WO2013100199A1 - タイヤおよびタイヤ成形用金型 - Google Patents
タイヤおよびタイヤ成形用金型 Download PDFInfo
- Publication number
- WO2013100199A1 WO2013100199A1 PCT/JP2012/084306 JP2012084306W WO2013100199A1 WO 2013100199 A1 WO2013100199 A1 WO 2013100199A1 JP 2012084306 W JP2012084306 W JP 2012084306W WO 2013100199 A1 WO2013100199 A1 WO 2013100199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- tread
- less
- protrusions
- outer diameter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0606—Vulcanising moulds not integral with vulcanising presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0606—Vulcanising moulds not integral with vulcanising presses
- B29D2030/0607—Constructional features of the moulds
- B29D2030/0616—Surface structure of the mould, e.g. roughness, arrangement of slits, grooves or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/52—Unvulcanised treads, e.g. on used tyres; Retreading
- B29D30/66—Moulding treads on to tyre casings, e.g. non-skid treads with spikes
- B29D2030/667—Treads with antiskid properties, e.g. having special patterns or special rubber compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0074—Roughness, e.g. anti-slip patterned, grained
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0381—Blind or isolated grooves
Definitions
- the present invention relates to a tire and a tire molding die, and more particularly, to a tire excellent in performance on ice and in snow, and a tire molding die used for manufacturing the tire.
- Patent Document 1 by providing a plurality of sipes in each block formed in the tread portion, the edge component in the ground contact surface is increased and the snow biting effect is improved, so that the snow / ice road surface (frozen road surface or Techniques for improving running performance on snowy road surfaces have been proposed.
- Patent Document 2 in a tire having a tread rubber having a so-called cap-and-base structure composed of a cap rubber and a base rubber, the water removal performance is greatly improved by using foamed rubber as the cap rubber. Technologies for improving the performance on ice and on snow have been proposed.
- Patent Document 3 with respect to the surface property of the tread portion 1 of the tire, the surface roughness is obtained by providing a protruding portion 2 having a sharp tip on the surface of the tread portion.
- a technique for improving the on-ice performance and on-snow performance of a tire by increasing the friction and increasing the frictional force between the tire surface and the road surface.
- the projection When a load is applied, the projection may be crushed and desired performance may not be obtained. That is, in the technique in which the protruding portion having a sharp tip is provided on the surface of the tread portion, as shown in FIG. 1B, the protruding portion 2 is crushed by contact with the road surface T, and the volume of the water removal gap 3 is reduced. However, as a result of the reduction in water removal, desired performance on ice and performance on snow may not be obtained. Therefore, the technique described in Patent Document 3 has room for further improvement in performance on ice and performance on snow. Furthermore, as a result of the inventor's repeated studies on tires employing the techniques described in Patent Documents 1 to 3, the cause of these conventional tires is not clear, but sufficient on-ice performance and on-snow performance especially when new. It was also found that there was a problem that could not be obtained. Therefore, the techniques described in Patent Documents 1 to 3 have room for improving the performance on ice and the performance on snow especially when the tire is new.
- An object of the present invention is to solve the above-described problems, and to provide a tire with improved performance on ice and performance on snow, and a mold for tire molding used for manufacturing (molding) of the tire. To do.
- the present inventor has intensively studied to solve the above problems. As a result, the present inventor can further improve the on-ice performance and on-snow performance of the tire by suppressing a decrease in block rigidity and a decrease in water removal, if a predetermined fine structure is formed on the tread portion tread, and It has been found that sufficient performance on ice and performance on snow can be exhibited even when a tire is new, and the present invention has been completed.
- the summary structure is as follows.
- a large number of protrusions having a convex shape outward in the tire radial direction are formed on at least a part of the tread surface, and the protrusion has a center of curvature on the inner side in the tire radial direction from the tread surface.
- the curvature radius of the said projection part is 1 micrometer or more and 70 micrometers or less, It is characterized by the above-mentioned.
- the frictional force between the tire surface and the road surface can be reduced while suppressing a decrease in block rigidity. It can be increased to improve the on-ice performance and the on-snow performance of the tire.
- the protrusion has a center of curvature on the inner side in the tire radial direction from the tread surface, and the protrusion has a radius of curvature of 1 ⁇ m or more, so that the protrusion has a highly rigid shape.
- the radius of curvature of the protrusions to 70 ⁇ m or less, it is possible to suppress a decrease in water removal.
- the “curvature radius” means 0.5 times the maximum diameter of the protrusion in the tire width direction sectional view. However, it shall be seen in the cross section where the curvature radius is maximum.
- the “curvature radius” can be measured, for example, by photographing the cross section of the protrusion with an electron microscope.
- the “convex shape in the tire radial direction” includes, for example, a hemispherical shape, a truncated hemispherical shape, and the like.
- the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding the tread portion tread surface of the tire, and a plurality of concave portions on at least a part of the tread surface molding surface.
- the concave portion has a center of curvature outside the mold, and the radius of curvature of the concave portion is not less than 1 ⁇ m and not more than 70 ⁇ m.
- at least a part of the tread part tread surface is formed on at least a part of the tread part tread surface by forming a plurality of recesses having a curvature center outside the mold and a curvature radius of 1 ⁇ m or more and 70 ⁇ m or less on at least a part of the tread surface molding surface.
- the “curvature radius” means 0.5 times the maximum diameter of the recess in the tire width direction sectional view. However, it shall be seen in the cross section where the curvature radius is maximum.
- the “curvature radius” can be measured, for example, by photographing the cross section of the recess with an electron microscope.
- the “concave portion” includes, for example, a concave portion such as a hemispherical shape and a truncated hemispherical shape.
- (A) It is a schematic sectional drawing which shows typically the tread part tread of the conventional tire.
- (B) It is a schematic sectional drawing which shows typically a mode that a tread part tread of a tire and a road surface contact at the time of load load of a tire.
- It is a tire width direction sectional view of the tire concerning one embodiment of the present invention.
- It is a figure which expands and shows typically the shape of a part of tread part tread of the tire shown in Drawing 2
- (a) is a top view
- (b) is a tire width direction sectional view.
- FIG. 1 is a schematic partial perspective view schematically illustrating a part of a tire molding die according to an embodiment of the present invention. It is a figure which expands and shows typically the shape of a part of tread surface molding surface of the metal mold
- the tire according to the present invention is characterized in that a predetermined fine structure is formed on at least a part of a tread surface (a surface that contacts the road surface), and a surface property (tread surface property) of the tread portion is a predetermined property.
- the tire molding die according to the present invention is used for manufacturing the tire according to the present invention, and has a predetermined inner surface of the mold, specifically, at least a part of a tread surface that forms a tread portion tread surface of the tire. It is characterized in that a microstructure is formed and the surface texture of the tread surface is made predetermined.
- FIG. 2 is a sectional view in the tire width direction of one embodiment of the tire of the present invention.
- the tire 20 of the present embodiment includes a pair of bead portions 4, a pair of sidewall portions 5 that extend outward from each bead portion 4 in the tire radial direction, and the sidewall portions 5. And a tread portion 6 extending across.
- the tire 20 of the present embodiment includes a carcass 7 straddling a toroidal shape between a pair of bead cores 4a embedded in the pair of bead portions 4, and a two-layer belt disposed on the outer side in the tire radial direction of the carcass 7.
- a belt 8 composed of layers 8a and 8b.
- a tread rubber made of non-foamed rubber is disposed outside the belt 8 in the tire radial direction.
- FIG. 3A shows an enlarged plan view of the tread portion tread surface 6a
- FIG. 3B shows an enlarged cross-sectional view along the tire width direction on the tread portion tread surface 6a side
- FIG. 3A shows an enlarged plan view of the tread portion tread surface 6a
- FIG. 3B shows an enlarged cross-sectional view along the tire width direction on the tread portion tread surface 6a side
- FIG. 1 shows a center of curvature on the inner side in the tire radial direction from the tread tread, and has a radius of curvature of 1 ⁇ m to 70 ⁇ m.
- FIG. 3 shows the case where the protrusion 9 is a hemispherical protrusion, but in the tire of the present invention, the protrusion is a tread portion such as a truncated hemispherical one as shown in FIG. It can be of various shapes having a center of curvature on the inner side in the tire radial direction from the tread surface.
- the protruding portion 9 has a shape that protrudes outward in the tire radial direction (in the illustrated example, hemispherical), has a center of curvature on the inner side in the tire radial direction from the tread surface, and further has the protruding portion 9. Since the curvature radius is 1 ⁇ m or more, the protrusion has a highly rigid shape. Furthermore, since the radius of curvature of the protrusions is 70 ⁇ m or less, the volume of the gaps between the protrusions 9 can be ensured and water removal can be enhanced.
- the formation of the minute protrusions 9 having a predetermined shape achieves the suppression of the reduction in water removal and the improvement of the performance on ice and the performance on snow. Therefore, an excessive number of sipes are formed, There is no need to use foam rubber.
- the cause of the tire 20 is not clear, but sufficient on-ice performance and on-snow performance can be exhibited even when it is new (unused state).
- the tread portion tread may have a center of curvature on the inner side in the tire radial direction from the tread portion tread, and a protrusion having a curvature radius of less than 1 ⁇ m or more than 70 ⁇ m may be formed.
- the number of protrusions having a center of curvature on the inner side in the tire radial direction from the tread surface and having a radius of curvature of less than 1 ⁇ m or more than 70 ⁇ m is 10% or less of the total number of protrusions. If the center of curvature is located on the inner side in the tire radial direction from the tread surface, and the projection radius is less than 1 ⁇ m or more than 70 ⁇ m is 10% or less of the total projection, the effect obtained by the formation of the projection is sufficiently large. Because it can be done.
- the “number of protrusions having a radius of curvature of less than 1 ⁇ m or more than 70 ⁇ m” can be measured by photographing the tread with an electron microscope.
- the radius of curvature of the protrusion 9 is 1 ⁇ m or more and 50 ⁇ m or less. This is because if the radius of curvature of the protrusion 9 is 1 ⁇ m or more, the rigidity of the protrusion 9 can be increased and sufficient water removal can be ensured. Further, if the radius of curvature of the protrusions 9 is 50 ⁇ m or less, even if a large number of protrusions 9 are formed, a sufficient volume of voids between the protrusions 9 can be secured to improve water removal. Because it can.
- the shape of the protruding portion 9 is hemispherical. This is because if the shape of the protrusion 9 is hemispherical, the protrusion 9 is not easily crushed and water removal can be ensured.
- the height H of the protrusion 9 formed on the tread surface is preferably 1 to 50 ⁇ m. This is because if the height H of the protrusions 9 is 1 ⁇ m or more, a sufficient volume of the gaps between the protrusions 9 can be secured and water removal can be enhanced. Further, if the height H of the protrusion 9 is 50 ⁇ m or less, the rigidity of the protrusion 9 can be increased and sufficient water removal can be ensured.
- the height of the protrusion 9 is in contact with the first virtual plane orthogonal to the tire radial line extending through the tip (tire radial outer end) of the protrusion 9 and the outer contour of the protrusion 9 and It shall mean the distance along the tire radial direction between the second virtual plane closest to the first virtual plane among the virtual planes orthogonal to the tire radial direction line.
- the height of the protrusion part 9 can be measured with SEM and a microscope.
- a large number of projections formed on at least a part of the tread surface are solid foam projections having an outer diameter D of 5 to 70 ⁇ m.
- the decrease in block rigidity is further suppressed, and the tire surface and the road surface The frictional force between them can be further increased, and the on-ice performance and on-snow performance of the tire can be further improved.
- the outer diameter of the solid foam-like protrusion is within the range of 5 to 70 ⁇ m, the reduction in water removal can be further suppressed.
- the water film on the road surface is removed by utilizing the gaps between the solid foam-like projections at the time of contact with the road surface (exhibiting water removal). be able to. Moreover, the frictional force between the tread portion tread surface and the road surface can be increased, and the on-ice performance and on-snow performance of the tire can be further improved. Furthermore, since the shape of the solid foam-like protrusion is a solid foam (for example, hemispherical), it is easy to apply a force evenly to the solid foam-like protrusion, and when a large load is applied to the tire. Even if it exists, a solid foam-like projection part is hard to be crushed, and also water removal can be ensured.
- a solid foam-like projection part is hard to be crushed, and also water removal can be ensured.
- the outer diameter D of the solid foam-like protrusion is 5 ⁇ m or more, the rigidity of the solid foam-like protrusion can be ensured, and even when a large load is applied to the tire, the solid foam-like protrusion can be solid. It is difficult for the foamy protrusions to be crushed, and water removal can be ensured. Furthermore, since the outer diameter D of the solid foam-like protrusions is 70 ⁇ m or less, even when a large number of protrusions are formed, the volume of the voids between the solid foam-like protrusions is ensured, and water removal Can be increased. For the same reason, in the present invention, it is more preferable that the outer diameter D of the solid foam projection is 10 to 20 ⁇ m.
- the “outer diameter” refers to the maximum diameter of the solid foam-like protrusion in plan view, as shown in FIG.
- the “outer diameter” can be measured, for example, by photographing the tread surface with a laser microscope or an electron microscope.
- the “solid foam-like protrusion” is a protrusion made of a solid foam
- the “solid foam-like” is, for example, hemispherical, truncated, as described above. Shapes such as hemispheres are included.
- the outer diameter D of the plurality of protrusions formed on at least a part of the tread surface is 5 to 70 ⁇ m, and more than 0 times and 100 times the distance L between the protrusions.
- the following is preferable.
- the outer diameter of the protrusions is in the range of 5 to 70 ⁇ m and more than 0 times and not more than 100 times the distance between the protrusions, it is possible to suppress the reduction in water removal. That is, as described above, since the outer diameter D of the protrusion is 5 ⁇ m or more, the rigidity of the protrusion can be ensured, and even when a large load is applied to the tire, the protrusion is not easily crushed. Water removal can be ensured. Furthermore, since the outer diameter D of the projections is 70 ⁇ m or less, even when a large number of projections are formed, the volume of the gaps between the projections can be ensured and water removal can be enhanced.
- the outer diameter D of the protrusion is more than 0 times the shortest distance L between adjacent protrusions, the frictional force between the tread portion tread surface and the road surface can be sufficiently increased, and the protrusion It is possible to increase the water removal by securing the rigidity. Furthermore, since the outer diameter D of the protrusions is not more than 100 times the shortest distance L between the protrusions, the volume of the gap between the protrusions can be ensured and water removal can be enhanced. At this time, for the same reason, it is more preferable that the outer diameter of the protrusion is 10 to 20 ⁇ m.
- the outer diameter D of the protrusions is 30 to 100 times the shortest distance L between the protrusions. If the outer diameter D of the protruding portion is 30 times or more the shortest distance L, the frictional force between the tread portion tread surface and the road surface can be further increased sufficiently, and the rigidity of the protruding portion is ensured to remove water. It is because it can raise. Moreover, if the outer diameter D of the protrusion is set to be 100 times or less of the shortest distance L, as described above, the volume of the gap between the protrusions can be ensured and water removal can be enhanced.
- the “distance between the protrusions” refers to the shortest distance between the adjacent protrusions as shown in FIGS.
- the “distance between the protrusions” can be measured by, for example, photographing the tread surface with an electron microscope.
- a large number of protrusions having an outer diameter D of 70 ⁇ m or less are uniformly formed on at least a part of the tread surface.
- a large number of protrusions are uniformly formed on at least a part of the tread surface (the surface that contacts the road surface when traveling), even when viewed in any direction, while suppressing a decrease in block rigidity, The frictional force between the tire surface and the road surface can be increased, and the on-ice performance and on-snow performance of the tire can be further improved.
- the outer diameter of the protrusion is set to 70 ⁇ m or less, it is possible to suppress a decrease in water removal.
- “Uniform” means that the number density of the protrusions is the same regardless of the cross section of the tread surface. Specifically, “uniform” means that the number density of protrusions when viewed in a cross section where the number density is maximum is three times the number density of protrusions when viewed in a cross section where the number density is minimum. Indicates the following.
- the ten-point average roughness Rz of the tread surface of the tire due to the hemispherical protrusion is preferably 1.0 to 50 ⁇ m. This is because when Rz is 1.0 ⁇ m or more, a void for water removal can be secured, while when Rz is 50 ⁇ m or less, a contact area with the road surface can be secured. This is because the performance on the ice and the performance on the snow of the tire can be further improved.
- “ten-point average roughness Rz” is measured in accordance with the provisions of JIS B 0601 (1994), and the reference length is 0.8 mm and the evaluation length is 4 mm. Is.
- the average interval S between the local peaks of the protrusions 9 formed on the tread surface of the tire is preferably 5.0 to 100 ⁇ m. This is because when the distance S is 5.0 ⁇ m or more, it is possible to ensure a water removal gap, while when the distance S is 100 ⁇ m or less, it is possible to ensure a contact area with the road surface. This is because the performance on the ice and the performance on the snow of the tire can be further improved.
- “the average interval between the local peaks” is measured in accordance with JIS B 0601 (1994), and the reference length is 0.8 mm and the evaluation length is 4 mm.
- the distribution of the outer diameters of the protrusions is 50 to 60% for protrusions with an outer diameter of 5 ⁇ m or more and less than 30 ⁇ m, 15 to 20% for protrusions with an outer diameter of 30 ⁇ m to less than 50 ⁇ m, and an outer diameter of 50 ⁇ m to 70 ⁇ m.
- the following protrusions are preferably 10 to 20%. This is because the protrusions can be arranged densely, thereby increasing the ground contact area and improving the performance on the ice and the performance on the snow of the tire.
- the protrusion part with an outer diameter of less than 5 micrometers or more than 70 micrometers may be contained, it is preferable that it is 10% or less of the whole number.
- tire mentioned above can be manufactured using the following molds for tire molding, without being specifically limited.
- the tire molding using the following tire molding die can be performed according to a conventional method.
- FIG. 5 is a schematic partial perspective view showing a part of a tire molding die used for molding the tire of the present invention.
- the mold 10 has a molding surface 11 for vulcanizing and molding a tire.
- This molding surface 11 has a tread surface molding surface 11a that forms a tread portion tread surface.
- a side wall molding surface 11b that molds the outer surface of the sidewall portion, and a bead portion that molds the outer surface of the bead portion. It also has a molding surface 11c.
- molding surface 11 is not specifically limited, For example, it can form with aluminum.
- the tread portion tread surface having the above-described surface property of the tire of the present invention can be formed by the tire vulcanization mold 10 including the tread surface molding surface 11a having the surface property corresponding to the surface property.
- FIG. 6A shows an enlarged plan view of the tread forming surface 11a
- FIG. 6B shows an enlarged cross-sectional view along the width direction on the tread forming surface 11a side of the mold 10.
- the tire molding die 10 according to the present embodiment has a large number of recesses 12 on the entire tread surface molding surface 11a for molding the tread portion tread surface of the tire.
- the recess 12 has a center of curvature outside the mold 10 (inside in the radial direction of the annular mold 10), and the radius of curvature of the recess 12 is not less than 1 ⁇ m and not more than 70 ⁇ m.
- FIG. 6 shows a case where the recess 12 is a hemispherical recess, in the tire of the present invention, the recess 12 may be a truncated hemispherical recess, for example. That is, in the tire vulcanization process using this mold 10, the surface shape of the tread surface molding surface 11a of the mold 10 is transferred as the surface shape of the tread portion tread surface of the tire.
- the tread portion tread of the manufactured tire has a convex shape outward in the tire radial direction (in this embodiment, a hemispherical shape), and has a center of curvature inside the tire radial direction from the tread portion tread surface, and the radius of curvature is Many protrusions 9 having a size of 1 ⁇ m or more and 70 ⁇ m or less are formed. Therefore, a tire excellent in performance on ice and on snow can be formed.
- the mold of the present invention may have a center of curvature outside the mold and a recess having a radius of curvature of less than 1 ⁇ m or more than 70 ⁇ m. In this case, the center of curvature is outside the mold.
- the number of recesses having a curvature radius of less than 1 ⁇ m or more than 70 ⁇ m is preferably 10% or less of the total number of recesses. If the concave portion having a center of curvature outside the mold and having a radius of curvature of less than 1 ⁇ m or more than 70 ⁇ m is 10% or less of the total concave portion, a sufficient number of protrusions can be formed on the tread surface of the tire. Because. Incidentally, “the number of recesses having a radius of curvature of less than 1 ⁇ m or more than 70 ⁇ m” can be measured by photographing the tread surface with an electron microscope. Hereinafter, a method for forming the tread surface molding surface 11a of the mold 10 will be described.
- the tread surface molding surface 11a can be formed by a projection material projection process in which a projection material having a specific shape is projected and collided with the molding surface.
- the tire molding die obtained through the projecting material projecting step has the tread surface molding surface having the concave portion 12 having the center of curvature outside the die and having a curvature radius of 1 to 70 ⁇ m as described above. Since the tire tread has a large number, the tread surface of the tire vulcanized using this mold has a convex shape in the tire radial direction as described above, and the curvature is more inward in the tire radial direction than the tread surface. It has a large number of protrusions having a radius and a curvature radius of 1 to 70 ⁇ m.
- the tread surface molding surface 11a (entire surface or part) is formed by projecting and colliding a spherical projection material having a sphericity of 15 ⁇ m or less. This is because, by setting the sphericity of the projection material to 15 ⁇ m or less, it is possible to form a large number of concave portions having desired properties on the molding surface of the mold of the mold, and the tire molded using this mold This is because the tread surface can be formed into a desired surface shape.
- the sphericity of the projection material is more preferably 10 ⁇ m or less. If the sphericity of the projection material is set to 10 ⁇ m or less, it is possible to easily form a large number of concave portions having desired properties on the molding surface of the mold, so that the tread surface of the tire formed using the mold is used. This is because it is possible to form a tire having more excellent performance on ice and performance on snow by forming a large number of protrusions having a desired shape.
- the sphericity of the projection material is more preferably 5 ⁇ m or less. This is because a recess having a desired property can be more easily formed on the tread surface molding surface of the mold.
- the average particle diameter of the projection material used in the projection material projecting step is preferably 10 ⁇ m to 1 mm. Because, by setting the average particle size of the projection material to 10 ⁇ m or more, it becomes easy to obtain a mold having a desired concave shape on the tread surface molding surface, and in the projection material projection step, when projecting under high pressure, This is because the projection material can be prevented from being scattered around, and on the other hand, by setting the average particle size of the projection material to 1 mm or less, it is possible to suppress the wear of the mold surface early. .
- the average particle diameter of the projection material is more preferably 20 ⁇ m to 0.7 mm, and further preferably 30 ⁇ m to 0.5 mm.
- the “average particle size” is a photograph of the projection material taken by SEM, and 10 projection materials are taken out arbitrarily, and the average of the diameter of the inscribed circle and the diameter of the circumscribed circle in contact with each of the projection materials is calculated. The value obtained by averaging these values with the ten projectiles shall be referred to.
- the Mohs hardness of the projection material is preferably 2 to 10. This is because by setting the Mohs hardness of the projection material to 2 or more, it becomes easy to obtain a mold having a desired concave shape on the tread surface molding surface. On the other hand, by setting the Mohs hardness of the projection material to 10 or less, it is possible to reduce the early pain of the mold. For the same reason, the Mohs hardness of the projection material is more preferably 3.0 to 9.0, and further preferably 5.0 to 9.0.
- the Mohs hardness of the tire molding die is preferably 2.0 to 5.0, and the difference in Mohs hardness between the tire molding die and the projection material is 3.0 to 5.0. Preferably there is.
- the specific gravity of the projection material is preferably 0.5-20. This is because by setting the specific gravity of the projection material to 0.5 or more, it is possible to improve the workability by suppressing the scattering of the projection material in the projection process. On the other hand, by setting the specific gravity of the projection material to 20 or less, energy for accelerating the projection material can be reduced, and early wear of the mold can be suppressed. For the same reason, the specific gravity of the projection material is more preferably 0.8-18, and still more preferably 1.2-15.
- the material of the projection material is not particularly limited, but for example, it is preferable to use gyricon, iron, cast steel, ceramics, or the like.
- the projecting material projecting step it is preferable to project the projecting material onto the molding surface of the mold with high pressure air of 100 to 1000 kPa for 30 seconds to 10 minutes. Because, by projecting the projection material at 100 kPa or more for 30 seconds or more, the tread surface can be uniformly formed into the desired shape described above, while the projection material is projected at 1000 kPa or less and 10 minutes or less. This is because it is possible to suppress damage to the tread surface molding surface.
- the distance between the projection nozzle of the projection material and the tire molding die is preferably 50 to 200 (mm).
- the projection time of the above-mentioned projection material means the projection time per mold, for example, when molding a tire with nine molds, the tread of nine molds that mold one tire It is preferable to project on the molding surface for a total of 270 seconds to 90 minutes.
- the projection of the projection material onto the tread surface molding surface of one mold can be performed while shifting the position projected by the operator while considering the shape of the mold. In this way, the projection material can be projected more uniformly.
- the recess 12 has a center of curvature outside the mold and has a large number of recesses having a radius of curvature of 1 ⁇ m to 50 ⁇ m. At least a part of the tread portion tread of the formed tire has a center of curvature on the inner side in the tire radial direction from the tread portion tread, and a protrusion having a convex shape outward in the tire radial direction with a radius of curvature of 1 ⁇ m to 50 ⁇ m.
- the curvature radius of the recessed part 12 can be controlled by adjusting the particle size, projection angle, etc. of a projection material. Specifically, when the particle diameter of the projection material is increased, the radius of curvature can be increased.
- the shape of the recess 12 is hemispherical. This is because if the shape of the recess 12 is hemispherical, the hemispherical protrusion 9 can be formed on the tread surface of the tire.
- the shape of the recessed part 12 can be controlled by adjusting the particle size, the injection speed, and the projection angle of the projection material.
- the depth h of the recess 12 is preferably 1 to 50 ⁇ m. This is because if the depth h of the recess 12 is 1 to 50 ⁇ m, the protrusion 9 having a height of 1 to 50 ⁇ m can be formed on the tread surface of the tire.
- the depth h of the recess 12 can be controlled by adjusting the projection speed of the projection material. Specifically, the depth h can be increased by increasing the projection speed of the projection material.
- the depth of the concave portion 12 is in contact with the third virtual plane orthogonal to the radial line extending through the deepest portion (radially inner end) of the concave portion 12 and the outer contour line of the concave portion 12 and the radial line.
- the “radial direction” refers to a radial direction of an annular tread surface molding surface, that is, a direction corresponding to a tire radial direction of a tire molded using the mold 10.
- the depth of the recessed part 12 can be measured with SEM and a microscope.
- the mold of the present invention is a mold for molding a tire, and has a tread surface molding surface for molding a tread portion tread surface of the tire, and at least a part of the tread surface molding surface is an outer surface. It is preferable to have a large number of broken bubble-shaped recesses having a diameter of 5 to 70 ⁇ m. As described above, if a large number of bubble-breaking recesses having an outer diameter of 5 to 70 ⁇ m are formed on at least a part of the tread surface, a solid foam-like protrusion having an outer diameter of 5 to 70 ⁇ m is formed on at least a part of the tread surface.
- the “outer diameter” refers to the maximum diameter of the bubble-shaped recess in plan view.
- the “outer diameter” can be measured, for example, by photographing the tread surface of the mold with an electron microscope.
- the “defoamed recess” is a recess having a shape corresponding to the outer shape of the foam formed at the place where the foam was located when the foam broke. Point to.
- the “broken bubble-shaped recess” includes, for example, a recess such as a hemisphere or a truncated hemisphere.
- a bubble-shaped recess having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m may be formed on the tread molding surface.
- the outer diameter d is less than 5 ⁇ m or more than 70 ⁇ m.
- the number of broken bubble-shaped concave portions is 10% or less of the total number of broken bubble-shaped concave portions.
- a sufficient number of solid foam-like protrusions can be formed on the tread surface of the tire if the bubble-breaking recess having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m is 10% or less of the total bubble-breaking recess. Because.
- the outer diameter d of the bubble-shaped recess 12 is 10 to 20 ⁇ m. This is because if the outer diameter d of the bubble-breaking concave portion 12 is 10 to 20 ⁇ m, the solid foam-like projection 9 having an outer diameter D of 10 to 20 ⁇ m can be formed on the tread portion tread surface of the tire.
- the outer diameter d of the bubble-shaped concave portion 12 can be controlled by adjusting the particle size of the projection material. Specifically, when the particle diameter of the projection material is increased, the outer diameter d can be increased.
- the “number of bubble-shaped recesses having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m” can be measured by photographing the tread surface with an electron microscope.
- die 10 it is preferable that the shape of the bubble-shaped recessed part 12 is hemispherical. This is because if the shape of the bubble-breaking concave portion 12 is hemispherical, the hemispherical solid foam-like protrusion 9 can be formed on the tread surface of the tire.
- the shape of the bubble-shaped recessed part 12 is controllable by adjusting the particle size and projection angle of a projection material.
- the mold according to the present invention is a mold for molding a tire, has a tread surface molding surface for molding the tread portion tread surface of the tire, and has a plurality of recesses on at least a part of the tread surface molding surface.
- the outer diameter d of the recesses is 5 to 70 ⁇ m and more than 0 times and not more than 100 times the distance l between the recesses.
- a plurality of recesses are formed in at least a part of the tread surface, and the outer diameter d of the recesses is in the range of 5 to 70 ⁇ m and more than 0 times and less than 100 times the distance l between the recesses.
- the number of recesses having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m. is preferably 10% or less of the total number of recesses. This is because a sufficient number of protrusions can be formed on the tread surface of the tire if the recesses having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m are 10% or less of all the recesses.
- the outer diameter d is 0 times the shortest distance l between the recesses in all the recesses.
- the outer diameter d of the recess is preferably 10 to 20 ⁇ m. This is because if the outer diameter d of the recess is 10 to 20 ⁇ m, a protrusion having an outer diameter D of 10 to 20 ⁇ m can be formed on the tread surface of the tire.
- the outer diameter d of a recessed part is controllable by adjusting the particle size etc. of a projection material.
- the outer diameter d when the particle diameter of the projection material is increased, the outer diameter d can be increased.
- the outer diameter d of the recesses is preferably 30 times or more and 100 times or less of the shortest distance l between the recesses. If the outer diameter d of the recess is 30 times or more and 100 times or less of the shortest distance l, a protrusion having an outer diameter D of 30 times or more and 100 times or less of the shortest distance L between the protrusions is formed on the tread portion of the tire. Because it can be done.
- the shortest distance l between the recesses can be controlled by adjusting the particle size of the projection material. Specifically, the distance l can be reduced by increasing the particle size of the projection material.
- the number of the bubble-shaped recesses having an outer diameter d of less than 5 ⁇ m or more than 70 ⁇ m can be measured by photographing the tread surface with an electron microscope.
- the “outer diameter” refers to the maximum diameter of the concave portion in plan view as described above.
- “distance between recesses” refers to the shortest distance between recesses adjacent to each other. The “outer diameter” and “distance between the recesses” can be measured, for example, by photographing the tread surface with an electron microscope.
- the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding the tread portion tread surface of the tire, and at least a part of the tread surface molding surface has an outer diameter.
- Preferably has a large number of recesses of 70 ⁇ m or less.
- the performance on ice having a large number of protrusions having an outer diameter of 70 ⁇ m or less on at least a part of the tread surface is because a tire having excellent performance on snow can be formed.
- the tread surface molding surface of the mold preferably has a large number of recesses having an outer diameter of 20 ⁇ m or less on at least a part of the tread surface molding surface.
- a large number of protrusions having an outer diameter of 20 ⁇ m or less can be uniformly formed on at least a part of the tread surface of the formed tire, and a tire excellent in performance on ice and on snow can be formed. Because you can.
- “uniform” means that the number density of recesses is the same regardless of the cross section of the tread surface molding surface.
- “uniform” means that the number density when viewed in a section where the number density is maximum is three times or less than the number density when viewed in a section where the number density is minimum.
- the outer diameter d of the recess 12 can be controlled by adjusting the particle size of the projection material. Specifically, when the particle diameter of the projection material is increased, the outer diameter d can be increased. Further, the uniform formation of the recesses on the tread surface can be controlled by reducing the particle size of the projection material.
- the ten-point average roughness Rz of the tread surface of the mold is preferably 1.0 to 50 ⁇ m. This is because a tire having a 10-point average roughness Rz of the tread portion tread of 1.0 to 50 ⁇ m can be formed.
- the average particle diameter of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die having a tread surface molding surface having a ten-point average roughness Rz in the above range. .
- the average distance between the local peaks of the concave portions on the mold surface of the tread of the mold is preferably 5.0 to 100 ⁇ m. This is because the tire can be molded with an average distance S between the local peaks of the protrusions formed on the tread surface of the tire being 5.0 to 100 ⁇ m.
- the average particle size of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die including a tread surface molding surface having an average interval S in the above range.
- the distribution of the outer diameters of the recesses on the mold surface of the mold is 50 to 60% for the recesses with an outer diameter of 5 ⁇ m or more and less than 30 ⁇ m, 15 to 20% for the recesses with an outer diameter of 30 ⁇ m or more to less than 50 ⁇ m.
- the recesses with a diameter of 50 ⁇ m or more and 70 ⁇ m or less are preferably 10 to 20%.
- the outer diameter distribution of the protrusions is 50 to 60% for protrusions having an outer diameter of 5 ⁇ m to less than 30 ⁇ m, 15 to 20% for protrusions having an outer diameter of 30 ⁇ m to less than 50 ⁇ m, and 10 protrusions having an outer diameter of 50 ⁇ m to 70 ⁇ m. This is because it is possible to mold a tire that is 20%.
- the particle size distribution of the projection material used in the projection material projection step is 10 to 20% for the projection material of 50 ⁇ m or more and less than 200 ⁇ m, 50 to 60% for the projection material of 200 ⁇ m or more and less than 300 ⁇ m, and 300 ⁇ m or more and 400 ⁇ m on the basis of the number.
- a projection material having an average particle diameter of less than 50 ⁇ m and more than 400 ⁇ m may be included.
- a projection material (ceramic system) is projected on the tread molding surface of an aluminum tire molding mold by changing the projection conditions (projection pressure, projection speed, etc.), and the tread molding surface having the surface properties shown in Table 1 is used.
- the tire molding dies 1 to 5 were produced.
- the surface property of the tread surface molding surface of the produced mold was measured using an SEM and a microscope.
- Tires 1 to 5 having a tire size of 205 / 55R16 were produced using the produced tire molding dies 1 to 5 in accordance with a conventional method. And the surface property of the tread part tread of the produced tire was measured using SEM and a microscope. The results are shown in Table 2. Further, the performance on ice and the performance on snow of each tire produced were evaluated by the following evaluation methods. The results are shown in Table 2.
- the friction coefficient on the snow was measured on a snowy road under a condition of a speed of 30 km / h with a load per front wheel set to 4.3 kN.
- the tire friction coefficient on snow of the tire 1 was set to 100, and the friction coefficient on snow of each tire was evaluated as an index.
- Table 2 shows the results. In Table 2, the larger the numerical value, the greater the friction coefficient on snow and the better performance on snow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
例えば、特許文献1では、トレッド部に形成した各ブロックに複数のサイプを設けることにより、接地面内のエッジ成分を増大させると共に、雪噛み効果を向上させて、タイヤの氷雪路面(凍結路面や積雪路面)上での走行性能を向上させる技術が提案されている。
また、例えば、特許文献2では、キャップゴムとベースゴムとからなる、いわゆるキャップアンドベース構造のトレッドゴムを有するタイヤにおいて、キャップゴムとして発泡ゴムを用いることにより、除水性を大幅に向上させ、タイヤの氷上性能および雪上性能を向上させる技術が提案されている。
また、特許文献2に記載の、キャップゴムに発泡ゴムを用いる技術では、発泡ゴムの使用によりブロック全体の剛性が低下する場合があり、タイヤの耐摩耗性が必ずしも十分ではなかった。
更に、特許文献3に記載の、先端が尖った突起部をトレッド部の表面に設ける技術では、突起部の剛性が低いため、特に車両のノーズダイブによる前輪への荷重増大時など、タイヤに大きな荷重が負荷された際に、突起部が潰れて所望の性能が得られなくなる場合があった。即ち、先端が尖った突起部をトレッド部の表面に設ける技術では、図1(b)に示すように、路面Tとの接触により突起部2が潰れ、除水用の空隙3の体積が減少し、除水性が低下してしまう結果、所望の氷上性能および雪上性能が得られない場合があった。従って、特許文献3に記載の技術には、氷上性能および雪上性能をさらに向上させる余地があった。
更にまた、特許文献1~3に記載の技術を採用したタイヤについて発明者が検討を重ねた結果、それらの従来のタイヤには、原因は明らかでないが、特に新品時に十分な氷上性能および雪上性能が得られないという問題点があることも分かった。そのため、特許文献1~3に記載の技術には、特にタイヤ新品時の氷上性能および雪上性能を改善する余地があった。
その結果、本発明者は、トレッド部踏面に所定の微細構造を形成すれば、ブロック剛性の低下や除水性の低下を抑制してタイヤの氷上性能および雪上性能をさらに向上させ得ること、並びに、タイヤ新品時であっても十分な氷上性能および雪上性能を発揮させ得ることを見出し、本発明を完成させた。
本発明のタイヤは、トレッド部踏面の少なくとも一部に、タイヤ径方向外側に凸な形状の突起部を多数形成し、該突起部は、前記トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、前記突起部の曲率半径は、1μm以上70μm以下であることを特徴とする。
このように、トレッド部踏面(走行時に路面と接地する面)の少なくとも一部に多数の突起部を形成すれば、ブロック剛性の低下を抑制しつつ、タイヤ表面と路面との間の摩擦力を増大させて、タイヤの氷上性能および雪上性能を向上させることができる。また、突起部が、トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、突起部の曲率半径が1μm以上であることにより、突起部が剛性の高い形状となる。一方で、突起部の曲率半径を70μm以下とすることにより、除水性の低下を抑制することができる。
ここで、本発明において、「曲率半径」とは、タイヤ幅方向断面視における突起部の最大径の0.5倍をいうものとする。ただし、当該曲率半径が最大となる断面で見るものとする。そして、「曲率半径」は、例えば、突起部の断面を電子顕微鏡で撮影して測定することができる。なお、「タイヤ径方向に凸な形状」とは、例えば、半球状、裁頭半球状などの形状が含まれる。
このように、踏面成形面の少なくとも一部に、金型の外部に曲率中心を有し、曲率半径が、1μm以上70μm以下の凹部を多数形成することにより、トレッド部踏面の少なくとも一部に、トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、曲率半径が、1μm以上70μm以下の突起部を多数有する、氷上性能および雪上性能に優れるタイヤを成形することができるからである。
ここで、本発明において、「曲率半径」とは、タイヤ幅方向断面視における凹部の最大径の0.5倍をいうものとする。ただし、当該曲率半径が最大となる断面で見るものとする。そして、「曲率半径」は、例えば、凹部の断面を電子顕微鏡で撮影して測定することができる。また、本発明において、「凹部」には、例えば、半球状、裁頭半球状などの凹部が含まれる。
図2は、本発明のタイヤの一実施形態のタイヤ幅方向断面図である。
図2に示すように、本実施形態のタイヤ20は、一対のビード部4と、各ビード部4からそれぞれタイヤ径方向外方に延びる一対のサイドウォール部5と、該サイドウォール部5間に跨って延びるトレッド部6とを有している。
また、本実施形態のタイヤ20は、一対のビード部4に埋設された一対のビードコア4a間にトロイダル状に跨るカーカス7と、該カーカス7のタイヤ径方向外側に配設された2層のベルト層8a、8bからなるベルト8とを有している。更に、ベルト8のタイヤ径方向外側には、非発泡ゴムよりなるトレッドゴムが配設されている。
なお、図3では、突起部9が半球状の突起部である場合を示しているが、本発明のタイヤでは、突起部は、図7に示すような裁頭半球状のものなど、トレッド部踏面よりタイヤ径方向内側に曲率中心を有する様々な形状のものとすることができる。
即ち、このタイヤ20では、多数の突起部9を形成しているので、路面との接地時に、突起部9間の空隙を利用して路面上の水膜を除去する(除水性を発揮する)ことができる。また、トレッド部踏面と路面との間の摩擦力を増大させて、タイヤの氷上性能および雪上性能を向上させることができる。
更に、このタイヤ20では、突起部9が、タイヤ径方向外側に凸な形状(図示例では半球状)であって、トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、さらに突起部9の曲率半径が1μm以上であるため、突起部が剛性の高い形状となる。
更にまた、突起部の曲率半径が70μm以下であるので、突起部9間の空隙の体積を確保して、除水性を高めることができる。
なお、このタイヤ20では、所定の形状を有する微小突起部9の形成により除水性の低下の抑制および氷上性能および雪上性能の向上を達成しているので、過剰な数のサイプを形成したり、発泡ゴムを使用したりする必要がない。
また、このタイヤ20では、原因は明らかではないが、新品時(未使用状態)であっても十分な氷上性能および雪上性能を発揮することができる。
なお、「曲率半径が1μm未満または70μm超の突起部の個数」は、トレッド部を電子顕微鏡で撮影して測定することができる。
ここで、突起部9の高さは、突起部9の先端(タイヤ径方向外端)を通って延びるタイヤ径方向線に直交する第1仮想平面と、突起部9の外輪郭線に接し且つ前記タイヤ径方向線に直交する仮想平面のうち前記第1仮想平面に最も近い第2仮想平面との間のタイヤ径方向に沿う距離をいうものとする。
なお、突起部9の高さは、SEM、マイクロスコープにより測定することができる。
更に、中実泡状突起部の形状が中実の泡状(例えば、半球状)であるので、中実泡状突起部に力が均等に加わりやすく、タイヤに大きな荷重が負荷された際であっても、中実泡状突起部が潰れ難く、さらに除水性を確保することができる。
また、中実泡状突起部の外径Dが5μm以上であるので、中実泡状突起部の剛性を確保することができ、タイヤに大きな荷重が負荷された際であっても、中実泡状突起部が潰れ難く、除水性を確保することができる。更に、中実泡状突起部の外径Dが70μm以下であるので、多数の突起部を形成した場合であっても中実泡状突起部間の空隙の体積を確保して、除水性を高めることができる。
同様の理由により、本発明では、中実泡状突起部の外径Dが10~20μmであることがより好ましい。すなわち、中実泡状突起部の外径を10μm以上とすれば、中実泡状突起部の剛性をさらに大きくして、十分な除水性を確保することができるからである。また、中実泡状突起部の外径Dを20μm以下とすれば、多数の中実泡状突起部を形成した場合であっても、中実泡状突起部間の空隙の体積をさらに十分に確保して、除水性を高めることができるからである。
ここで、本発明において、「外径」とは、図3(a)に示すように、平面視における、中実泡状突起部の最大径を指す。そして、「外径」は、例えば、トレッド部踏面をレーザー顕微鏡や電子顕微鏡で撮影して測定することができる。また、本発明において、「中実泡状突起部」とは、中実の泡状体よりなる突起部であり、「中実泡状」には、上述の通り、例えば、半球状、裁頭半球状などの形状が含まれる。
また、突起部の外径Dが互いに隣接する突起部間の最短距離Lの0倍超であるので、トレッド部踏面と路面との間の摩擦力を十分に増大させることができると共に、突起部の剛性を確保して除水性を高めることができる。更に、突起部の外径Dが突起部間の最短距離Lの100倍以下であるので、突起部間の空隙の体積を確保して、除水性を高めることができる。
このとき、同様の理由により、突起部の外径を10~20μmとすることがさらに好ましい。
ここで、本発明のタイヤにあっては、突起部の外径Dが、突起部間の最短距離Lの30~100倍であることがさらに好ましい。突起部の外径Dを最短距離Lの30倍以上とすれば、トレッド部踏面と路面との間の摩擦力をさらに十分に増大させることができると共に、突起部の剛性を確保して除水性を高めることができるからである。また、突起部の外径Dを最短距離Lの100倍以下とすれば、上述のように、突起部間の空隙の体積を確保して、除水性を高めることができるからである。
ここで、本発明において、「突起部間の距離」とは、図3(a)(b)に示すように、互いに隣接する突起部間の最短距離を指す。そして、「突起部間の距離」は、例えば、トレッド部踏面を電子顕微鏡で撮影して測定することができる。
このように、トレッド部踏面(走行時に路面と接地する面)の少なくとも一部に多数の突起部を均一に形成すれば、あらゆる方向で見た場合においても、ブロック剛性の低下を抑制しつつ、タイヤ表面と路面との間の摩擦力を増大させて、さらにタイヤの氷上性能および雪上性能を向上させることができる。また、突起部の外径を70μm以下とすれば、除水性の低下を抑制することができる。
すなわち、多数の突起部を均一に形成することにより、あらゆる方向に対して、上述した除水性や摩擦力の向上を図ることができる。更に、突起部の外径を70μm以下とすることにより、上述したように、突起部間の空隙の体積を確保して、除水性を高めることができる。
なお、「均一」とは、トレッド部踏面をどの断面で見ても突起部の個数密度が同程度であることを指す。具体的には、「均一」とは、個数密度が最大となる断面で見た場合の突起部の個数密度が、個数密度が最小となる断面で見た場合の突起部の個数密度の3倍以下であることを指す。
なぜなら、Rzが1.0μm以上であることにより、除水用の空隙を確保することができ、一方で、Rzが50μm以下であることにより、路面との接触面積を確保することができるからであり、これらにより、タイヤの氷上性能及び雪上性能をさらに向上させることができるからである。
ここで、「十点平均粗さRz」とは、JIS B 0601(1994年)の規定に準拠して測定されるものであり、基準長さを0.8mm、評価長さを4mmとして求めたものである。
なぜなら、間隔Sが5.0μm以上であることにより、除水用の空隙を確保することができ、一方で、間隔Sが100μm以下であることにより、路面との接触面積を確保することができるからであり、これらにより、タイヤの氷上性能及び雪上性能をさらに向上させることができるからである。
ここで、「局部山頂の平均間隔」は、JIS B 0601(1994年)に準拠して計測されるものであり、基準長さを0.8mm、評価長さを4mmとして求めるものとする。
このようにすれば、突起部を密に配設することができ、これにより接地面積を増大させて、タイヤの氷上性能及び雪上性能を向上させることができるからである。
なお、外径5μm未満又は70μm超の突起部が含まれていてもよいが、全体の個数の10%以下であることが好ましい。
図5は、本発明のタイヤを成形するのに用いるタイヤ成形用金型の一部を示す概略部分斜視図である。
図5に示すように、この金型10は、タイヤを加硫成形する成形面11を有する。
この成形面11は、トレッド部踏面を形成する踏面成形面11aを有し、図示例では、サイドウォール部の外表面を成形するサイドウォール成形面11b、及びビード部の外表面を成形するビード部成形面11cも有する。
この成形面11は、特には限定しないが、例えばアルミニウムで形成することができる。
本発明のタイヤの、上述した表面性状を有するトレッド部踏面は、当該表面性状に対応した表面性状を有する踏面成形面11aを備えるタイヤ加硫金型10によって形成することができる。具体的には、図6(a)に踏面成形面11aの拡大平面図を示し、図6(b)に金型10の踏面成形面11a側の幅方向に沿う拡大断面図を示すように、本実施形態にかかるタイヤ成形用金型10は、タイヤのトレッド部踏面を成形する踏面成形面11aの全体に、凹部12を多数有している。そして、該凹部12は、金型10の外部(円環状の金型10の径方向内側)に曲率中心を有し、凹部12の曲率半径は、1μm以上70μm以下である。なお、図6では、凹部12が半球状の凹部である場合を示しているが、本発明のタイヤでは、凹部12は、例えば、裁頭半球状の凹部などであっても良い。
すなわち、この金型10を用いた、タイヤの加硫工程では、金型10の踏面成形面11aの表面形状が、タイヤのトレッド部踏面の表面形状として転写される。そして、製造されたタイヤのトレッド部踏面には、タイヤ径方向外側に凸な形状(本実施形態では半球状)で、トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、曲率半径は、1μm以上70μm以下である突起部9が多数形成される。従って、氷上性能および雪上性能に優れたタイヤを成形することができる。なお、本発明の金型では、該金型の外部に曲率中心を有し、曲率半径が1μm未満または70μm超の凹部が形成されていても良いが、その場合、金型の外部に曲率中心を有し、曲率半径が1μm未満または70μm超の凹部の個数は、凹部の全個数の10%以下であることが好ましい。金型の外部に曲率中心を有し、曲率半径が1μm未満または70μm超の凹部が全凹部の10%以下であれば、タイヤのトレッド部踏面に十分な数の突起部を形成することができるからである。
因みに、「曲率半径が1μm未満または70μm超の凹部の個数」は、踏面成形面を電子顕微鏡で撮影して測定することができる。
以下、金型10の踏面成形面11aを形成する方法について説明する。
ここで、この投射材投射工程において、上記踏面成形面11a(全面又は一部)は、真球度15μm以下の球形の投射材を投射して衝突させることにより形成することが好ましい。
なぜなら、投射材の真球度を15μm以下とすることにより、金型の踏面成形面に、所望の性状の凹部を多数形成することができるからであり、この金型を用いて成形するタイヤのトレッド部踏面を所望の表面形状とすることができるからである。
投射材の真球度を10μm以下とすれば、金型の踏面成形面に、所望の性状の凹部を容易に多数形成することができるので、その金型を用いて形成したタイヤのトレッド部踏面に所望の形状の突起部を多数形成して、氷上性能および雪上性能にさらに優れたタイヤを成形することができるからである。
また、投射材の真球度は、5μm以下であることがさらに好ましい。
これにより、金型の踏面成形面に、所望の性状の凹部をより容易に形成することができるからである。
なぜなら、投射材の平均粒径を10μm以上とすることにより、踏面成形面に所望の凹部形状を有する金型が得やすくなり、また、投射材投射工程において、高圧下での投射の際に、投射材が周囲に飛散するのを抑制することができ、一方で、投射材の平均粒径を1mm以下とすることにより、金型表面を早期に摩耗させるのを抑制することができるからである。
同様の理由により、投射材の平均粒径は、20μm~0.7mmとするのがより好ましく、30μm~0.5mmとするのがさらに好ましい。
ここで、「平均粒径」とは、SEMにより投射材の写真を撮影し、投射材を任意に10個取り出し、それぞれの投射材に接する内接円の直径と外接円の直径との平均を求め、これらを当該10個の投射材で平均した値をいうものとする。
なぜなら、投射材のモース硬度を2以上とすることにより、踏面成形面に所望の凹部形状を有する金型が得やすくなるからである。一方、投射材のモース硬度を10以下とすることにより、金型が早期に痛むのを軽減することができるからである。
同様の理由により、投射材のモース硬度は、3.0~9.0とするのがより好ましく、5.0~9.0とするのがさらに好ましい。
また、タイヤ成形用金型のモース硬度は、2.0~5.0であることが好ましく、タイヤ成形用金型と、投射材とのモース硬度の差は、3.0~5.0であることが好ましい。
なぜなら、投射材の比重を0.5以上とすることにより、投射工程における投射材の飛散を抑制して作業性を向上させることができるからである。一方、投射材の比重を20以下とすることにより、投射材を加速するためのエネルギーを低減することができ、また、金型の早期の摩耗を抑制することができるからである。
同様の理由により、投射材の比重は、0.8~18とするのがより好ましく、1.2~15とするのがさらに好ましい。
なぜなら、投射材を100kPa以上で、30秒以上投射することにより、踏面成形面を満遍なく、上記した所望の形状にすることができ、一方で、投射材を1000kPa以下で、10分以下投射することにより、踏面成形面を損傷させるのを抑制することができるからである。
なお、投射材の比重や投射圧力を調整して、投射材の投射速度を0.3~10(m/s)とするのが好ましく、0.5~7(m/s)とするのがより好ましい。
このとき、投射材の投射用のノズルと、タイヤ成形用金型との距離を、50~200(mm)とすることが好ましい。
ここで、上記投射材の投射時間とは、金型1個当たりの投射時間をいい、例えば金型9個でタイヤを成形する場合には、1個のタイヤを成形する金型9個の踏面成形面に、合計270秒間~90分間投射することが好ましい。
なお、金型1個の踏面成形面への投射材の投射は、金型の形状等を考慮しながら、作業者が投射する位置をずらしつつ行うことができる。このようにすれば、投射材をより均一に投射することができる。
ここで、凹部12の深さは、凹部12の最深部(径方向内端)を通って延びる径方向線に直交する第3仮想平面と、凹部12の外輪郭線に接し且つ前記径方向線に直交する仮想平面のうち前記第3仮想平面に最も近い第4仮想平面との間の径方向に沿う距離をいうものとする。因みに、「径方向」とは、円環状の踏面成形面の径方向、即ち、金型10を用いて成形されるタイヤのタイヤ径方向に対応する方向を指す。
なお、凹部12の深さは、SEM、マイクロスコープにより測定することができる。
ここで、「外径」とは、平面視における、破泡状凹部の最大径を指す。そして、「外径」は、例えば、金型の踏面成形面を電子顕微鏡で撮影して測定することができる。また、本発明において、「破泡状凹部」とは、泡状体が破泡した際に該泡状体が位置していた場所に形成される、泡状体の外形に対応した形状の凹部を指す。そして、「破泡状凹部」には、例えば、半球状、裁頭半球状などの凹部が含まれる。
なお、本発明の金型では、踏面成形面に、外径dが5μm未満または70μm超の破泡状凹部が形成されていても良いが、その場合、外径dが5μm未満または70μm超の破泡状凹部の個数は、破泡状凹部の全個数の10%以下であることが好ましい。外径dが5μm未満または70μm超の破泡状凹部が全破泡状凹部の10%以下であれば、タイヤのトレッド部踏面に十分な数の中実泡状突起部を形成することができるからである。
ここで、この金型10では、破泡状凹部12の外径dが10~20μmであることが好ましい。破泡状凹部12の外径dを10~20μmとすれば、タイヤのトレッド部踏面に外径Dが10~20μmの中実泡状突起部9を形成することができるからである。
なお、破泡状凹部12の外径dは、投射材の粒径を調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、外径dを大きくすることができる。
因みに、「外径dが5μm未満または70μm超の破泡状凹部の個数」は、踏面成形面を電子顕微鏡で撮影して測定することができる。
また、この金型10では、破泡状凹部12の形状が半球状であることが好ましい。破泡状凹部12の形状が半球状であれば、タイヤのトレッド部踏面に半球状の中実泡状突起部9を形成することができるからである。なお、破泡状凹部12の形状は、投射材の粒径、投射角度を調整することにより、制御することができる。
このように、踏面成形面の少なくとも一部に複数の凹部を形成し、更に、該凹部の外径dを、5~70μmの範囲内、且つ、凹部間の距離lの0倍超100倍以下とすれば、トレッド部踏面の少なくとも一部に所定の外径の突起部を多数有する、氷上性能および雪上性能に優れるタイヤを成形することができるからである。即ち、この金型を用いたタイヤの加硫工程では、金型の踏面成形面の凹部形状が、タイヤのトレッド部踏面の突起部形状として転写される。そして、製造されたタイヤのトレッド部踏面には、外径Dが、5~70μm、且つ、互いに隣接する突起部間の距離Lの0倍超100倍以下である突起部が形成される。
なお、本発明の金型では、踏面成形面に、外径dが5μm未満または70μm超の凹部が形成されていても良いが、その場合、外径dが5μm未満または70μm超の凹部の個数は、凹部の全個数の10%以下であることが好ましい。外径dが5μm未満または70μm超の凹部が全凹部の10%以下であれば、タイヤのトレッド部踏面に十分な数の突起部を形成することができるからである。因みに、本発明のタイヤでは、踏面成形面に、外径dが5μm未満または70μm超の凹部が形成されている場合、全ての凹部において、外径dが、凹部間の最短距離lの0倍超100倍以下であることが好ましい。全ての凹部において外径dを最短距離lの0倍超100倍以下とすれば、タイヤのトレッド部踏面に突起部を適切な間隔で形成することができるからである。ここで、この金型では、凹部の外径dが10~20μmであることが好ましい。凹部の外径dを10~20μmとすれば、タイヤのトレッド部踏面に外径Dが10~20μmの突起部を形成することができるからである。なお、凹部の外径dは、投射材の粒径などを調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、外径dを大きくすることができる。
更に、この金型では、凹部の外径dが、凹部間の最短距離lの30倍以上100倍以下であることが好ましい。凹部の外径dを最短距離lの30倍以上100倍以下とすれば、タイヤのトレッド部踏面に、外径Dが突起部間の最短距離Lの30倍以上100倍以下の突起部を形成することができるからである。なお、凹部間の最短距離lは投射材の粒径などを調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、距離lを小さくすることができる。
なお、「外径dが5μm未満または70μm超の破泡状凹部の個数」は、踏面成形面を電子顕微鏡で撮影して測定することができる。
ここで、本発明において、「外径」とは、上述のように、平面視における凹部の最大径を指す。また、本発明において、「凹部間の距離」とは、互いに隣接する凹部間の最短距離を指す。そして、「外径」および「凹部間の距離」は、例えば、トレッド部踏面を電子顕微鏡で撮影して測定することができる。
このように、踏面成形面の少なくとも一部に外径が70μm以下の凹部を均一に多数形成すれば、トレッド部踏面の少なくとも一部に外径が70μm以下の突起部を多数有する、氷上性能および雪上性能に優れるタイヤを成形することができるからである。
ここで、金型の踏面成形面は、踏面成形面の少なくとも一部に、外径が20μm以下の凹部を多数有することが好ましい。このようにすれば、形成したタイヤのトレッド部踏面の少なくとも一部に、外径が20μm以下の突起部を均一に多数成形することができ、氷上性能および雪上性能に優れたタイヤを成形することができるからである。
ここで、本発明において、「均一」とは、踏面成形面をどの断面で見ても凹部の個数密度が同程度であることを指す。具体的には、「均一」とは、個数密度が最大となる断面で見た場合の個数密度が、個数密度が最小となる断面で見た場合の個数密度の3倍以下であることをいうものとする。
凹部12の外径dは、投射材の粒径を調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、外径dを大きくすることができる。
また、踏面成形面に凹部を均一に形成するのは、投射材の粒径を小さくすることにより、制御することができる。
なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の十点平均粗さRzを有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の平均間隔Sを有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
突起部の外径の分布が、外径5μm以上30μm未満の突起部が50~60%、外径30μm以上50μm未満の突起部が15~20%、外径50μm以上70μm以下の突起部が10~20%となるようなタイヤを成形することができるからである。
なお、投射材投射工程において用いる投射材の粒径の分布を、個数基準で、50μm以上200μm未満の投射材を10~20%、200μm以上300μm未満の投射材を50~60%、300μm以上400μm以下の投射材を10~20%とすることにより、上記の範囲の外径分布の凹部を有する踏面成形面を備えるタイヤ成形用金型を得ることができる。なお、平均粒径が、50μm未満、400μm超の投射材を含んでいても良い。
アルミニウム製のタイヤ成形用金型の踏面成形面に対し、投射条件(投射圧力、投射速度など)を変更して投射材(セラミック系)を投射し、表1に示す表面性状の踏面成形面を有するタイヤ成形用金型1~5を製造した。なお、作製した金型の踏面成形面の表面性状は、SEMおよびマイクロスコープを用いて測定した。
作製したタイヤ成形用金型1~5をそれぞれ用いて、常法に従いタイヤサイズ205/55R16のタイヤ1~5をそれぞれ製造した。そして、作製したタイヤのトレッド部踏面の表面性状をSEMおよびマイクロスコープを用いて測定した。結果を表2に示す。
また、作製した各タイヤの氷上性能および雪上性能を下記の評価方法で評価した。結果を表2に示す。
作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、凍結路において、速度30km/hの条件下で氷上摩擦係数を測定した。タイヤ1の氷上摩擦係数を100として各タイヤの氷上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど氷上摩擦係数が大きく、氷上性能が優れていることを示す。
<雪上性能>
作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、積雪路において、速度30km/hの条件下で雪上摩擦係数を測定した。タイヤ1の雪上摩擦係数を100として各タイヤの雪上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど雪上摩擦係数が大きく、雪上性能が優れていることを示す。
2 突起部
3 空隙
4 ビード部
4a ビードコア
5 サイドウォール部
6 トレッド部
7 カーカス
8 ベルト
8a、8b ベルト層
9 突起部
10 金型
11 成形面
11a 踏面成形面
11b サイドウォール部成形面
11c ビード部成形面
12 凹部
20 タイヤ
T 路面
Claims (2)
- トレッド部踏面の少なくとも一部に、タイヤ径方向外側に凸な形状の突起部を多数形成し、該突起部は、前記トレッド部踏面よりタイヤ径方向内側に曲率中心を有し、前記突起部の曲率半径は、1μm以上70μm以下であることを特徴とする、タイヤ。
- タイヤ成形用の金型であって、
タイヤのトレッド部踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、凹部を多数形成し、該凹部は、前記金型の外部に曲率中心を有し、前記凹部の曲率半径が1μm以上70μm以下であることを特徴とする、タイヤ成形用金型。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/364,089 US20140305562A1 (en) | 2011-12-28 | 2012-12-28 | Tire and mold for molding tire |
RU2014131024/11A RU2582329C2 (ru) | 2011-12-28 | 2012-12-28 | Шина и форма для формирования шины |
EP12862713.0A EP2805834B1 (en) | 2011-12-28 | 2012-12-28 | Tire and tire molding cast |
CN201280065119.6A CN104010833B (zh) | 2011-12-28 | 2012-12-28 | 轮胎和轮胎成型用模具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011287678A JP5986374B2 (ja) | 2011-12-28 | 2011-12-28 | タイヤおよびタイヤ成形用金型 |
JP2011-287678 | 2011-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100199A1 true WO2013100199A1 (ja) | 2013-07-04 |
Family
ID=48697659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/084306 WO2013100199A1 (ja) | 2011-12-28 | 2012-12-28 | タイヤおよびタイヤ成形用金型 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140305562A1 (ja) |
EP (1) | EP2805834B1 (ja) |
JP (1) | JP5986374B2 (ja) |
CN (1) | CN104010833B (ja) |
RU (1) | RU2582329C2 (ja) |
WO (1) | WO2013100199A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015135928A1 (fr) * | 2014-03-10 | 2015-09-17 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant une texture a fort contraste dans une rainure |
US10308076B2 (en) * | 2014-03-10 | 2019-06-04 | Compagnie Generale Des Etablissements Michelin | Tire including a high-contrast texture on the tread surface |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5851273B2 (ja) * | 2012-02-17 | 2016-02-03 | 株式会社ブリヂストン | 空気入りタイヤ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02147411A (ja) * | 1988-11-30 | 1990-06-06 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ及びその加硫金型 |
JPH05318621A (ja) * | 1992-05-20 | 1993-12-03 | Bridgestone Corp | 優れた氷上摩擦性能を有するゴム製品 |
JPH11301217A (ja) | 1998-04-24 | 1999-11-02 | Bridgestone Corp | 空気入りタイヤ |
JP2002192914A (ja) | 2000-12-25 | 2002-07-10 | Yokohama Rubber Co Ltd:The | 氷雪路用空気入りタイヤ |
JP2004189195A (ja) * | 2002-12-13 | 2004-07-08 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2009067378A (ja) | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1896574A (en) * | 1933-02-07 | A nonskid tire for vehicle wheels | ||
JP2779765B2 (ja) * | 1994-03-18 | 1998-07-23 | 有限会社新津 | 空気入りタイヤとそれを製造する加硫成型用金型 |
JP3002298U (ja) * | 1994-03-23 | 1994-09-20 | 東洋ゴム工業株式会社 | トレッド表面に凹凸を有する空気入りタイヤ |
HUP0003214A3 (en) * | 1996-12-19 | 2001-03-28 | Michelin Soc Tech | Sacrificial ribs for improved tire wear |
JP3352064B2 (ja) * | 1999-11-05 | 2002-12-03 | 住友ゴム工業株式会社 | スタッドレスタイヤ |
IT1314248B1 (it) * | 1999-12-01 | 2002-12-06 | Pirelli | Pneumatico per ruote di veicoli. |
JP2002248911A (ja) * | 2001-02-23 | 2002-09-03 | Ohtsu Tire & Rubber Co Ltd :The | 空気入りタイヤ |
FR2892336B1 (fr) * | 2005-10-21 | 2009-10-09 | Michelin Soc Tech | Marquage offrant une meilleure visibilite et procede de marquage. |
EP2554401B1 (en) * | 2010-03-26 | 2019-03-06 | Bridgestone Corporation | Tire, and method for producing die for tire vulcanization |
JP5461310B2 (ja) * | 2010-06-02 | 2014-04-02 | 東洋ゴム工業株式会社 | タイヤモールド、空気入りタイヤの製造方法及び空気入りタイヤ |
JP5606824B2 (ja) * | 2010-08-18 | 2014-10-15 | 株式会社不二製作所 | 金型の表面処理方法及び前記方法で表面処理された金型 |
-
2011
- 2011-12-28 JP JP2011287678A patent/JP5986374B2/ja not_active Expired - Fee Related
-
2012
- 2012-12-28 US US14/364,089 patent/US20140305562A1/en not_active Abandoned
- 2012-12-28 CN CN201280065119.6A patent/CN104010833B/zh not_active Expired - Fee Related
- 2012-12-28 EP EP12862713.0A patent/EP2805834B1/en not_active Not-in-force
- 2012-12-28 WO PCT/JP2012/084306 patent/WO2013100199A1/ja active Application Filing
- 2012-12-28 RU RU2014131024/11A patent/RU2582329C2/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02147411A (ja) * | 1988-11-30 | 1990-06-06 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ及びその加硫金型 |
JPH05318621A (ja) * | 1992-05-20 | 1993-12-03 | Bridgestone Corp | 優れた氷上摩擦性能を有するゴム製品 |
JPH11301217A (ja) | 1998-04-24 | 1999-11-02 | Bridgestone Corp | 空気入りタイヤ |
JP2002192914A (ja) | 2000-12-25 | 2002-07-10 | Yokohama Rubber Co Ltd:The | 氷雪路用空気入りタイヤ |
JP2004189195A (ja) * | 2002-12-13 | 2004-07-08 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2009067378A (ja) | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015135928A1 (fr) * | 2014-03-10 | 2015-09-17 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant une texture a fort contraste dans une rainure |
US10272726B2 (en) | 2014-03-10 | 2019-04-30 | Compagnie Generale Des Etablissements Michelin | Tire including a high-contrast texture in a groove |
US10308076B2 (en) * | 2014-03-10 | 2019-06-04 | Compagnie Generale Des Etablissements Michelin | Tire including a high-contrast texture on the tread surface |
Also Published As
Publication number | Publication date |
---|---|
JP5986374B2 (ja) | 2016-09-06 |
RU2014131024A (ru) | 2016-02-20 |
JP2013136281A (ja) | 2013-07-11 |
US20140305562A1 (en) | 2014-10-16 |
CN104010833B (zh) | 2017-02-15 |
EP2805834A4 (en) | 2015-08-26 |
EP2805834B1 (en) | 2018-04-04 |
EP2805834A1 (en) | 2014-11-26 |
RU2582329C2 (ru) | 2016-04-20 |
CN104010833A (zh) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6088137B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6348248B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5314122B2 (ja) | タイヤ成形用金型、タイヤ、及びタイヤの製造方法 | |
JP5986374B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136279A (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986377B2 (ja) | タイヤおよびタイヤ成形用金型 | |
WO2013100198A1 (ja) | タイヤ及びタイヤ成形用金型 | |
JP2013139180A (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986376B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6423573B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6018750B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5977519B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136346A (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986375B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6042611B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136334A (ja) | タイヤおよびタイヤ成形用金型 | |
WO2013100206A1 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136336A (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136340A (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136355A (ja) | タイヤおよびタイヤ成形用金型 | |
JP6042612B2 (ja) | タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862713 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14364089 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862713 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014131024 Country of ref document: RU Kind code of ref document: A |