WO2013099909A1 - ポリシロキサンの製造方法 - Google Patents

ポリシロキサンの製造方法 Download PDF

Info

Publication number
WO2013099909A1
WO2013099909A1 PCT/JP2012/083581 JP2012083581W WO2013099909A1 WO 2013099909 A1 WO2013099909 A1 WO 2013099909A1 JP 2012083581 W JP2012083581 W JP 2012083581W WO 2013099909 A1 WO2013099909 A1 WO 2013099909A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon
carbon atoms
polysiloxane
reaction
Prior art date
Application number
PCT/JP2012/083581
Other languages
English (en)
French (fr)
Inventor
絹子 小倉
昭憲 北村
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR1020147012812A priority Critical patent/KR101877599B1/ko
Priority to US14/350,464 priority patent/US9181399B2/en
Priority to CN201280045961.3A priority patent/CN103842412B/zh
Priority to JP2013551719A priority patent/JP5821971B2/ja
Publication of WO2013099909A1 publication Critical patent/WO2013099909A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a method for producing a polysiloxane having a carbon-carbon unsaturated bond and a hydrosilyl group and capable of hydrosilylation reaction.
  • Patent Document 1 proposes a polysiloxane having a carbon-carbon unsaturated bond and a hydrosilyl group and capable of hydrosilylation reaction.
  • This document describes that various organic solvents can be used for a medium for dissolving polysiloxane.
  • a mixed solvent of toluene and ethanol was used as a reaction solvent, the produced polysiloxane could not be dissolved with toluene alone.
  • the storage stability of the polysiloxane during or after production varies depending on the type of reaction solvent.
  • Patent Document 2 also describes polysiloxanes having a structure capable of hydrosilylation reaction and soluble in organic solvents.
  • aromatic hydrocarbons, ethers, and esters are described as reaction solvents that can be used in the step of subjecting raw material monomers to hydrolysis / polycondensation reaction.
  • a lower alcohol such as methanol, ethanol or 2-propanol may be used in combination with these nonpolar solvents.
  • the reaction solvent used was a mixed solvent in which 2-propanol was added to xylene.
  • the stability of polysiloxane during and after production depends on the type of reaction solvent. There was no mention or suggestion of any differences.
  • Patent Document 3 discloses a curable coating composition containing a polysiloxane having a structure capable of hydrosilylation reaction and an organic solvent having no hydroxyl group and a boiling point of 80 ° C. to 130 ° C. . And when the organic solvent contains a hydroxyl group, the molecular weight of the polysiloxane increases during storage, the coating composition gels, and paint coat particles are generated in the coating film. It is described.
  • a production method including a process for subjecting a raw material monomer to hydrolysis / polycondensation reaction is known. Yes. And it was known that various organic solvents were used as the reaction solvent, but it was not known that there was a difference in the prevention of gelation during production and the storage stability of polysiloxane after production depending on the type of organic solvent. It was.
  • the curable coating composition containing a polysiloxane having a carbon-carbon unsaturated bond and a hydrosilyl group and capable of hydrosilylation reaction contains an organic solvent having a hydroxyl group
  • the storage stability of the composition is impaired. It has been known to cause increase in molecular weight and gelation of polysiloxane. Therefore, in the polysiloxane production method, there is no known means for selecting a reaction solvent for the problem of efficiently producing a product with uniform quality by preventing polysiloxane gelation and molecular weight increase. Also, even if it is selected, it has been known that an organic solvent containing a hydroxyl group is not preferable as a solvent contained in the composition. It can be said that there was.
  • the objective of this invention is providing the manufacturing method of the polysiloxane which suppresses the gelatinization in manufacture, the molecular weight increase of a polysiloxane after manufacture, gelation, etc.
  • the reaction solvent for the polycondensation reaction is at least one selected from a secondary alcohol having 4 to 6 carbon atoms and a tertiary alcohol having 4 to 6 carbon atoms, which is a polar solvent (hereinafter referred to as “in the present invention”).
  • a secondary alcohol having 4 to 6 carbon atoms and a tertiary alcohol having 4 to 6 carbon atoms which is a polar solvent (hereinafter referred to as “in the present invention”).
  • A is an organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction
  • R 1 is an alkylene group having 1 to 20 carbon atoms
  • R 2 is a hydrogen atom, carbon
  • An alkyl group having 1 to 10 atoms and an organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction (R 2 in one molecule may be the same or different.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a carbon atom having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond that can be hydrosilylated.
  • At least one selected from organic groups, R 4 is hydrogen Atoms, alkyl groups having 1 to 10 carbon atoms, and organic groups having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction (R 4 in one molecule may be the same or different.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • v is a positive number
  • u, w, x, y, and z are 0 or a positive number
  • at least one of w, x and y is a positive number, 0 ⁇ u / (v + w + x + y) ⁇ 2, 0 ⁇ x / (v + w) ⁇ 2, and 0 ⁇ y / (v + w) ⁇ 2 and 0 ⁇ z / (v + w + x + y) ⁇ 1.
  • the raw material monomer includes a compound that gives the structural unit (1-2) by condensation, a compound that gives the following structural unit (1-3) by condensation, a compound that gives the following structural unit (1-4) by condensation, and a compound that gives the structural unit (1-4) by condensation. And at least one selected from compounds giving the following structural unit (1-5).
  • the present invention in the method for producing a polysiloxane having a carbon-carbon unsaturated bond and a hydrosilyl group capable of hydrosilylation reaction, gelation during the reaction is prevented, and the produced polysiloxane is excellent in storage stability, Can be stored without increasing high molecular weight components or causing gelation
  • the carbon-carbon unsaturated bond contained in the organic group A or the like means a carbon-carbon double bond or a carbon-carbon triple bond.
  • the polysiloxane obtained by the production method of the present invention will be described.
  • the polysiloxane is a condensate in which structural units (1-1) to (1-6) shown below are bonded by a siloxane bond.
  • U, v, w, x, y, and z in Formula (1) represent the molar amount of each structural unit.
  • the number of structural units contained in the polysiloxane may be only one type or two or more types for each of the structural units (1-3) to (1-6).
  • the actual form of condensation of the structural units in the polysiloxane molecule does not necessarily follow the order of arrangement in the formula (1).
  • the actual number of structural units (1-2) per molecule is preferably 5 to 100, more preferably 6 to 80, still more preferably 7 to 60, particularly It is preferably 8 to 40.
  • the number of the structural unit (1-3) is preferably 0 to 40, more preferably 0 to 30, still more preferably 0 to 20, and particularly preferably 0 to 10.
  • the number of structural units (1-4) is preferably 0 to 40, more preferably 0 to 30, still more preferably 0 to 20, and particularly preferably 0 to 10.
  • the number of structural units (1-5) is preferably 0.1 to 50, more preferably 0.5 to 30, still more preferably 1 to 20, and particularly preferably 2 to 10.
  • the number of the structural unit (1-6) is preferably 0.1 to 20, more preferably 0.2 to 10, still more preferably 0.3 to 8, and particularly preferably 0.5 to 5.
  • a contained in the structural unit (1-3) is an organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction. That is, the organic group A is a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction. Therefore, specific examples of the organic group A include vinyl group, orthostyryl group, methacrylyl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group.
  • the polysiloxane according to the present invention may contain two or more of the organic groups A. In this case, all the organic groups A may be the same as or different from each other. Further, the plurality of organic groups A may be the same and may include different organic groups A.
  • an inorganic part means a SiO (siloxane) part.
  • R 1 represents an alkylene group having 1 to 20 carbon atoms (a divalent aliphatic group), a divalent aromatic group having 6 to 20 carbon atoms, or 3 carbon atoms. It is at least one selected from -20 divalent alicyclic groups.
  • alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, n-propylene group, i-propylene group, n-butylene group, i-butylene group and the like.
  • Examples of the divalent aromatic group having 6 to 20 carbon atoms include a phenylene group and a naphthylene group.
  • Examples of the divalent alicyclic group having 3 to 20 carbon atoms include a divalent hydrocarbon group having a norbornene skeleton, a tricyclodecane skeleton, or an adamantane skeleton.
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a carbon atom having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond that can be hydrosilylated. It is at least one selected from organic groups.
  • the alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • the organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction is a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction.
  • Specific examples thereof include vinyl group, orthostyryl group, methacrylyl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-methyl- Examples include 1-butenyl group, phenylethenyl group, ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, phenylbutynyl group and the like.
  • R 2 contained in the structural unit (1-4) may be the same or different.
  • R 2 is preferably a hydrogen atom, a methyl group, or a vinyl group because the number of carbon atoms is small and the cured polysiloxane is excellent in heat resistance.
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a carbon atom having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond that can be hydrosilylated. It is at least one selected from organic groups.
  • the alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • the organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction is a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction.
  • Specific examples thereof include vinyl group, orthostyryl group, methacrylyl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-methyl- Examples include 1-butenyl group, phenylethenyl group, ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, phenylbutynyl group and the like.
  • the plurality of R 3 contained in the structural unit (1-5) may be the same or different.
  • R 3 is preferably a hydrogen atom or a vinyl group because it can participate in the curing reaction of polysiloxane, has a small number of carbon atoms, and the polysiloxane cured product has excellent heat resistance.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a carbon atom having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond that can be hydrosilylated. It is at least one selected from organic groups.
  • the alkyl group may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • the organic group having 2 to 10 carbon atoms having a carbon-carbon unsaturated bond capable of hydrosilylation reaction is a functional group having a carbon-carbon double bond or a carbon-carbon triple bond capable of hydrosilylation reaction.
  • Specific examples thereof include vinyl group, orthostyryl group, methacrylyl group, parastyryl group, acryloyl group, methacryloyl group, acryloxy group, methacryloxy group, 1-propenyl group, 1-butenyl group, 1-pentenyl group, 3-methyl- Examples include 1-butenyl group, phenylethenyl group, ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, phenylbutynyl group and the like.
  • the plurality of R 4 contained in the structural unit (1-5) may be the same or different.
  • R 4 is preferably a hydrogen atom, a methyl group or a vinyl group because of good reactivity and a small number of carbon atoms, and a methyl group is particularly preferred from the viewpoint of easy handling of raw material monomers and intermediate products.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and may be either an aliphatic group or an alicyclic group, and may be a linear or branched group. Either is acceptable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • the structural unit (1-6) is an alkoxy group that is a hydrolyzable group contained in a raw material monomer described later, or an alcohol according to the present invention contained in a reaction solvent is hydrolyzable of the raw material monomer. An alkoxy group formed by substitution with a group, which remains in the molecule without hydrolysis or polycondensation, or a hydroxyl group which remains in the molecule without polycondensation after hydrolysis .
  • the relationship between u, v, w, x and y is 0 ⁇ u / (v + w + x + y) ⁇ 2, more preferably 0 ⁇ u / (v + w + x + y) ⁇ 1.5, and more preferably 0 ⁇ u / (v + w + x + y) ⁇ 1, particularly preferably 0 ⁇ u / (v + w + x + y) ⁇ 0.8. If u / (v + w + x + y) is too large, the polysiloxane tends to gel or the storage stability tends to decrease.
  • the relationship between v, w and x is 0 ⁇ x / (v + w) ⁇ 2, more preferably 0 ⁇ x / (v + w) ⁇ 1, and further preferably 0 ⁇ x / (v + w). ) ⁇ 0.7, particularly preferably 0 ⁇ x / (v + w) ⁇ 0.5.
  • x / (v + w) is too large, the heat resistance of the resulting polysiloxane cured product tends to decrease when heated in the absence of a catalyst.
  • the relationship between v, w and y is 0 ⁇ y / (v + w) ⁇ 2, more preferably 0 ⁇ y / (v + w) ⁇ 1, and further preferably 0 ⁇ y / (v + w). ) ⁇ 0.7, particularly preferably 0 ⁇ y / (v + w) ⁇ 0.4.
  • y / (v + w) is too large, the heat resistance of the resulting polysiloxane cured product tends to decrease when heated in the absence of a catalyst.
  • the relationship between v, w, x, y and z is 0.01 ⁇ z / (v + w + x + y) ⁇ 1, more preferably 0.02 ⁇ z / (v + w + x + y) ⁇ 0.5. Particularly preferably, 0.03 ⁇ z / (v + w + x + y) ⁇ 0.3. If z / (v + w + x + y) is too small, the curability tends to decrease when heated in the absence of a catalyst.
  • the number average molecular weight of the polysiloxane according to the present invention is preferably in the range of 300 to 30,000. This polysiloxane is easily dissolved in an organic solvent, the viscosity of the solution is easy to handle, and the storage stability is excellent.
  • the number average molecular weight is more preferably 500 to 15,000, still more preferably 700 to 10,000, and particularly preferably 1,000 to 5,000.
  • the number average molecular weight can be determined by GPC (gel permeation chromatograph), for example, using polystyrene as a standard substance under the measurement conditions in [Example] described later.
  • the method for producing a polysiloxane of the present invention comprises at least one alcohol selected from a secondary alcohol having 4 to 6 carbon atoms and a tertiary alcohol having 4 to 6 carbon atoms (the alcohol according to the present invention).
  • a silicon compound having four siloxane bond-forming groups (hereinafter referred to as “Q monomer”) that forms the structural unit (1-1), the structural units (1-2) and (1- 3) a silicon compound having three siloxane bond-forming groups (hereinafter referred to as “T monomer”) and a silicon compound having two siloxane bond-forming groups forming a structural unit (1-4) (
  • a “D monomer”) and a silicon compound (hereinafter referred to as “M monomer”) that forms the structural unit (1-5) having one siloxane bond-forming group can be used.
  • a monomer and at least one of M monomers forming the structural unit (1-5) are used.
  • the siloxane bond-forming group contained in the Q monomer, T monomer, D monomer or M monomer as the raw material monomer is a hydroxyl group or a hydrolyzable group.
  • examples of the hydrolyzable group include a halogeno group and an alkoxy group.
  • At least one of the Q monomer, T monomer, D monomer and M monomer preferably has a hydrolyzable group.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the siloxane bond-forming group of the Q monomer, T monomer, or D monomer corresponding to each structural unit is an alkoxy group
  • the siloxane bond-forming group contained in the M monomer is an alkoxy group or a siloxy group. It is preferable.
  • the monomer corresponding to each structural unit may be used independently, and can be used in combination of 2 or more type. Examples of the Q monomer that gives the structural unit (1-1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • T monomer examples include trimethoxysilane, triethoxysilane, tripropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, and ethyltrimethoxy.
  • examples include silane, ethyltriethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, and trichlorosilane.
  • T monomer that gives the structural unit (1-3) examples include trimethoxyvinylsilane, triethoxyvinylsilane, (p-styryl) trimethoxysilane, (p-styryl) triethoxysilane, and (3-methacryloyloxypropyl) trimethoxysilane. (3-methacryloyloxypropyl) triethoxysilane, (3-acryloyloxypropyl) trimethoxysilane, (3-acryloyloxypropyl) triethoxysilane, and the like.
  • the D monomer that gives the structural unit (1-4) is dimethoxydimethylsilane, dimethoxydiethylsilane, diethoxydimethylsilane, diethoxydiethylsilane, dipropoxydimethylsilane, dipropoxydiethylsilane, dimethoxybenzylmethylsilane, diethoxybenzyl.
  • Examples include methylsilane and dichlorodimethylsilane.
  • Examples of the M monomer that gives the structural unit (1-5) include hexaethyldisiloxane, hexapropyldisiloxane, 1,1, in addition to hexamethyldisiloxane that gives two structural units (1-5) by hydrolysis.
  • Examples of the organic compound giving the structural unit (1-6) include 2-propanol, 2-butanol, methanol, ethanol and the like
  • the reaction solvent used in the condensation step includes the alcohol according to the present invention.
  • the alcohol according to the present invention is used in an amount of 0.5% by mass or more based on the total amount of all reaction solvents, including additional input in the middle of hydrolysis / polycondensation reaction. Can be suppressed.
  • a preferable usage amount is 1% by mass or more and 60% by mass or less, and more preferably 3% by mass or more and 40% by mass or less.
  • the alcohol according to the present invention contained in the reaction solvent is a narrowly defined alcohol represented by the general formula R—OH, and is a compound having no functional group other than the alcoholic hydroxyl group.
  • Specific examples thereof include 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2- Methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3-pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2- Examples include butanol and cyclohexanol.
  • the alcohol having such a property is a compound having a water solubility of 10 g or more per 100 g of alcohol at 20 ° C.
  • 2-butanol is particularly preferred.
  • the reaction solvent used in the condensation step may be only the alcohol according to the present invention, or may be a mixed solvent of the alcohol according to the present invention and at least one sub-solvent.
  • the sub-solvent may be either a polar solvent or a nonpolar solvent, or a combination of both.
  • Preferred as the polar solvent are secondary or tertiary alcohols having 3 or 7 to 10 carbon atoms, diols having 2 to 20 carbon atoms, and the like.
  • primary alcohol it is preferable to use the usage-amount to 5 mass% or less of the whole reaction solvent.
  • a preferred polar solvent is 2-propanol which can be obtained industrially at low cost.
  • the alcohol according to the present invention has a concentration of water required for the hydrolysis step. Even if it is a thing which cannot melt
  • a preferable amount of the polar solvent is 20 parts by mass or less, more preferably 1 to 20 parts by mass, and particularly preferably 3 to 10 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
  • the nonpolar solvent is not particularly limited as long as it is a nonpolar solvent miscible with the alcohol according to the present invention and the polar solvent used in combination.
  • the nonpolar solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, amides, ketones, esters, cellosolves, and the like.
  • aliphatic hydrocarbons alicyclic hydrocarbons, and aromatic hydrocarbons are preferable.
  • n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water.
  • the reaction mixture containing polysiloxane is used.
  • the reaction solvent is removed by distillation, water can be efficiently distilled off.
  • xylene which is an aromatic hydrocarbon is particularly preferable since it has a relatively high boiling point.
  • the hydrolysis / polycondensation reaction can proceed efficiently even with a small amount of addition, and water can be efficiently distilled off from the reaction solution after the condensation step.
  • the amount of the nonpolar solvent used is 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass with respect to 1 part by mass of the alcohol according to the present invention.
  • the hydrolysis / polycondensation reaction in the condensation step proceeds in the presence of water.
  • the amount of water used for hydrolyzing the hydrolyzable group contained in the raw material monomer is preferably 0.5 to 5 times mol, more preferably 1 to 2 times mol for the hydrolyzable group.
  • the hydrolysis / polycondensation reaction of the raw material monomer may be performed without a catalyst or may be performed using a catalyst.
  • a catalyst usually an acid catalyst exemplified by inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; and organic acids such as formic acid, acetic acid, oxalic acid and paratoluenesulfonic acid is preferably used.
  • the amount of the acid catalyst used is preferably an amount corresponding to 0.01 to 20 mol%, and an amount corresponding to 0.1 to 10 mol%, based on the total amount of silicon atoms contained in the raw material monomer. More preferably.
  • the completion of the hydrolysis / polycondensation reaction in the condensation step can be confirmed, for example, by the following method.
  • alkoxysilane such as ethoxydimethylsilane
  • the completion of the reaction can be confirmed by not detecting all of the raw material monomers by gas chromatographic analysis of the reaction solution.
  • a silicon dimer such as disiloxane such as 1,1,3,3-tetramethyldisiloxane
  • all of Q monomer, T monomer and D monomer are analyzed by gas chromatographic analysis. Is not detected and the change in the peak height of the silicon dimer in the gas chromatogram is almost eliminated, the completion of the reaction can be confirmed.
  • the concentration DP (mass%) of the polysiloxane in the reaction solution after the condensation step is not particularly limited.
  • the concentration of the produced polysiloxane calculated from the amount of the raw material monomer used is preferably 1 to 60% by mass, more preferably 3 to 40% by mass, based on the entire reaction solution.
  • an auxiliary agent can be added to the reaction system.
  • examples thereof include an antifoaming agent that suppresses foaming of the reaction solution, a scale control agent that prevents the scale from adhering to the reaction tank and the stirring shaft, a polymerization inhibitor, and a hydrosilylation reaction inhibitor.
  • the amount of these auxiliaries used is arbitrary, but is preferably about 1 to 100% by mass with respect to the polysiloxane concentration in the reaction mixture.
  • the polymerization inhibitor can be selected from conventionally known polymerization inhibitors as long as they suppress polymerization related to hydrosilyl groups or carbon-carbon unsaturated bonds contained in polysiloxane.
  • the hydrosilylation reaction inhibitor include methylvinylcyclotetrasiloxane, acetylene alcohols, siloxane-modified acetylene alcohols, hydroperoxides, hydrosilylation reaction inhibitors containing a nitrogen atom, a sulfur atom, or a phosphorus atom.
  • the stability of the produced polysiloxane is improved by providing a distillation step for distilling off the reaction solvent and by-products, residual monomers, water and the like contained in the reaction solution obtained by the condensation step. be able to.
  • Mn and Mw mean number average molecular weight and weight average molecular weight, respectively, and are linked at 40 ° C. in a toluene solvent by gel permeation chromatography (hereinafter abbreviated as “GPC”).
  • GPC gel permeation chromatography
  • the sample was dissolved in deuterated chloroform and subjected to measurement and analysis. Furthermore, the viscosity of the obtained polysiloxane was measured at 25 ° C. using an E-type viscometer.
  • Example 1 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,478.4 g (9 mol), trimethoxyvinylsilane 444.7 g (3 mol), 1,1,3,3-tetramethyldisiloxane 403.0 g (3 mol) were added to the flask. 2,778.8 g of 2-butanol and 2,668.4 g of xylene.
  • polysiloxane (P1) an almost colorless liquid
  • Mn was measured by GPC and found to be 1,300.
  • Example 2 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,478.4 g (9 mol), trimethoxyvinylsilane 444.7 g (3 mol), 1,1,3,3-tetramethyldisiloxane 403.0 g (3 mol) were added to the flask. 177.8 g of 2-butanol, 577.000 g of 2-propanol and 2.001.4 g of xylene were stored.
  • polysiloxane (P2) an almost colorless liquid
  • Mn was measured by GPC and found to be 1,900.
  • the viscosity was measured with the E-type viscosity meter, it was 370 mPa * s (25 degreeC).
  • Example 3 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere.
  • the magnetic stir bar 1,330.6 g (8.1 mol) of triethoxysilane, 400.2 g (2.7 mol) of trimethoxyvinylsilane, 162.2 g (1.35 mol) of dimethyldimethoxysilane, 1, While containing 362.6 g (2.7 mol) of 1,3,3-tetramethyldisiloxane, 1,734.4 g of 2-butanol and 2,601.6 g of xylene, and stirring the contents at 25 ° C., A mixture of 642.7 g of an aqueous hydrochloric acid solution having a concentration of 1.59% by mass and 867.20 g of 2-butanol was added dropwise from the dropping funnel over 1 hour to conduct hydrolysis and polycondensation reaction. After completion of
  • polysiloxane (P3) an almost colorless liquid
  • Mn was measured by GPC and found to be 1,200.
  • Example 4 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere.
  • the magnetic stir bar triethoxysilane 1,330.6 (8.1 mol), trimethoxyvinylsilane 400.2 g (2.7 mol), dimethyldimethoxysilane 162.2 g (1.35 mol), 1, It contains 362.6 g (2.7 mol) of 1,3,3-tetramethyldisiloxane, 173.4 g of 2-butanol, 562.6 g of 2-propanol and 1,951.2 g of xylene, and the contents at 25 ° C.
  • polysiloxane (P4) 1,014.4 g of an almost colorless liquid (hereinafter referred to as “polysiloxane (P4)”) was obtained.
  • Mn was measured by GPC and found to be 1,700.
  • the viscosity was measured with the E-type viscometer, it was 130 mPa * s (25 degreeC).
  • Example 5 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,330.6 (8.1 mol), trimethoxyvinylsilane 400.2 g (2.7 mol), dimethyldimethoxysilane 162.2 g (1.35 mol), 1, Accommodates 362.6 g (2.7 mol) of 1,3,3-tetramethyldisiloxane, 173.4 g of 3-hexanol, 562.6 g of 2-propanol and 1,951.2 g of xylene, and the contents at 25 ° C.
  • the magnetic stir bar triethoxysilane 1,330.6 (8.1 mol), trimethoxyvinylsilane 400.2 g (2.7 mol), dimethyldimethoxysilane 162.2 g (1.35 mol), 1, Accommodates
  • polysiloxane (P5) an almost colorless liquid
  • Mn was measured by GPC and found to be 1,600.
  • Comparative Example 1 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,478.4 g (9 mol), trimethoxyvinylsilane 444.7 g (3 mol), 1,1,3,3-tetramethyldisiloxane 403.0 g (3 mol) were added to the flask. 2,442.4 g of 2-propanol and 2,163.6 g of xylene were accommodated.
  • polysiloxane (P6) an almost colorless liquid
  • Mn was measured by GPC and found to be 2,000.
  • Comparative Example 2 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,478.4 g (9 mol), trimethoxyvinylsilane 444.7 g (3 mol), 1,1,3,3-tetramethyldisiloxane 403.0 g (3 mol) were added to the flask. 1-butanol 1,778.8 g and xylene 2,668.4 g.
  • polysiloxane (P7) an almost colorless liquid
  • Mn was measured by GPC and found to be 2,600.
  • the viscosity was measured with the E-type viscosity meter, it was 3,850 mPa * s (25 degreeC).
  • Comparative Example 3 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, a magnetic stir bar, triethoxysilane 1,182.8 g (7.2 mol), trimethoxyvinylsilane 355.8 g (2.4 mol), 1,1,3,3-tetramethyldisiloxane 322. 4 g (2.4 mol), 1,730.4 g of propylene glycol monomethyl ether and 2,595.8 g of xylene were accommodated.
  • the pressure inside the flask was reduced to 100 Pa and heated to 60 ° C., and when volatile components including water were distilled off, the product contained in the reaction solution gelled during the distillation.
  • Comparative Example 4 A four-necked flask was equipped with a magnetic stirrer, a dropping funnel, a reflux condenser, and a thermometer, and the atmosphere in the flask was changed to a nitrogen gas atmosphere. Next, the magnetic stir bar, triethoxysilane 1,330.6 (8.1 mol), trimethoxyvinylsilane 400.2 g (2.7 mol), dimethyldimethoxysilane 162.2 g (1.35 mol), 1, It accommodated 362.6 g (2.7 mol) of 1,3,3-tetramethyldisiloxane, 1,406.4 g of 2-propanol and 2,109.6 g of xylene.
  • polysiloxane (P8) an almost colorless liquid
  • Mn was measured by GPC and found to be 1,500.
  • the viscosity was measured with the E-type viscometer, it was 130 mPa * s (25 degreeC).
  • Table 1 shows the compositions of the reaction solvents used in the condensation steps in Examples 1 to 5 and Comparative Examples 1 to 4.
  • the mass ratio of the reaction solvent was calculated using the charged amount at the start of production and the total amount added during the reaction.
  • Table 2 shows the compositions and physical properties of the polysiloxanes obtained in Examples 1 to 5 and Comparative Examples 1 to 4. Regarding the composition of the polysiloxane, the types and molar ratios of the structural units are shown.
  • Vi represents a vinyl group
  • Me represents a methyl group
  • Et represents an ethyl group
  • iPr represents an isopropyl group
  • secBu represents a sec-butyl group (2-butyl group).
  • composition ratio (molar ratio) was determined by conducting a 1 H-NMR measurement of polysiloxane, and the signal having a chemical shift ⁇ (ppm) of ⁇ 0.2 to 0.6 was based on the structure of Si—CH 3 and was ⁇ (ppm ) Of 0.8 to 1.5 is based on the structure of OCH (CH 3 ) CH 2 CH 3 , OCH (CH 3 ) 2 and OCH 2 CH 3 , and a signal with ⁇ (ppm) of 3.5 to 3.9 Is based on the structure of OCH 2 CH 3 , and a signal with ⁇ (ppm) of 3.9 to 4.1 is based on the structure of OCH (CH 3 ) CH 2 CH 3 , and ⁇ (ppm) is 4.2 to 5.
  • the signal of 2 is based on the structure of Si—H, and the signal having ⁇ (ppm) of 5.7 to 6.3 is considered to be based on the structure of CH ⁇ CH 2. It was determined by setting up simultaneous equations.
  • the structural unit T since it is known that the charged monomers (triethoxysilane, trimethoxyvinylsilane, etc.) are incorporated into the polysiloxane as they are, from the charged values of all the monomers and the NMR measurement values, the polysiloxane The molar ratio of each structural unit contained in was determined. Since the polysiloxane obtained in Comparative Example 2 was not dissolved in deuterated chloroform, 1 H-NMR measurement could not be performed. In Comparative Example 3, since the polysiloxane obtained in the condensation step was gelled in the distillation step, neither physical property measurement nor 1 H-NMR measurement was possible.
  • the polysiloxanes obtained in Comparative Examples 1 and 2 gelled one day after starting the storage stability test. Further, the polysiloxane obtained in Comparative Example 4, as compared to the polysiloxane obtained in Example 1-5, greatly change rate D M and D V is 2.00 or more, wanted inferior storage stability It was. On the other hand, the polysiloxanes obtained in Examples 1 to 5 had a small rate of change. Examples 2 and 4 in which 2-butanol, a polar solvent, and a nonpolar solvent were used in combination as reaction solvents had a smaller change rate and excellent storage stability than Examples 1 and 3 in which no polar solvent was used. .
  • a heat-resistant cured product can be formed by subjecting it to a crosslinking reaction.
  • This cured product has good characteristics in terms of mechanical strength such as water resistance, chemical resistance, stability, electrical insulation and scratch resistance in addition to heat resistance. It can be used as a protective coating or layer for articles or parts in a wide range of fields including materials and aerospace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は、下記の式(1)で表されるポリシロキサンの製造方法であって、炭素原子数4~6の第2級アルコール及び炭素原子数4~6の第3級アルコールから選ばれた少なくとも1種のアルコールを含む反応溶媒中で、構成ユニットを形成する原料モノマーの加水分解・重縮合反応を行う縮合工程を備える。本発明のポリシロキサンの製造方法に拠れば、製造中に生じるゲル化、並びに製造後の保存時等に見られる分子量増大又はゲル化等の不具合が抑制される。

Description

ポリシロキサンの製造方法
 本発明は、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンの製造方法に関する。
 半導体関連製品や液晶関連製品においては、高集積化、高速化、多機能化等の要求に応えるために、半導体素子又は液晶素子を配設するための基板上に形成されるパターンの微細化や多層化が図られており、製造時において基板表面の凹凸を平坦化する工程が不可欠となっている。そして、半導体素子又は液晶素子用の基板製造における平坦化膜や層間絶縁膜として、「SOG(スピンオングラス)」と呼ばれる、硬化後にシリカ系の被膜を与える塗布液がよく用いられる。これは、アルコキシシランの加水分解物等を含む塗液を、基材上にスピンコート法等により塗布した後、塗膜を加熱処理することによって揮発性成分を焼き飛ばし、Si-O-Si結合を残してシリカ系被膜を形成する方法である。
 このような平坦化膜や層間絶縁膜は、基板の製造工程において加熱処理を受けることが多いため、より耐熱性の高い樹脂が必要とされている。例えば、耐熱性樹脂原料として、特許文献1には、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンが提案されている。この文献には、ポリシロキサンを溶解する媒体について、各種有機溶剤を用いることができることが記載されている。しかし、実施例では、反応溶媒としてトルエン及びエタノールの混合溶剤を用いているのに、生成したポリシロキサンをトルエン単独で溶解することができなかったことが記載されている。そして、反応溶媒の種類によって製造中や製造後のポリシロキサンの保存安定性に差が出ることについては記載も示唆もなかった。
 ヒドロシリル化反応可能な構造を有する、有機溶剤に可溶なポリシロキサンについては、特許文献2にも記載がある。この文献には、原料モノマーを加水分解・重縮合反応させる工程で使用可能な反応溶媒として、芳香族炭化水素、エーテル類及びエステル類が記載されている。そして、これらの非極性溶剤と共に、メタノール、エタノール、2-プロパノール等の低級アルコールを併用しても良いことの記載がある。しかしながら、実施例において、反応溶媒として用いられたのはキシレンに2-プロパノールを添加した混合溶媒であり、この文献においても、反応溶媒の種類によって、製造中や製造後のポリシロキサンの安定性に差が出ることについては記載も示唆もなかった。
 一方、特許文献3には、ヒドロシリル化反応可能な構造を有するポリシロキサンと、水酸基を有さず、沸点が80℃~130℃である有機溶剤とを含む硬化性塗布組成物が開示されている。そして、有機溶剤が水酸基を含んでいる場合は、保存中にポリシロキサンの分子量が増大したり、塗布組成物がゲル化したり、塗膜に塗装ブツ(paint coat particle)が生じる等の不具合が起こることが記載されている。
 上記のように、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンを製造する場合に、原料モノマーの加水分解・重縮合反応に供する工程を備える製造方法は知られている。そして、反応溶媒として各種有機溶剤を用いることは知られていたが、有機溶剤の種類によって製造中のゲル化防止や製造後のポリシロキサンの保存安定性に差が出ることについては知られていなかった。また、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンを含む硬化性塗布組成物が、水酸基を有する有機溶剤を含む場合には、組成物の保存安定性を損ねてポリシロキサンの分子量増大やゲル化を引き起こすことが知られていた。従って、ポリシロキサンの製造方法において、ポリシロキサンのゲル化や分子量増大を防いで、品質の揃った製品を効率よく製造するという課題に対しては、反応溶媒を選択する手段は知られておらず、また、仮に選択するとしても、組成物に含まれる溶剤として水酸基を含む有機溶剤は好ましくないことが知られていたので、上記の課題に対して水酸基を含む有機溶剤を用いることには阻害理由があったということができる。
WO2005/010077国際公開パンフレット WO2009/066608国際公開パンフレット 特開2011-52170号公報
 上記のように、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンが広く用いられるようになり、品質の安定した製品を効率よく製造することが必要になった。本発明の目的は、製造中のゲル化、製造後のポリシロキサンの分子量増大やゲル化等を抑制するポリシロキサンの製造方法を提供することである。
 本発明者らは、下記一般式(1)で表される、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンを製造するために、特定の原料モノマーを加水分解・重縮合反応せしめる反応溶媒として、極性溶剤である、炭素原子数4~6の第2級アルコール及び炭素原子数4~6の第3級アルコールから選ばれた少なくとも1種(以下、「本発明に係るアルコール」という)を含むことにより、反応中のゲル化を防ぐことができるだけでなく、製造後の保存安定性試験においても、ポリシロキサンの高分子量成分の増大やゲル化が起こりにくいことを見出した。
Figure JPOXMLDOC01-appb-I000006
〔式中、Aは、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基であり、R1は炭素原子数1~20のアルキレン基、炭素原子数6~20の2価の芳香族基、及び炭素原子数3~20の2価の脂環族基から選択される少なくとも1種であり、nは0又は1であり、R2は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基(1分子中のR2は同一でも異なっていてもよい。)から選択される少なくとも1種であり、R3は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基から選択される少なくとも1種であり、R4は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基(1分子中のR4は同一でも異なっていてもよい。)から選択される少なくとも1種であり、R5は水素原子又は炭素原子数1~6のアルキル基であり、vは正の数であり、u、w、x、y及びzは0又は正の数であり、w、x及びyのうち少なくとも1つは正の数であり、0≦u/(v+w+x+y)≦2であり、0≦x/(v+w)≦2であり、0≦y/(v+w)≦2であり、0≦z/(v+w+x+y)≦1である。但し、w=0のとき、R2、R3及びR4のいずれか1つはヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基である。〕
 尚、原料モノマーは、縮合により構成単位(1-2)を与える化合物と、縮合により下記構成単位(1-3)を与える化合物、縮合により下記構成単位(1-4)を与える化合物及び縮合により下記構成単位(1-5)を与える化合物から選ばれた少なくとも1種とを含有する。
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 本発明によれば、炭素-炭素不飽和結合及びヒドロシリル基を有する、ヒドロシリル化反応可能なポリシロキサンの製造方法において、反応中のゲル化を防ぎ、製造されたポリシロキサンは保存安定性に優れ、高分子量成分の増大やゲル化を起こすことなく保存することができる
 以下、本発明のポリシロキサンの製造方法について、好適な実施形態について詳細に説明するが、本発明はこの実施形態に限定されるものではない。
 以下の記載において、有機基A等に含まれる炭素-炭素不飽和結合は、炭素-炭素二重結合又は炭素-炭素三重結合を意味する。
 本発明の製造方法で得られるポリシロキサンについて説明する。
 上記式(1)から明らかなように、ポリシロキサンは、以下に示される構成単位(1-1)~(1-6)がシロキサン結合で結合した縮合体である。式(1)におけるu、v、w、x、y及びzは、それぞれの構成単位のモル量を表す。尚、上記ポリシロキサンに含まれる構成単位の数は、構成単位(1-3)~(1-6)のそれぞれについて、1種のみであってよいし、2種以上であってもよい。また、実際のポリシロキサン分子内の構成単位の縮合形態は、必ずしも式(1)の配列順通りでなくてよい。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
 式(1)で表されるポリシロキサンにおいて、実際の1分子当たりの構成単位(1-2)の個数は、好ましくは5~100、より好ましくは6~80、更に好ましくは7~60、特に好ましくは8~40である。構成単位(1-3)の個数は、好ましくは0~40、より好ましくは0~30、更に好ましくは0~20、特に好ましくは0~10である。構成単位(1-4)の個数は、好ましくは0~40、より好ましくは0~30、更に好ましくは0~20、特に好ましくは0~10である。構成単位(1-5)の個数は、好ましくは0.1~50、より好ましくは0.5~30、更に好ましくは1~20、特に好ましくは2~10である。構成単位(1-6)の個数は、好ましくは0.1~20、より好ましくは0.2~10、更に好ましくは0.3~8、特に好ましくは0.5~5である。
 上記構成単位(1-3)に含まれるAは、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基である。即ち、この有機基Aは、ヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基である。従って、有機基Aの具体例としては、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基等が例示される。本発明に係るポリシロキサンは、上記有機基Aを2個以上含むことができるが、その場合、全ての有機基Aは、互いに同一であってよいし、異なってもよい。また、複数の有機基Aが同一であり、異なる有機基Aを含んでもよい。上記有機基Aとしては、構成単位(1-3)を形成する原料モノマーが得やすいことから、炭素原子数が少ないビニル基及び反応性の良好なパラスチリル基が好ましい。炭素原子数が少ないことは、ポリシロキサン硬化物を無機部分の割合を高くし、耐熱性の優れたものにすることができる。尚、無機部分とは、SiO(シロキサン)部分を意味する。
 上記構成単位(1-3)において、R1は、炭素原子数1~20のアルキレン基(2価の脂肪族基)、炭素原子数6~20の2価の芳香族基又は炭素原子数3~20の2価の脂環族基から選択される少なくとも1種である。
 炭素原子数1~20のアルキレン基としては、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、i-ブチレン基等が例示される。炭素原子数6~20の2価の芳香族基としてはフェニレン基、ナフチレン基等が例示される。また、炭素原子数3~20の2価の脂環族基としては、ノルボルネン骨格、トリシクロデカン骨格又はアダマンタン骨格を有する2価の炭化水素基等が例示される。
 また、上記構成単位(1-3)において、nは0又は1である。炭素原子数が少ないほうが硬化被膜の耐熱性が高くなるので、n=0が好ましい。
 上記構成単位(1-4)において、R2は、水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基から選択される少なくとも1種である。アルキル基は、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基は、ヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基である。その具体例としては、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基等が例示される。上記構成単位(1-4)に含まれる複数のR2は同種であってよく、異ってもよい。R2としては、炭素原子数が少なく、ポリシロキサン硬化物が耐熱性に優れることから、水素原子、メチル基及びビニル基が好ましい。
 上記構成単位(1-5)において、R3は、水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基から選択される少なくとも1種である。アルキル基は、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基は、ヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基である。その具体例としては、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基等が例示される。上記構成単位(1-5)に含まれる複数のR3は同種であってよく、異ってもよい。R3としては、ポリシロキサンの硬化反応に参加でき、炭素原子数が少なく、ポリシロキサン硬化物が耐熱性に優れることから、水素原子及びビニル基が好ましい。
 上記構成単位(1-5)において、R4は、水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基から選択される少なくとも1種である。アルキル基は、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基は、ヒドロシリル化反応可能な、炭素-炭素二重結合又は炭素-炭素三重結合を持つ官能基である。その具体例としては、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイル基、メタクリロイル基、アクリロキシ基、メタクリロキシ基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、3-メチル-1-ブテニル基、フェニルエテニル基、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、フェニルブチニル基等が例示される。上記構成単位(1-5)に含まれる複数のR4は同種であってよく、異ってもよい。R4としては、良好な反応性や炭素原子数が少ないということから、水素原子、メチル基及びビニル基が好ましく、原料モノマーや中間製品の扱いやすさの面からメチル基が特に好ましい。
 上記構成単位(1-6)において、R5は水素原子又は炭素原子数1~6のアルキル基であり、脂肪族基及び脂環族基のいずれでもよく、また、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。尚、上記構成単位(1-6)は、後述する原料モノマーに含まれる加水分解性基であるアルコキシ基、又は、反応溶媒に含まれた、本発明に係るアルコールが、原料モノマーの加水分解性基と置換して生成したアルコキシ基、であり、加水分解・重縮合せずに分子内に残存したものであるか、あるいは、加水分解後、重縮合せずに分子内に残存した水酸基である。
 上記式(1)において、u、v、w、x及びyの関係は、0≦u/(v+w+x+y)≦2であり、より好ましくは0≦u/(v+w+x+y)≦1.5、更に好ましくは0≦u/(v+w+x+y)≦1、特に好ましくは0≦u/(v+w+x+y)≦0.8である。u/(v+w+x+y)が大きすぎると、ポリシロキサンがゲル化する傾向にあるか、もしくは保存安定性が低下する傾向にある。
 上記式(1)において、v、w及びxの関係は、0≦x/(v+w)≦2であり、より好ましくは0≦x/(v+w)≦1、更に好ましくは0≦x/(v+w)≦0.7、特に好ましくは0≦x/(v+w)≦0.5である。x/(v+w)が大きすぎると、無触媒下で加熱した場合に、得られるポリシロキサン硬化物の耐熱性が低下する傾向にある。
 上記式(1)において、v、w及びyの関係は、0≦y/(v+w)≦2であり、より好ましくは0≦y/(v+w)≦1、更に好ましくは0≦y/(v+w)≦0.7、特に好ましくは0≦y/(v+w)≦0.4である。y/(v+w)が大きすぎると、無触媒下で加熱した場合に、得られるポリシロキサン硬化物の耐熱性が低下する傾向にある。
 上記式(1)において、v、w、x、y及びzの関係は、0.01≦z/(v+w+x+y)≦1であり、より好ましくは0.02≦z/(v+w+x+y)≦0.5、特に好ましくは0.03≦z/(v+w+x+y)≦0.3である。z/(v+w+x+y)が小さすぎると、無触媒下で加熱した場合に、硬化性が低下する傾向にある。一方、z/(v+w+x+y)が大きすぎると、ポリシロキサンの保存安定性が低下する傾向にあるか、加熱した場合に、得られるポリシロキサン硬化物の耐熱性が低下する傾向にある。
 本発明において、w=0のとき、R2、R3及びR4の少なくとも1つは、ヒドロシリル化反応可能な炭素-炭素不飽和結合を有する炭素原子数2~10の有機基である。上記式(1)におけるv、w、x、y及びzが上記条件を満たすポリシロキサンは、低粘度であって取り扱い作業性に優れ、均一で平滑で耐熱性に優れた硬化被膜を形成することができる。
 本発明に係るポリシロキサンの数平均分子量は、300~30000の範囲にあることが好ましい。このポリシロキサンは、有機溶剤に溶け易く、その溶液の粘度も扱い易く、保存安定性に優れる。数平均分子量は、より好ましくは500~15,000、更に好ましくは700~10,000、特に好ましくは1,000~5,000である。数平均分子量はGPC(ゲルパーミエーションクロマトグラフ)により、例えば、後述の〔実施例〕における測定条件で、標準物質としてポリスチレンを使用して求めることができる
 以下、本発明のポリシロキサンの製造方法について説明する。
 本発明のポリシロキサンの製造方法は、炭素原子数4~6の第2級アルコール及び炭素原子数4~6の第3級アルコールから選ばれた少なくとも1種のアルコール(本発明に係るアルコール)を含む反応溶媒中で、縮合により上記式(1)中の構成単位を与える原料モノマーの加水分解・重縮合反応を行う縮合工程を備える。この縮合工程においては、構成単位(1-1)を形成する、シロキサン結合生成基を4個有するケイ素化合物(以下、「Qモノマー」という。)と、構成単位(1-2)及び(1-3)を形成する、シロキサン結合生成基を3個有するケイ素化合物(以下、「Tモノマー」という。)と、構成単位(1-4)を形成する、シロキサン結合生成基を2個有するケイ素化合物(以下、「Dモノマー」という。)と、シロキサン結合生成基を1個有する構成単位(1-5)を形成する、ケイ素化合物(以下、「Mモノマー」という。)とを用いることができる。尚、本発明においては、具体的には、構成単位(1-2)を形成するTモノマーと、構成単位(1-3)を形成するTモノマー、構成単位(1-4)を形成するDモノマー、及び、構成単位(1-5)を形成するMモノマーの少なくとも1つとが用いられる。原料モノマーを、本発明に係るアルコールを含む反応溶媒の存在下に、加水分解・重縮合反応させた後に、反応液中の反応溶媒、副生物、残留モノマー、水等を留去させる留去工程を備えることが好ましい。
 上記原料モノマーであるQモノマー、Tモノマー、Dモノマー又はMモノマーに含まれるシロキサン結合生成基は、水酸基又は加水分解性基である。このうち、加水分解性基としては、ハロゲノ基、アルコキシ基等が挙げられる。Qモノマー、Tモノマー、Dモノマー及びMモノマーの少なくとも1つは、加水分解性基を有することが好ましい。縮合工程において、加水分解性が良好であり、酸を副生しないことから、加水分解性基としては、アルコキシ基が好ましく、炭素原子数1~3のアルコキシ基がより好ましい。
 本発明における縮合工程において、各々の構成単位に対応するQモノマー、Tモノマー又はDモノマーのシロキサン結合生成基はアルコキシ基であり、Mモノマーに含まれるシロキサン結合生成基はアルコキシ基又はシロキシ基であることが好ましい。また、各々の構成単位に対応するモノマーは、単独で用いてよいし、2種以上を組み合わせて用いることができる。
 構成単位(1-1)を与えるQモノマーとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。構成単位(1-2)を与えるTモノマーとしては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、トリクロロシラン等が挙げられる。構成単位(1-3)を与えるTモノマーとしては、トリメトキシビニルシラン、トリエトキシビニルシラン、(p-スチリル)トリメトキシシラン、(p-スチリル)トリエトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(3-アクリロイルオキシプロピル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリエトキシシラン等が挙げられる。構成単位(1-4)を与えるDモノマーとしては、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン、ジプロポキシジメチルシラン、ジプロポキシジエチルシラン、ジメトキシベンジルメチルシラン、ジエトキシベンジルメチルシラン、ジクロロジメチルシラン等が挙げられる。構成単位(1-5)を与えるMモノマーとしては、加水分解により2つの構成単位(1-5)を与えるヘキサメチルジシロキサンの他に、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、メトキシジメチルシラン、エトキシジメチルシラン、メトキシジメチルビニルシラン、エトキシジメチルビニルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシジメチルフェニルシラン、エトキシジメチルフェニルシラン、クロロジメチルシラン、クロロジメチルビニルシラン、クロロトリメチルシラン、ジメチルシラノール、ジメチルビニルシラノール、トリメチルシラノール、トリエチルシラノール、トリプロピルシラノール、トリブチルシラノール等が挙げられる。構成単位(1-6)を与える有機化合物としては、2-プロパノール、2-ブタノール、メタノール、エタノール等が挙げられる。
 上記縮合工程で用いる反応溶媒は、本発明に係るアルコールを含む。本発明に係るアルコールは、加水分解・重縮合反応の途中における追加投入分も含めて、全ての反応溶媒の合計量に対して0.5質量%以上用いることで、生成するポリシロキサンのゲル化を抑制することができる。好ましい使用量は1質量%以上60質量%以下であり、更に好ましくは3質量%以上40質量%以下である。
 上記反応溶媒に含まれる本発明に係るアルコールは、一般式R-OHで表される、狭義のアルコールであり、アルコール性水酸基の他には官能基を有さない化合物である。その具体例としては、2-ブタノール、2-ペンタノール、3-ペンタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2-エチル-2-ブタノール、2,3-ジメチル-2-ブタノール、シクロヘキサノール等が例示できる。これらの中では、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール、シクロヘキサノール等の第2級アルコールが好ましい。より好ましいアルコールは、縮合工程で必要な濃度の水を溶解できる化合物である。このような性質のアルコールは、20℃におけるアルコールの100gあたりの水の溶解度が10g以上の化合物である。本発明においては、2-ブタノールが特に好ましい。
 上記縮合工程で用いる反応溶媒は、本発明に係るアルコールのみであってよいし、本発明に係るアルコールと、少なくとも1種類の副溶媒との混合溶媒としても良い。副溶媒は、極性溶剤及び非極性溶剤のいずれでもよいし、両者の組み合わせでもよい。極性溶剤として好ましいものは炭素原子数3若しくは7~10の第2級又は第3級アルコール、炭素原子数2~20のジオール等である。尚、副溶媒として第1級アルコールを用いる場合には、その使用量を、反応溶媒全体の5質量%以下にすることが好ましい。好ましい極性溶剤は、工業的に安価に入手できる2-プロパノールであり、2-プロパノールと、本発明に係るアルコールとを併用することにより、本発明に係るアルコールが加水分解工程で必要な濃度の水を溶解できないものである場合でも、極性溶剤と共に必要量の水を溶解でき、本発明の効果を得ることができる。好ましい極性溶剤の量は、本発明に係るアルコールの1質量部に対して20質量部以下であり、より好ましくは1~20質量部、特に好ましくは3~10質量部である。
 本発明の製造方法において、副溶媒として非極性溶剤を用いることによって、極性溶剤に溶解しにくい原料モノマーの溶解性を上げたり、あるいは原料モノマーや生成物全体の溶解性を上げて、高濃度で加水分解・重縮合反応を行うことができる。非極性溶剤としては、本発明に係るアルコール及び併用する極性溶剤と混和できる非極性溶剤であれば、特に限定されない。この非極性溶剤としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、塩素化炭化水素、アルコール、エーテル、アミド、ケトン、エステル、セロソルブ等が挙げられる。これらの中では、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素が好ましい。具体的には、n-ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、塩化メチレン等が、水と共沸するので好ましく、これらの化合物を併用すると、縮合工程後、ポリシロキサンを含む反応混合物から、蒸留によって反応溶媒を除く際に、水分を効率よく留去することができる。非極性溶剤としては、比較的沸点が高いことから、芳香族炭化水素であるキシレンが特に好ましい。キシレンを用いると、少量の添加でも、加水分解・重縮合反応を効率よく進めることができ、縮合工程後、反応液から、水分を効率よく留去することができる。非極性溶剤の使用量は、本発明に係るアルコールの1質量部に対して50質量部以下であり、より好ましくは1~30質量部、特に好ましくは5~20質量部である。
 上記縮合工程における加水分解・重縮合反応は、水の存在下に進められる。原料モノマーに含まれる加水分解性基を加水分解させるために用いられる水の量は、加水分解性基に対して好ましくは0.5~5倍モル、より好ましくは1~2倍モルである。また、原料モノマーの加水分解・重縮合反応は、無触媒で行ってもよいし、触媒を使用して行ってもよい。触媒を用いる場合は、通常、硫酸、硝酸、塩酸、リン酸等の無機酸;ギ酸、酢酸、シュウ酸、パラトルエンスルホン酸等の有機酸に例示される酸触媒が好ましく用いられる。酸触媒の使用量は、原料モノマーに含まれるケイ素原子の合計量に対して、0.01~20モル%に相当する量であることが好ましく、0.1~10モル%に相当する量であることがより好ましい。
 上記縮合工程における加水分解・重縮合反応の終了は、例えば、以下の方法により、確認することができる。
 Mモノマーとして、エトキシジメチルシラン等のアルコキシシランのみが使用された場合、反応液のガスクロマトグラフ分析により、原料モノマーのすべてが検出されないことで反応の終了を確認することができる。また、Mモノマーとして、1,1,3,3-テトラメチルジシロキサン等のジシロキサン等のケイ素二量体のみが使用された場合、ガスクロマトグラフ分析により、Qモノマー、Tモノマー及びDモノマーのすべてが検出されず、ガスクロマトグラムにおけるケイ素二量体のピークの高さの変化がほぼ無くなると、反応の終了を確認することができる。更に、Mモノマーとして、1,1,3,3-テトラメチルジシロキサン等のジシロキサン等のケイ素二量体と、それ以外のMモノマーとが併用された場合もまた、ガスクロマトグラフ分析により、Qモノマー、Tモノマー及びDモノマーのすべてが検出されず、ガスクロマトグラムにおけるケイ素二量体のピークの高さの変化がほぼ無くなると、反応の終了を確認することができる。
 本発明のポリシロキサンの製造方法において、縮合工程後の反応液中のポリシロキサンの濃度DP(質量%)は、特に限定されない。原料モノマーの使用量から算出される生成ポリシロキサンの濃度は、反応液の全体に対して、好ましくは1~60質量%であり、更に好ましくは、3~40質量%である。
 ポリシロキサンの濃度DP(%)は、下記式(4)で定義される。
  DP={WP/(WP+WS)}×100  (4)
(式中、WPはポリシロキサンの質量(g)、WSは反応液の媒体(反応溶媒、加水分解により遊離したアルコール、加水分解用の過剰の水)の質量(g)である。)
 本発明のポリシロキサンの製造方法に係る縮合工程において、反応系に助剤を添加することができる。例えば、反応液の泡立ちを抑える消泡剤、反応罐や撹拌軸へのスケール付着を防ぐスケールコントロール剤、重合防止剤、ヒドロシリル化反応抑制剤等が挙げられる。これらの助剤の使用量は、任意であるが、好ましくは反応混合物中のポリシロキサン濃度に対して1~100質量%程度である。
 尚、重合防止剤としては、ポリシロキサンに含まれるヒドロシリル基又は炭素-炭素不飽和結合に係る重合を抑制するものであれば、従来、公知の重合防止剤の中から選択することができる。ヒドロシリル化反応抑制剤としては、メチルビニルシクロテトラシロキサン、アセチレンアルコール類、シロキサン変性アセチレンアルコール類、ハイドロパーオキサイド、窒素原子、イオウ原子又はリン原子を含有するヒドロシリル化反応抑制剤等が挙げられる。
 本発明においては、上記縮合工程により得られた反応液に含まれる反応溶媒及び副生物、残留モノマー、水等を留去させる留去工程を備えることにより、生成したポリシロキサンの安定性を向上させることができる。
 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。
 尚、「Mn」及び「Mw」は、それぞれ、数平均分子量及び重量平均分子量を意味し、ゲルパーミエーションクロマトグラフ法(以下、「GPC」と略す)により、トルエン溶媒中、40℃において、連結したGPCカラム「TSK gel G4000HX」及び「TSK gel G2000HX」(型式名、東ソー社製)を用いて分離し、リテンションタイムから標準ポリスチレンを用いて分子量を算出したものである。
 また、得られたポリシロキサンの1H-NMR分析では、試料を、重クロロホルムに溶解し、測定及び解析を行った。
 更に、得られたポリシロキサンの粘度を、E型粘度計を用いて25℃で測定した。
  実施例1
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,478.4g(9mol)、トリメトキシビニルシラン444.7g(3mol)、1,1,3,3-テトラメチルジシロキサン403.0g(3mol)、2-ブタノール1,778.8g及びキシレン2,668.4gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液659.20g及び2-ブタノール889.4gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P1)」という。)982.00gを得た。このポリシロキサン(P1)について、GPCにより、Mnを測定したところ、1,300であった。また、E型粘度計により、粘度を測定したところ、100mPa・s(25℃)であった。
  実施例2
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,478.4g(9mol)、トリメトキシビニルシラン444.7g(3mol)、1,1,3,3-テトラメチルジシロキサン403.0g(3mol)、2-ブタノール177.8g、2-プロパノール577.00g及びキシレン2,001.4gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液659.2g及び2-ブタノール89.0g及び2-プロパノール288.4gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P2)」という。)892.0gを得た。このポリシロキサン(P2)について、GPCにより、Mnを測定したところ、1,900であった。また、E型粘度計により、粘度を測定したところ、370mPa・s(25℃)であった。
  実施例3
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,330.6g(8.1mol)、トリメトキシビニルシラン400.2g(2.7mol)、ジメチルジメトキシシラン162.2g(1.35mol)、1,1,3,3-テトラメチルジシロキサン362.6g(2.7mol)、2-ブタノール1,734.4g及びキシレン2,601.6gを収容し、そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液642.7g及び2-ブタノール867.20gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P3)」という。)958.6gを得た。このポリシロキサン(P3)について、GPCにより、Mnを測定したところ、1,200であった。また、E型粘度計により、粘度を測定したところ、60mPa・s(25℃)であった。
  実施例4
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,330.6(8.1mol)、トリメトキシビニルシラン400.2g(2.7mol)、ジメチルジメトキシシラン162.2g(1.35mol)、1,1,3,3-テトラメチルジシロキサン362.6g(2.7mol)、2-ブタノール173.4g、2-プロパノール562.6g及びキシレン1,951.2gを収容し、そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液642.7g、2-ブタノール86.8g及び2-プロパノール281.2gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P4)」という。)1,014.4gを得た。このポリシロキサン(P4)について、GPCにより、Mnを測定したところ、1,700であった。また、E型粘度計により、粘度を測定したところ、130mPa・s(25℃)であった。
  実施例5
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,330.6(8.1mol)、トリメトキシビニルシラン400.2g(2.7mol)、ジメチルジメトキシシラン162.2g(1.35mol)、1,1,3,3-テトラメチルジシロキサン362.6g(2.7mol)、3-ヘキサノール173.4g、2-プロパノール562.6g及びキシレン1,951.2gを収容し、そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液642.7g、3-ヘキサノール86.8g及び2-プロパノール281.2gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P5)」という。)1013.7gを得た。このポリシロキサン(P5)について、GPCにより、Mnを測定したところ、1,600であった。また、E型粘度計により、粘度を測定したところ、120mPa・s(25℃)であった。
  比較例1
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,478.4g(9mol)、トリメトキシビニルシラン444.7g(3mol)、1,1,3,3-テトラメチルジシロキサン403.0g(3mol)、2-プロパノール1,442.4g及びキシレン2,163.6gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液659.2g及び2-プロパノール721.2gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P6)」という。)955.0gを得た。このポリシロキサン(P6)について、GPCにより、Mnを測定したところ、2,000であった。また、E型粘度計により、粘度を測定したところ、610mPa・s(25℃)であった。
  比較例2
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,478.4g(9mol)、トリメトキシビニルシラン444.7g(3mol)、1,1,3,3-テトラメチルジシロキサン403.0g(3mol)、1-ブタノール1,778.8g及びキシレン2,668.4gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液659.2g、1-ブタノール889.4g及びアセトン190.0gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P7)」という。)960.6gを得た。このポリシロキサン(P7)について、GPCにより、Mnを測定したところ、2,600であった。また、E型粘度計により、粘度を測定したところ、3,850mPa・s(25℃)であった。
  比較例3
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,182.8g(7.2mol)、トリメトキシビニルシラン355.8g(2.4mol)、1,1,3,3-テトラメチルジシロキサン322.4g(2.4mol)、プロピレングリコールモノメチルエーテル1,730.4g及びキシレン2,595.8gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液527.4g及びプロピレングリコールモノメチルエーテル865.2gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分の留去を試みたところ、留去中に、反応液に含まれる生成物がゲル化を起こした。
  比較例4
 四つ口フラスコに、磁気攪拌機、滴下ロート、還流冷却器及び温度計を装着し、フラスコ内を窒素ガス雰囲気にした。次いで、このフラスコに、磁気撹拌子、トリエトキシシラン1,330.6(8.1mol)、トリメトキシビニルシラン400.2g(2.7mol)、ジメチルジメトキシシラン162.2g(1.35mol)、1,1,3,3-テトラメチルジシロキサン362.6g(2.7mol)、2-プロパノール1,406.4g及びキシレン2,109.6gを収容した。そして、25℃として内容物を撹拌しながら、1.59質量%濃度の塩酸水溶液642.7g及び2-プロパノール703.2gの混合液を、滴下ロートから1時間かけて滴下し、加水分解・重縮合反応を行った。滴下終了後、反応液を25℃で18時間放置した。
 その後、フラスコ内を100Paまで減圧して60℃まで加熱し、水を含む揮発性成分を留去した。これにより、ほぼ無色の液体(以下、「ポリシロキサン(P8)」という。)958.60gを得た。このポリシロキサン(P8)について、GPCにより、Mnを測定したところ、1,500であった。また、E型粘度計により、粘度を測定したところ、130mPa・s(25℃)であった。
 表1に、実施例1~5及び比較例1~4における縮合工程で用いた反応溶媒の組成を示した。反応溶媒の質量比は、製造開始時の仕込み分、及び、反応中に追加した分の合計量を用いて算出した。
 表2に、実施例1~5及び比較例1~4により得られたポリシロキサンの組成と物性を示した。ポリシロキサンの組成については、構成単位の種類及びモル比を示した。表2において、Viはビニル基、Meはメチル基、Etはエチル基、iPrはイソプロピル基、secBuはsec-ブチル基(2-ブチル基)を示す。
 組成比(モル比)は、ポリシロキサンの1H-NMR測定を行って、ケミカルシフトδ(ppm)が-0.2~0.6のシグナルはSi-CH3の構造に基づき、δ(ppm)が0.8~1.5はOCH(CH3)CH2CH3、OCH(CH32及びOCH2CH3の構造に基づき、δ(ppm)が3.5~3.9のシグナルはOCH2CH3の構造に基づき、δ(ppm)が3.9~4.1のシグナルはOCH(CH3)CH2CH3の構造に基づき、δ(ppm)が4.2~5.2のシグナルはSi-Hの構造に基づき、δ(ppm)が5.7~6.3のシグナルはCH=CH2の構造に基づくと考えられるので、各々のシグナル強度積分値から、側鎖に関する連立方程式を立てて決定した。尚、構成単位Tについては、仕込んだモノマー(トリエトキシシラン、トリメトキシビニルシラン等)がそのままポリシロキサンに組み込まれることが分かっているので、全てのモノマーの仕込み値とNMR測定値とから、ポリシロキサンに含まれる各構成単位のモル比を決定した。
 比較例2により得られたポリシロキサンは、重クロロホルムに溶解しなかったので、1H-NMR測定を行うことができなかった。また、比較例3において、縮合工程により得られたポリシロキサンは留去工程でゲル化したため、物性測定も1H-NMR測定もできなかった。
Figure JPOXMLDOC01-appb-I000018
 以下、ポリシロキサンの保存安定性の評価について、説明する。
 実施例1~5並びに比較例1、2及び4により得られたポリシロキサンを、密閉可能なガラス製サンプル瓶に入れ、温度約40℃(38℃~42℃の範囲内)で保たれた防爆乾燥機内に静置して3日間保存した。そして、3日後に、GPCによるMw、及び、粘度の測定を行い、ポリシロキサンの製造直後の測定値(表2)に対する変化率をもって、保存安定性を評価した。3日後のMwを、製造直後のMwで除して得られた値を「Mwの変化率DM」とした。また、3日後の粘度を、製造直後の粘度で除して得られた値を「粘度の変化率DV」とした。保存安定性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-I000019
 比較例1及び2により得られたポリシロキサンは、保存安定性試験を開始して1日後にゲル化した。また、比較例4により得られたポリシロキサンは、実施例1~5により得られたポリシロキサンに比べて、変化率DM及びDVが2.00以上で大きく、保存安定性は劣るものだった。一方、実施例1~5により得られたポリシロキサンでは変化率が小さかった。反応溶媒として、2-ブタノールと極性溶剤と非極性溶剤とを併用した実施例2及び4は、極性溶剤を使用しない実施例1及び3よりも更に変化率が小さく、保存安定性が優れていた。
 本発明の方法で製造されるポリシロキサンは、ヒドロシリル化反応させることができるので、架橋反応に供することによって、耐熱性の硬化物を形成することができる。そして、この硬化物は、耐熱性の他、耐水性、耐薬品性、安定性、電気絶縁性及び耐擦傷性等の機械的強度等においても良好な特性を有することから、エレクトロニクス分野、光機能材料分野、航空宇宙分野をはじめとする広範な分野における物品あるいは部品等の保護被膜や層として用いることができる。

Claims (10)

  1.  下記一般式(1)で表されるポリシロキサンの製造方法であって、炭素原子数4~6の第2級アルコール及び炭素原子数4~6の第3級アルコールから選ばれた少なくとも1種のアルコールを含む反応溶媒中で、
     縮合により下記構成単位(1-2)を与える化合物と、
     縮合により下記構成単位(1-3)を与える化合物、縮合により下記構成単位(1-4)を与える化合物、及び、縮合により下記構成単位(1-5)を与える化合物から選ばれた少なくとも1種と、
    を含有する原料モノマーの加水分解・重縮合反応を行う縮合工程を備える、ポリシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Aは、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基であり、R1は炭素原子数1~20のアルキレン基、炭素原子数6~20の2価の芳香族基、及び炭素原子数3~20の2価の脂環族基から選択される少なくとも1種であり、nは0又は1であり、R2は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基(1分子中のR2は同一でも異なっていてもよい。)から選択される少なくとも1種であり、R3は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基から選択される少なくとも1種であり、R4は水素原子、炭素原子数1~10のアルキル基、及び、ヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基(1分子中のR4は同一でも異なっていてもよい。)から選択される少なくとも1種であり、R5は水素原子又は炭素原子数1~6のアルキル基であり、vは正の数であり、u、w、x、y及びzは0又は正の数であり、w、x及びyのうち少なくとも1つは正の数であり、0≦u/(v+w+x+y)≦2であり、0≦x/(v+w)≦2であり、0≦y/(v+w)≦2であり、0≦z/(v+w+x+y)≦1である。但し、w=0のとき、R2、R3及びR4のいずれか1つはヒドロシリル化反応可能な、炭素-炭素不飽和結合を有する炭素原子数2~10の有機基である。〕
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    Figure JPOXMLDOC01-appb-I000005
  2.  上記反応溶媒に含まれる上記アルコールの割合が、上記反応溶媒の全量に対して、1質量%~60質量%である、請求項1に記載のポリシロキサンの製造方法。
  3.  上記縮合工程の後、反応液中の反応溶媒、副生物、残留モノマー、及び水の少なくとも一部を留去させる留去工程を備える、請求項1又は2に記載のポリシロキサンの製造方法。
  4.  上記反応溶媒が、非極性溶剤を更に含む、請求項1~3のいずれか一項に記載のポリシロキサンの製造方法。
  5.  上記反応溶媒が、上記アルコールを除く極性溶剤を更に含む、請求項4に記載のポリシロキサンの製造方法。
  6.  上記非極性溶剤が芳香族炭化水素である、請求項4又は5に記載のポリシロキサンの製造方法。
  7.  上記極性溶剤が2-プロパノールである、請求項5又は6に記載のポリシロキサンの製造方法
  8.  上記アルコールが、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール及びシクロヘキサノールから選択される少なくとも1つである、請求項1~7のいずれか一項に記載のポリシロキサンの製造方法。
  9.  上記原料モノマーが、上記構成単位(1-2)を与える化合物、上記構成単位(1-3)を与える化合物、及び、上記構成単位(1-5)を与える化合物を含有する請求項1~8のいずれか一項に記載のポリシロキサンの製造方法。
  10.  上記原料モノマーが、上記構成単位(1-4)を与える化合物を含有する請求項9に記載のポリシロキサンの製造方法。
PCT/JP2012/083581 2011-12-28 2012-12-26 ポリシロキサンの製造方法 WO2013099909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147012812A KR101877599B1 (ko) 2011-12-28 2012-12-26 폴리실록산의 제조 방법
US14/350,464 US9181399B2 (en) 2011-12-28 2012-12-26 Method for producing polysiloxane
CN201280045961.3A CN103842412B (zh) 2011-12-28 2012-12-26 聚硅氧烷的制造方法
JP2013551719A JP5821971B2 (ja) 2011-12-28 2012-12-26 ポリシロキサンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-288794 2011-12-28
JP2011288794 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099909A1 true WO2013099909A1 (ja) 2013-07-04

Family

ID=48697393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083581 WO2013099909A1 (ja) 2011-12-28 2012-12-26 ポリシロキサンの製造方法

Country Status (6)

Country Link
US (1) US9181399B2 (ja)
JP (1) JP5821971B2 (ja)
KR (1) KR101877599B1 (ja)
CN (1) CN103842412B (ja)
TW (1) TWI544008B (ja)
WO (1) WO2013099909A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152976A1 (ja) * 2019-01-24 2020-07-30 信越化学工業株式会社 オルガノポリシロキサン化合物を含有する組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023947B1 (ja) * 2016-01-27 2016-11-09 株式会社成和化成 化粧品基材および該化粧品基材を含有する化粧料
WO2021070791A1 (ja) * 2019-10-07 2021-04-15 日本電気硝子株式会社 アンチグレア膜形成用液状組成物及びアンチグレア膜付き基材の製造方法
CN115414259B (zh) * 2022-09-30 2023-05-23 杭州拉瓦生物科技有限公司 一种定制式固定义齿及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344894A (ja) * 1999-06-02 2000-12-12 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物および絶縁膜形成用材料
WO2005010077A1 (ja) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. 珪素含有高分子化合物及びその製造方法並びに耐熱性樹脂組成物及び耐熱性皮膜
JP2008231403A (ja) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd 二液型熱硬化性樹脂組成物及び耐熱性透明樹脂成形物の製造方法
WO2009066608A1 (ja) * 2007-11-19 2009-05-28 Toagosei Co., Ltd. ポリシロキサンおよびその製造方法ならびに硬化物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818721B2 (en) * 2002-12-02 2004-11-16 Rpo Pty Ltd. Process for producing polysiloxanes and use of the same
CN1886410A (zh) * 2003-10-15 2006-12-27 Jsr株式会社 硅烷化合物、聚硅氧烷以及放射线敏感性树脂组合物
KR101271783B1 (ko) * 2005-10-28 2013-06-07 도레이 카부시키가이샤 실록산 수지 조성물 및 그의 제조 방법
US20090088547A1 (en) * 2006-10-17 2009-04-02 Rpo Pty Limited Process for producing polysiloxanes and use of the same
JP5163470B2 (ja) * 2008-12-16 2013-03-13 東亞合成株式会社 安定性の向上した硬化性組成物およびその製造方法
CN101503421A (zh) * 2009-03-13 2009-08-12 杭州师范大学 一种甲基苯基环硅氧烷的制备方法
JP2011052170A (ja) 2009-09-04 2011-03-17 Toagosei Co Ltd 硬化性塗布組成物および硬化被膜
JP5338657B2 (ja) * 2009-12-25 2013-11-13 東亞合成株式会社 保存安定性に優れた反応性ポリシロキサン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344894A (ja) * 1999-06-02 2000-12-12 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物および絶縁膜形成用材料
WO2005010077A1 (ja) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. 珪素含有高分子化合物及びその製造方法並びに耐熱性樹脂組成物及び耐熱性皮膜
JP2008231403A (ja) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd 二液型熱硬化性樹脂組成物及び耐熱性透明樹脂成形物の製造方法
WO2009066608A1 (ja) * 2007-11-19 2009-05-28 Toagosei Co., Ltd. ポリシロキサンおよびその製造方法ならびに硬化物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152976A1 (ja) * 2019-01-24 2020-07-30 信越化学工業株式会社 オルガノポリシロキサン化合物を含有する組成物

Also Published As

Publication number Publication date
JPWO2013099909A1 (ja) 2015-05-07
CN103842412A (zh) 2014-06-04
JP5821971B2 (ja) 2015-11-24
TW201333077A (zh) 2013-08-16
TWI544008B (zh) 2016-08-01
CN103842412B (zh) 2016-04-27
KR20140106509A (ko) 2014-09-03
US20140303392A1 (en) 2014-10-09
US9181399B2 (en) 2015-11-10
KR101877599B1 (ko) 2018-07-12

Similar Documents

Publication Publication Date Title
US9884879B2 (en) Method of synthesizing siloxane monomers and use thereof
KR20110096063A (ko) 실세스퀴옥산 수지
JP6490816B2 (ja) オルガノポリシロキサンの調製方法
JP5821971B2 (ja) ポリシロキサンの製造方法
JP5790480B2 (ja) 酸無水物基含有オルガノシロキサン及びその製造方法
JP2017536446A (ja) アミノ基を有するオルガノシリコン化合物の製造方法
JP5828292B2 (ja) 酸無水物基含有オルガノシロキサン及びその製造方法
JP6930242B2 (ja) 半導体装置及びその製造方法
JP2007146031A (ja) 硬化性ポリメチルシロキサン樹脂、その製造方法、硬化性ポリメチルシロキサン樹脂組成物及びその硬化被膜を有する物品
CN112888715B (zh) 倍半硅氧烷衍生物组合物及其用途
JP6930354B2 (ja) 硬化性組成物及びその利用
JP7397558B2 (ja) 撥水撥油膜組成物及びその利用
US20210238445A1 (en) Water repellent and oil repellent film composition and use thereof
US7329716B2 (en) Siloxane oligomers by phase transfer catalysis
KR101621576B1 (ko) 옥세타닐기를 갖는 규소 화합물의 제조 방법
US20240132726A1 (en) Siloxane-functionalized silica
KR101613732B1 (ko) β-케토에스테르기 함유 오르가노폴리실록산 화합물
WO2021261133A1 (ja) 光硬化性組成物、その硬化物、及び硬化物の製造方法
KR20230130714A (ko) 실록산-작용화된 실리카
JP2020512432A (ja) 架橋可能、高分子量シリコーン樹脂の製造
CN108137811A (zh) 制备有机聚硅氧烷的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280045961.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350464

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147012812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863256

Country of ref document: EP

Kind code of ref document: A1