WO2013099726A1 - 透視性タッチパネル電極積層体 - Google Patents

透視性タッチパネル電極積層体 Download PDF

Info

Publication number
WO2013099726A1
WO2013099726A1 PCT/JP2012/082891 JP2012082891W WO2013099726A1 WO 2013099726 A1 WO2013099726 A1 WO 2013099726A1 JP 2012082891 W JP2012082891 W JP 2012082891W WO 2013099726 A1 WO2013099726 A1 WO 2013099726A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch panel
transparent
film
transparent touch
Prior art date
Application number
PCT/JP2012/082891
Other languages
English (en)
French (fr)
Inventor
桑原 真
幸生 松下
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013099726A1 publication Critical patent/WO2013099726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent touch panel electrode laminate used for a touch panel.
  • FIG. 6 shows an example of a conventional transparent touch panel electrode laminate A.
  • This transparent touch panel electrode laminate A includes a transparent substrate 1, a first pressure-sensitive adhesive layer 11, a first electrode forming substrate 3, The second adhesive layer 12 and the second electrode forming substrate 5 are laminated in this order, and further, the functional film 9 is laminated on the transparent substrate 1 via the third adhesive layer 13 and laminated. .
  • the first pressure-sensitive adhesive layer 11, the second pressure-sensitive adhesive layer 12, and the third pressure-sensitive adhesive layer 13 are all formed by curing a liquid pressure-sensitive adhesive.
  • the first pressure-sensitive adhesive layer 11 and the second pressure-sensitive adhesive layer 12 are usually formed of a pressure-sensitive adhesive pressure-sensitive adhesive having tackiness.
  • the first electrode forming substrate 3 is provided with a plurality of parallel ITO electrodes 14 (electrodes made of a mixture of indium oxide and tin oxide (Indium Tin Oxide)) in the X-axis direction. Is formed.
  • the second electrode forming substrate 5 is linear in the Y-axis direction so as to be orthogonal to the ITO electrode 14 of the first electrode forming substrate 3 when viewed from the stacking direction (Z-axis direction). Are formed in parallel on the transparent substrate 7.
  • the functional film 9 is, for example, an antireflection film.
  • the ITO electrode 14 formed on the first electrode forming base material 3 and the second electrode forming base material 5 has a high specific resistance value, so that the wiring is made longer than about 30 cm. Then, it becomes impossible to flow a necessary amount of electricity. For this reason, when such a transparent touch panel electrode laminate A is applied to an electrode sensor such as a resistive film type touch panel, there is a problem that malfunction such as failure to detect a contact portion touched by a finger occurs.
  • the 1st adhesive layer 11 and the 2nd adhesive layer 12 are formed with a pressure-sensitive-type adhesive adhesive.
  • the pressure-sensitive adhesive has low toughness even when it is cured, so that the strength is insufficient, and the impact resistance of the transparent touch panel electrode laminate A is low.
  • the transparent substrate 1 is taken out from the transparent touch panel electrode laminate A that has passed its life and is going to be recycled, the cured liquid adhesive is firmly attached to the transparent substrate 1, so that the transparent touch panel electrode is eventually obtained. There is also a problem that the entire laminate A must be incinerated and discarded.
  • This invention is made
  • a transparent touch panel electrode laminate according to the present invention includes a transparent substrate, a first heat-welded film, a first electrode-forming substrate on which a first electrode is formed, a second heat-welded film, and a first non-parallel to the first electrode.
  • the second electrode forming substrate on which two electrodes are formed is formed by laminating in this order, and the first electrode and the second electrode are composed of metal wiring having a conductor width of 30 ⁇ m or less. To do.
  • the turbidity in the lamination direction is preferably 15% or less.
  • the total light transmittance in the stacking direction is preferably 50% or more.
  • the first heat-welded film and the second heat-welded film are a polyethylene-vinyl acetate copolymer, an amorphous polyethylene terephthalate homopolymer, and an amorphous polyethylene terephthalate copolymer. It is preferably formed of a polymer, a polyvinyl butyral homopolymer, or a polyvinyl butyral copolymer.
  • the transparent substrate is preferably made of glass.
  • the transparent substrate is selected from the group consisting of polyester resins, acrylic resins, norbornene resins, olefin maleimide resins, epoxy resins, polyurethane resins, and mixtures of these resins. It is preferable that it is formed by the above.
  • a large transparent wiring with low electrical resistance can be formed using a first electrode forming substrate and a second electrode forming substrate with low specific resistance, and excellent impact resistance can be achieved.
  • the transparent substrate can be easily recycled.
  • FIG. 2A It is a one part enlarged view of FIG. 2B.
  • FIG. 2B It is a top view which shows another example of the 1st electrode formation base material which is a structural member of the transparent touch-panel electrode laminated body which concerns on this invention.
  • FIG. 4B is an enlarged view of a part of FIG. 4A.
  • FIG. 4B is an enlarged view of a part of FIG. 4B. It is sectional drawing which shows an example of the conventional transparent touch-panel electrode laminated body.
  • FIG. 7A It is a top view which shows an example of the 1st electrode formation base material which is a structural member of the conventional transparent touch-panel electrode laminated body. It is a top view which shows an example of the 2nd electrode formation base material which is a structural member of the conventional transparent touch-panel electrode laminated body. It is a top view which shows an example of the transparent substrate which is a structural member of the conventional transparent touch-panel electrode laminated body, a 1st adhesive layer, a 2nd adhesive layer, or a 3rd adhesive layer. It is a top view which shows an example of the conventional transparent touch-panel electrode laminated body. It is a one part enlarged view of FIG. 7A. It is a one part enlarged view of FIG. 7B.
  • FIG. 1 It is the transmission spectrum before and behind the high temperature test regarding the transparent touch-panel electrode laminated body of Example 1.
  • FIG. It is a transmission spectrum before and after the high temperature, high humidity test regarding the transparent touch-panel electrode laminated body of Example 1.
  • FIG. It is the reflection spectrum before and behind the high temperature test regarding the transparent touch-panel electrode laminated body of Example 1.
  • FIG. It is a reflection spectrum before and after the high temperature, high humidity test regarding the see-through touch panel electrode laminated body of Example 1. It is explanatory drawing which shows the method of an impact resistance test.
  • the transparent touch panel electrode laminate A according to the present invention is suitably used for a touch panel in which the diagonal length of a rectangular or polygonal screen exceeds 15 inches (38.1 cm). The upper limit of the diagonal length is about 200 inches (508 cm).
  • Such a transparent touch panel electrode laminate A includes, as constituent members, a transparent substrate 1, a first heat welding film 2, a first electrode forming substrate 3, a second heat welding film 4, a second electrode forming substrate 5, and the like. It is formed using. Each component has dimensions corresponding to the screen (at least the same dimensions as the screen of the touch panel). Then, as shown in FIGS.
  • the transparent touch panel electrode laminate A includes a transparent substrate 1, a first heat-welded film 2, a first electrode-forming substrate 3, a second heat-welded film 4, and a second electrode.
  • the formation base 5 is formed by laminating in this order.
  • a functional film 9 may be laminated on the transparent substrate 1 with an adhesive layer 8 interposed therebetween.
  • a transparent substrate with a functional film is prepared in advance by laminating and bonding the functional film 9 to the transparent substrate 1 via the adhesive layer 8. May be.
  • the transparent substrate 1 for example, a substrate formed of glass, plastic or the like can be used.
  • glass for example, semi-tempered glass or tempered glass can be used.
  • the plastic include those selected from the group consisting of polyester resins, acrylic resins, norbornene resins, olefin maleimide resins, epoxy resins, polyurethane resins, and mixtures of these resins.
  • the thickness of the transparent substrate 1 is preferably 0.5 to 6.0 mm, and more preferably 1.2 to 4.0 mm from the viewpoint of ease of handling and weight reduction.
  • An example of the shape and size of the transparent substrate 1 is shown in FIG. 2C, but is not limited to this.
  • the same heat welding film or different heat welding films can be used as the first heat welding film 2 and the second heat welding film 4.
  • this heat-welded film is, for example, a film at ⁇ 10 to 40 ° C. and plastic may be used as the transparent substrate 1 at 60 to 300 ° C., preferably when gradually heated at a temperature of 60 to 180 ° C. It is not particularly limited as long as it is softened or melted to adhere to an adjacent layer and becomes transparent when cured.
  • the first heat-welded film 2 and the second heat-welded film 4 are made of a polyethylene-vinyl acetate copolymer, an amorphous polyethylene terephthalate homopolymer, an amorphous polyethylene terephthalate copolymer, polyvinyl It is preferably formed of a material selected from the group of butyral homopolymers and polyvinyl butyral copolymers. Since these films have particularly high toughness compared to films formed from other materials, sufficient strength can be obtained, and excellent impact resistance can be imparted to the transparent touch panel electrode laminate A. .
  • a film formed of a polyethylene-vinyl acetate copolymer is also called an EVA film, and a film formed of an amorphous polyethylene terephthalate copolymer is also called PET-G.
  • the thickness of the first heat-welded film 2 and the second heat-welded film 4 is preferably 10 to 400 ⁇ m, and it is easy to handle and softens or melts at the time of heat-welding so that each welded film can be formed from the end face of the laminate. Since the resin may ooze out, the thickness is more preferably 50 to 200 mm.
  • the thickness of the 1st heat welding film 2 and the 2nd heat welding film 4 is 10 micrometers or more, sufficient adhesive performance can be exhibited to these heat welding films.
  • the thickness of the 1st heat welding film 2 and the 2nd heat welding film 4 is 400 micrometers or less, it can suppress that curvature generate
  • FIG. 2C an example of the shape and magnitude
  • the first electrode 30 has a plurality of linear patterns arranged in parallel in the X-axis (horizontal axis) direction on the transparent substrate 7, but is not limited to such a striped pattern shape. Absent.
  • Each first electrode 30 is composed of a metal wiring 6 having a conductor width (L) of 30 ⁇ m or less (lower limit is 0.1 ⁇ m).
  • each first electrode 30 is configured by arranging a plurality of linear metal wirings 6 in parallel in the X-axis direction in FIG.
  • each first electrode 30 is configured as shown in FIG. 4A.
  • the metal wire 6 may be configured by arranging a mesh. As described above, the arrangement of the metal wiring 6 in each first electrode 30 is not particularly limited. 4A, the bias angle of the mesh-like metal wiring 6 is about 45 ° with respect to the X-axis direction, but is not limited to this angle.
  • the conductor pitch (P) is, for example, 0.05 to 10 mm.
  • the conductor pitch (P) in this case includes the conductor pitch (P 0 ) between the metal wirings 6 and the conductor pitch (P 1 ) between the first electrodes 30.
  • first terminal portions 31 are provided at both ends of each first electrode 30.
  • the first terminal portion 31 has a rectangular shape with a size of 2 mm ⁇ 5 mm, for example, and is electrically connected to external wiring (not shown).
  • the 2nd electrode formation base material 5 what was formed by providing the 2nd electrode 50 on the surface of the transparent base material 7 as shown, for example in FIG. 2B can be used.
  • the second electrode 50 has a plurality of linear patterns so as to be orthogonal to the first electrode 30 of the first electrode forming substrate 3 when viewed from the stacking direction (Z-axis direction) (see FIG. 2D).
  • the transparent base material 7 is provided in parallel in the Y-axis (vertical axis) direction, it is not limited to such a striped pattern shape. That is, the second electrode 50 includes a first electrode 30 may be a non-parallel.
  • Each second electrode 50 is composed of a metal wiring 6 having a conductor width (L) of 30 ⁇ m or less (lower limit is 0.1 ⁇ m). Specifically, each second electrode 50 is configured by arranging a plurality of linear metal wirings 6 in parallel in FIG. 2B, but each second electrode 50 includes the metal wiring 6 as shown in FIG. 4B. It may be arranged in a mesh shape. As described above, the arrangement of the metal wiring 6 in each second electrode 50 is not particularly limited. In FIG. 4B, the bias angle of the mesh-like metal wiring 6 is about 90 ° with respect to the X-axis direction, but is not limited to this angle.
  • the conductor pitch (P) is, for example, 0.05 to 10 mm.
  • the conductor pitch (P) in this case includes the conductor pitch (P 0 ) between the metal wirings 6 and the conductor pitch (P 2 ) between the second electrodes 50.
  • second terminal portions 51 are provided at both ends of each second electrode 50.
  • the second terminal portion 51 has a rectangular shape with a size of 5 mm ⁇ 2 mm, for example, and is electrically connected to external wiring (not shown).
  • the transparent base material 7 used as the material of the 1st electrode formation base material 3 and the 2nd electrode formation base material 5 for example, polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), these A film comprising a derivative, a mixed polymer, a block polymer, a mixture, or the like can be used.
  • the thickness of the transparent substrate 7 is preferably 15 to 300 ⁇ m, and more preferably 50 to 200 ⁇ m from the viewpoint of difficulty in bending during handling and weight reduction.
  • the first electrode forming substrate 3 and the second electrode forming substrate 5 are formed by bonding a metal foil (thickness 1 to 400 ⁇ m) such as a copper foil to the surface of the transparent substrate 7, for example. It can be manufactured by using a photo-etching method or the like for the laminated plate. Further, after forming a metal layer (thickness 0.01 to 10 ⁇ m) such as a copper layer on the surface of the transparent substrate 7 by vapor deposition or sputtering, a photoetching method or the like is used, or the surface of the transparent substrate 7 is electrically conductive.
  • the first electrode forming substrate 3 and the second electrode forming substrate 5 are manufactured by applying the paste so as to have a thickness of 0.01 to 10 ⁇ m and baking (baking temperature: 80 to 200 ° C.). You can also The first electrode forming base material 3 and the second electrode forming base material 5 thus obtained are transparent base materials in which the first electrode 30 and the second electrode 50 have remarkably small specific resistance as compared with the conventional ITO electrode. 7, the transparent touch panel electrode laminate A can be easily increased in size.
  • an adhesive for forming the adhesive layer 8 for example, an acrylic adhesive (PSA: Pressure Sensitive Adhesive) or the like can be used.
  • PSA Pressure Sensitive Adhesive
  • the thickness of the pressure-sensitive adhesive layer 8 is preferably 1 to 200 ⁇ m, and more preferably 10 to 100 ⁇ m from the viewpoint of ease of formation and weight reduction.
  • FIG. 2C an example of the shape and magnitude
  • the functional film 9 is not particularly limited as long as various functions can be imparted to the transparent touch panel electrode laminate A.
  • an antireflection film AR (Anti-Reflection)
  • Film anti-glare film
  • the thickness of the functional film 9 is preferably 15 to 300 ⁇ m, and more preferably 50 to 200 ⁇ m from the viewpoint of difficulty in bending during handling and weight reduction.
  • An example of the shape and size of the functional film 9 is shown in FIG. 2C, but is not limited to this.
  • said transparent substrate 1, the 1st heat welding film 2, the 1st electrode formation base material 3, the 2nd heat welding film 4, and the 2nd electrode formation base material 5 are laminated
  • the first heat-welded film 2 and the second heat-welded film 4 that are gradually softened or melted by heating and pressurization are the transparent substrate 1 and the first electrode forming base material, respectively. 3 and between the first electrode forming substrate 3 and the second electrode forming substrate 5, strong toughness is obtained, and when the transparent substrate 1 is broken, the fragments are scattered. It is possible to suppress this.
  • the transparent touch panel electrode laminate A as shown in FIG. 1C may be manufactured by laminating with the adhesive interposed between the transparent substrate 1 and the functional film 9.
  • a transparent substrate with a functional film may be used.
  • the turbidity (HAZE) in the lamination direction (Z-axis direction) is preferably 15% or less (lower limit is 0.5%). In particular, when the turbidity is 15% or less, it can be suppressed that the screen of the touch panel is blurred and cannot be visually recognized.
  • the total light transmittance (TT) in the stacking direction (Z-axis direction) is preferably 50% or more (the upper limit is 98%). In particular, when the total light transmittance is 50% or more, it is possible to prevent the touch panel screen from being dark and cannot be operated. Thus, the visibility of the image displayed behind the touch panel can be improved both when the turbidity is 15% or less and when the total light transmittance is 50% or more.
  • the transparent touch-panel electrode laminated body A obtained as mentioned above electrical resistance is low using the 1st electrode formation base material 3 and the 2nd electrode formation base material 5 with a low specific resistance.
  • a large transparent wiring can be formed and can be suitably used as an electrode of a touch panel.
  • the first heat-welded film 2 and the second heat-welded film 4 having higher toughness than the conventional cured liquid pressure-sensitive adhesive have excellent impact resistance.
  • the transparent substrate 1 is formed of a material selected from the group consisting of glass, polyester resin, acrylic resin, norbornene resin, olefin maleimide resin, epoxy resin, polyurethane resin, and a mixture of these resins.
  • the fragments can be mainly held by the first heat-welded film 2, and the fragments can be prevented from scattering.
  • the effect of suppressing fragment scattering is that at least the first heat-welded film 2 has a polyethylene-vinyl acetate copolymer, an amorphous polyethylene terephthalate homopolymer, an amorphous polyethylene terephthalate copolymer, a polyvinyl butyral homopolymer. This is conspicuous when the polymer is formed of a material selected from the group consisting of a polymer and a polyvinyl butyral copolymer.
  • the first heat-welded film 2 and the second heat-welded film 4 do not require an aging period, so that the transparent touch panel electrode laminate A can be manufactured at low cost. It is.
  • a pressure sensitive adhesive a mixture obtained by mixing the main agent and the curing agent is applied to a release film to produce an adhesive film. Although it is cured to the extent that it can be wound up with a roll at the time of application, since the main agent and the curing agent have not completely reacted at this stage, it is left at a temperature of room temperature to 60 ° C. for 2 to 10 days to complete the reaction. To end. This neglected period is called an aging period.
  • the transparent touch panel electrode laminate A that has passed its lifetime has a temperature of 95 to 150 ° C. and a relative humidity of 60 to If the high-temperature and high-humidity treatment is performed under the condition of 99% RH, the cured first heat-welded film 2 can be removed cleanly from the transparent substrate 1, and the transparent substrate 1 can be easily recycled. .
  • Example 1 Transparent substrate with functional film
  • the transparent substrate with a soda glass having a thickness of 3.2 mm.
  • a PET film (thickness 100 ⁇ m) formed by providing an antireflection layer on one side and an adhesive layer 8 (thickness 25 ⁇ m) on the other side (Sumitomo Osaka Cement Co., Ltd.) ) “F300”, with UV cut function, haze 0.65%).
  • a transparent substrate with a functional film was prepared by laminating and bonding the functional film 9 to the transparent substrate 1 through the adhesive layer 8.
  • first electrode forming substrate and second electrode forming substrate As the first electrode forming substrate 3, a stripe-shaped first electrode 30 (a linear metal wiring 6 having a thickness of 12 ⁇ m, a conductor width (L) of 30 ⁇ m, and a conductor pitch (P 0 ) of 2 mm) as shown in FIG. 2A is used. What was formed and provided in the surface of PET film (Toyobo Co., Ltd. product "Cosmo Shine A4300, thickness 100 micrometers) which is the transparent base material 7 through the transparent adhesive layer (thickness 7 micrometers) was used. The first electrode 30 between the conductor pitch (P 1) is 2 mm.
  • a striped second electrode 50 is provided so as to be orthogonal to the first electrode 30 when viewed from the stacking direction (Z-axis direction) as shown in FIG. 2B. It was used which was formed similarly to the first electrode forming substrate 3.
  • the conductor pitch (P 2 ) between the second electrodes 50 is 2 mm.
  • the 1st electrode formation base material 3 and the 2nd electrode formation base material 5 all use the transparent adhesive for the surface of the transparent base material 7, and the copper foil (The side facing a transparent adhesive is previously blackened.
  • a metal-clad laminate is produced by bonding together a thickness of 12 ⁇ m) and a photo-etching method is used for the metal-clad laminate.
  • the electrolytic copper foil was immersed in an aqueous solution consisting of sodium chlorite (31 g / L), sodium hydroxide (15 g / L), and trisodium phosphate (12 g / L) at 95 ° C. for 2 minutes. Made by letting.
  • the first electrode 30 and the second electrode 50 after the formation were also blackened.
  • first heat welding film and second heat welding film As the first heat-welded film 2 and the second heat-welded film 4, a film formed of a polyethylene-vinyl acetate copolymer (EVA-based adhesive film: “Mersen 7053” manufactured by Tosoh Corporation, thickness 150 ⁇ m) is used. It was.
  • EVA-based adhesive film “Mersen 7053” manufactured by Tosoh Corporation, thickness 150 ⁇ m
  • Transparent touch panel electrode laminate A transparent substrate with a functional film, a first heat-welding film 2, a first electrode-forming base material 3, a second heat-welding film 4 and a second electrode-forming base material 5 are laminated in this order, and the temperature is 115 ° C. for 60 minutes. While being heated at a temperature, pressurizing (pressing) at a pressure of 248.1 kPa (2.53 kgf / cm 2 ) in the stacking direction (Z-axis direction), and then cooling to room temperature, the perspective shown in FIG. 1C Touch panel electrode laminate A was manufactured.
  • the transparent touch panel electrode laminate A is suitably used for a touch panel having a diagonal line length exceeding 15 inches (38.1 cm) as shown in FIGS. 2A to 2D. It was confirmed that.
  • the color (L *, a *, b *), minimum reflectance, turbidity (HAZE), and total light transmittance (TT) are measured before and after a high temperature test of 1000 hours at a temperature of 80 ° C. did.
  • the color (L *, a *, b *) was measured using a Konica Minolta color difference meter “CM3600d” in a D65 light source 10-degree field of view.
  • the color (L *, a *, b *) represents the coordinates of the Lab color system chromaticity diagram determined by the International Commission on Illumination (CIE), L * is the brightness, and (a *, b *). ) The coordinates represent hue and vividness.
  • turbidity (HAZE) and total light transmittance (TT) were measured based on JIS K7361-1997 using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH2000”.
  • the transmission spectrum before and after the high temperature test is shown in FIG. 9, and the transmission spectrum before and after the high temperature and high humidity test is shown in FIG.
  • the transmission spectrum was measured using “V-530” manufactured by JASCO Corporation.
  • the reflection spectrum before and after the high temperature test is shown in FIG. 11, and the reflection spectrum before and after the high temperature and high humidity test is shown in FIG.
  • the reflection spectrum was measured using a Hitachi spectrophotometer “U-4100”.
  • the speed immediately before the collision of the steel balls 16 was about 5.1 m / s and the impact force was about 1.3 kN, but the transparent touch panel electrode laminate A was not broken.
  • the transparent touch panel electrode laminated body A was replaced with the glass plate of thickness 3.2mm, and the same test was done, the glass plate was cracked.
  • Example 2 [Transparent substrate with functional film] A transparent substrate with a functional film was produced in the same manner as in Example 1.
  • the first electrode forming substrate 3 is a striped first electrode 30 (thickness 12 ⁇ m, conductor width (L) 15 ⁇ m, conductor pitch (P 0 ) 600 ⁇ m, mesh angle with a bias angle of 45 °).
  • the metal wiring 6) is formed on the surface of a PET film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) which is a transparent substrate 7 through a transparent adhesive layer (thickness 7 ⁇ m). A thing was used.
  • the conductor pitch (P 1 ) between the first electrodes 30 is 2 mm.
  • the transparent adhesive layer was formed in the same manner as in Example 1.
  • a striped second electrode 50 (thickness 12 ⁇ m, conductor width) perpendicular to the first electrode 30 when viewed from the stacking direction (Z-axis direction).
  • L A material formed in the same manner as the first electrode forming substrate 3 was used except that a mesh-shaped metal wiring 6) having a conductor pitch (P 0 ) of 600 ⁇ m and a bias angle of 90 ° was provided. .
  • the conductor pitch (P 2 ) between the second electrodes 50 is 2 mm.
  • an amorphous polyethylene terephthalate (PET) film (amorphous PET: “RIVESTAR PET G” manufactured by Riken Technos Co., Ltd., thickness 100 ⁇ m) was used.
  • Example 2 An impact resistance test was conducted in the same manner as in Example 1. As a result, the speed immediately before the collision of the steel balls 16 was about 5.1 m / s and the impact force was about 1.3 kN, but the transparent touch panel electrode laminate A was not broken.
  • Example 3 [Transparent substrate with functional film] A transparent substrate with a functional film was produced in the same manner as in Example 1.
  • First electrode forming substrate and second electrode forming substrate As the first electrode forming substrate 3, a striped first electrode 30 (linear metal wiring 6 having a thickness of 2 ⁇ m, a conductor width (L) of 8 ⁇ m, and a conductor pitch (P 0 ) of 2 mm) as shown in FIG. 2A is used. A film formed by deposition on the surface of a PET film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m), which is a transparent substrate 7, was used. The first electrode 30 between the conductor pitch (P 1) is 2 mm.
  • a striped second electrode 50 is provided so as to be orthogonal to the first electrode 30 when viewed from the stacking direction (Z-axis direction) as shown in FIG. 2B. It was used which was formed similarly to the first electrode forming substrate 3.
  • the conductor pitch (P 2 ) between the second electrodes 50 is 2 mm.
  • the transparent touch panel electrode laminate A is suitably used for a touch panel having a diagonal line length exceeding 15 inches (38.1 cm) as shown in FIGS. 2A to 2D. It was confirmed that.
  • Example 2 An impact resistance test was conducted in the same manner as in Example 1. As a result, the speed immediately before the collision of the steel balls 16 was about 5.1 m / s and the impact force was about 1.3 kN, but the transparent touch panel electrode laminate A was not broken.
  • the first electrode forming substrate 3 has a striped first electrode 30 (thickness 80 angstrom, conductor width (L) 8 mm, conductor pitch (P 1 ) 2 mm, sheet resistance value 500 ⁇ / ⁇ ).
  • An ITO electrode was used that was formed on the surface of a polyester film (thickness: 100 ⁇ m) as the transparent substrate 7.
  • a striped second electrode 50 is provided so as to be orthogonal to the first electrode 30 when viewed from the stacking direction (Z-axis direction) as shown in FIG. 7B. What was formed similarly to the 1st electrode formation base material 3 was used.
  • both the 1st electrode formation base material 3 and the 2nd electrode formation base material 5 were manufactured as follows. First, a sintered body of indium oxide (95% by mass) and tin oxide (5% by mass) was attached to a copper plate (thickness 5 mm), and this copper plate was attached to a direct current bipolar magnetron sputtering apparatus. Next, an ITO film is formed on the surface of the transparent substrate 7 by sputtering under the conditions of a pressure of 1.0 ⁇ 10 ⁇ 3 Torr (argon gas atmosphere) and a power of 1 W / cm 2 using the sintered body as a target. Formed.
  • the light transmittance at the wavelength of 550 nm of the first electrode forming substrate 3 and the second electrode forming substrate 5 thus obtained was 90%.
  • Transparent touch panel electrode laminate A transparent substrate with a functional film, a first heat-welding film 2, a first electrode-forming base material 3, a second heat-welding film 4 and a second electrode-forming base material 5 are laminated in this order, and the temperature is 115 ° C. for 60 minutes. While being heated at a temperature, pressurizing (pressing) in the stacking direction (Z-axis direction) with a pressure of 249.1 kPa (2.54 kgf / cm 2 ), and then cooling to room temperature, the perspective shown in FIG. 1C Touch panel electrode laminate A was manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 比抵抗の低い第一電極形成基材及び第二電極形成基材を用いて電気的な抵抗の低い大型の透視性配線を形成することができ、優れた耐衝撃性を有すると共に、透明基板を容易にリサイクルすることができる透視性タッチパネル電極積層体を提供する。 透明基板1、第一熱溶着フィルム2、第一電極30が形成された第一電極形成基材3、第二熱溶着フィルム4、前記第一電極30と非平行な第二電極50が形成された第二電極形成基材5をこの順に積層して形成されている。前記第一電極30及び前記第二電極50が導体幅30μm以下の金属配線6で構成されている。

Description

透視性タッチパネル電極積層体
 本発明は、タッチパネルに用いられる透視性タッチパネル電極積層体に関するものである。
 従来、タッチパネル等は、透視性を有し、かつ電極を設けて形成された透視性タッチパネル電極積層体を用いて形成されている(例えば、特許文献1参照)。図6は従来の透視性タッチパネル電極積層体Aの一例を示すものであるが、この透視性タッチパネル電極積層体Aは、透明基板1、第一粘着剤層11、第一電極形成基材3、第二粘着剤層12、第二電極形成基材5をこの順に積層し、さらに透明基板1に第三粘着剤層13を介して機能性フィルム9を積層してラミネートすることにより形成されている。
 ここで、第一粘着剤層11、第二粘着剤層12及び第三粘着剤層13はいずれも液状の粘着剤が硬化して形成されたものである。特に第一粘着剤層11及び第二粘着剤層12は、通常、タック性のある感圧型接着性粘着剤で形成されている。
 また、第一電極形成基材3は、X軸方向に直線状のITO電極14(酸化インジウム及び酸化スズの混合物(Indium Tin Oxide)で形成された電極)を複数平行に透明基材7に設けて形成されたものである。また、第二電極形成基材5は、積層方向(Z軸方向)から見た場合に第一電極形成基材3のITO電極14と直交するように、Y軸方向に直線状のITO電極14を複数平行に透明基材7に設けて形成されたものである。
 また、機能性フィルム9は、例えば反射防止フィルム等である。
特開2011-44145号公報
 しかし、従来の透視性タッチパネル電極積層体Aでは、第一電極形成基材3及び第二電極形成基材5に形成されたITO電極14は比抵抗値が高いため、約30cmより長く配線しようとすると必要な電気量を流すことができなくなる。そのため、このような透視性タッチパネル電極積層体Aを例えば抵抗膜方式タッチパネル等の電極センサーに適用すると、指が触れた接触部を検知できないなどの誤作動が起こりやすいという問題がある。
 また、従来の透視性タッチパネル電極積層体Aの製造方法では、既述のように特に第一粘着剤層11及び第二粘着剤層12を感圧型接着性粘着剤で形成するようにしているが、この粘着剤は硬化しても靭性が低いので強度が不足し、透視性タッチパネル電極積層体Aの耐衝撃性が低くなるという問題もある。
 さらに、寿命の過ぎた透視性タッチパネル電極積層体Aから透明基板1を取り出してリサイクルしようとしても、硬化した液状の粘着剤が強固に透明基板1に付着しているので、結局は透視性タッチパネル電極積層体A全体を焼却して廃棄せざるを得ないという問題もある。
 本発明は上記の点に鑑みてなされたものであり、比抵抗の低い第一電極形成基材及び第二電極形成基材を用いて電気的な抵抗の低い大型の透視性配線を形成することができ、優れた耐衝撃性を有すると共に、透明基板を容易にリサイクルすることができる透視性タッチパネル電極積層体を提供することを目的とするものである。
 本発明に係る透視性タッチパネル電極積層体は、透明基板、第一熱溶着フィルム、第一電極が形成された第一電極形成基材、第二熱溶着フィルム、前記第一電極と非平行な第二電極が形成された第二電極形成基材をこの順に積層して形成されていると共に、前記第一電極及び前記第二電極が導体幅30μm以下の金属配線で構成されていることを特徴とするものである。
 前記透視性タッチパネル電極積層体において、積層方向の濁度が15%以下であることが好ましい。
 前記透視性タッチパネル電極積層体において、積層方向の全光線透過率が50%以上であることが好ましい。
 前記透視性タッチパネル電極積層体において、前記第一熱溶着フィルム及び前記第二熱溶着フィルムが、ポリエチレン-酢酸ビニル系共重合体、非晶性ポリエチレンテレフタレート系単独重合体、非晶性ポリエチレンテレフタレート系共重合体、ポリビニルブチラール系単独重合体、ポリビニルブチラール系共重合体の群の中から選ばれるもので形成されていることが好ましい。
 前記透視性タッチパネル電極積層体において、前記透明基板が、ガラスで形成されていることが好ましい。
 前記透視性タッチパネル電極積層体において、前記透明基板が、ポリエステル系樹脂、アクリル系樹脂、ノルボルネン系樹脂、オレフィンマレイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、これらの樹脂の混合物の群の中から選ばれるもので形成されていることが好ましい。
 本発明によれば、比抵抗の低い第一電極形成基材及び第二電極形成基材を用いて電気的な抵抗の低い大型の透視性配線を形成することができ、優れた耐衝撃性を有すると共に、透明基板を容易にリサイクルすることができるものである。
本発明に係る透視性タッチパネル電極積層体の製造方法の一例を示す断面図である。 本発明に係る透視性タッチパネル電極積層体の一例を示す断面図である。 本発明に係る透視性タッチパネル電極積層体の他の一例を示す断面図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である第一電極形成基材の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である第二電極形成基材の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である透明基板、第一熱溶着フィルム、第二熱溶着フィルム又は粘着剤層の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の一例を示す平面図である。 図2Aの一部の拡大図である。 図2Bの一部の拡大図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である第一電極形成基材の他の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である第二電極形成基材の他の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の構成部材である透明基板、第一熱溶着フィルム、第二熱溶着フィルム又は粘着剤層の一例を示す平面図である。 本発明に係る透視性タッチパネル電極積層体の他の一例を示す平面図である。 図4Aの一部の拡大図である。 図4Bの一部の拡大図である。 従来の透視性タッチパネル電極積層体の一例を示す断面図である。 従来の透視性タッチパネル電極積層体の構成部材である第一電極形成基材の一例を示す平面図である。 従来の透視性タッチパネル電極積層体の構成部材である第二電極形成基材の一例を示す平面図である。 従来の透視性タッチパネル電極積層体の構成部材である透明基板、第一粘着剤層、第二粘着剤層又は第三粘着剤層の一例を示す平面図である。 従来の透視性タッチパネル電極積層体の一例を示す平面図である。 図7Aの一部の拡大図である。 図7Bの一部の拡大図である。 実施例1の透視性タッチパネル電極積層体に関する高温試験前後の透過スペクトルである。 実施例1の透視性タッチパネル電極積層体に関する高温高湿試験前後の透過スペクトルである。 実施例1の透視性タッチパネル電極積層体に関する高温試験前後の反射スペクトルである。 実施例1の透視性タッチパネル電極積層体に関する高温高湿試験前後の反射スペクトルである。 耐衝撃性試験の方法を示す説明図である。
 以下、本発明の実施の形態を説明する。
 本発明に係る透視性タッチパネル電極積層体Aは、矩形状や多角形状等の画面の対角線の長さが15インチ(38.1cm)を超えるタッチパネルに好適に用いられるものである。対角線の長さの上限は200インチ(508cm)程度である。このような透視性タッチパネル電極積層体Aは、構成部材として、透明基板1、第一熱溶着フィルム2、第一電極形成基材3、第二熱溶着フィルム4、第二電極形成基材5等を用いて形成されている。各構成部材は、画面に対応する寸法(少なくともタッチパネルの画面と同一寸法)を有している。そして、透視性タッチパネル電極積層体Aは、図1A及び図1Bに示すように、透明基板1、第一熱溶着フィルム2、第一電極形成基材3、第二熱溶着フィルム4、第二電極形成基材5をこの順に積層して形成されている。さらに図1Cに示すように、透明基板1に粘着剤層8を介して機能性フィルム9が積層されていてもよい。この場合、透視性タッチパネル電極積層体Aを製造するにあたって、あらかじめ透明基板1に粘着剤層8を介して機能性フィルム9を積層して貼り合わせることによって機能性フィルム付き透明基板を作製しておいてもよい。
 以下、各構成部材が形成する層について説明する。
 透明基板1としては、例えば、ガラス、プラスチック等で形成されたものを用いることができる。ガラスとしては、例えば、半強化ガラスや強化ガラス等を用いることができる。プラスチックとしては、例えば、ポリエステル系樹脂、アクリル系樹脂、ノルボルネン系樹脂、オレフィンマレイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、これらの樹脂の混合物の群の中から選ばれるもの等を用いることができる。透明基板1の厚さは0.5~6.0mmであることが好ましく、取り扱いの容易さ及び軽量化の観点から、1.2~4.0mmであることがより好ましい。なお、透明基板1の形状及び大きさの一例を図2Cに示すが、もちろんこれに限定されるものではない。
 また、第一熱溶着フィルム2及び第二熱溶着フィルム4としては、同じ熱溶着フィルム又は異なる熱溶着フィルムを用いることができる。この熱溶着フィルムは、例えば-10~40℃でフィルム状であり、60~300℃、透明基板1としてプラスチックを用いる場合があることを考慮すると、好ましくは60~180℃の温度で加熱すると徐々に軟化又は溶融して隣接する層に接着し、硬化すると透明になるものであれば、特に限定されるものではない。具体的には、第一熱溶着フィルム2及び第二熱溶着フィルム4は、ポリエチレン-酢酸ビニル系共重合体、非晶性ポリエチレンテレフタレート系単独重合体、非晶性ポリエチレンテレフタレート系共重合体、ポリビニルブチラール系単独重合体、ポリビニルブチラール系共重合体の群の中から選ばれるもので形成されていることが好ましい。これらのフィルムは、他の素材で形成されたフィルムに比べて特に靭性が高いので十分な強度が得られ、透視性タッチパネル電極積層体Aに優れた耐衝撃性を付与することができるものである。また、透明基板1がガラスである場合に上記のフィルムが用いられていると、ガラスが割れたときに上記のフィルムでガラスの破片を保持することができ、破片が飛散することを抑制することができるものである。なお、ポリエチレン-酢酸ビニル系共重合体で形成されているフィルムは、EVAフィルムとも呼ばれ、非晶性ポリエチレンテレフタレート系共重合体で形成されているフィルムは、PET-Gとも呼ばれている。
 また、第一熱溶着フィルム2及び第二熱溶着フィルム4の厚さは10~400μmであることが好ましく、取り扱いの容易さや、熱溶着時に軟化又は溶融して積層体の端面から各溶着フィルムの樹脂が染み出すことがあることから、50~200mmであることがより好ましい。第一熱溶着フィルム2及び第二熱溶着フィルム4の厚さが10μm以上であることによって、これらの熱溶着フィルムに十分な接着性能を発揮させることができるものである。他方、第一熱溶着フィルム2及び第二熱溶着フィルム4の厚さが400μm以下であることによって、透視性タッチパネル電極積層体Aに反りが発生することを抑制することができるものである。なお、第一熱溶着フィルム2及び第二熱溶着フィルム4の形状及び大きさの一例を図2Cに示すが、もちろんこれに限定されるものではない。
 また、第一電極形成基材3としては、例えば図2Aに示すように第一電極30を透明基材7の表面に設けて形成されたものを用いることができる。第一電極30は、図2Aでは直線状パターンを複数平行にX軸(横軸)方向に透明基材7に設けるようにしているが、このようなストライプ状のパターン形状に限定されるものではない。また各第一電極30は、導体幅(L)が30μm以下(下限は0.1μm)の金属配線6で構成されている。具体的には、各第一電極30は、図2Aでは直線状の金属配線6を複数平行にX軸方向に配置して構成されているが、各第一電極30は、図4Aのように金属配線6をメッシュ状に配置して構成されていてもよい。このように、各第一電極30において金属配線6の配置の仕方は特に限定されるものではない。また、図4Aではメッシュ状の金属配線6のバイアス角度はX軸方向に対して45°程度であるが、この角度に限定されるものではない。また導体ピッチ(P)は例えば0.05~10mmである。この場合の導体ピッチ(P)には、金属配線6間の導体ピッチ(P)及び第一電極30間の導体ピッチ(P)が含まれる。また図3Aや図5Aに示すように、各第一電極30の両端部には第一端子部31が設けられている。第一端子部31は、例えば2mm×5mmの大きさの矩形状であり、外部配線(図示省略)と電気的に接続される。
 また、第二電極形成基材5としては、例えば図2Bに示すように第二電極50を透明基材7の表面に設けて形成されたものを用いることができる。第二電極50は、図2Bでは、積層方向(Z軸方向)から見た場合(図2D参照)に、第一電極形成基材3の第一電極30と直交するように直線状パターンを複数平行にY軸(縦軸)方向に透明基材7に設けるようにしているが、このようなストライプ状のパターン形状に限定されるものではない。つまり、第二電極50は、第一電極30と非平行であればよい。また各第二電極50は、導体幅(L)が30μm以下(下限は0.1μm)の金属配線6で構成されている。具体的には、各第二電極50は、図2Bでは直線状の金属配線6を複数平行に配置して構成されているが、各第二電極50は、図4Bのように金属配線6をメッシュ状に配置して構成されていてもよい。このように、各第二電極50において金属配線6の配置の仕方は特に限定されるものではない。また、図4Bではメッシュ状の金属配線6のバイアス角度はX軸方向に対して90°程度であるが、この角度に限定されるものではない。また導体ピッチ(P)は例えば0.05~10mmである。この場合の導体ピッチ(P)には、金属配線6間の導体ピッチ(P)及び第二電極50間の導体ピッチ(P)が含まれる。また図3Bや図5Bに示すように、各第二電極50の両端部には第二端子部51が設けられている。第二端子部51は、例えば5mm×2mmの大きさの矩形状であり、外部配線(図示省略)と電気的に接続される。
 また、第一電極形成基材3及び第二電極形成基材5の材料となる透明基材7としては、例えば、ポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、ポリエチレンテレフタレート(PET)、これらの誘導体、混合重合体、ブロック重合体、混合物等からなるフィルム等を用いることができる。透明基材7の厚さは15~300μmであることが好ましく、取り扱い時の折れにくさ及び軽量化の観点から、50~200μmであることがより好ましい。
 そして、第一電極形成基材3及び第二電極形成基材5は、例えば、透明基材7の表面に銅箔等の金属箔(厚さ1~400μm)を貼り合わせて形成された金属張積層板にフォトエッチング法等を使用することによって製造することができる。また、蒸着、スパッタリングにより透明基材7の表面に銅層等の金属層(厚さ0.01~10μm)を形成した後にフォトエッチング法等を使用したり、透明基材7の表面に導電性ペーストを厚さが0.01~10μmとなるように塗布して焼成(焼成温度:80~200℃)したりすることによって、第一電極形成基材3及び第二電極形成基材5を製造することもできる。このようにして得られた第一電極形成基材3及び第二電極形成基材5は、従来のITO電極に比べて格段に比抵抗の小さい第一電極30及び第二電極50が透明基材7に設けられているので、容易に透視性タッチパネル電極積層体Aの大型化を図ることができるものである。
 また、粘着剤層8を形成するための粘着剤としては、例えば、アクリル粘着剤(PSA:Pressure Sensitive Adhesive)等を用いることができる。粘着剤層8の厚さは1~200μmであることが好ましく、形成の容易さ及び軽量化の観点から、10~100μmであることがより好ましい。なお、粘着剤層8の形状及び大きさの一例を図2Cに示すが、もちろんこれに限定されるものではない。
 また、機能性フィルム9としては、各種機能を透視性タッチパネル電極積層体Aに付与することができるものであれば特に限定されるものではないが、例えば、反射防止フィルム(AR(Anti-Reflection)フィルム)、防眩フィルム(AG(Anti-Glare)フィルム)、耐指紋性フィルム(AF(Anti-Fingerprint)フィルム)等を用いることができる。機能性フィルム9の厚さは15~300μmであることが好ましく、取り扱い時の折れにくさ及び軽量化の観点から、50~200μmであることがより好ましい。なお、機能性フィルム9の形状及び大きさの一例を図2Cに示すが、もちろんこれに限定されるものではない。
 そして、図1Aに示すように、上記の透明基板1、第一熱溶着フィルム2、第一電極形成基材3、第二熱溶着フィルム4及び第二電極形成基材5をこの順に積層配置して、1~120分間、60~160℃の温度で加熱しながら、積層方向に0.1~3000kPa(0.001~30.6kgf/cm)の圧力で加圧(プレス)した後、0.001~60分間かけて常温まで冷却することによって、図1Bに示すような透視性タッチパネル電極積層体Aを製造することができる。このように、透視性タッチパネル電極積層体Aの製造時には、加熱加圧によって徐々に軟化又は溶融する第一熱溶着フィルム2及び第二熱溶着フィルム4がそれぞれ透明基板1と第一電極形成基材3との間及び第一電極形成基材3と第二電極形成基材5との間に介在していることによって、強い靭性が得られ、透明基材1が割れたときにその破片が飛散することを抑制することができるものである。
 その後、透明基板1と機能性フィルム9との間に粘着剤を介在させた状態でラミネートすることによって、図1Cに示すような透視性タッチパネル電極積層体Aを製造するようにしてもよい。この場合、既述のように機能性フィルム付き透明基板を用いるようにしてもよい。
 上記のようにして得られた透視性タッチパネル電極積層体Aにおいて、積層方向(Z軸方向)の濁度(HAZE)は15%以下(下限は0.5%)であることが好ましい。特に濁度が15%以下であることによって、タッチパネルの画面がぼやけて視認できなくなることを抑制することができる。また、積層方向(Z軸方向)の全光線透過率(TT)は50%以上(上限は98%)であることが好ましい。特に全光線透過率が50%以上であることによって、タッチパネルの画面が暗くて操作できなくなることを抑制することができる。このように、濁度が15%以下である場合も、全光線透過率が50%以上である場合も、タッチパネルの背後に表示される画像の視認性を向上させることができるものである。
 そして、上記のようにして得られた透視性タッチパネル電極積層体Aにあっては、比抵抗の低い第一電極形成基材3及び第二電極形成基材5を用いて電気的な抵抗の低い大型の透視性配線を形成することができ、タッチパネルの電極として好適に用いることができる。さらに、従来の硬化した液状の粘着剤に比べて靭性の高い第一熱溶着フィルム2及び第二熱溶着フィルム4によって、優れた耐衝撃性も有するものである。
 また、透明基板1が、ガラス、ポリエステル系樹脂、アクリル系樹脂、ノルボルネン系樹脂、オレフィンマレイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、これらの樹脂の混合物の群の中から選ばれるもので形成されている場合には、透明基板1が割れたときに主として第一熱溶着フィルム2で破片を保持することができ、この破片が飛散することを抑制することができるものである。特にこの破片飛散抑制効果は、少なくとも第一熱溶着フィルム2がポリエチレン-酢酸ビニル系共重合体、非晶性ポリエチレンテレフタレート系単独重合体、非晶性ポリエチレンテレフタレート系共重合体、ポリビニルブチラール系単独重合体、ポリビニルブチラール系共重合体の群の中から選ばれるもので形成されている場合に顕著である。
 また、第一熱溶着フィルム2及び第二熱溶着フィルム4は、従来の感圧型粘着剤と異なり、エージング期間を必要としないので、透視性タッチパネル電極積層体Aを安価に製造することができるものである。なお、感圧型粘着剤の場合、主剤と硬化剤とを混合して得られた混合物を剥離フィルムに塗布して粘着剤フィルムを製造する。この塗布時にロールで巻き取れるくらいにまで硬化させるが、この段階では完全に主剤と硬化剤とが反応し終わっていないので、室温~60℃くらいの温度で2~10日間放置し、反応を完全に終わらせるようにしている。この放置期間をエージング期間と呼んでいる。
 さらに、第一熱溶着フィルム2及び第二熱溶着フィルム4は高温高湿下では接着力が低下するので、寿命の過ぎた透視性タッチパネル電極積層体Aを温度95~150℃、相対湿度60~99%RHの条件で高温高湿処理すれば、硬化していた第一熱溶着フィルム2を透明基板1から綺麗に剥離することができ、容易に透明基板1をリサイクルすることができるものである。
 以下、本発明を実施例によって具体的に説明する。
 (実施例1)
 〔機能性フィルム付き透明基板〕
 透明基板1として、厚さ3.2mmのソーダガラスを用いた。
 また、機能性フィルム9として、PETフィルム(厚さ100μm)の一方の面に反射防止層、他方の面に粘着剤層8(厚さ25μm)を設けて形成されたもの(住友大阪セメント(株)製「F300」、UVカット機能付き、ヘイズ0.65%)を用いた。
 そして、透明基板1に粘着剤層8を介して機能性フィルム9を積層して貼り合わせることによって、機能性フィルム付き透明基板を作製した。
 〔第一電極形成基材及び第二電極形成基材〕
 第一電極形成基材3として、図2Aに示すようにストライプ状の第一電極30(厚さ12μm、導体幅(L)30μm、導体ピッチ(P)2mmの直線状の金属配線6)を透明接着剤層(厚さ7μm)を介して透明基材7であるPETフィルム(東洋紡績(株)製「コスモシャインA4300」、厚さ100μm)の表面に設けて形成されたものを用いた。第一電極30間の導体ピッチ(P)は2mmである。透明接着剤層は、主剤(東洋インキ製造(株)製「ダイナレオVA-3020」)及び硬化剤(東洋インキ製造(株)製「ダイナレオHD-701」)を主剤/硬化剤(重量比率)=100/7となるように混合して得られた透明接着剤を3g/mの塗布量で塗布して形成した。
 また、第二電極形成基材5として、図2Bに示すように積層方向(Z軸方向)から見て第一電極30と直交するようにストライプ状の第二電極50を設けるようにした以外は、第一電極形成基材3と同様に形成されたものを用いた。第二電極50間の導体ピッチ(P)は2mmである。
 なお、第一電極形成基材3及び第二電極形成基材5はいずれも、透明基材7の表面に透明接着剤を用いて電解銅箔(あらかじめ透明接着剤に対向する側が黒化処理されたもの、厚さ12μm)を貼り合わせて金属張積層板を作製し、この金属張積層板にフォトエッチング法を使用することによって製造したものである。黒化処理は、亜塩素酸ナトリウム(31g/L)、水酸化ナトリウム(15g/L)、リン酸三ナトリウム(12g/L)からなる水溶液に電解銅箔を95℃、2分間の条件で浸漬させることによって行った。形成後の第一電極30及び第二電極50にも黒化処理を行った。
 〔第一熱溶着フィルム及び第二熱溶着フィルム〕
 第一熱溶着フィルム2及び第二熱溶着フィルム4として、ポリエチレン-酢酸ビニル系共重合体で形成されたフィルム(EVA系接着フィルム:東ソー(株)製「メルセン7053」、厚さ150μm)を用いた。
 〔透視性タッチパネル電極積層体〕
 機能性フィルム付き透明基板、第一熱溶着フィルム2、第一電極形成基材3、第二熱溶着フィルム4及び第二電極形成基材5をこの順に積層配置して、60分間、115℃の温度で加熱しながら、積層方向(Z軸方向)に248.1kPa(2.53kgf/cm)の圧力で加圧(プレス)した後、室温まで冷却することによって、図1Cに示すような透視性タッチパネル電極積層体Aを製造した。
 〔性能評価〕
 上記のようにして得られた透視性タッチパネル電極積層体Aの第一電極30及び第二電極50の抵抗値を測定したところ、平均0.16Ω/cmであった。この抵抗値は、タッチパネルの電極センサーに十分に適用できる範囲(1Ω/cm以下)内の数値である。よって、この透視性タッチパネル電極積層体Aは、図2A~図2Dに形状及び大きさを示すように、画面の対角線の長さが15インチ(38.1cm)を超えるタッチパネルに好適に用いられるものであることが確認された。
 また、温度80℃の条件下で1000時間の高温試験を行う前後において、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を測定した。
 具体的には、色目(L*,a*,b*)は、コニカミノルタ製色彩色差計「CM3600d」を用いて、D65光源10度視野で測定した。なお、色目(L*,a*,b*)は、国際照明委員会(CIE)により定められたLab表色系色度図の座標を表し、L*は明るさ、(a*,b*)座標は色相及び鮮やかさを表す。
 また、濁度(HAZE)及び全光線透過率(TT)は、日本電色工業(株)製ヘイズメーター「NDH2000」を用いて、JIS K7361-1997に基づいて測定した。
 また、温度60℃、相対湿度90%RHの条件下で1000時間の高温高湿試験を行う前後において、上記と同様に、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を測定した。
 上記の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 高温試験前後の透過スペクトルを図9に示し、高温高湿試験前後の透過スペクトルを図10に示す。なお、透過スペクトルの測定は、日本分光(株)製「V-530」を用いて行った。
 また、高温試験前後の反射スペクトルを図11に示し、高温高湿試験前後の反射スペクトルを図12に示す。なお、反射スペクトルの測定は、日立分光光度計「U-4100」を用いて行った。
 上記の測定結果から、透視性タッチパネル電極積層体Aが耐久性に優れていることが確認された。
 また、耐衝撃性試験を次のようにして行った。図13に示すように天井15から鋼球16(質量m=535g)を糸17(長さh=1.33m)で吊り下げた。この状態で鋼球16が透視性タッチパネル電極積層体Aの表面のほぼ中央部に当たるように、透視性タッチパネル電極積層体Aを床面18に対して垂直に立てて支持体19に固定して設置した。そして、糸17を張った状態で鋼球16を天井15とほぼ同じ高さまで持ち上げ、そのまま離して鋼球16を透視性タッチパネル電極積層体Aにぶつけた。その結果、鋼球16のぶつかる直前の速さは約5.1m/sであり、衝撃力は約1.3kNであったが、透視性タッチパネル電極積層体Aは割れなかった。なお、透視性タッチパネル電極積層体Aを厚さ3.2mmのガラス板に置き換えて、同様の試験を行ったところ、ガラス板は割れた。
 (実施例2)
 〔機能性フィルム付き透明基板〕
 実施例1と同様に機能性フィルム付き透明基板を作製した。
 〔第一電極形成基材及び第二電極形成基材〕
 第一電極形成基材3として、図4Aに示すようにストライプ状の第一電極30(厚さ12μm、導体幅(L)15μm、導体ピッチ(P)600μm、バイアス角度45°のメッシュ状の金属配線6)を透明接着剤層(厚さ7μm)を介して透明基材7であるPETフィルム(東洋紡績(株)製「コスモシャインA4300」、厚さ100μm)の表面に設けて形成されたものを用いた。第一電極30間の導体ピッチ(P)は2mmである。透明接着剤層は、実施例1と同様に形成した。
 また、第二電極形成基材5として、図4Bに示すように積層方向(Z軸方向)から見て第一電極30と直交するようにストライプ状の第二電極50(厚さ12μm、導体幅(L)15μm、導体ピッチ(P)600μm、バイアス角度90°のメッシュ状の金属配線6)を設けるようにした以外は、第一電極形成基材3と同様に形成されたものを用いた。第二電極50間の導体ピッチ(P)は2mmである。
 〔第一熱溶着フィルム及び第二熱溶着フィルム〕
 第一熱溶着フィルム2として、実施例1と同様のものを用いた。
 第二熱溶着フィルム4として、非晶性ポリエチレンテレフタレート(PET)フィルム(非晶性PET:リケンテクノス(株)製「RIVESTAR PET G」、厚さ100μm)を用いた。
 〔透視性タッチパネル電極積層体〕
 実施例1と同様に、図1Cに示すような透視性タッチパネル電極積層体Aを製造した。
 〔性能評価〕
 上記のようにして得られた透視性タッチパネル電極積層体Aの第一電極30及び第二電極50の抵抗値を測定したところ、平均0.08Ω/cmであった。この抵抗値は、タッチパネルの電極センサーに十分に適用できる範囲(1Ω/cm以下)内の数値である。よって、この透視性タッチパネル電極積層体Aは、図4A~図4Dに形状及び大きさを示すように、画面の対角線の長さが15インチ(38.1cm)を超えるタッチパネルに好適に用いられるものであることが確認された。
 また、温度80℃の条件下で1000時間の高温試験を行う前後において、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を実施例1と同様に測定した。
 また、温度60℃、相対湿度90%RHの条件下で1000時間の高温高湿試験を行う前後において、上記と同様に、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を測定した。
 上記の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、実施例1と同様に耐衝撃性試験を行った。その結果、鋼球16のぶつかる直前の速さは約5.1m/sであり、衝撃力は約1.3kNであったが、透視性タッチパネル電極積層体Aは割れなかった。
 (実施例3)
 〔機能性フィルム付き透明基板〕
 実施例1と同様に機能性フィルム付き透明基板を作製した。
 〔第一電極形成基材及び第二電極形成基材〕
 第一電極形成基材3として、図2Aに示すようにストライプ状の第一電極30(厚さ2μm、導体幅(L)8μm、導体ピッチ(P)2mmの直線状の金属配線6)を蒸着により、透明基材7であるPETフィルム(東洋紡績(株)製「コスモシャインA4300」、厚さ100μm)の表面に設けて形成されたものを用いた。第一電極30間の導体ピッチ(P)は2mmである。
 また、第二電極形成基材5として、図2Bに示すように積層方向(Z軸方向)から見て第一電極30と直交するようにストライプ状の第二電極50を設けるようにした以外は、第一電極形成基材3と同様に形成されたものを用いた。第二電極50間の導体ピッチ(P)は2mmである。
 〔第一熱溶着フィルム及び第二熱溶着フィルム〕
 第一熱溶着フィルム2及び第二熱溶着フィルム4として、実施例1と同様のものを用いた。
 〔透視性タッチパネル電極積層体〕
 実施例1と同様に、図1Cに示すような透視性タッチパネル電極積層体Aを製造した。
 〔性能評価〕
 上記のようにして得られた透視性タッチパネル電極積層体Aの第一電極30及び第二電極50の抵抗値を測定したところ、平均0.28Ω/cmであった。この抵抗値は、タッチパネルの電極センサーに十分に適用できる範囲(1Ω/cm以下)内の数値である。よって、この透視性タッチパネル電極積層体Aは、図2A~図2Dに形状及び大きさを示すように、画面の対角線の長さが15インチ(38.1cm)を超えるタッチパネルに好適に用いられるものであることが確認された。
 また、温度80℃の条件下で1000時間の高温試験を行う前後において、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を実施例1と同様に測定した。
 また、温度60℃、相対湿度90%RHの条件下で1000時間の高温高湿試験を行う前後において、上記と同様に、色目(L*,a*,b*)、最低反射率、濁度(HAZE)及び全光線透過率(TT)を測定した。
 上記の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、実施例1と同様に耐衝撃性試験を行った。その結果、鋼球16のぶつかる直前の速さは約5.1m/sであり、衝撃力は約1.3kNであったが、透視性タッチパネル電極積層体Aは割れなかった。
 (比較例1)
 〔機能性フィルム付き透明基板〕
 実施例1と同様に機能性フィルム付き透明基板を作製した。
 〔第一電極形成基材及び第二電極形成基材〕
 第一電極形成基材3として、図7Aに示すようにストライプ状の第一電極30(厚さ80オングストローム、導体幅(L)8mm、導体ピッチ(P)2mm、シート抵抗値500Ω/□のITO電極)を透明基材7であるポリエステルフィルム(厚さ100μm)の表面に設けて形成されたものを用いた。
 また、第二電極形成基材5として、図7Bに示すように積層方向(Z軸方向)から見て第一電極30と直交するようにストライプ状の第二電極50を設けるようにした以外は、第一電極形成基材3と同様に形成されたものを用いた。
 なお、第一電極形成基材3及び第二電極形成基材5はいずれも、次のようにして製造した。まず、酸化インジウム(95質量%)及び酸化スズ(5質量%)の焼結体を銅板(厚さ5mm)に貼り付け、この銅板を直流2極マグネトロンスパッタ装置に装着した。次に、上記の焼結体をターゲットとして、圧力1.0×10-3Torr(アルゴンガス雰囲気)、電力1W/cmの条件下でスパッタリングすることによって、透明基材7の表面にITO膜を形成した。その後、塩化第一鉄溶液をエッチング液として用いてITO膜の不要部分をエッチングにより除去することによって、第一電極30及び第二電極50としてITO電極が形成された第一電極形成基材3及び第二電極形成基材5を製造したものである。このようにして得られた第一電極形成基材3及び第二電極形成基材5の波長550nmでの光線透過率は90%であった。
 〔第一熱溶着フィルム及び第二熱溶着フィルム〕
 第一熱溶着フィルム2及び第二熱溶着フィルム4として、実施例1と同様のものを用いた。
 〔透視性タッチパネル電極積層体〕
 機能性フィルム付き透明基板、第一熱溶着フィルム2、第一電極形成基材3、第二熱溶着フィルム4及び第二電極形成基材5をこの順に積層配置して、60分間、115℃の温度で加熱しながら、積層方向(Z軸方向)に249.1kPa(2.54kgf/cm)の圧力で加圧(プレス)した後、室温まで冷却することによって、図1Cに示すような透視性タッチパネル電極積層体Aを製造した。
 〔性能評価〕
 上記のようにして得られた透視性タッチパネル電極積層体Aの第一電極30及び第二電極50の抵抗値を測定したところ、平均24kΩ/cmであり、しかもテスターの測定範囲を超えるほど抵抗値が高くて測定できない箇所もあった。この抵抗値は、タッチパネルの電極センサーに適用できる範囲(1Ω/cm以下)を大きく超えた数値である。よって、この透視性タッチパネル電極積層体Aは、画面の対角線の長さが15インチ(38.1cm)を超えるようなタッチパネルには用いられないことが確認された。
 A 透視性タッチパネル電極積層体
 1 透明基板
 2 第一熱溶着フィルム
 3 第一電極形成基材
 30 第一電極
 4 第二熱溶着フィルム
 5 第二電極形成基材
 50 第二電極
 6 金属配線

Claims (6)

  1.  透明基板、第一熱溶着フィルム、第一電極が形成された第一電極形成基材、第二熱溶着フィルム、前記第一電極と非平行な第二電極が形成された第二電極形成基材をこの順に積層して形成されていると共に、前記第一電極及び前記第二電極が導体幅30μm以下の金属配線で構成されていることを特徴とする透視性タッチパネル電極積層体。
  2.  積層方向の濁度が15%以下であることを特徴とする請求項1に記載の透視性タッチパネル電極積層体。
  3.  積層方向の全光線透過率が50%以上であることを特徴とする請求項1又は2に記載の透視性タッチパネル電極積層体。
  4.  前記第一熱溶着フィルム及び前記第二熱溶着フィルムが、ポリエチレン-酢酸ビニル系共重合体、非晶性ポリエチレンテレフタレート系単独重合体、非晶性ポリエチレンテレフタレート系共重合体、ポリビニルブチラール系単独重合体、ポリビニルブチラール系共重合体の群の中から選ばれるもので形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の透視性タッチパネル電極積層体。
  5.  前記透明基板が、ガラスで形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の透視性タッチパネル電極積層体。
  6.  前記透明基板が、ポリエステル系樹脂、アクリル系樹脂、ノルボルネン系樹脂、オレフィンマレイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、これらの樹脂の混合物の群の中から選ばれるもので形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の透視性タッチパネル電極積層体。
PCT/JP2012/082891 2011-12-26 2012-12-19 透視性タッチパネル電極積層体 WO2013099726A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011283910 2011-12-26
JP2011-283910 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099726A1 true WO2013099726A1 (ja) 2013-07-04

Family

ID=48697217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082891 WO2013099726A1 (ja) 2011-12-26 2012-12-19 透視性タッチパネル電極積層体

Country Status (3)

Country Link
JP (1) JPWO2013099726A1 (ja)
TW (1) TWI485592B (ja)
WO (1) WO2013099726A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761003A (zh) * 2014-01-09 2014-04-30 伯恩光学(惠州)有限公司 触摸屏
WO2016035604A1 (ja) * 2014-09-02 2016-03-10 三井金属鉱業株式会社 黒色化表面処理銅箔及びキャリア箔付銅箔
JP2017013302A (ja) * 2015-06-30 2017-01-19 凸版印刷株式会社 ガスバリア性積層体およびその製造方法
WO2017061551A1 (ja) * 2015-10-07 2017-04-13 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
JP2017134484A (ja) * 2016-01-26 2017-08-03 凸版印刷株式会社 タッチパネル
WO2018168388A1 (ja) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 タッチセンサ
CN111459322A (zh) * 2019-01-22 2020-07-28 松下知识产权经营株式会社 透视型电极用层叠体以及透视型电极用层叠体的制造方法
US10838528B2 (en) 2017-03-14 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Touch panel and design structure provided with same
CN114574859A (zh) * 2016-01-20 2022-06-03 梧州三和新材料科技有限公司 一种对连续非金属带材导电化和黑化处理的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257164A (ja) * 2006-03-22 2007-10-04 Wacom Co Ltd 表示装置、センサパネル、位置検出装置、位置入力装置、および、コンピュータシステム
JP2008009553A (ja) * 2006-06-27 2008-01-17 Optrex Corp 電極基板
JP2009064009A (ja) * 2007-08-15 2009-03-26 Bridgestone Corp カラーフィルターフィルム、カラーフィルター付き透明基板の製造方法、情報表示用パネルの製造方法および情報表示用パネル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201594245U (zh) * 2009-12-11 2010-09-29 捷开通讯(深圳)有限公司 一种新型触摸屏结构装置
TWM419164U (en) * 2011-07-01 2011-12-21 Cheeshin Technology Co Ltd Flexible high transmittance soft conductive membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257164A (ja) * 2006-03-22 2007-10-04 Wacom Co Ltd 表示装置、センサパネル、位置検出装置、位置入力装置、および、コンピュータシステム
JP2008009553A (ja) * 2006-06-27 2008-01-17 Optrex Corp 電極基板
JP2009064009A (ja) * 2007-08-15 2009-03-26 Bridgestone Corp カラーフィルターフィルム、カラーフィルター付き透明基板の製造方法、情報表示用パネルの製造方法および情報表示用パネル

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761003A (zh) * 2014-01-09 2014-04-30 伯恩光学(惠州)有限公司 触摸屏
WO2016035604A1 (ja) * 2014-09-02 2016-03-10 三井金属鉱業株式会社 黒色化表面処理銅箔及びキャリア箔付銅箔
JPWO2016035604A1 (ja) * 2014-09-02 2017-06-15 三井金属鉱業株式会社 黒色化表面処理銅箔及びキャリア箔付銅箔
JP2017013302A (ja) * 2015-06-30 2017-01-19 凸版印刷株式会社 ガスバリア性積層体およびその製造方法
WO2017061551A1 (ja) * 2015-10-07 2017-04-13 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
JP6116772B1 (ja) * 2015-10-07 2017-04-19 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
CN114574859A (zh) * 2016-01-20 2022-06-03 梧州三和新材料科技有限公司 一种对连续非金属带材导电化和黑化处理的方法
JP2017134484A (ja) * 2016-01-26 2017-08-03 凸版印刷株式会社 タッチパネル
CN110402194A (zh) * 2017-03-14 2019-11-01 松下知识产权经营株式会社 触摸传感器
JPWO2018168388A1 (ja) * 2017-03-14 2020-01-23 パナソニックIpマネジメント株式会社 タッチセンサ
US10838528B2 (en) 2017-03-14 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Touch panel and design structure provided with same
US10921940B2 (en) 2017-03-14 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Touch sensor
CN110402194B (zh) * 2017-03-14 2022-04-29 松下知识产权经营株式会社 触摸传感器
JP7065462B2 (ja) 2017-03-14 2022-05-12 パナソニックIpマネジメント株式会社 タッチセンサ
WO2018168388A1 (ja) * 2017-03-14 2018-09-20 パナソニックIpマネジメント株式会社 タッチセンサ
CN111459322A (zh) * 2019-01-22 2020-07-28 松下知识产权经营株式会社 透视型电极用层叠体以及透视型电极用层叠体的制造方法

Also Published As

Publication number Publication date
JPWO2013099726A1 (ja) 2015-05-07
TWI485592B (zh) 2015-05-21
TW201342153A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2013099726A1 (ja) 透視性タッチパネル電極積層体
KR100722342B1 (ko) 투명 겔 점착제, 투명 겔 점착 시트 및 디스플레이용 광학필터
KR100540543B1 (ko) 적층체 및 그것을 이용한 표시장치
JP4721359B2 (ja) 透明導電性積層体及びそれを備えたタッチパネル
TWI283308B (en) Touch panel
EP2312425A2 (en) Transparent conductive film, method for production thereof and touch panel therewith
EP1134072A2 (en) Transparent shock-absorbing laminate and flat panel display using the same
US20070182457A1 (en) Transparent conductor and panel switch
JP5861719B2 (ja) 透明導電体及びタッチパネル
JP6048526B2 (ja) 透明導電体及びタッチパネル
JP2004181975A (ja) 積層体およびそれを用いた表示装置
JP2004047456A (ja) 透明導電材料およびタッチパネル
CN101458351B (zh) 用于显示设备的滤光器
JP2008311565A (ja) ディスプレイ用複合フィルタ
JP6398624B2 (ja) 透明導電体及びタッチパネル
EP3032384A1 (en) Touch sensing electrode and touch screen panel comprising same
JP7144318B2 (ja) 調光フィルム用透明導電フィルム及び調光フィルム
JP2016134320A (ja) 透明導電体及びタッチパネル
JP6458445B2 (ja) 透明導電性積層体、及び該透明導電性積層体を用いたタッチパネル、並びに、透明導電性積層体の製造方法、及び該透明導電性積層体を用いたタッチパネルの製造方法
JP6390395B2 (ja) 透明導電体及びタッチパネル
JP7074510B2 (ja) 調光フィルム用透明導電フィルム及び調光フィルム
JP7107775B2 (ja) 調光フィルム用透明導電フィルム、及び、調光フィルム
JP2005235678A (ja) 透明導電性積層体およびタッチパネル
JP6166828B1 (ja) 光透過性導電フィルム及びパターン状の導電層を有する光透過性導電フィルムの製造方法
JP2007272151A (ja) フラットディスプレイ用耐衝撃シート、プラズマディスプレイ用光学フィルタ、プラズマディスプレイパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862862

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862862

Country of ref document: EP

Kind code of ref document: A1