zh) * 2014-07-24 2017-03-22 杰富意钢铁株式会社 钢的连续铸造方法
CN106536085B (zh) * 2014-07-24 2019-04-19 杰富意钢铁株式会社 钢的连续铸造方法

Also Published As

Publication number Publication date
EP2799162A1 (en) 2014-11-05
CN104023874B (zh) 2015-11-25
EP2799162A4 (en) 2015-09-02
KR101360564B1 (ko) 2014-02-24
JP5933751B2 (ja) 2016-06-15
CN104023874A (zh) 2014-09-03
KR20130074898A (ko) 2013-07-05
JP2015503450A (ja) 2015-02-02
EP2799162B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2013100499A1 (ko) 연속주조 주형
WO2018117698A1 (ko) 연속 주조 장치 및 방법
EP0265164B1 (en) Method and apparatus for producing rapidly solidified metallic tapes
WO2022131821A1 (ko) 주형
JP2792739B2 (ja) 薄肉鋳片の連続鋳造装置
CN113927005B (zh) 一种减少板坯偏离角裂纹的方法
WO2023101504A1 (ko) 주형의 제조 방법 및 주형
JPH0337819B2 (ko)
JPH0539807Y2 (ko)
WO2020096391A1 (ko) 압하 장치
KR100807569B1 (ko) 연속주조시 주편의 코너 근방 표면결함 방지를 위한 단변주형
JPH0450097B2 (ko)
WO2020091288A1 (ko) 용융금속 공급장치 및 용융금속 공급방법
KR101410087B1 (ko) 테이퍼 기능 몰드
WO2019124825A1 (ko) 표면 품질이 우수한 마르텐사이트계 스테인리스 강의 제조방법
JPS63119956A (ja) 双ロ−ル式連続鋳造機による薄板連鋳方法
WO2020130693A1 (ko) 연속 주조용 몰드장치
JPS633729Y2 (ko)
KR20020051255A (ko) 리브를 이용하는 연속주조에서의 노즐막힘 방지방법
KR20010065266A (ko) 무산화 주조를 위한 턴디쉬 내부의 부상형 밀폐장치
KR20150020944A (ko) 쌍롤식 박판 주조장치
JPS60148646A (ja) ツインドラム方式の薄板連続鋳造装置
WO2011093562A1 (ko) 주조용 몰드 플레이트, 몰드 플레이트 어셈블리 및 몰드
JPS58187251A (ja) 鋼の連続鋳造方法
KR19990052659A (ko) 쌍롤형 박판주조 장치에서의 주조중 에지댐 교환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861285

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012861285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861285

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014549977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE