WO2013100198A1 - タイヤ及びタイヤ成形用金型 - Google Patents

タイヤ及びタイヤ成形用金型 Download PDF

Info

Publication number
WO2013100198A1
WO2013100198A1 PCT/JP2012/084305 JP2012084305W WO2013100198A1 WO 2013100198 A1 WO2013100198 A1 WO 2013100198A1 JP 2012084305 W JP2012084305 W JP 2012084305W WO 2013100198 A1 WO2013100198 A1 WO 2013100198A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
tread surface
performance
width
Prior art date
Application number
PCT/JP2012/084305
Other languages
English (en)
French (fr)
Inventor
亮一 渡部
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US14/369,449 priority Critical patent/US20140360638A1/en
Priority to RU2014131090/11A priority patent/RU2576314C2/ru
Priority to EP12863293.2A priority patent/EP2799253B1/en
Priority to CN201280064865.3A priority patent/CN104039565B/zh
Publication of WO2013100198A1 publication Critical patent/WO2013100198A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0053Moulding articles characterised by the shape of the surface, e.g. ribs, high polish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0616Surface structure of the mould, e.g. roughness, arrangement of slits, grooves or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/66Moulding treads on to tyre casings, e.g. non-skid treads with spikes
    • B29D2030/667Treads with antiskid properties, e.g. having special patterns or special rubber compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0074Roughness, e.g. anti-slip patterned, grained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Definitions

  • the present invention relates to a tire and a tire molding die, and more particularly, to a tire excellent in performance on ice and snow and a tire molding die used for manufacturing the tire.
  • Patent Document 1 by providing a plurality of sipes in each block formed in the tread portion, the edge component in the ground contact surface is increased and the snow biting effect is improved, so that the snow / ice road surface (frozen road surface or Techniques for improving running performance on snowy road surfaces have been proposed.
  • Patent Document 2 in a tire having a tread rubber having a so-called cap-and-base structure composed of a cap rubber and a base rubber, the water removal performance is greatly improved by using foamed rubber as the cap rubber. Technologies for improving the performance on ice and the performance on snow have been proposed.
  • Patent Document 3 regarding the surface properties of the tread portion 1 of the tire, the surface roughness is obtained by providing a protruding portion 2 having a sharp tip on the surface of the tread portion.
  • the frictional force between the tire surface and the road surface is increased to improve the on-ice performance and on-snow performance of the tire.
  • the projection When a load is applied, the projection may be crushed and desired performance may not be obtained. That is, in the technique of providing a protrusion with a sharp tip on the surface of the tread, as shown in FIG. 1B, the protrusion 2 is crushed by contact with the road surface T, and the volume of the water removal gap 3 is reduced. However, as a result of the reduction in water removal, desired performance on ice and performance on snow may not be obtained. Therefore, the technique described in Patent Document 3 has room for further improvement in performance on ice and performance on snow.
  • Patent Documents 1 to 3 Furthermore, as a result of the inventor's repeated investigations on tires employing the techniques described in Patent Documents 1 to 3, the cause of these conventional tires is not clear, but sufficient on-ice performance and on snow It was also found that there was a problem that performance could not be obtained. Therefore, the techniques described in Patent Documents 1 to 3 have room for improving the performance on ice and the performance on snow especially when a tire is new.
  • the present invention is intended to solve the above-described problems, and an object of the present invention is to provide a tire with improved performance on ice and performance on snow and a mold for molding a tire used for manufacturing (molding) the tire.
  • the inventor has intensively studied to solve the above problems.
  • the present inventor can further improve the on-ice performance and on-snow performance of the tire by suppressing a decrease in block rigidity and a decrease in water removal, if a predetermined microstructure is formed on the surface of the tread portion, and
  • the inventors have found that sufficient performance on ice and performance on snow can be exhibited even when a tire is new, and the present invention has been completed.
  • the tire according to the present invention is characterized in that, for a tire having a large number of protrusions defined by recesses extending in a mesh pattern on at least a part of the tread surface of the tread, the width of the recesses is 50 ⁇ m or less.
  • the on-ice performance and on-snow performance of the tire are improved while improving water removal. be able to.
  • the width of the concave portion is 50 ⁇ m or less, it is possible to sufficiently increase the frictional force between the tread surface and the road surface by securing the rigidity of the protruding portion while enhancing water removal.
  • the “recess width” refers to the shortest distance of the recesses between adjacent protrusions when the tread surface is viewed from the outside in the tire radial direction (hereinafter referred to as “recess width”. Also referred to as “distance between”.)
  • the “width of the recess” can be measured, for example, by photographing the tread surface of the tread with an electron microscope.
  • the “tread surface” refers to the contact surface with the flat plate when the tire is mounted on the applicable rim, set to the specified air pressure, placed in a stationary state perpendicular to the flat plate, and a load corresponding to the predetermined load is applied. Point to.
  • “applied rim” is an industrial standard effective in the area where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) YEAR BOOK, in Europe, ETRTO (European Tire and Rim Technical Organization).
  • predetermined load refers to the maximum tire load of the standard such as JATMA
  • predetermined air pressure refers to an air pressure (maximum air pressure) corresponding to a predetermined load in a tire of an applicable size.
  • the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding the tread surface of the tire, and at least part of the tread surface molding surface has a mesh shape.
  • a large number of recesses defined by protrusions extending in the direction are formed, and the width of the protrusions is 50 ⁇ m or less.
  • the width of the protrusions is 50 ⁇ m or less.
  • a tire having a predetermined width and a recess extending like a mesh can be molded with excellent performance on ice and performance on snow.
  • the “projection width” refers to the shortest distance between the projections adjacent to each other when the tread surface is viewed from the outside in the tire radial direction (hereinafter referred to as “projection width” Also referred to as “distance between recesses”).
  • the “width of the protruding portion” can be measured, for example, by photographing the tread surface molding surface with an electron microscope.
  • FIG. 1 is a schematic cross-sectional view schematically showing a tread surface of a conventional tire
  • (b) is a schematic cross-section schematically showing a state where the tread surface of the tire and a road surface come into contact with each other when a tire is loaded.
  • FIG. It is a tire width direction sectional view of the tire concerning one embodiment of the present invention. It is a figure which expands and shows typically the shape of a part of tread of the tread of the tire shown in FIG. 2, (a) is a top view, (b) is a tire width direction sectional drawing. It is a SEM image (scanning electron microscope image) of the tread surface of the tire shown in FIG.
  • FIG. 1 is a schematic perspective view schematically showing a part of a tire molding die according to an embodiment of the present invention. It is a figure which expands and shows typically the shape of a part of tread surface formation surface of the metal mold
  • the tire according to the present invention is characterized in that a predetermined fine structure is formed on at least a part of a tread surface (a surface that contacts the road surface), and a surface property (tread surface property) of the tread portion is a predetermined property.
  • the tire molding die according to the present invention is used for manufacturing the tire according to the present invention, and a predetermined inner surface of the mold, specifically, at least a part of a tread surface for molding a tread surface of a tire tread, is formed on a predetermined surface. It is characterized in that a microstructure is formed and the surface texture of the tread surface is made predetermined.
  • FIG. 2 is a cross-sectional view in the tire width direction of a tire according to an embodiment of the present invention.
  • the tire 20 according to the embodiment includes a pair of bead portions 4, a pair of sidewall portions 5 that extend outward in the tire radial direction from each bead portion 4, and the sidewall portions 5. And a tread portion 6 extending across.
  • the tire 20 includes a carcass 7 straddling a pair of bead cores 4a embedded in a pair of bead portions 4 in a toroidal shape, and two belt layers 8a and 8b disposed outside the carcass 7 in the tire radial direction.
  • a belt 8 made of Further, a tread rubber made of non-foamed rubber is disposed outside the belt 8 in the tire radial direction.
  • FIG. 3A shows an enlarged plan view of the surface 6a of the tread portion 6
  • FIG. 3B shows an enlarged sectional view along the tire width direction on the surface 6a side of the tread portion 6.
  • the tire according to the present embodiment has a microprojection portion (divided by a recess 30 extending like a mesh on the entire surface 6 a of the tread portion 6 ( (Convex part) 9.
  • FIG. 3A shows an enlarged plan view of the surface 6a of the tread portion 6
  • FIG. 3B shows an enlarged sectional view along the tire width direction on the surface 6a side of the tread portion 6.
  • the protrusion 9 is a hemispherical protrusion, but in the tire of the present invention, the protrusion is a truncated cone or truncated pyramid, as shown in FIG.
  • this tire 20 has many projection parts (convex part) 9 divided by the recessed part 30 extended in the shape of a mesh
  • the concave portion 30 extending in a mesh shape is formed on at least a part of the tread surface, the water film on the road surface is removed using the voids of the concave portion when contacting the road surface (exclusion). Water).
  • a large number of protrusions 9 are formed, the frictional force between the tread surface and the road surface can be increased, and the on-ice performance and on-snow performance of the tire can be improved.
  • the width L of the recess 30 is 50 ⁇ m or less, the width L of the recess 30, that is, the distance between adjacent protrusions does not become too large. Therefore, it is possible to sufficiently increase the frictional force between the tread surface and the road surface while ensuring the water removal and securing the rigidity of the protrusion.
  • the width of the recess 30 is preferably 5 ⁇ m or more. As described above, when the width L of the recess 30 is set to 5 ⁇ m or more, the void of the recess 30 can be secured and water removal can be secured.
  • the outer diameter D of the projection (projection) 9 defined by the recess extending in a mesh shape is 5 ⁇ m to 70 ⁇ m. If the outer diameter D of the protruding portion 9 is 5 ⁇ m or more, the rigidity of the protruding portion can be ensured, and even when a large load is applied to the tire, the protruding portion is hardly crushed and water removal is ensured. be able to. Moreover, if the outer diameter D of the projection part 9 shall be 70 micrometers or less, the volume of the space
  • the “width of the concave portion” refers to the shortest distance L of the concave portion 30 between the adjacent protruding portions 9 in a plan view of the tread surface.
  • the “outer diameter of the protruding portion” refers to the maximum diameter D of the protruding portion 9 in a plan view of the tread surface as shown in FIG.
  • the “recess width” and “projection outer diameter” can be measured, for example, by photographing the tread surface with an electron microscope.
  • the protrusions 9 are formed at a number density of 80 to 320 pieces / mm 2 on at least a part of the tread surface. Thereby, the on-ice performance and on-snow performance of the tire can be sufficiently improved while suppressing a decrease in block rigidity and a decrease in water removal performance.
  • the protrusions 9 are formed with a number density of 80 / mm 2 or more, when the tread comes into contact with the road surface, the water film on the road surface is removed using the gap between the protrusions 9. (Exhibit water removal).
  • the on-ice performance and on-snow performance of the tire can be improved by increasing the frictional force between the tread surface and the road surface.
  • the number density of the protrusions 9 is 320 pieces / mm 2 or less, the rigidity of the protrusions 9 can be secured, and even when a large load is applied to the tire, The protrusion 9 is not easily crushed, and water removal can be ensured. In addition to this, even when a large number of protrusions 9 are formed, the volume of the gaps between the protrusions 9 can be ensured to enhance water removal.
  • the cause is not clear, but sufficient on-ice performance and on-snow performance can be exhibited even when new (unused). Therefore, according to the tire 20, it is possible to further improve the on-ice performance and the on-snow performance of the tire even when it is new, by suppressing a decrease in block rigidity and a decrease in water removal.
  • the protrusions are formed with a number density of 80 to 320 pieces / mm 2 over a range of 90% or more of the tread surface. If the protrusions are formed at a predetermined number density over a range of 90% or more of the tread surface, the effect obtained by forming the protrusions can be sufficiently increased.
  • the protrusions 9 are preferably formed with a number density of 150 to 250 pieces / mm 2 . If the number density of the protrusions 9 is 150 pieces / mm 2 or more, the frictional force between the tread surface and the road surface can be sufficiently increased, and the on-ice performance and on-snow performance of the tire can be improved. Moreover, if the number density of the protrusions 9 is 250 pieces / mm 2 or less, the rigidity of the protrusions 9 and the volume of the gaps between the protrusions 9 can be sufficiently secured, and the water removal can be enhanced.
  • the shape of the protruding portion 9 is hemispherical. If the shape of the protrusion 9 is hemispherical, the protrusion 9 is not easily crushed, and water removal can be ensured.
  • the height H of the protrusion 9 formed on the tread surface is preferably 1 to 50 ⁇ m. If the height H of the protrusions 9 is 1 ⁇ m or more, the volume of the gaps between the protrusions 9 can be sufficiently secured, and water removal can be enhanced. Moreover, if the height H of the protrusion 9 is 50 ⁇ m or less, the rigidity of the protrusion 9 can be increased and sufficient water removal can be ensured.
  • the height of the protrusion 9 is in contact with the first virtual plane orthogonal to the tire radial line extending through the tip (tire radial outer end) of the protrusion 9 and the outer contour of the protrusion 9 and The distance along the tire radial direction between the second virtual plane closest to the first virtual plane among the virtual planes orthogonal to the tire radial direction line.
  • the height of the protrusion part 9 can be measured with SEM and a microscope.
  • the tire 20 is formed with protrusions having a volume of 4 ⁇ 10 5 ⁇ m 3 or more on at least a part of the tread surface of the tread with a number density of 80 pieces / mm 2 or more, and the maximum width of each protrusion is set.
  • the first width x ( ⁇ m) the maximum width of the protrusion in the direction orthogonal to the direction in which the first width is measured is the second width y ( ⁇ m), and the height is z ( ⁇ m). It is preferable that x ⁇ 200 ⁇ m, y ⁇ 200 ⁇ m, and z ⁇ 50 ⁇ m be satisfied. However, x and y are assumed to be perpendicular to z (see FIGS. 8A and 8B).
  • the tread surface has a volume of 4 ⁇ 10 5 ⁇ m 3 or more, and the maximum width at each protrusion is the first width x ( ⁇ m), and the first width is measured.
  • the tread surface is formed with a number density of 80 pieces / mm 2 or more, a space for water removal can be secured between the protrusions, and the protrusions are relatively even on the road surface. And the ground contact area of the protrusion can be ensured.
  • the tread tread has a protrusion having a volume of less than 4 ⁇ 10 5 ⁇ m 3 or a protrusion that does not satisfy x ⁇ 200 ⁇ m, y ⁇ 200 ⁇ m, and z ⁇ 50 ⁇ m.
  • the number of protrusions that do not satisfy the above condition is preferably 10% or less of the total number of protrusions. If such protrusions are 10% or less, can the above-described effects be sufficiently exhibited?
  • the portion where the protrusion 9 is formed has a volume of 4 ⁇ 10 5 ⁇ m 3 or more, and satisfies x ⁇ 200 ⁇ m, y ⁇ 200 ⁇ m, and z ⁇ 50 ⁇ m for the same reason.
  • the number density of the protrusions is preferably 150 pieces / mm 2 or more, and more preferably 150 pieces / mm 2 or more and less than 250 pieces / mm 2 .
  • the volume of the protrusion is preferably 5 ⁇ 10 5 ⁇ m 3 or more.
  • the “volume of the protrusion” and the “width x, y and height z of the protrusion” can be measured by, for example, enlarging the tread surface with an electron microscope.
  • the ten-point average roughness Rz of the tread surface of the tire formed with a hemispherical protrusion is preferably 1.0 to 50 ⁇ m.
  • Rz is preferably 1.0 to 50 ⁇ m.
  • the “ten-point average roughness Rz” is measured in accordance with the provisions of JIS B0601 (1994), and is obtained with a reference length of 0.8 mm and an evaluation length of 4 mm. .
  • the average distance S between the local peaks of the protrusions formed on the tread surface of the tire is preferably 5.0 to 100 ⁇ m.
  • the “average distance between local peaks” is measured in accordance with JIS B0601 (1994), and the reference length is 0.8 mm and the evaluation length is 4 mm.
  • tire mentioned above can be manufactured using the following molds for tire molding, without being specifically limited.
  • the tire molding using the following tire molding die can be performed according to a conventional method.
  • FIG. 5 is a schematic partial perspective view showing a part of a tire molding die used for molding the tire of the present invention.
  • the mold 10 has a molding surface 11 for vulcanizing and molding a tire.
  • the molding surface 11 includes a tread surface molding surface 11a that forms a tread surface.
  • a side wall molding surface 11b that molds the outer surface of the sidewall portion, and a bead portion that molds the outer surface of the bead portion. It also has a molding surface 11c.
  • molding surface 11 is not specifically limited, For example, it can form with aluminum.
  • the tread surface of the tire of the present invention having the above-described surface property can be formed by the tire molding die 10 including the tread surface molding surface 11a having the surface property corresponding to the surface property.
  • FIG. 6A shows an enlarged plan view of the tread forming surface 11a
  • FIG. 6B shows an enlarged cross-sectional view along the width direction on the tread forming surface 11a side of the mold 10.
  • the tire molding die 10 according to the present embodiment has a large number of recesses 12 defined by projections 40 extending in a mesh pattern on the entire tread surface molding surface 11a of the die 10.
  • FIG. 6 shows the case where the concave portion 12 is a hemispherical concave portion.
  • the concave portion 12 has a truncated hemispherical shape, a truncated cone shape, a truncated pyramid shape, and a cylindrical shape. Alternatively, it may be a prismatic recess.
  • the hemispherical concave shape of the tread surface molding surface 11a of the mold 10 is transferred as the protrusion shape of the tread surface of the tire tread.
  • minute recesses 12 defined by protrusions (projections) 40 extending in a mesh pattern, and the width of the protrusions is 50 ⁇ m or less.
  • the tread surface of the tread A tire having a predetermined width (50 ⁇ m or less) and having a mesh-like recess extending at least in part and having excellent performance on ice and performance on snow can be formed.
  • the “width of the protruding portion” refers to the shortest distance between the protruding portions between adjacent concave portions in a plan view of the tread surface molding surface.
  • the “outer diameter of the recessed portion” refers to the maximum diameter of the recessed portion in a plan view of the tread surface molding surface. The “width of the protrusion” and “the outer diameter of the recess” can be measured by, for example, photographing the tread surface with a scanning electron microscope.
  • the width l of the protrusion 40 on the tread surface molding surface is preferably 5 ⁇ m or more. If the width l of the protrusion 40 on the tread surface is set to 5 ⁇ m or more, it is possible to secure the water removal by securing the gap in the recess on the tread surface of the manufactured tire tread.
  • the outer diameter d of the recess 12 is preferably 5 ⁇ m to 70 ⁇ m.
  • the volume of the gap between the protrusions 9 can be ensured while ensuring the rigidity of the protrusions 9 on the tread surface of the tire tread, thereby improving water removal.
  • the width of the protrusion on the mold surface of the mold can be controlled by adjusting the particle size of the projection material. Specifically, when the particle size of the projection material is increased, the width of the protrusion can be reduced. Further, the outer diameter of the recess can be controlled by adjusting the particle size of the projection material. Specifically, when the particle diameter of the projection material is increased, the outer diameter of the recess can be increased.
  • the tread surface molding surface 11a can be formed by a projection material projection process in which a projection material having a specific shape is projected and collided with the molding surface.
  • the tire molding die obtained through the projecting material projecting step has a large number of recesses 12 in which at least a part of the tread surface molding surface is defined by the projections 40 extending like a mesh as described above. Therefore, the tread surface of a tire vulcanized and molded using this mold is at least one of the tread surfaces as described above.
  • This section has a large number of protrusions (convex portions) 9 defined by the concave portions 30 extending in a mesh shape, and a large number of concave portions 30 having a width l of 50 ⁇ m or less.
  • the tread surface molding surface 11a (entire surface or part) is preferably formed by projecting and colliding a spherical projecting material having a sphericity of 15 ⁇ m or less. This is because, by setting the sphericity of the projection material to 15 ⁇ m or less, it is possible to form a large number of recesses having a desired property on the tread surface molding surface of the mold, and the tire tread molded using this mold The tread surface can have a desired surface shape.
  • the sphericity of the projection material is more preferably 10 ⁇ m or less. If the sphericity of the projection material is 10 ⁇ m or less, a large number of concave portions having desired properties can be easily formed on the molding surface of the mold, so that the tread of the tire tread formed using the mold is used. By forming a large number of protrusions having a desired shape, it is possible to form a tire that is further excellent in performance on ice and on snow. Further, the sphericity of the projection material is more preferably 5 ⁇ m or less. When the sphericity of the projection material is 5 ⁇ m or less, a concave portion having a desired property can be more easily formed on the molding surface of the mold.
  • the average particle size of the projection material used in the projection material projection step is preferably 10 ⁇ m to 1 mm.
  • the average particle size of the projection material 10 ⁇ m or more it becomes easier to obtain a mold having a desired concave shape on the tread surface molding surface, and in the projection material projection process, the projection is performed at the time of projection under high pressure. It is possible to suppress the material from being scattered around.
  • the average particle size of the projection material is more preferably 20 ⁇ m to 0.7 mm, and further preferably 30 ⁇ m to 0.5 mm.
  • the “average particle size” means that a photograph of the projection material is taken by SEM, 10 projection materials are taken out arbitrarily, and the average of the diameter of the inscribed circle and the diameter of the circumscribed circle in contact with each of the projection materials is obtained. , And the average of these 10 projection materials.
  • the Mohs hardness of the projection material is preferably 2 to 10.
  • the Mohs hardness of the projection material is more preferably 3.0 to 9.0, and still more preferably 5.0 to 9.0.
  • the Mohs hardness of the tread surface forming surface of the tire molding die is preferably 2.0 to 5.0, and the difference in Mohs hardness between the tread surface forming surface of the tire molding die and the projection material Is preferably 3.0 to 5.0.
  • the specific gravity of the projection material is preferably 0.5-20. This is because, by setting the specific gravity of the projection material to 0.5 or more, it is possible to improve the workability by suppressing the scattering of the projection material in the projection process. On the other hand, by setting the specific gravity of the projection material to 20 or less, energy for accelerating the projection material can be reduced, and early wear of the mold can be suppressed. For the same reason, the specific gravity of the projection material is more preferably 0.8-18, and still more preferably 1.2-15.
  • the material of the projection material is not particularly limited, but for example, it is preferable to use gyricon, iron, cast steel, ceramics, or the like.
  • the projecting material projecting step it is preferable to project the projecting material onto the molding surface of the mold with the high-pressure air of 100 to 1000 kPa for 30 seconds to 10 minutes.
  • the tread surface molding surface can be uniformly formed into the desired shape as described above, while by projecting the projection material at 1000 kPa or less and 10 minutes or less, Damage to the tread surface molding surface can be suppressed.
  • the distance between the projection nozzle of the projection material and the tire molding die is preferably 50 to 200 (mm).
  • the projection time of the said projection material means the projection time per metal mold
  • the projection of the projection material onto the molding surface of one mold can be performed while shifting the position projected by the operator while considering the shape of the mold. In this way, the projection material can be projected more uniformly.
  • the shape of the recess 12 is hemispherical. This is because if the shape of the recess 12 is hemispherical, the hemispherical protrusion 9 can be formed on the tread surface of the tire.
  • the shape of the recessed part 12 can be controlled by adjusting the particle size, the injection speed, and the projection angle of the projection material.
  • the depth h of the recess 12 is preferably 1 to 50 ⁇ m. If the depth h of the recess 12 is 1 to 50 ⁇ m, the protrusion 9 having a height of 1 to 50 ⁇ m can be formed on the tread surface of the tire.
  • the depth h of the recess 12 can be controlled by adjusting the projection speed of the projection material. Specifically, the depth h can be increased by increasing the projection speed of the projection material.
  • the depth of the concave portion 12 is in contact with the third virtual plane perpendicular to the radial line extending through the deepest portion (radial inner end) of the concave portion 12 and the outer contour line of the concave portion 12 and is in the radial line.
  • the “radial direction” refers to the radial direction of the annular tread surface forming surface, that is, the direction corresponding to the tire radial direction of the tire molded using the mold 10. And the depth of the recessed part 12 can be measured with SEM and a microscope.
  • the mold 10 is a mold for molding a tire and has a tread surface molding surface for molding the tread surface of the tire tread.
  • a plurality of protrusions has a number density of 80 on at least a part of the tread surface molding surface. It is preferably formed at ⁇ 320 pieces / mm 2 .
  • the concave portions are formed with a number density of 80 to 320 pieces / mm 2 over a range of 90% or more of the tread forming surface. If the recesses are formed at a predetermined number density over a range of 90% or more of the area of the tread surface, a sufficient number of protrusions can be formed on the tread surface of the tire. Further, in this mold 10, the number density of the recesses 12 is more preferably 150 to 250 / mm 2 . If the number density of the recesses 12 is 150 to 250 pieces / mm 2 , the protrusions 9 can be formed on the tread surface of the tire with a number density of 150 to 250 pieces / mm 2 .
  • the number density of the recesses 12 can be controlled by adjusting the particle diameter and the number of grains of the projection material. Specifically, the number density can be increased by increasing the number of grains of the projection material. Further, the number density can be reduced by increasing the particle size of the projection material.
  • the mold 10 is a mold for molding a tire and has a tread surface molding surface for molding the tread surface of the tire tread.
  • the volume is 4 ⁇ 10 5 ⁇ m 3 on at least a part of the tread surface molding surface.
  • the above recesses are formed with a number density of 80 pieces / mm 2 or more, and the maximum width of each recess is defined as a first width x ′ ( ⁇ m), which is orthogonal to the direction in which the first width is measured.
  • X ′ ⁇ 200 ⁇ m, y ′ ⁇ 200 ⁇ m, and z ′ ⁇ 50 ⁇ m are satisfied, where the maximum width of the concave portion in the direction is the second width y ′ ( ⁇ m) and the depth is z ′ ( ⁇ m).
  • the tread surface described above has 80 protrusions / mm 2 or more with a volume of 4 ⁇ 10 5 ⁇ m 3 or more, x ⁇ 200 ⁇ m, y ⁇ 200 ⁇ m, and z ⁇ 50 ⁇ m.
  • a tire having excellent number performance on ice and performance on snow can be formed.
  • the number density of the recesses 12 can be controlled by adjusting the particle diameter and the number of grains of the projection material. Specifically, the number density can be increased by increasing the number of grains of the projection material. Further, the number density can be reduced by increasing the particle size of the projection material.
  • the volume of the recess 12 can be controlled by adjusting the projection speed of the projection material. Specifically, when the projection speed of the projection material is increased, the volume can be increased.
  • the portions where the recesses 12 are formed have a volume of 4 ⁇ 10 5 ⁇ m 3 or more, x ′ ⁇ 200 ⁇ m, y ′ ⁇ 200 ⁇ m, and z ′ ⁇ for the same reason.
  • the number density of the recesses satisfying 50 ⁇ m is preferably 150 pieces / mm 2 or more, and more preferably 150 pieces / mm 2 or more and less than 250 pieces / mm 2 .
  • the volume of the recess is preferably 5 ⁇ 10 5 ⁇ m 3 or more.
  • the “volume of the recess” and the “width x ′, y ′ and height z ′ of the recess” can be measured by, for example, enlarging the tread surface molding surface with an electron microscope.
  • the ten-point average roughness Rz of the tread surface of the mold is preferably 1.0 to 50 ⁇ m. This is because a tire having a ten-point average roughness Rz of the tread surface of 1.0 to 50 ⁇ m can be formed.
  • the average particle diameter of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die having a tread surface molding surface having a ten-point average roughness Rz in the above range. .
  • the average distance between the local peaks of the concave portions on the mold surface of the tread of the mold is preferably 5.0 to 100 ⁇ m. This is because it is possible to mold a tire having an average distance S between the local peaks of the protrusions formed on the tread surface of the tire of 5.0 to 100 ⁇ m.
  • the average particle size of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die including a tread surface molding surface having an average interval in the above range.
  • the projection condition (projection pressure, projection speed, etc.) is changed on the tread forming surface of the aluminum tire molding mold, and the projection material (ceramic system) is projected.
  • the tire molding dies 1 to 5 were produced.
  • the surface property of the tread surface forming surface of the manufactured mold was measured using an SEM and a microscope.
  • Tires 1 to 5 having a tire size of 205 / 55R16 were produced using the produced tire molding dies 1 to 5 in accordance with a conventional method. And the surface property of the tread surface of the produced tire was measured using SEM and a microscope. The results are shown in Table 2. Moreover, the performance on ice and the performance on snow of each produced tire were evaluated by the following evaluation methods. The results are shown in Table 2.
  • the friction coefficient on the snow was measured on a snowy road under a condition of a speed of 30 km / h with a load per front wheel set to 4.3 kN.
  • the tire friction coefficient on snow of the tire 1 was set to 100, and the friction coefficient on snow of each tire was evaluated as an index.
  • Table 2 shows the results. In Table 2, the larger the numerical value, the greater the friction coefficient on snow and the better performance on snow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

 氷上性能及び雪上性能を向上させたタイヤ並びにそのタイヤの製造(成形)に用いるタイヤ成形用金型を提供する。 トレッドの踏面の少なくとも一部に、網の目状に延びる凹部にて区画される突起部を多数有するタイヤについて、凹部の幅が50μm以下であるタイヤ、並びに、タイヤ成形用の金型であって、タイヤのトレッド踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、網の目状に延びる突起部にて区画される凹部を多数形成し、突起部の幅が50μm以下であるタイヤ成形用金型。

Description

タイヤ及びタイヤ成形用金型
 本発明は、タイヤ及びタイヤ成形用金型に関し、特には、氷上性能及び雪上性能に優れるタイヤ並びに該タイヤの製造に用いるタイヤ成形用金型に関する。
 従来、冬用のタイヤでは、氷上性能及び雪上性能の向上を図るため、様々な工夫がなされてきた。
 例えば、特許文献1では、トレッド部に形成した各ブロックに複数のサイプを設けることにより、接地面内のエッジ成分を増大させると共に、雪噛み効果を向上させて、タイヤの氷雪路面(凍結路面や積雪路面)上での走行性能を向上させる技術が提案されている。
 また、例えば、特許文献2では、キャップゴムとベースゴムとからなる、いわゆるキャップアンドベース構造のトレッドゴムを有するタイヤにおいて、キャップゴムとして発泡ゴムを用いることにより、除水性を大幅に向上させ、タイヤの氷上性能及び雪上性能を向上させる技術が提案されている。
 更に、例えば、特許文献3では、図1(a)に示すように、タイヤのトレッド部1の表面性状に関し、先端が尖った形状の突起部2をトレッド部の表面に設けることにより表面粗さを増大させ、タイヤ表面と路面との間の摩擦力を増大させて、タイヤの氷上性能及び雪上性能を向上させる技術が提案されている。
特開2002−192914号公報 特開平11−301217号公報 特開2009−67378号公報
 しかし、特許文献1に記載の、ブロックにサイプを設ける技術には、サイプ数を増加しすぎると、ブロック剛性が低下してブロックの倒れこみが発生しやすくなるため、接地面積が減少し、却って氷上性能及び雪上性能が低下するという問題があった。
 また、特許文献2に記載の、キャップゴムに発泡ゴムを用いる技術では、発泡ゴムの使用によりブロック全体の剛性が低下する場合があり、タイヤの耐摩耗性が必ずしも十分ではなかった。
 更に、特許文献3に記載の、先端が尖った突起部をトレッド部の表面に設ける技術では、突起部の剛性が低いため、特に車両のノーズダイブによる前輪への荷重増大時など、タイヤに大きな荷重が負荷された際に、突起部が潰れて所望の性能が得られなくなる場合があった。すなわち、先端が尖った突起部をトレッド部の表面に設ける技術では、図1(b)に示すように、路面Tとの接触により突起部2が潰れ、除水用の空隙3の体積が減少し、除水性が低下してしまう結果、所望の氷上性能及び雪上性能が得られない場合があった。従って、特許文献3に記載の技術には、氷上性能及び雪上性能を更に向上させる余地があった。
 更にまた、特許文献1~3に記載の技術を採用したタイヤについて発明者が検討を重ねた結果、それらの従来のタイヤには、原因は明らかではないが、特に新品時に十分な氷上性能及び雪上性能が得られないという問題点があることも分かった。そのため、特許文献1~3に記載の技術には、特にタイヤ新品時の氷上性能及び雪上性能を改善する余地があった。
 本発明は、上記の問題を解決しようとするものであり、氷上性能及び雪上性能を向上させたタイヤ並びに該タイヤの製造(成形)に用いるタイヤ成形用金型を提供することを目的とする。
 発明者は、上記の課題を解決すべく鋭意検討を重ねた。
 その結果、本発明者は、トレッド部の表面に所定の微細構造を形成すれば、ブロック剛性の低下や除水性の低下を抑制してタイヤの氷上性能及び雪上性能を更に向上させ得ること、並びに、タイヤ新品時であっても十分な氷上性能及び雪上性能を発揮させ得ることを見出し、本発明を完成させた。
 本発明は、上記の知見に基づいてなされたものであり、その要旨構成は、以下の通りである。
 本発明のタイヤは、トレッドの踏面の少なくとも一部に、網の目状に延びる凹部にて区画される突起部を多数有するタイヤについて、前記凹部の幅が50μm以下であることを特徴とする。
 このように、トレッドの踏面の少なくとも一部に網の目状に延びる凹部にて区画される多数の突起部を形成すれば、除水性を向上させつつ、タイヤの氷上性能及び雪上性能を向上させることができる。また、凹部の幅を50μm以下とすれば、除水性を高めつつ、突起部の剛性を確保してトレッドの踏面と路面との間の摩擦力を十分に増大させることができる。
 なお、「凹部の幅」とは、タイヤ径方向外方からトレッドの踏面をみたときの互いに隣接する突起部間にある凹部の最短距離を指す(以下、「凹部の幅」を、「突起部間の距離」とも称する。)。そして、この「凹部の幅」は、例えば、トレッドの踏面を電子顕微鏡で撮影して測定することができる。また、「トレッドの踏面」とは、タイヤを適用リムに装着し、所定空気圧とし、静止した状態で平板に対し垂直に置き、所定の荷重に対応する負荷を加えたときの平板との接触面を指す。因みに、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会) YEAR BOOK、欧州ではETRTO(European Tyre and Rim Technical Organisation) STANDARD MANUAL、米国ではTRA(THE TIRE and RIM ASSOCIATION INC.)YEAR BOOK等に規定されたリムを指し、「所定の荷重」とは、上記JATMA等の規格のタイヤ最大負荷を指し、「所定空気圧」とは、適用サイズのタイヤにおける所定の荷重に対応する空気圧(最高空気圧)を指す。
 また、本発明のタイヤ成形用金型は、タイヤ成形用の金型であって、タイヤのトレッド踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、網の目状に延びる突起部にて区画される凹部を多数形成し、前記突起部の幅が50μm以下であることを特徴とする。
 このように、踏面成形面の少なくとも一部に、網の目状に延びる突起部にて区画される凹部を多数形成し、更に突起部の幅を50μm以下とすれば、トレッドの踏面の少なくとも一部に、所定の幅を備え、網の目状に延びる凹部を有する、氷上性能及び雪上性能に優れるタイヤを成形することができる。
 なお、「突起部の幅」とは、タイヤ径方向外方からトレッドの踏面をみたときの互いに隣接する凹部間にある突起部の最短距離を指す(以下、「突起部の幅」を、「凹部間の距離」とも称する。)。そして、この「突起部の幅」は、例えば、踏面成形面を電子顕微鏡で撮影して測定することができる。
 本発明によれば、氷上性能及び雪上性能を向上させたタイヤ並びに該タイヤを成形し得るタイヤ成形用金型を提供することができる。
(a)は従来のタイヤのトレッドの踏面を模式的に示す概略断面図であり、(b)はタイヤの負荷荷重時にタイヤのトレッドの踏面と路面とが接触する様子を模式的に示す概略断面図である。 本発明の一実施形態にかかるタイヤのタイヤ幅方向断面図である。 図2に示すタイヤのトレッドの踏面の一部の形状を拡大して模式的に示す図であり、(a)は平面図、(b)はタイヤ幅方向断面図である。 図2に示すタイヤのトレッドの踏面のSEM像(走査型電子顕微鏡像)である。 本発明の一実施形態にかかるタイヤ成形用金型の一部を模式的に示す概略斜視図である。 図5に示すタイヤ成形用金型の踏面形成面の一部の形状を拡大して模式的に示す図であり、(a)は平面図であり、(b)は幅方向断面図である。 (a)~(c)は、タイヤのトレッドの踏面の一部の形状の他の例である。 (a)、(b)は、突起部の体積及び寸法について説明するための図である。
 以下、本発明のタイヤ及びタイヤ成形用金型について説明する。本発明のタイヤは、トレッド部の踏面(路面と接地する面)の少なくとも一部に所定の微細構造を形成し、トレッド部の表面性状(踏面性状)を所定の性状としたことを特徴とする。そして、本発明のタイヤ成形用金型は、本発明のタイヤの製造に用いられ、金型内表面、具体的にはタイヤのトレッドの踏面を成形する踏面成形面の少なくとも一部に、所定の微細構造を形成して踏面成形面の表面性状を所定の性状としたことを特徴とする。
<タイヤ>
 図2は、本発明の一実施形態にかかるタイヤのタイヤ幅方向断面図である。図2に示すように、一実施形態のタイヤ20は、一対のビード部4と、各ビード部4からそれぞれタイヤ径方向外方に延びる一対のサイドウォール部5と、該サイドウォール部5間に跨って延びるトレッド部6とを有している。また、タイヤ20は、一対のビード部4に埋設された一対のビードコア4a間にトロイダル状に跨るカーカス7と、該カーカス7のタイヤ径方向外側に配設された2層のベルト層8a、8bからなるベルト8とを有している。更に、ベルト8のタイヤ径方向外側には、非発泡ゴムよりなるトレッドゴムが配設されている。
 ここで、このタイヤ20では、トレッドの踏面の少なくとも一部(この実施形態では全部)に、所定形状の微小突起部が形成されている。具体的には、図3(a)にトレッド部6の表面6aの拡大平面図を示し、図3(b)にトレッド部6の表面6a側のタイヤ幅方向に沿う拡大断面図を示し、図4にトレッドの踏面の表面のSEM像を示すように、本実施形態にかかるタイヤは、トレッド部6の表面6aの全体に、網の目状に延びる凹部30にて区画される微小突起部(凸部)9を有している。
 なお、図3では、突起部9が半球状の突起部である場合を示しているが、本発明のタイヤでは、突起部は、裁頭円錐状、裁頭角錐状といった、図7(a)に示すような断面台形状のものや、円柱状、角柱状といった、図7(b)に示すような断面矩形状のものや、図7(c)に示すような裁頭半球状のものなど、様々な形状のものとすることができる。
 そして、このタイヤ20は、トレッドの踏面の少なくとも一部に、網の目状に延びる凹部30にて区画される突起部(凸部)9を多数有し、この凹部の幅が50μm以下であることを必要とする。
 このように、トレッドの踏面の少なくとも一部に網の目状に延びる凹部30を形成しているので、路面との接地時に、凹部の空隙を利用して路面上の水膜を除去する(除水性を発揮する)ことができる。また、多数の突起部9が形成されているので、トレッドの踏面と路面との間の摩擦力を増大させて、タイヤの氷上性能及び雪上性能を向上させることができる。更に、凹部30の幅Lを50μm以下とすれば、凹部30の幅L、すなわち隣接する突起部間の距離が大きくなり過ぎない。そのため、除水性を高めつつ、突起部の剛性を確保してトレッドの踏面と路面との間の摩擦力を十分に増大させることができる。
 ここで、凹部30の幅は、5μm以上であることが好ましい。このように、凹部30の幅Lを5μm以上とすれば、凹部30の空隙を確保して、除水性を確保することができる。
 またここで、網の目状に延びる凹部にて区画される突起部(凸部)9の外径Dは、5μm~70μmであることが好ましい。突起部9の外径Dを5μm以上とすれば、突起部の剛性を確保することができ、タイヤに大きな荷重が負荷された際であっても、突起部が潰れ難く、除水性を確保することができる。また、突起部9の外径Dを70μm以下とすれば、突起部間の空隙の体積を確保して、除水性を高めることができる。
 ここで、「凹部の幅」とは、図3(a)に示すように、トレッドの踏面の平面視において互いに隣接する突起部9間にある凹部30の最短距離Lを指す。また、「突起部の外径」とは、図3(a)に示すように、トレッドの踏面の平面視における、突起部9の最大径Dを指す。そして、この「凹部の幅」及び「突起部の外径」は、例えば、トレッドの踏面を電子顕微鏡で撮影して測定することができる。
 また、このタイヤ20では、トレッドの踏面の少なくとも一部に、突起部9が80~320個/mmの個数密度で形成されることが好ましい。これにより、ブロック剛性の低下や除水性の低下を抑制しつつ、タイヤの氷上性能及び雪上性能を十分に向上させることができる。
 このタイヤ20では、突起部9を個数密度80/mm以上で形成しているため、踏面が路面と接地した際に、突起部9間の空隙を利用して路面上の水膜を除去する(除水性を発揮する)ことができる。また、トレッドの踏面と路面との間の摩擦力を増大させて、タイヤの氷上性能及び雪上性能を向上させることができる。また、このタイヤ20では、突起部9の個数密度が320個/mm以下であるため、突起部9の剛性を確保することができ、タイヤに大きな荷重が負荷された際であっても、突起部9が潰れ難く、除水性を確保することができる。これに加えて、多数の突起部9を形成した場合であっても、突起部9間の空隙の体積を確保して、除水性を高めることができる。
 更に、このタイヤ20では、原因は明らかではないが、新品時(未使用状態)であっても十分な氷上性能及び雪上性能を発揮することができる。
 従って、このタイヤ20によれば、ブロック剛性の低下や除水性の低下を抑制して、新品時であっても、タイヤの氷上性能及び雪上性能を更に向上させることができる。
 なお、本発明のタイヤでは、トレッドの踏面の90%以上の範囲に亘って突起部が80~320個/mmの個数密度で形成されていることが好ましい。トレッドの踏面の90%以上の範囲に亘って所定の個数密度で突起部を形成すれば、突起部の形成により得られる効果を十分に大きくすることができる。
 ここで、このタイヤ20では、突起部9は個数密度150~250個/mmで形成されていることが好ましい。突起部9の個数密度を150個/mm以上とすれば、トレッドの踏面と路面との間の摩擦力を十分に増大させて、タイヤの氷上性能及び雪上性能を向上させることができる。また、突起部9の個数密度を250個/mm以下とすれば、突起部9の剛性及び突起部9間の空隙の体積を十分に確保して、除水性を高めることができる。
 また、このタイヤ20では、突起部9の形状が半球状であることが好ましい。突起部9の形状が半球状であれば、突起部9が潰れ難くなり、除水性を確保することができる。
 更に、このタイヤ20では、図3(b)に示すように、トレッドの踏面に形成した突起部9の高さHが1~50μmであることが好ましい。突起部9の高さHを1μm以上とすれば、突起部9間の空隙の体積を十分に確保して、除水性を高めることができる。また、突起部9の高さHを50μm以下とすれば、突起部9の剛性を大きくして、十分な除水性を確保することができる。
 ここで、突起部9の高さは、突起部9の先端(タイヤ径方向外端)を通って延びるタイヤ径方向線に直交する第1仮想平面と、突起部9の外輪郭線に接し且つタイヤ径方向線に直交する仮想平面のうち第1仮想平面に最も近い第2仮想平面との間のタイヤ径方向に沿う距離をいうものとする。
 なお、突起部9の高さは、SEM、マイクロスコープにより測定することができる。
 更に、このタイヤ20は、トレッドの踏面の少なくとも一部に、体積が4×10μm以上の突起部を80個/mm以上の個数密度で形成し、それぞれの突起部における最大幅を第1の幅x(μm)として、該第1の幅を計測する方向に対して、直交する方向における突起部の最大幅を第2の幅y(μm)、高さをz(μm)としたとき、x≦200μm、y≦200μm、且つ、z≦50μmを満たすことが好ましい。ただし、x、yはzに垂直であるものとする(図8(a)、(b)参照)。これにより、ブロック剛性の低下を更に抑制しつつ、除水性の低下を抑制して、タイヤの氷上性能及び雪上性能を向上させることができる。
 すなわち、このタイヤ20では、トレッドの踏面に、体積が4×10μm以上で、それぞれの突起部における最大幅を第1の幅x(μm)として、該第1の幅を計測する方向に対して、直交する方向における突起部の最大幅を第2の幅y(μm)、高さをz(μm)としたとき、x≦200μm、y≦200μm、且つ、z≦50μmを満たす突起部を80個/mm以上の個数密度で形成しているため、ブロック剛性の低下や徐水性の低下を抑制しつつ、タイヤの氷上性能及び雪上性能を十分に向上させることができる。
 すなわち、トレッドの踏面の表面性状について、図8(a)に示す、仮想する所定の直方体(200μm×200μm×50μm)の範囲内で4×10μm以上の体積を有する突起部が、トレッドの踏面の少なくとも一部に、80個/mm以上の個数密度で形成されているため、突起部間に除水用の空間を確保することができるとともに、各突起部が比較的均等に路面と接触し、突起部の接地面積を確保することができる。
 なお、本発明のタイヤでは、トレッドの踏面に、体積が、4×10μm未満の突起部、または、形状が、x≦200μm、y≦200μm、且つ、z≦50μmを満たさない突起部が形成されていても良いが、その場合、上記の条件を満たさない突起部の個数は、突起部の全個数の10%以下であることが好ましい。そのような突起部が10%以下であれば充分に上記の作用効果を発揮することができるか。
 ここで、このタイヤ20は、突起部9が形成されている部分は、同様の理由により、体積が4×10μm以上で、x≦200μm、y≦200μm、且つ、z≦50μmを満たす突起部の個数密度が、150個/mm以上となることが好ましく、より好適には、150個/mm以上250個/mm未満となることが望ましい。また、突起部の体積は、5×10μm以上であることが好ましい。
 なお、本発明において「突起部の体積」及び「突起部の幅x、y及び高さz」は、例えば、トレッドの踏面を電子顕微鏡により拡大して測定することができる。
 このタイヤにおいて、半球状の突起部を形成したタイヤのトレッドの踏面の十点平均粗さRzは、1.0~50μmであることが好ましい。Rzを1.0μm以上とすることにより、除水用の空隙を確保することができ、一方で、Rzを50μm以下とすることにより、路面との接触面積を確保することができる。これらにより、タイヤの氷上性能及び雪上性能を更に向上させることができる。
 なお、「十点平均粗さRz」とは、JIS B0601(1994)の規定に準拠して測定されるものであり、基準長さを0.8mm、評価長さを4mmとして求めたものである。
 また、タイヤのトレッドの踏面に形成した突起部の局部山頂の平均間隔Sは、5.0~100μmであることが好ましい。平均間隔Sが5.0μm以上であることにより、除水用の空隙を確保することができ、一方で、平均間隔Sが100μm以下であることにより、路面との接触面積を確保することができるからである。これらにより、タイヤの氷上性能及び雪上性能を更に向上させることができる。
 なお、「局部山頂の平均間隔」は、JIS B0601(1994)に準拠して計測されるものであり、基準長さを0.8mm、評価長さを4mmとして求めるものとする。
 そして、上述したタイヤは、特に限定されることなく以下のタイヤ成形用金型を用いて製造することができる。なお、下記のタイヤ成形用金型を用いたタイヤの成形は常法に従い行うことができる。
<タイヤ成形用金型>
 図5は、本発明のタイヤを成形するのに用いるタイヤ成形用金型の一部を示す概略部分斜視図である。
 図5に示すように、この金型10は、タイヤを加硫成形する成形面11を有する。この成形面11は、トレッドの踏面を形成する踏面成形面11aを有し、図示例では、サイドウォール部の外表面を成形するサイドウォール成形面11b、及びビード部の外表面を成形するビード部成形面11cも有する。この成形面11は、特には限定しないが、例えばアルミニウムで形成することができる。
 本発明のタイヤの、上述した表面性状を有するトレッドの踏面は、当該表面性状に対応した表面性状を有する踏面成形面11aを備えるタイヤ成形用金型10によって形成することができる。具体的には、図6(a)に踏面成形面11aの拡大平面図を示し、図6(b)に金型10の踏面成形面11a側の幅方向に沿う拡大断面図を示すように、本実施形態にかかるタイヤ成形用金型10は、金型10の踏面成形面11aの全体に、網の目状に延びる突起部40にて区画される凹部12を多数有している。なお、図6では、凹部12が半球状の凹部である場合を示しているが、本発明の金型では、凹部12は、裁頭半球状、裁頭円錐状、裁頭角錐状、円柱状または角柱状の凹部であっても良い。
 この金型10を用いたタイヤの加硫工程では、金型10の踏面成形面11aの半球状の凹部形状が、タイヤのトレッドの踏面の突起部形状として転写される。そして、製造されたタイヤのトレッドの踏面には、網の目状に延びる突起部(凸部)40にて区画される微小な凹部12が形成されており、突起部の幅は50μm以下である。
 このように、踏面成形面の少なくとも一部に、網の目状に延びる突起部にて区画される凹部を多数形成し、更に突起部40の幅lを50μm以下とすれば、トレッドの踏面の少なくとも一部に、所定の幅(50μm以下)を備え、網の目状に延びる凹部を有する、氷上性能及び雪上性能に優れるタイヤを成形することができる。
 なお、「突起部の幅」とは、踏面成形面の平面視における、互いに隣接する凹部間にある突起部の最短距離を指す。また、「凹部の外径」とは、踏面成形面の平面視における、凹部の最大径を指す。そして、この「突起部の幅」及び「凹部の外径」は、例えば、踏面成形面を電子顕微鏡で撮影して測定することができる。
 また、踏面成形面の突起部40の幅lは、5μm以上であることが好ましい。踏面成形面の突起部40の幅lを5μm以上とすれば、製造されたタイヤのトレッドの踏面において、凹部の空隙を確保して、除水性を確保することができる。
 本発明の金型では、凹部12の外径dは、5μm~70μmであることが好ましい。凹部12の外径dを上記範囲とすれば、タイヤのトレッドの踏面において、突起部9の剛性を確保しつつ、突起部9間の空隙の体積を確保して、除水性を高めることができる。
 ここで、金型の踏面成形面の突起部の幅は、投射材の粒径を調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、突起部の幅を小さくすることができる。また、凹部の外径は、投射材の粒径などを調整することにより、制御することができる。具体的には、投射材の粒径を大きくすると、凹部の外径を大きくすることができる。
 以下、金型10の踏面成形面11aを形成する方法について説明する。
 上記踏面成形面11aは、特定の形状の投射材を投射して成形面に衝突させる、投射材投射工程によって形成することができる。そして、この投射材投射工程を経て得られるタイヤ成形用金型は、踏面成形面の少なくとも一部が、上記のような、網の目状に延びる突起部40にて区画される凹部12を多数有し、幅lが50μm以下である突起部40を多数有するものとなるため、この金型を用いて加硫成形されるタイヤのトレッドの踏面が、上記のような、トレッドの踏面の少なくとも一部に、網の目状に延びる凹部30にて区画される突起部(凸部)9を多数有し、幅lが50μm以下である凹部30を多数有するものとなる。
 ここで、この投射材投射工程において、上記踏面成形面11a(全面または一部)は、真球度15μm以下の球形の投射材を投射して衝突させることにより形成することが好ましい。投射材の真球度を15μm以下とすることにより、金型の踏面成形面に、所望の性状の凹部を多数形成することができるからであり、この金型を用いて成形するタイヤのトレッドの踏面を所望の表面形状とすることができる。
 またここで、投射材の真球度は、10μm以下であることがより好ましい。投射材の真球度を10μm以下とすれば、金型の踏面成形面に、所望の性状の凹部を容易に多数形成することができるため、その金型を用いて形成したタイヤのトレッドの踏面に所望の形状の突起部を多数形成して、氷上性能及び雪上性能に更に優れたタイヤを成形することができる。
 更にここで、投射材の真球度は、5μm以下であることが更に好ましい。投射材の真球度を、5μm以下とすれば、金型の踏面成形面に、所望の性状の凹部をより容易に形成することができる。
 また、投射材投射工程に用いる投射材の平均粒径は、10μm~1mmであることが好ましい。投射材の平均粒径を10μm以上とすることにより、踏面成形面に所望の凹部形状を有する金型がより得やすくなり、また、投射材投射工程において、高圧下での投射の際に、投射材が周囲に飛散するのを抑制することができる。一方、投射材の平均粒径を1mm以下とすることにより、金型表面を早期に摩耗させるのを抑制することができる。
 同様の理由により、投射材の平均粒径は、20μm~0.7mmとするのがより好ましく、30μm~0.5mmとするのが更に好ましい。
 なお、「平均粒径」とは、SEMにより投射材の写真を撮影し、投射材を任意に10個取り出し、それぞれの投射材に接する内接円の直径と外接円の直径との平均を求め、これらを当該10個の投射材で平均した値をいうものとする。
 ここで、投射材のモース硬度は、2~10とするのが好ましい。投射材のモース硬度を2以上とすることにより、踏面成形面に所望の凹部形状を有する金型がより得やすくなる。一方、投射材のモース硬度を10以下とすることにより、金型が早期に傷むのを軽減することができる。
 同様の理由により、投射材のモース硬度は、3.0~9.0とするのがより好ましく、5.0~9.0とするのが更に好ましい。またここで、タイヤ成形用金型の踏面形成面のモース硬度は、2.0~5.0であることが好ましく、タイヤ成形用金型の踏面形成面と、投射材とのモース硬度の差は、3.0~5.0であることが好ましい。
 また、投射材の比重は、0.5~20とするのが好ましい。投射材の比重を0.5以上とすることにより、投射工程における投射材の飛散を抑制して作業性を向上させることができるからである。一方、投射材の比重を20以下とすることにより、投射材を加速するためのエネルギーを低減することができ、また、金型の早期の摩耗を抑制することができるからである。
 同様の理由により、投射材の比重は、0.8~18とするのがより好ましく、1.2~15とするのが更に好ましい。
 投射材の材料は特には限定しないが、例えば、ジリコン、鉄、鋳鋼、セラミックス等を用いることが好ましい。
 ここで、投射材投射工程においては、投射材を、上記金型の踏面成形面に、100~1000kPaの高圧空気で30秒間~10分間投射するのが好ましい。
 投射材を100kPa以上で、30秒以上投射することにより、踏面成形面を満遍なく、上記した所望の形状にすることができ、一方で、投射材を1000kPa以下で、10分以下投射することにより、踏面成形面を損傷させるのを抑制することができる。
 またここで、投射材の比重や投射圧力を調整して、投射材の投射速度を0.3~10(m/s)とするのが好ましく、0.5~7(m/s)とするのがより好ましい。このとき、投射材の投射用のノズルと、タイヤ成形用金型との距離を、50~200(mm)とすることが好ましい。
 なお、上記投射材の投射時間とは、金型1個当たりの投射時間をいい、例えば金型を9個用いてタイヤを成形する場合には、1個のタイヤを成形する9個の金型の踏面成形面に、投射材を合計270秒間~90分間投射することが好ましい。
 またなお、金型1個の踏面成形面への投射材の投射は、金型の形状等を考慮しながら、作業者が投射する位置をずらしつつ行うことができる。このようにすれば、投射材をより均一に投射することができる。
 また、この金型10では、凹部12の形状が半球状であることが好ましい。凹部12の形状が半球状であれば、タイヤのトレッドの踏面に半球状の突起部9を形成することができるからである。なお、凹部12の形状は、投射材の粒径、噴射速度、投射角度を調整することにより、制御することができる。
 更に、この金型10では、凹部12の深さhが1~50μmであることが好ましい。凹部12の深さhを1~50μmとすれば、タイヤのトレッドの踏面に高さが1~50μmの突起部9を形成することができる。なお、凹部12の深さhは、投射材の投射速度を調整することにより、制御することができる。具体的には、投射材の投射速度を大きくすると、深さhを大きくすることができる。
 なお、凹部12の深さは、凹部12の最深部(径方向内端)を通って延びる径方向線に直交する第3仮想平面と、凹部12の外輪郭線に接し且つ前記径方向線に直交する仮想平面のうち前記第3仮想平面に最も近い第4仮想平面との間の径方向に沿う距離をいうものとする。因みに、「径方向」とは、円環状の踏面形成面の径方向、すなわち、金型10を用いて成形されるタイヤのタイヤ径方向に対応する方向を指す。そして、凹部12の深さは、SEM、マイクロスコープにより測定することができる。
 また、金型10は、タイヤ成形用の金型であって、タイヤのトレッドの踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、複数の突起部が個数密度80~320個/mmで形成されることが好ましい。これにより、ブロック剛性の低下や除水性の低下を抑制しつつ、タイヤの氷上性能及び雪上性能に優れるタイヤを成形することができる。
 ここで、本発明の金型では、踏面成形面の90%以上の範囲に亘って凹部が80~320個/mmの個数密度で形成されていることが好ましい。踏面成形面の面積の90%以上の範囲に亘って所定の個数密度で凹部を形成すれば、タイヤのトレッドの踏面に十分な数の突起部を形成することができる。
 またここで、この金型10では、凹部12の個数密度が150~250個/mmであることが更に好ましい。凹部12の個数密度を150~250個/mmとすれば、タイヤのトレッドの踏面に突起部9を個数密度150~250個/mmで形成することができる。
 なお、凹部12の個数密度は、投射材の粒径や粒個数を調整することにより、制御することができる。具体的には、投射材の粒個数を多くすると、個数密度を大きくすることができる。また、投射材の粒径を大きくすると、個数密度を小さくすることができる。
 更に、金型10は、タイヤ成形用の金型であって、タイヤのトレッドの踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、体積が4×10μm以上の凹部を80個/mm以上の個数密度で形成し、それぞれの前記凹部における最大幅を第1の幅x’(μm)として、該第1の幅を計測する方向に対して、直交する方向における凹部の最大幅を第2の幅y’(μm)、深さをz’(μm)としたとき、x’≦200μm、y’≦200μm、且つ、z’≦50μmを満たすことが好ましい。
 これにより、上記した、トレッドの踏面の少なくとも一部に、体積が4×10μm以上で、x≦200μm、y≦200μm、且つ、z≦50μmを満たす突起部を80個/mm以上の個数密度で形成し、氷上性能及び雪上性能に優れるタイヤを成形することができる。
 なお、凹部12の個数密度は、投射材の粒径や粒個数を調整することにより、制御することができる。具体的には、投射材の粒個数を多くすると、個数密度を大きくすることができる。また、投射材の粒径を大きくすると、個数密度を小さくすることができる。また、凹部12の体積は、投射材の投射速度を調整することにより、制御することができる。具体的には、投射材の投射速度を大きくすると、体積を大きくすることができる。
 ここで、この金型は、凹部12が形成されている部分は、同様の理由により、それぞれ体積が4×10μm以上で、x’≦200μm、y’≦200μm、且つ、z’≦50μmを満たす凹部の個数密度が、150個/mm以上となることが好ましく、より好適には、150個/mm2以上、250個/mm未満となることが望ましい。また、凹部の体積は、5×10μm以上であることが好ましい。
 なお、本発明において「凹部の体積」及び「凹部の幅x’、y’及び高さz’」は、例えば、踏面成形面を電子顕微鏡により拡大して測定することができる。
 ここで、金型の踏面成形面の十点平均粗さRzは、1.0~50μmであることが好ましい。トレッドの踏面の十点平均粗さRzが、1.0~50μmであるタイヤを成形することができるからである。
 なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の十点平均粗さRzを有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
 また、金型の踏面成形面の凹部の局部山頂の平均間隔は、5.0~100μmであることが好ましい。タイヤのトレッドの踏面に形成した突起部の局部山頂の平均間隔Sが5.0~100μmであるタイヤを成形することができるからである。
 なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の平均間隔を有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
 以上、図面を参照して本発明の実施形態を説明したが、本発明のタイヤ及びタイヤ成形用金型は上述した例に限定されることは無く、本発明のタイヤ及びタイヤ成形用金型には適宜変更を加えることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
(タイヤ成形用金型の製造)
 アルミニウム製のタイヤ成形用金型の踏面形成面に対し、投射条件(投射圧力、投射速度など)を変更して投射材(セラミック系)を投射し、表1に示す表面性状の踏面形成面を有するタイヤ成形用金型1~5を製造した。なお、作製した金型の踏面形成面の表面性状は、SEM及びマイクロスコープを用いて測定した。
Figure JPOXMLDOC01-appb-T000001
(タイヤの製造)
 作製したタイヤ成形用金型1~5をそれぞれ用いて、常法に従いタイヤサイズ205/55R16のタイヤ1~5をそれぞれ製造した。そして、作製したタイヤのトレッドの踏面の表面性状をSEM及びマイクロスコープを用いて測定した。結果を表2に示す。
 また、作製した各タイヤの氷上性能及び雪上性能を下記の評価方法で評価した。結果を表2に示す。
<氷上性能>
 作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、凍結路において、速度30km/hの条件下で氷上摩擦係数を測定した。タイヤ1の氷上摩擦係数を100として各タイヤの氷上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど氷上摩擦係数が大きく、氷上性能が優れていることを示す。
<雪上性能>
 作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、積雪路において、速度30km/hの条件下で雪上摩擦係数を測定した。タイヤ1の雪上摩擦係数を100として各タイヤの雪上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど雪上摩擦係数が大きく、雪上性能が優れていることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例にかかるタイヤは、比較例及び従来例にかかるタイヤよりも氷上性能及び雪上性能に優れていることがわかる。
 本発明によれば、氷上性能及び雪上性能を向上させたタイヤ、並びに、該タイヤを成形し得るタイヤ成形用金型を提供することができる。
1 トレッド部
2 突起部
3 空隙
4 ビード部
4a ビードコア
5 サイドウォール部
6 トレッド部
6a 表面
7 カーカス
8 ベルト
8a、8b ベルト層
9 突起部
10 金型
11 成形面
11a 踏面成形面
11b サイドウォール部成形面
11c ビード部成形面
12 凹部
20 タイヤ
30 (網の目状)凹部
d 凹部の外径
l 突起部の幅(凹部間の距離)
D 突起部の外径
L 凹部の幅(突起部間の距離)
T 路面

Claims (2)

  1.  トレッドの踏面の少なくとも一部に、網の目状に延びる凹部にて区画される突起部を多数有するタイヤについて、
     前記凹部の幅が50μm以下であることを特徴とする、タイヤ。
  2.  タイヤ成形用の金型であって、
     タイヤのトレッド踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部に、網の目状に延びる突起部にて区画される凹部を多数形成し、
     前記突起部の幅が50μm以下であることを特徴とする、タイヤ成形用金型。
PCT/JP2012/084305 2011-12-28 2012-12-28 タイヤ及びタイヤ成形用金型 WO2013100198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/369,449 US20140360638A1 (en) 2011-12-28 2012-12-28 Tire and tire forming mold
RU2014131090/11A RU2576314C2 (ru) 2011-12-28 2012-12-28 Шина и пресс-форма формования шины
EP12863293.2A EP2799253B1 (en) 2011-12-28 2012-12-28 Tire and tire-forming mold
CN201280064865.3A CN104039565B (zh) 2011-12-28 2012-12-28 轮胎和轮胎成型用模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289578 2011-12-28
JP2011289578A JP2013139162A (ja) 2011-12-28 2011-12-28 タイヤおよびタイヤ成形用金型

Publications (1)

Publication Number Publication Date
WO2013100198A1 true WO2013100198A1 (ja) 2013-07-04

Family

ID=48697658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084305 WO2013100198A1 (ja) 2011-12-28 2012-12-28 タイヤ及びタイヤ成形用金型

Country Status (6)

Country Link
US (1) US20140360638A1 (ja)
EP (1) EP2799253B1 (ja)
JP (1) JP2013139162A (ja)
CN (1) CN104039565B (ja)
RU (1) RU2576314C2 (ja)
WO (1) WO2013100198A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068139B2 (ja) * 2010-03-26 2017-01-25 株式会社ブリヂストン タイヤ、及びタイヤ加硫用金型の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147411A (ja) * 1988-11-30 1990-06-06 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその加硫金型
JPH05318621A (ja) * 1992-05-20 1993-12-03 Bridgestone Corp 優れた氷上摩擦性能を有するゴム製品
JPH11301217A (ja) 1998-04-24 1999-11-02 Bridgestone Corp 空気入りタイヤ
JP2002192914A (ja) 2000-12-25 2002-07-10 Yokohama Rubber Co Ltd:The 氷雪路用空気入りタイヤ
JP2004189195A (ja) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009067378A (ja) 2007-08-22 2009-04-02 Bridgestone Corp 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279603U (ja) * 1985-11-07 1987-05-21
JP3421114B2 (ja) * 1993-11-22 2003-06-30 株式会社ブリヂストン 空気入りタイヤ
JP2779765B2 (ja) * 1994-03-18 1998-07-23 有限会社新津 空気入りタイヤとそれを製造する加硫成型用金型
HUP0003214A3 (en) * 1996-12-19 2001-03-28 Michelin Soc Tech Sacrificial ribs for improved tire wear
JP2000142026A (ja) * 1998-11-10 2000-05-23 Yokohama Rubber Co Ltd:The 空気入りタイヤ、空気入りタイヤの製造方法及びタイヤ成形用金型
JP2000247112A (ja) * 1999-02-25 2000-09-12 Bridgestone Corp 空気入りタイヤ
ITTO20010971A1 (it) * 2001-10-12 2003-04-12 Bridgestone Firestone Tech Pneumatico per trasporto pesante.
DE102004010060A1 (de) * 2004-03-02 2005-09-22 Continental Ag Reifen für Kraftfahrzeuge
US20090049717A1 (en) * 2007-08-22 2009-02-26 Bridgestone Corporation Pneumatic tire, shoe, tire chain, and pneumatic tire vulcanization-mold
JP2009190526A (ja) * 2008-02-13 2009-08-27 Bridgestone Corp 空気入りタイヤ及び空気入りタイヤ用加硫金型
JP5456363B2 (ja) * 2009-04-30 2014-03-26 株式会社ブリヂストン 空気入りタイヤ
JP6068139B2 (ja) * 2010-03-26 2017-01-25 株式会社ブリヂストン タイヤ、及びタイヤ加硫用金型の製造方法
JP4920760B2 (ja) * 2010-04-08 2012-04-18 東洋ゴム工業株式会社 空気入りタイヤ、タイヤモールド及び空気入りタイヤの製造方法
JP5606824B2 (ja) * 2010-08-18 2014-10-15 株式会社不二製作所 金型の表面処理方法及び前記方法で表面処理された金型
JP5099203B2 (ja) * 2010-10-04 2012-12-19 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147411A (ja) * 1988-11-30 1990-06-06 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその加硫金型
JPH05318621A (ja) * 1992-05-20 1993-12-03 Bridgestone Corp 優れた氷上摩擦性能を有するゴム製品
JPH11301217A (ja) 1998-04-24 1999-11-02 Bridgestone Corp 空気入りタイヤ
JP2002192914A (ja) 2000-12-25 2002-07-10 Yokohama Rubber Co Ltd:The 氷雪路用空気入りタイヤ
JP2004189195A (ja) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009067378A (ja) 2007-08-22 2009-04-02 Bridgestone Corp 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799253A4

Also Published As

Publication number Publication date
RU2576314C2 (ru) 2016-02-27
EP2799253A4 (en) 2015-07-29
CN104039565B (zh) 2017-06-16
RU2014131090A (ru) 2016-02-20
EP2799253A1 (en) 2014-11-05
US20140360638A1 (en) 2014-12-11
EP2799253B1 (en) 2017-09-06
CN104039565A (zh) 2014-09-10
JP2013139162A (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP6088137B2 (ja) タイヤおよびタイヤ成形用金型
JP6348248B2 (ja) タイヤおよびタイヤ成形用金型
JP5314122B2 (ja) タイヤ成形用金型、タイヤ、及びタイヤの製造方法
JP2013136279A (ja) タイヤおよびタイヤ成形用金型
JP5986374B2 (ja) タイヤおよびタイヤ成形用金型
WO2013100198A1 (ja) タイヤ及びタイヤ成形用金型
JP5986377B2 (ja) タイヤおよびタイヤ成形用金型
JP5986376B2 (ja) タイヤおよびタイヤ成形用金型
JP6423573B2 (ja) タイヤおよびタイヤ成形用金型
JP5977519B2 (ja) タイヤおよびタイヤ成形用金型
JP5986375B2 (ja) タイヤおよびタイヤ成形用金型
JP6018750B2 (ja) タイヤおよびタイヤ成形用金型
JP2013136346A (ja) タイヤおよびタイヤ成形用金型
JP2013139180A (ja) タイヤおよびタイヤ成形用金型
JP6042611B2 (ja) タイヤおよびタイヤ成形用金型
JP2013136334A (ja) タイヤおよびタイヤ成形用金型
WO2013100206A1 (ja) タイヤおよびタイヤ成形用金型
JP2013136355A (ja) タイヤおよびタイヤ成形用金型
JP2013136336A (ja) タイヤおよびタイヤ成形用金型
JP2013136340A (ja) タイヤおよびタイヤ成形用金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863293

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012863293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012863293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14369449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014131090

Country of ref document: RU

Kind code of ref document: A