WO2013099551A1 - 硫酸コバルトの製造方法 - Google Patents

硫酸コバルトの製造方法 Download PDF

Info

Publication number
WO2013099551A1
WO2013099551A1 PCT/JP2012/081631 JP2012081631W WO2013099551A1 WO 2013099551 A1 WO2013099551 A1 WO 2013099551A1 JP 2012081631 W JP2012081631 W JP 2012081631W WO 2013099551 A1 WO2013099551 A1 WO 2013099551A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
organic phase
solution
sulfate
range
Prior art date
Application number
PCT/JP2012/081631
Other languages
English (en)
French (fr)
Inventor
中井 隆行
範幸 長瀬
伸一 平郡
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2013515627A priority Critical patent/JP5800254B2/ja
Priority to CA2860149A priority patent/CA2860149C/en
Priority to CN201280059603.8A priority patent/CN103958416B/zh
Priority to EP12862808.8A priority patent/EP2799400B1/en
Priority to AU2012359454A priority patent/AU2012359454B2/en
Priority to US14/368,123 priority patent/US9428820B2/en
Publication of WO2013099551A1 publication Critical patent/WO2013099551A1/ja
Priority to PH12014501457A priority patent/PH12014501457A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0476Separation of nickel from cobalt
    • C22B23/0484Separation of nickel from cobalt in acidic type solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention can be used in the field of obtaining high-purity cobalt sulfate that can be used for battery materials with few impurities, particularly calcium, magnesium, and sodium, from an acidic hydrochloric acid solution containing cobalt.
  • Cobalt is often contained in ore in coexistence with nickel, and is obtained as a joint product in nickel smelting.
  • nickel and cobalt There are various methods for smelting nickel and cobalt, but in the smelting method called the dry method in which the ore is put into the furnace together with the reducing agent, cobalt is not separated from nickel and is directly used as a raw material for stainless steel. Since it is smelted to a loss of cobalt, it is not preferable.
  • electrowinning with a chloride bath is more conductive than a sulfuric acid bath, so it is possible to save electrolysis power, and chloride ions after recovering cobalt metal are leached again. It is known that it can be repeated and is efficient and saves costs and labor.
  • cobalt salts particularly cobalt sulfate.
  • cobalt sulfate has recently been used in large quantities as a material for secondary batteries and the like, but cobalt sulfate for batteries has specifications for ensuring battery characteristics and ensuring safety.
  • chloride ions in cobalt sulfate crystals are generally required to be maintained at a level of 0.1% or less.
  • a method has been considered in which a cobalt-containing chloride solution is extracted with a solvent to extract cobalt ions, and this is back-extracted with a sulfuric acid solution to obtain a cobalt sulfate solution.
  • extractants capable of separating this cobalt extractants such as phosphonic acid and phosphinic acid are known.
  • the phosphonic acid and phosphinic acid 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester and di- (2,4,4-trimethylpentyl) phosphinic acid generally have good extractability of cobalt. It is used.
  • an alloy scrap containing nickel and cobalt and containing no other elements as a compound is electrolytically dissolved while maintaining a cathode current density of 2 A / dm 2 or less using an aqueous sulfuric acid solution as an electrolytic solution. Then, the obtained nickel sulfate and cobalt sulfate-containing aqueous solution is purified, nickel ions and cobalt ions are extracted from the purified aqueous solution into organic substances, and nickel and cobalt ions are extracted back from the extract with hydrochloric acid or sulfuric acid. A nickel chloride and cobalt chloride mixed aqueous solution or a nickel sulfate and cobalt sulfate mixed aqueous solution to recover nickel and cobalt from nickel and cobalt alloy scrap.
  • an aqueous solution of cobalt in a chloride bath or sulfuric acid bath can be obtained from cobalt in a sulfuric acid bath.
  • impurities such as calcium, magnesium and sodium coexist in the chloride solution containing cobalt.
  • the extraction behavior of these impurities in the above extractant has properties similar to the extraction behavior of cobalt, and it has been difficult to remove impurities such as calcium, magnesium and sodium from a solution containing cobalt.
  • Patent Document 2 discloses a method for improving the extraction ability of copper when solvent is extracted from a chloride bath. This method is a method of recovering copper from an acidic aqueous solution containing copper chloride and an alkali and / or alkaline earth metal chloride by solvent extraction using a cation exchange type extractant. In the presence of sulfate ions. A sulfuric acid compound selected from the group consisting of sodium sulfate, magnesium sulfate, calcium sulfate, potassium sulfate and ammonium sulfate is added to the acidic aqueous solution so that the sulfate ion content is in the range of 10 to 100 g / L.
  • the chlorine ion concentration and the bromine ion concentration in the acidic aqueous solution are within a predetermined range, and an acidic chelate extractant can be used as a cation exchange type extractant. Further, it is disclosed that the copper extraction capability is increased, the amount of solution handled in the copper leaching process performed in the previous stage can be reduced, and the equipment cost, the operation cost, etc. can be reduced. However, no method has been found for industrially and easily separating impurities such as calcium, magnesium and sodium from a solution containing mainly cobalt.
  • the present invention effectively removes impurities such as calcium, magnesium and sodium in a process of obtaining a cobalt sulfate solution having a high cobalt concentration by solvent extraction using an acidic organic extractant, and produces high purity cobalt sulfate. With the goal.
  • a first invention of the present invention that solves such problems is a cobalt sulfate production method for producing cobalt sulfate from a cobalt-containing chloride solution, wherein the cobalt-containing chloride solution is converted into the following first step.
  • the second invention of the present invention is a method for producing cobalt sulfate, wherein the extractant in the first invention is an acidic phosphate ester type extractant.
  • a 0 ) is maintained in the range of 5.0 to 7.0.
  • the volume ratio (O / A 1 ) of the amount of the washing liquid (A 1 ) containing cobalt-containing organic phase (O) and cobalt is characterized in that the impurity ions contained in the cobalt-carrying organic phase are transferred to the washing solution containing cobalt while maintaining the pH at 5 to 10 and maintaining the pH in the range of 4.0 to 4.5. It is a manufacturing method of cobalt.
  • a cobalt-retaining organic phase so that the cobalt concentration in the cobalt sulfate solution obtained by the third step in the first to fourth aspects is maintained in the range of 60 to 100 g / L. It is a manufacturing method of cobalt sulfate characterized by adjusting the amount of sulfuric acid contained in the back extraction starting liquid to be added.
  • the sixth invention of the present invention is a method for producing cobalt sulfate, wherein the impurities in the first to fifth inventions are any one or more of calcium, magnesium and sodium ions.
  • the chloride solution containing cobalt in the first to sixth inventions contains nickel and cobalt obtained by leaching a sulfide containing nickel with chloride and chlorine gas.
  • a method for producing cobalt sulfate which is a solution obtained by separating a chloride solution by solvent extraction.
  • the present invention produces high-purity cobalt sulfate from a chloride solution containing cobalt, and in particular, a chloride solution containing nickel and cobalt obtained by leaching a sulfide containing nickel with chloride and chlorine gas. It is suitable for a chloride solution containing cobalt obtained by separation by solvent extraction.
  • a diluent is added to the extractant to be used, and 10 to 30% by volume is added. And preferably diluted to a concentration of 15-25% and the operating pH of the first step is in the range of 4.0-5.0, preferably in the range of 4.3-4.7, expressed in organic / liquid phase.
  • the volume ratio of the liquid volume is in the range of 5.0 to 7.0, the operating pH of the second step is 4.0 to 4.5, and the volume ratio of the liquid volume expressed in organic phase / liquid phase is 5.0 to 10 0.0, maintaining the pH of the third step in the range of 0.5 to 1.0, the calcium, magnesium and sodium concentration ratios to the cobalt concentration of the resulting cobalt sulfate solution are 0.0001, 0.0001, Which reduces to below 0.00005 That.
  • the solvent extraction step of the present invention is specifically composed of the following three steps.
  • first step an extraction solvent diluted to contain the extractant main body at a concentration of 10 to 30% by volume, preferably 15 to 25% by volume, and a chloride solution containing impurities such as cobalt, calcium, magnesium and sodium Is extracted in the pH range of 4.0 to 5.0 to extract cobalt to obtain a cobalt-retaining organic phase.
  • pH is added and adjusted while measuring during extraction to maintain a predetermined range. If the amount of the extractant is less than 10% by volume, the amount of the organic solvent required for the same amount of the starting liquid for extraction is increased, so that the equipment needs to be enlarged. If the concentration exceeds 30% by volume, the organic solvent after dilution The viscosity of the oil is so high that poor oil-water separation tends to occur, and stable operation becomes difficult.
  • FIG. 1 shows the relationship between the extraction pH and the extraction rate of each element. From FIG. 1, in order to ensure the extraction rate of cobalt, it is necessary that pH is 4.0 or more. However, since the extraction rate of impurity elements such as magnesium also increases, the pH is preferably in the range of 4.3 to 4.7 in consideration of the extraction of cobalt and the separability of impurities.
  • the pH is set to an acidic region of 1.0 or less, preferably in the range of 0.5 to 0.8. Is desirable.
  • FIG. 2 shows the relationship between the volume ratio (O / A 0 ) of the organic solvent (O) and aqueous solution (A 0 ) in the first step (extraction step) and the extraction rate of cobalt, magnesium, and calcium. is there. From FIG. 2, the extraction rate of each component increases as the volume ratio of the liquid amount increases, and the extraction rate of cobalt is about 90% at the liquid volume ratio of 4.0.
  • the volume ratio of the amount of the organic solvent (O) and the aqueous solution (A 0 ) needs to be 5.0 or more, and the organic solvent ( It is desirable that the volume ratio of the liquid volume of O) and the aqueous solution (A 0 ) is small.
  • the optimal volume ratio of the liquid amount is preferably in the range of 5.0 to 7.0.
  • the aqueous solution (A 0 ) in the first step (extraction step) is a chloride solution (A 0 ) containing cobalt.
  • Table 1 shows the volume ratio (O / A 1 ) of the amount of the organic solvent (O) in the second step (cleaning step) and the cleaning solution (A 1 ) containing cobalt, and the cleaning efficiency of magnesium, calcium, and sodium (unit: %)
  • lowering the volume ratio (O / A 1 ) of the liquid volume improves the calcium washing efficiency, but the ratio of the washing liquid volume to the back-extracted liquid volume increases, which is problematic in terms of productivity. It becomes. Therefore, it can be seen that the volume ratio (O / A 1 ) of the liquid amount is preferably in the range of 5 to 10 in order to obtain a calcium cleaning efficiency higher than 95%.
  • Table 2 shows the relationship between the pH in the second step (washing step) and the calcium concentration in the organic solvent after the washing step.
  • the pH of the washing step is preferably in the range of 4.0 to 4.5 because the calcium washing ability is lowered at pH 4.6 or higher.
  • the cobalt concentration in the manufactured cobalt sulfate solution is maintained in the range of 60 to 100 g / L. If the cobalt concentration is low, the production efficiency is lowered. It is because it becomes easy to make it.
  • the cobalt concentration in the cobalt sulfate solution is maintained within a predetermined range by adjusting the amount of sulfuric acid contained in the back extraction starting solution added to the cobalt-retaining organic phase. For example, the back extraction starting solution to which dilute sulfuric acid is added. Is used by adjusting the concentration of the diluted sulfuric acid.
  • the present invention will be described using examples.
  • the first step (extraction step) of solvent extraction is the second stage
  • the second step (washing step) is the third stage
  • the third step (back extraction step) is the second stage mixer settler (manufactured by Japan FP Corporation 3L FRP Mixer mixer) was used.
  • the mixer settler used was 0.5 liters in the effective volume of the mixer part of the mixer settler, and 3 liters in the effective volume of the settler part.
  • the first step (extraction step) and the third step (back extraction step) were performed so that the organic solvent and the aqueous solution were countercurrent.
  • the organic solvent enters from the first-stage mixer and exits from the third-stage settler, but the aqueous solution is sulfuric acid as a cleaning solution containing cobalt in order to improve the cleaning efficiency of impurities in the organic solvent.
  • a cobalt solution was used and poured into the mixer at each stage of the cleaning process, and discharged from the settler outlet at each stage.
  • an extractant (trade name: PC88A, manufactured by Daihachi Chemical Industry Co., Ltd.) whose functional group is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester is used, and this is used as an alkylbenzene-based diluent.
  • Teclean N20 manufactured by Nippon Oil Corporation
  • the feed rate of the mixed organic solvent is 112 ml / min
  • the feed rate of the cobalt chloride solution in the first step is 22 ml / min
  • the feed rate of the cobalt sulfate solution in the second step is 10.5 ml / min.
  • the flow rate of dilute sulfuric acid in the third step was set to 15 ml / min at 3.5 ml / min in each stage.
  • a cobalt chloride solution (starting solution) shown in Table 3 was used as the starting solution for solvent extraction, and a cobalt sulfate solution was prepared using the solvent extraction conditions shown in Table 4. The results are also shown in Table 3.
  • the chloride ion concentration in the cobalt sulfate solution obtained by the present invention is less than 0.1 g / L, and from the abundance ratio with cobalt, the chloride product level in the cobalt sulfate crystal is suppressed to 0.02% or less. It was.
  • Comparative Example 1 Using the same cobalt chloride solution shown in Table 3 as in Example 1 and using the solvent extraction conditions shown in Table 4, a cobalt sulfate solution (final solution) was prepared. The results are also shown in Table 3.
  • Comparative Example 1 although the pH value at the time of contact between the extraction solvent of the first step and the chloride solution containing cobalt is lower than the range of the present invention, the extraction of cobalt slightly increases, but calcium, magnesium, etc. It can be seen that the concentration of impurities in the back-extracted solution is high because the impurities are easily extracted.
  • Comparative Example 2 Cobalt sulfate was produced in the same manner as in Example 1 except that the solvent extraction conditions shown in Table 4 were outside the scope of the present invention. The results are also shown in Table 3.
  • Comparative Example 2 since the concentration of the extractant is higher than 30%, the upper limit value of the cobalt concentration in the organic solvent is increased, but at the same time, impurities are easily extracted into the organic solvent, so that the obtained sulfuric acid is obtained. As a result, the quality of the cobalt solution deteriorates. In contrast to Comparative Example 2, when the concentration of the extractant is too low, the resulting cobalt sulfate solution has a low cobalt concentration and a low impurity concentration. However, productivity was lowered due to the low cobalt concentration.
  • the calcium, magnesium, and sodium concentration ratios relative to cobalt are 0.0006, 0.001, and 0.025, respectively.
  • Cobalt sulfate manufactured by the solvent extraction process consisting of two processes (washing process) and third process (back extraction process) has a calcium, magnesium and sodium concentration ratio to the cobalt concentration of 0.0001, It turns out that it is reduced to 0.0001 and 0.00005 or less.
  • the impurity element concentration ratio to the cobalt concentration is not sufficiently reduced compared to the examples, and high purity cobalt sulfate is not obtained.
  • high purity cobalt sulfate is not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 酸性有機抽出剤を用いた溶媒抽出により高コバルト濃度の硫酸コバルト溶液を得る工程において、不純物を効果的に除去し、高純度の硫酸コバルトを得る硫酸コバルトの製造方法を提供する。 不純物としてカルシウム、マグネシウム、ナトリウムを含有する酸性溶液を溶媒抽出によって、コバルトの塩化物溶液から分離する際に、使用する抽出剤に希釈剤を加えて、10~30体積%、好ましくは15~25%の濃度に希釈し、第1工程の操作pHを4.0~5.0の範囲、有機相/液相で表した液量の容積比を5.0~7.0の範囲、第2工程の操作pHを4.0~4.5、有機相/液相で表した液量の容積比を5.0~10.0、第3工程のpHを0.5~1.0の範囲に維持することで、得られる硫酸コバルト溶液のコバルト濃度に対するカルシウム、マグネシウム、ナトリウム濃度比をそれぞれ0.0001、0.0001、0.00005以下に低減するものである。

Description

硫酸コバルトの製造方法
 本発明は、コバルトを含有する塩酸酸性溶液から、不純物、特にカルシウム、マグネシウム、ナトリウムの少ない、電池材料に使用できる高純度な硫酸コバルトを得ようとする分野に利用できる。
 コバルトは、ニッケルと共存して鉱石中に含有される場合が多く、ニッケル製錬における共同産出物として得られる。
 このニッケルやコバルトを製錬するには様々な方法があるが、乾式法と呼ばれる鉱石を還元剤と共に炉に入れる製錬方法では、コバルトはニッケルと分離されずにそのままステンレスの原料となるフェロニッケルに製錬されるために、コバルトのロスとなり、好ましくない。
 そこで、従来は、鉱石に硫黄を加えて炉に入れて硫化焙焼し、得たニッケルやコバルトの硫化物を硫酸で浸出し、得た浸出液を溶媒抽出などの方法に付し、コバルトをメタルや塩類として回収する精錬方法が用いられてきた。しかし、この硫化焙焼と酸浸出を組み合わせた方法は、近年の資源枯渇に伴う原料鉱石の低品位化に対しては、処理の必要な物量の増加に伴う手間とコストの増加という課題があった。
 特に硫酸を用いて浸出した場合、浸出に時間を要するので設備規模が拡大し、さらにメタルを回収した後に発生した硫酸を系外に払い出さなければプロセスの硫酸バランスが維持できず、一方で上記の硫化焙焼に必要な硫黄を供給する必要があるなどの課題があった。
 そこで、最近では低品位なニッケル鉱石を高温高圧下で硫酸溶液に浸出し、不純物を分離した後に硫化剤を添加して硫化物とし、この硫化物を塩化物で浸出し、ここからコバルトメタルを得る方法が実用化されてきた。
 この方法を用いると塩化物による硫化物の浸出は、迅速に進むので設備が比較的コンパクトで済む利点がある他に、硫化物を塩化物で浸出した後に浸出残渣として得られる硫黄を、硫化剤の原料として繰り返すことができ、さらに塩化物浴による電解採取は硫酸浴よりも伝導度が高いために電解電力の節減が可能であり、またコバルトメタルを回収した後の塩化物イオンを再度浸出工程に繰り返すことができるなど、効率的であり、コストや手間の節約になるメリットが知られている。
 しかしながら、上記方法を用いた場合、メタルは効率よく回収できるが、一方でコバルトの塩類、特に硫酸コバルトを得るのは容易でなかった。
 特に、硫酸コバルトは、近年では2次電池などの材料として多量に用いられるようになってきているが、電池向けの硫酸コバルトには、電池特性の確保や安全性の確保のためにスペックがあり、中でも硫酸コバルト結晶中の塩化物イオンは、一般に0.1%以下のレベルに維持することが必要とされている。
 このような厳しいスペックに対し、例えば一度コバルトメタルを精製し、これを硫酸に溶解して硫酸コバルトを得る方法も考えられるが、製造に要する時間とコストを考えると経済的ではない。このように塩化物から硫酸コバルトを得ることは容易でなかった。
 そこで、コバルトを含有する塩化物溶液を溶媒抽出してコバルトイオンを抽出し、これを硫酸溶液で逆抽出して硫酸コバルト溶液を得る方法が考えられた。
 このコバルトを分離できる抽出剤として、ホスホン酸やホスフィン酸などの抽出剤が知られている。そのホスホン酸やホスフィン酸の具体的なものとして、2-エチルヘキシルホスホン酸モノ2-エチルヘキシルエステル、ジ-(2,4,4-トリメチルペンチル)ホスフィン酸は、コバルトの抽出性が良好なことから一般に使われている。
 ホスホン酸およびホスフィン酸の抽出剤を用いた場合、抽出挙動は溶液のpHに依存し、pHが上昇するほど抽出率が向上する傾向がある。そして、元素により抽出に適するpH依存性が異なる特性を利用して、コバルトやその他不純物元素を有機溶媒中へ抽出することができると考えられた。
 特許文献1には、ニッケル、およびコバルトを含有し他の元素が化合物としては含有されていない合金スクラップを、硫酸水溶液を電解液として陰極電流密度2A/dm以下に保持しながら電解的に溶解し、得られた硫酸ニッケル及び硫酸コバルト含有水溶液を浄液処理し、浄液済水溶液からニッケルイオン及びコバルトイオンを有機物質に抽出し、抽出液から塩酸又は硫酸でニッケル及びコバルトイオンを逆抽出して塩化ニッケル及び塩化コバルト混合水溶液又は硫酸ニッケルおよび硫酸コバルト混合水溶液を得ることを特徴とするニッケル、コバルト合金スクラップからニッケル及びコバルトを回収する方法である。
 この方法を用いることにより、硫酸浴のコバルトから塩化浴あるいは硫酸浴のコバルト水溶液を得ることができる。
 しかしながら、コバルトを含有する塩化物溶液には、カルシウム、マグネシウム、ナトリウムなどの不純物も共存している。これら不純物の上記の抽出剤における抽出挙動は、コバルトの抽出挙動と似た性質を持っており、コバルトを含有する溶液からカルシウム、マグネシウム、ナトリウムなどの不純物を除去することは困難であった。
 不純物を分離する方法に関して特許文献2には、塩化物浴から銅を溶媒抽出する際に、銅の抽出能力の向上を図る方法が示されている。
 この方法は、銅の塩化物と、アルカリ及び/又はアルカリ土類金属の塩化物とを含有する酸性水溶液から、陽イオン交換型抽出剤を用いて溶媒抽出により銅を回収する方法で、溶媒抽出を硫酸イオンの存在下で行う。硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、硫酸カリウム及び硫酸アンモニウムよりなる群から選択される硫酸化合物を該酸性水溶液に添加し、硫酸イオンの含有量を10~100g/Lの範囲とする。
 さらに、酸性水溶液中の塩素イオン濃度と臭素イオン濃度を所定範囲し、陽イオン交換型抽出剤として酸性キレート抽出剤を用いることができる。また、銅の抽出能力が上昇し、前段階で実施する銅の浸出工程で取り扱う溶液量を少なくでき、設備コスト、操業コスト等を少なくできることが開示されている。
 しかし、コバルトを主として含有する溶液からカルシウム、マグネシウム、ナトリウムのような不純物を工業的に効果的に容易に分離する方法は見出されていなかった。
特公昭63-50411号公報 特開2010-43313号公報
 本発明は、酸性有機抽出剤を用いた溶媒抽出により高コバルト濃度の硫酸コバルト溶液を得る工程において、不純物であるカルシウム、マグネシウム、ナトリウムを効果的に除去し、高純度の硫酸コバルトを製造することを目的とする。
 このような課題を解決する本発明の第1の発明は、コバルトを含有する塩化物溶液から硫酸コバルトを生成する硫酸コバルトの製造方法において、コバルトを含有する塩化物溶液を、以下の第1工程から第3工程からなる溶媒抽出工程で処理することによって、硫酸コバルトを生成する製造方法である。
(1)抽出剤を10~30体積%の割合で含有する抽出溶媒と、コバルトを含有する塩化物溶液とを、pHが4.0~5.0の範囲で接触させ、コバルトを含有する塩化物溶液からコバルトを抽出して、コバルト保持有機相を形成する第1工程。
(2)第1工程で得られたコバルト保持有機相と、コバルトを含む洗浄液とを混合することによって、コバルト保持有機相に含まれる不純物を、コバルトを含む洗浄液中に移行させた洗浄後コバルト保持有機相を形成する第2工程。
(3)第2工程で得られた洗浄後コバルト保持有機相に、逆抽出始液として希硫酸をpHが0.5~1.0の範囲になるように添加して、洗浄後コバルト保持有機相と希硫酸を接触させることによって、硫酸コバルト溶液を生成する第3工程。
 本発明の第2の発明は、第1の発明における抽出剤が、酸性燐酸エステル系抽出剤であることを特徴とする硫酸コバルトの製造方法である。
 本発明の第3の発明は、第1及び第2の発明における第1工程において、コバルト保持有機相(O)とコバルトを含有する塩化物溶液(A)の液量の容積比(O/A)を5.0~7.0の範囲に維持することを特徴とする硫酸コバルトの製造方法である。
 本発明の第4の発明は、第1から第3の発明における第2工程において、コバルト保持有機相(O)とコバルトを含む洗浄液(A)の液量の容積比(O/A)を5~10に維持すると共に、そのpHを4.0~4.5の範囲に維持して、コバルト保持有機相中に含まれる不純物イオンをコバルトを含む洗浄液に移行させることを特徴とする硫酸コバルトの製造方法である。
 本発明の第5の発明は、第1から第4の発明における第3工程により得られる硫酸コバルト溶液中のコバルト濃度が60~100g/Lの範囲に維持されるように、コバルト保持有機相に添加する逆抽出始液の含有硫酸量を調整することを特徴とする硫酸コバルトの製造方法である。
 本発明の第6の発明は、第1から第5の発明における不純物が、カルシウム、マグネシウム、ナトリウムイオンのうちいずれか1種類以上であることを特徴とする硫酸コバルトの製造方法である。
 本発明の第7の発明は、第1から第6の発明におけるコバルトを含有する塩化物溶液が、ニッケルを含有する硫化物を塩化物と塩素ガスで浸出して得られるニッケルとコバルトを含有する塩化物溶液を溶媒抽出によって分離して得られた溶液であることを特徴とする硫酸コバルトの製造方法である。
 本発明によれば、以下に示す工業上顕著な効果を奏するものである。
(1)カルシウム、マグネシウム、ナトリウム濃度の低い、高純度な硫酸コバルトを製造できる。
(2)塩化浴を利用する効率の良い製錬方法を使いながら低塩化物品位の硫酸コバルトが得られる。
第1工程(抽出工程)の抽出pHと各元素の抽出率の関係を示す図である。 第1工程(抽出工程)の有機溶媒(O)と水溶液(A)の液量の容積比(O/A)とコバルト、マグネシウム、カルシウムの抽出率の関係を示すものである。
 本発明は、コバルトを含む塩化物溶液から高純度の硫酸コバルトを製造するもので、特にニッケルを含有する硫化物を塩化物と塩素ガスで浸出して得られるニッケルとコバルトを含む塩化物溶液を、溶媒抽出によって分離して得たコバルトを含む塩化物溶液に対して好適である。
 そのために、本発明では不純物としてカルシウム、マグネシウム、ナトリウムを含有する酸性溶液を溶媒抽出によって、コバルトの塩化物溶液から分離する際に、使用する抽出剤に希釈剤を加えて、10~30体積%、好ましくは15~25%の濃度に希釈し、第1工程の操作pHを4.0~5.0の範囲、好ましくは4.3~4.7の範囲、有機相/液相で表した液量の容積比を5.0~7.0の範囲、第2工程の操作pHを4.0~4.5、有機相/液相で表した液量の容積比を5.0~10.0、第3工程のpHを0.5~1.0の範囲に維持することで、得られる硫酸コバルト溶液のコバルト濃度に対するカルシウム、マグネシウム、ナトリウム濃度比をそれぞれ0.0001、0.0001、0.00005以下に低減するものである。
 本発明の溶媒抽出工程は、具体的には以下の3つの工程から構成される。
[第1工程(抽出工程)]
 第1工程では抽出剤本体を10~30体積%、望ましくは15~25体積%の濃度で含有するように希釈した抽出溶媒と、コバルト、カルシウム、マグネシウム、ナトリウムなどの不純物を含有する塩化物溶液とを、pHが4.0~5.0の範囲で接触させ、コバルトを抽出してコバルト保持有機相を得る抽出工程である。なお、pHは抽出中にも測定しながら添加調整して所定範囲を維持する。
 抽出剤の量が10体積%未満では、同じ抽出始液量に対して必要な有機溶媒量が多くなる為に設備の大型化が必要となり、30体積%を超える濃度では、希釈後の有機溶媒の粘性が高く油水分離不良が起こりやすくなり、安定操業が困難となる。
[第2工程(洗浄工程)]
 第2工程では、第1工程で得たコバルト保持有機相と、予めコバルトを含む洗浄液とを混合し、コバルト保持有機相に含まれるカルシウムイオン、マグネシウムイオン、及びナトリウムイオンを、コバルトを含む洗浄液中に移行し、コバルトと分離する洗浄工程である。
[第3工程(逆抽出工程)]
 第3工程では、第2工程で得られた洗浄後コバルト保持有機相と逆抽出始液である希硫酸とを、pHが0.5~1.0の維持した範囲で接触させ、硫酸コバルト溶液を得る逆抽出工程である。
 以上の3工程を通して重要な点は、コバルトを含む塩化物溶液から如何にしてコバルトと、各種の不純物元素、特にカルシウム、マグネシウム、ナトリウムを分離するかについてである。そこで、工程中における工程条件(pH、及び有機相(O)と液相(A)の構成比)の塩化コバルト溶液からの不純物抽出に及ぼす影響を明らかにした。
 図1は、抽出pHと各元素の抽出率の関係を示すものである。
 図1から、コバルトの抽出率を確保するには、pHが4.0以上であることが必要である。しかし、マグネシウムなどの不純物元素の抽出率も増加するので、コバルトの抽出と不純物の分離性から考え、pHは4.3~4.7の範囲とすることが望ましい。
 また、第3工程の逆抽出工程で、コバルトを有機溶媒中から水溶液中に戻す場合には、pHを1.0以下の酸性領域とし、好ましくは0.5~0.8の範囲とすることが望ましい。
 図2は、第1工程(抽出工程)の有機溶媒(O)と水溶液(A)の液量の容積比(O/A)とコバルト、マグネシウム、カルシウムの抽出率の関係を示すものである。
 図2から、液量の容積比の増加に伴い各成分の抽出率は増加し、液量の容積比4.0では、コバルトの抽出率は約90%となる。
 この第1工程(抽出工程)では、有機溶媒(O)と水溶液(A)の液量の容積比は5.0以上必要であり、且つ設備の大型化を避ける為には、有機溶媒(O)と水溶液(A)の液量の容積比は小さいほうが望ましい。このことから、最適な液量の容積比は5.0~7.0の範囲が良い。なお、第1工程(抽出工程)における水溶液(A)は、コバルトを含有する塩化物溶液(A)である。
 表1は第2工程(洗浄工程)の有機溶媒(O)と、コバルトを含む洗浄液(A)の液量の容積比(O/A)とマグネシウム、カルシウム、ナトリウムの洗浄効率(単位:%)の関係を示し、その液量の容積比(O/A)を下げることでカルシウムの洗浄効率は向上するが、逆抽出液量に対する洗浄液量の割合が大きくなり生産性の面で問題となる。
 そこで、カルシウムの洗浄効率を95%よりも高い洗浄効率を得るには、液量の容積比(O/A)は5~10の範囲が望ましいことがわかる。
Figure JPOXMLDOC01-appb-T000001
 表2は第2工程(洗浄工程)のpHと洗浄工程後の有機溶媒中のカルシウム濃度の関係を示し、そのpHが3.5以下では、カルシウムは洗浄可能であるが有機溶媒中のコバルト濃度も低下し、pH4.6以上ではカルシウムの洗浄能力が低下する為、洗浄工程のpHは4.0~4.5の範囲が望ましいことがわかる。
Figure JPOXMLDOC01-appb-T000002
 さらに、製造された硫酸コバルト溶液中のコバルト濃度は60~100g/Lの範囲に維持されていることが望ましく、コバルト濃度が小さい場合、生産効率を低下させる原因となり、コバルト濃度が高い場合は結晶化しやすくなるためである。この硫酸コバルト溶液中のコバルト濃度の所定範囲への維持は、コバルト保持有機相に添加する逆抽出始液の含有硫酸量を調整することで行うもので、例えば希硫酸を添加する逆抽出始液として用いる場合では、その希硫酸の濃度調整によって行われる。
 以下、実施例を用いて本発明を説明する。
 溶媒抽出の第1工程(抽出工程)は2段、第2工程(洗浄工程)は3段、第3工程(逆抽出工程)は2段のミキサーセトラー(日本エフ・アール・ピー社製 3L FRPミキサーセトラー)を使用した。
 使用したミキサーセトラーは、ミキサーセトラーのミキサー部の有効容量は0.5リットル、セトラー部の有効容量は3リットルの物を使用した。
 第1工程(抽出工程)、第3工程(逆抽出工程)は、有機溶媒と水溶液が向流になるように行った。
 第2工程(洗浄工程)は、有機溶媒が1段目のミキサーから入り3段目のセトラーから出るが、水溶液は有機溶媒中の不純物の洗浄効率を向上させる為に、コバルトを含む洗浄液として硫酸コバルト溶液を用い、洗浄工程の各段のミキサーに注入し、各段のセトラー出口から排出するように行った。
 用いた有機相には、官能基が2-エチルヘキシルホスホン酸モノ-2-エチルヘキシルエステルからなる抽出剤(商品名:PC88A、大八化学工業株式会社製)を使用し、これをアルキルベンゼン系の希釈剤(商品名:テクリーンN20、新日本石油株式会社製)を用いて10~30容量%に希釈したものを使用した。
 混合有機溶媒の給液量は112ml/分、第1工程の塩化コバルト溶液の給液量を22ml/分、第2工程の硫酸コバルト溶液の給液量を10.5ml/分ずつ、但しミキサー各段に給液する為に、各段で3.5ml/分ずつ、第3工程の希硫酸の流量を15ml/分に設定した。
 溶媒抽出に供する始液に、表3に示す塩化コバルト溶液(始液)を用い、表4に示す溶媒抽出条件を用いて硫酸コバルト溶液を作製した。その結果を表3に併せて示す。
 なお、本発明により得た硫酸コバルト溶液中の塩化物イオン濃度は、0.1g/L未満であり、コバルトとの存在比率から硫酸コバルト結晶中の塩化物品位は0.02%以下に抑制された。
(比較例1)
 実施例1と同じ表3に示す塩化コバルト溶液を用い、表4の溶媒抽出条件を用いて硫酸コバルト溶液(終液)を作製した。その結果を表3に併せて示す。
 比較例1では、第1工程の抽出溶媒とコバルトを含有する塩化物溶液との接触時のpHの値が本発明の範囲より低いために、コバルトの抽出もやや増加するが、カルシウム、マグネシウムなどの不純物は簡単に抽出されやすくなる為に逆抽出液中の不純物濃度が高くなっているのがわかる。
(比較例2)
 表4に示す溶媒抽出条件が本発明の範囲外の条件であること以外は、実施例1と同様にして硫酸コバルトを作製した。その結果を表3に併せて示す。
 この比較例2では、抽出剤の濃度が30%を超えて高いために、有機溶媒中のコバルト濃度の上限値は上がるが、同時に不純物も有機溶媒中に簡単に抽出される為、得られる硫酸コバルト溶液の品質が悪化してしまう結果となる。なお、比較例2とは逆に抽出剤の濃度が低すぎる場合には、得られる硫酸コバルト溶液は、コバルト濃度が低下すると共に不純物濃度も低下するために、コバルトに対する不純物の割合はあまり変化しなかったが、コバルト濃度が低いことから生産性の低下を余儀なくされた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例においては、始液の塩化コバルト溶液では、コバルトに対するカルシウム、マグネシウム、ナトリウム濃度比はそれぞれ0.0006、0.001、0.025に対し、本発明の第1工程(抽出工程)、第2工程(洗浄工程)、第3工程(逆抽出工程)の3工程からなる溶媒抽出工程で処理して製造した硫酸コバルトは、コバルト濃度に対するカルシウム、マグネシウム、ナトリウム濃度比を、それぞれ0.0001、0.0001、0.00005以下に低減されていることがわかる。
 これに対して、溶媒抽出条件が本発明の範囲外となる比較例は、いずれもコバルト濃度に対する不純物元素濃度比が実施例と比較して十分には低下しておらず高純度の硫酸コバルトが生成できなかった。

Claims (7)

  1.  コバルトを含有する塩化物溶液から硫酸コバルトを生成する硫酸コバルトの製造方法において、
      コバルトを含有する塩化物溶液を、以下の第1工程から第3工程からなる溶媒抽出工程で処理することによって硫酸コバルトを生成する硫酸コバルトの製造方法。
    (1)抽出剤を10~30体積%の割合で含有する抽出溶媒と、前記コバルトを含有する塩化物溶液とを、pHが4.0~5.0の範囲で接触させ、前記コバルトを含有する塩化物溶液からコバルトを抽出して、コバルト保持有機相を形成する第1工程。
    (2)前記第1工程で得られたコバルト保持有機相と、コバルトを含む洗浄液とを混合することによって、前記コバルト保持有機相に含まれる不純物を、前記コバルトを含む洗浄液中に移行させた洗浄後コバルト保持有機相を形成する第2工程。
    (3)前記第2工程で得られた洗浄後コバルト保持有機相に、逆抽出始液として希硫酸をpHが0.5~1.0の範囲になるように添加して、前記洗浄後コバルト保持有機相と希硫酸を接触させることによって、硫酸コバルト溶液を形成する第3工程。
  2.  前記抽出剤が、酸性燐酸エステル系抽出剤であることを特徴とする請求項1記載の硫酸コバルトの製造方法。
  3.  前記第1工程におけるコバルト保持有機相(O)とコバルトを含有する塩化物溶液(A)の液量の容積比(O/A)が、5.0~7.0の範囲に維持されることを特徴とする請求項1又は2に記載の硫酸コバルトの製造方法。
  4.  前記第2工程における前記コバルト保持有機相(O)と前記コバルトを含む洗浄液(A)の液量の容積比(O/A)が、5.0~10.0に維持され、
      pHを4.0~4.5の範囲に維持して、前記コバルト保持有機相中に含まれる不純物イオンを、前記コバルトを含む洗浄液に移行させること特徴とする請求項1~3のいずれか1項に記載の硫酸コバルトの製造方法。
  5.  前記第3工程により得られる硫酸コバルト溶液中のコバルト濃度が、60~100g/Lの範囲に維持されるように、前記コバルト保持有機相に添加する逆抽出始液の含有硫酸量を調整することを特徴とする請求項1~4のいずれか1項に記載の硫酸コバルトの製造方法。
  6.  前記不純物が、カルシウム、マグネシウム、ナトリウムイオンのうちいずれか1種類以上であることを特徴とする請求項1~5のいずれか1項に記載の硫酸コバルトの製造方法。
  7.  前記コバルトを含有する塩化物溶液が、ニッケルを含有する硫化物を塩化物と塩素ガスで浸出して得られるニッケルとコバルトを含有する塩化物溶液を、溶媒抽出によって分離して得た溶液であることを特徴とする請求項1~6のいずれか1項に記載の硫酸コバルトの製造方法。
PCT/JP2012/081631 2011-12-26 2012-12-06 硫酸コバルトの製造方法 WO2013099551A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013515627A JP5800254B2 (ja) 2011-12-26 2012-12-06 硫酸コバルトの製造方法
CA2860149A CA2860149C (en) 2011-12-26 2012-12-06 Method for producing cobalt sulfate
CN201280059603.8A CN103958416B (zh) 2011-12-26 2012-12-06 硫酸钴的制造方法
EP12862808.8A EP2799400B1 (en) 2011-12-26 2012-12-06 Method for producing cobalt sulfate
AU2012359454A AU2012359454B2 (en) 2011-12-26 2012-12-06 Method for producing cobalt sulfate
US14/368,123 US9428820B2 (en) 2011-12-26 2012-12-06 Method for producing cobalt sulfate
PH12014501457A PH12014501457A1 (en) 2011-12-26 2014-06-24 Method for producing cobalt sulfate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282633 2011-12-26
JP2011282633 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099551A1 true WO2013099551A1 (ja) 2013-07-04

Family

ID=48697047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081631 WO2013099551A1 (ja) 2011-12-26 2012-12-06 硫酸コバルトの製造方法

Country Status (8)

Country Link
US (1) US9428820B2 (ja)
EP (1) EP2799400B1 (ja)
JP (1) JP5800254B2 (ja)
CN (1) CN103958416B (ja)
AU (1) AU2012359454B2 (ja)
CA (1) CA2860149C (ja)
PH (1) PH12014501457A1 (ja)
WO (1) WO2013099551A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056489A (zh) * 2014-03-31 2014-09-24 成都易态科技有限公司 金属硫酸盐溶液的错流过滤方法
JP2017226568A (ja) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
WO2021075467A1 (ja) * 2019-10-16 2021-04-22 Jx金属株式会社 高純度硫酸コバルト溶液の製造方法及び、硫酸コバルトの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105668651B (zh) * 2016-02-03 2017-03-22 广东佳纳能源科技有限公司 一种七水硫酸钴的生产方法
CN105905951B (zh) * 2016-06-08 2017-11-03 广东光华科技股份有限公司 一种高效除去硫酸钴溶液中硝酸根杂质的方法
US10995014B1 (en) 2020-07-10 2021-05-04 Northvolt Ab Process for producing crystallized metal sulfates
CN112522512B (zh) * 2020-11-12 2022-09-30 四川顺应动力电池材料有限公司 一种利用锌冶炼厂有机钴渣制备电池级硫酸钴的方法
JP7156491B1 (ja) * 2021-04-22 2022-10-19 住友金属鉱山株式会社 硫酸コバルトの製造方法
JP7099592B1 (ja) * 2021-06-25 2022-07-12 住友金属鉱山株式会社 硫酸コバルトの製造方法
CN113845157B (zh) * 2021-10-27 2022-12-27 广东佳纳能源科技有限公司 镁掺杂钴液和镍钴锰三元前驱体的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087990A (ja) * 1973-11-16 1975-07-15
JPS57140839A (en) * 1981-12-25 1982-08-31 Nippon Mining Co Ltd Separation of nickel and cobalt from solution containing nickel and cobalt by extraction
JPS60231420A (ja) * 1983-12-28 1985-11-18 Daihachi Kagaku Kogyosho:Kk コバルトおよびニッケルを含有する水溶液からコバルトを分離する方法
JPS6350411B2 (ja) 1980-12-23 1988-10-07 Sumitomo Metal Mining Co
JP2004509232A (ja) * 2000-09-18 2004-03-25 インコ、リミテッド 硫酸中の塩化物補助酸化加圧浸出による硫化浮選精鉱からの有価ニッケルおよび有価コバルトの回収
CN101532094A (zh) * 2008-03-11 2009-09-16 江西稀有稀土金属钨业集团有限公司 从钙和镁杂质含量高的酸性原料体系中全程萃取分离得到镍和钴的工艺
JP2010043313A (ja) 2008-08-11 2010-02-25 Nippon Mining & Metals Co Ltd 銅を含有する塩化物浴からの銅の回収方法
JP2011195920A (ja) * 2010-03-23 2011-10-06 Jx Nippon Mining & Metals Corp ラテライト鉱石の処理方法
JP2012153546A (ja) * 2011-01-24 2012-08-16 Sumitomo Metal Mining Co Ltd 硫酸コバルトの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565336A (en) * 1978-11-09 1980-05-16 Nippon Mining Co Ltd Separation recovering method for cobalt by solvent extraction
JPS6350411A (ja) 1986-08-20 1988-03-03 Kobe Steel Ltd 底吹き炉の整備方法
BG47552A1 (en) * 1987-07-28 1990-08-15 Inst Inzh Khim Method for extracting of metals from chloride solutions
US5378262A (en) * 1994-03-22 1995-01-03 Inco Limited Process for the extraction and separation of nickel and/or cobalt
CN101532095B (zh) * 2009-04-01 2010-06-30 烟台凯实工业有限公司 非盐酸电解质生产电积钴的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087990A (ja) * 1973-11-16 1975-07-15
JPS6350411B2 (ja) 1980-12-23 1988-10-07 Sumitomo Metal Mining Co
JPS57140839A (en) * 1981-12-25 1982-08-31 Nippon Mining Co Ltd Separation of nickel and cobalt from solution containing nickel and cobalt by extraction
JPS60231420A (ja) * 1983-12-28 1985-11-18 Daihachi Kagaku Kogyosho:Kk コバルトおよびニッケルを含有する水溶液からコバルトを分離する方法
JP2004509232A (ja) * 2000-09-18 2004-03-25 インコ、リミテッド 硫酸中の塩化物補助酸化加圧浸出による硫化浮選精鉱からの有価ニッケルおよび有価コバルトの回収
CN101532094A (zh) * 2008-03-11 2009-09-16 江西稀有稀土金属钨业集团有限公司 从钙和镁杂质含量高的酸性原料体系中全程萃取分离得到镍和钴的工艺
JP2010043313A (ja) 2008-08-11 2010-02-25 Nippon Mining & Metals Co Ltd 銅を含有する塩化物浴からの銅の回収方法
JP2011195920A (ja) * 2010-03-23 2011-10-06 Jx Nippon Mining & Metals Corp ラテライト鉱石の処理方法
JP2012153546A (ja) * 2011-01-24 2012-08-16 Sumitomo Metal Mining Co Ltd 硫酸コバルトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799400A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056489A (zh) * 2014-03-31 2014-09-24 成都易态科技有限公司 金属硫酸盐溶液的错流过滤方法
CN104056489B (zh) * 2014-03-31 2016-08-17 成都易态科技有限公司 金属硫酸盐溶液的错流过滤方法
JP2017226568A (ja) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 高純度硫酸コバルト水溶液の製造方法
WO2021075467A1 (ja) * 2019-10-16 2021-04-22 Jx金属株式会社 高純度硫酸コバルト溶液の製造方法及び、硫酸コバルトの製造方法
JP2021063281A (ja) * 2019-10-16 2021-04-22 Jx金属株式会社 高純度硫酸コバルト溶液の製造方法及び、硫酸コバルトの製造方法
JP7365846B2 (ja) 2019-10-16 2023-10-20 Jx金属株式会社 高純度硫酸コバルト溶液の製造方法及び、硫酸コバルトの製造方法

Also Published As

Publication number Publication date
AU2012359454B2 (en) 2016-06-23
CN103958416A (zh) 2014-07-30
PH12014501457B1 (en) 2014-10-08
JPWO2013099551A1 (ja) 2015-04-30
EP2799400B1 (en) 2019-06-26
PH12014501457A1 (en) 2014-10-08
US20140348731A1 (en) 2014-11-27
US9428820B2 (en) 2016-08-30
CA2860149A1 (en) 2013-07-04
CN103958416B (zh) 2016-04-13
CA2860149C (en) 2017-04-04
JP5800254B2 (ja) 2015-10-28
EP2799400A1 (en) 2014-11-05
EP2799400A4 (en) 2015-08-19
AU2012359454A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5800254B2 (ja) 硫酸コバルトの製造方法
CN102627333B (zh) 一种精制硫酸镍的方法
JP6081926B2 (ja) 鉱石処理の改良された方法
JP5686258B2 (ja) 高純度硫酸ニッケルを得るための溶媒抽出方法
JP7300115B2 (ja) ニッケルおよびコバルトを含有する水酸化物からのニッケルおよびコバルト含有溶液の製造方法
CN103771526B (zh) 一种以工业硫酸锰为原料制备高纯硫酸锰的方法
JP6471912B2 (ja) 高純度硫酸コバルト水溶液の製造方法
JP5867727B2 (ja) 希土類元素の分離方法
JP2004285368A (ja) コバルト水溶液の精製方法
WO2022269962A1 (ja) 硫酸コバルトの製造方法
JP7360091B2 (ja) 溶媒抽出方法およびコバルト水溶液の製造方法
JP5423592B2 (ja) 低塩素硫酸ニッケル/コバルト溶液の製造方法
JP4259165B2 (ja) コバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法
CN114657387A (zh) 一种酸性蚀刻废液和含锌铜烟尘灰协同处理回收铜的方法
JPH1150167A (ja) 高純度コバルト溶液の製造方法
JP2000017347A (ja) 高純度コバルト溶液の製造方法
JP7156491B1 (ja) 硫酸コバルトの製造方法
JP7389338B2 (ja) ニッケル水溶液の製造方法
US20240228320A1 (en) Production method for cobalt sulfate
JP2008512569A (ja) 処理の支流からの亜鉛薬の生成
KR20240024618A (ko) 황산 니켈 제조 방법
CN114086003A (zh) 镍钴渣料中镍钴的回收方法
JP2022108703A (ja) 硫酸コバルトの製造方法
JP2023076987A (ja) 硫酸コバルトの製造方法
JP2022104563A (ja) 硫酸コバルトの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515627

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2860149

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14368123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012359454

Country of ref document: AU

Date of ref document: 20121206

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012862808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201404448

Country of ref document: ID