WO2013099477A1 - 永久磁石電動機及び圧縮機 - Google Patents

永久磁石電動機及び圧縮機 Download PDF

Info

Publication number
WO2013099477A1
WO2013099477A1 PCT/JP2012/080117 JP2012080117W WO2013099477A1 WO 2013099477 A1 WO2013099477 A1 WO 2013099477A1 JP 2012080117 W JP2012080117 W JP 2012080117W WO 2013099477 A1 WO2013099477 A1 WO 2013099477A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
teeth
magnetic flux
rotor
magnet motor
Prior art date
Application number
PCT/JP2012/080117
Other languages
English (en)
French (fr)
Inventor
暁史 ▲高▼橋
湧井 真一
恵理 丸山
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201280064321.7A priority Critical patent/CN104025433B/zh
Publication of WO2013099477A1 publication Critical patent/WO2013099477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a permanent magnet motor and a compressor using the same.
  • the motor torque is proportional to the square of the magnetic flux density vector generated in the gap between the stator and the rotor.
  • the magnetomotive force distribution generated in the gap by the stator is a sine wave and the magnetomotive force distribution generated by the rotor in the gap is a sine wave.
  • the stator periodically has a plurality of slot portions for providing the windings and a plurality of teeth portions around which the windings are wound, so that the magnetomotive force distribution Includes a harmonic component called a slot harmonic and causes distortion.
  • the stator winding is composed of multiple phases (generally, permanent magnet motors have many UVW three-phase alternating current configurations, and other than that, single-phase alternating currents are divided by a capacitor or the like to form two-phase alternating currents. Therefore, the distribution of the combined magnetomotive force of each phase includes a harmonic component called magnetomotive force harmonics, and distortion occurs similarly. Such distortion of the magnetomotive force distribution has been a factor that generates torque ripple and deteriorates drive stability and noise reduction.
  • Prior art document 1 describes a technique for reducing distortion of magnetomotive force distribution by periodically projecting a plurality of teeth portions in the gap direction for the purpose of reducing torque ripple.
  • the torque of the permanent magnet motor includes ripples, it is general to design such that the ripples are reduced as much as possible and a constant torque is generated.
  • An object of the present invention is to improve the motor efficiency by outputting torque matched to the pulsation of the load and suppressing the increase in current, and to suppress the overcurrent detection caused by the load fluctuation and improve the reliability. It is an object to provide a possible permanent magnet motor and a compressor using the same.
  • a permanent magnet electric motor comprising a stator having a plurality of teeth and a rotor disposed on an inner peripheral side with a predetermined gap with respect to the stator, at least one tooth among the plurality of teeth
  • the gap in the same number of parts as the teeth configured to increase the transmitted magnetic flux in the rotor is configured such that the transmitted magnetic flux in the gap direction of the teeth is larger than the transmitted magnetic flux in the gap direction of the other teeth.
  • the transmitted magnetic flux in the direction is configured to be larger than the transmitted magnetic flux in the gap direction of other portions.
  • the cross-section figure of the compressor by one Example of this invention. 1 is a radial cross-sectional view of a permanent magnet motor according to a first embodiment of the present invention.
  • FIG. 1 is a sectional structural view of a compressor according to an embodiment of the present invention.
  • the compression mechanism section is formed by meshing a spiral wrap 15 standing upright on the end plate 14 of the fixed scroll member 13 and a spiral wrap 18 standing upright on the end plate 17 of the orbiting scroll member 16. .
  • the air sucked from the suction pipe 23 is compressed by rotating the orbiting scroll member 16 by the crankshaft 6.
  • the compression chamber 19 located on the outermost diameter side has both scroll members 13 along with the orbiting motion. , 16 toward the center and the volume gradually decreases.
  • both the compression chambers 19 a and 19 b reach the vicinity of the center of the fixed scroll member 13 and the orbiting scroll member 16, the compressed gas in both the compression chambers 19 is discharged from the discharge port 20 communicating with the compression chamber 19.
  • the discharged compressed gas passes through a gas passage (not shown) provided in the fixed scroll member 13 and the frame 21 and reaches the pressure vessel 22 below the frame 21, and a discharge pipe provided on the side wall of the pressure vessel 22. (Not shown) is discharged out of the compressor.
  • a permanent magnet motor 24 is enclosed in the pressure vessel 22 and rotates at an arbitrary speed to perform a compression operation.
  • An oil reservoir 25 is provided below the permanent magnet motor 24. Oil in the oil reservoir 25 passes through an oil hole 26 provided in the crankshaft 6 due to a pressure difference caused by rotational movement, and the sliding portion between the orbiting scroll member 16 and the crankshaft 6, the sliding bearing 27, etc. Used for lubrication.
  • the load fluctuates during the refrigerant compression operation, and the load torque becomes maximum when the refrigerant is discharged. If a permanent magnet motor 24 that drives a drive system (compressor) having such a load fluctuation is applied, a current that increases when the load pulsation peaks as shown in FIG. This will cause a decrease in efficiency. Therefore, in this embodiment, as will be described below, a permanent magnet motor 24 capable of outputting torque in accordance with the peak load is adopted.
  • FIG. 2 shows a radial sectional view of the permanent magnet motor 24 according to this embodiment.
  • the permanent magnet motor 24 shown in FIG. 2 includes a stator 50 having a plurality of stator teeth 52 and a rotor 1 disposed with a predetermined gap with respect to the stator 50.
  • at least one of the stator teeth 52 is configured such that the transmitted magnetic flux in the gap direction is easier to transmit than the other teeth, and the transmitted magnetic flux in the gap direction is at least one pole of the rotor 1. It is configured so as to be easier to transmit than the poles.
  • the stator 50 is configured such that the transmitted magnetic flux in the gap direction of at least one stator tooth 52 among the plurality of stator teeth 52 is larger than the transmitted magnetic flux in the gap direction of the other stator teeth 52. Is done.
  • the transmitted magnetic flux in the gap direction in the same number of parts as the stator teeth 52 configured to increase the transmitted magnetic flux is larger than the transmitted magnetic flux in the gap direction of other parts. It is comprised.
  • At least one of the stator teeth 52 has a portion (stator tooth protrusion 55) protruding in the gap direction, and a part of the outer peripheral surface of one pole of the rotor 1 is formed. It has the structure which has the site
  • stator teeth projecting portion 55 and the rotor outer peripheral surface projecting portion 8 are provided.
  • a normal motor such a protrusion is not provided, and it is designed to output a constant torque with little torque ripple.
  • FIG. 2 a large torque can be obtained when the stator teeth projecting portion 55 and the rotor outer peripheral surface projecting portion 8 face each other, and such positional relationship is one. It can occur only once per rotation.
  • the permanent magnet motor of the present embodiment is applied to a system having a peak load once per revolution such as a single rotary compressor, a torque suitable for load fluctuations can be generated under a constant current. It becomes possible. This makes it possible to suppress an increase in current due to load fluctuations, so that the motor efficiency is improved and overcurrent detection is suppressed compared to a motor designed to output a constant torque. Improves reliability and redundancy.
  • the same effect can be obtained by providing another set of the stator tooth protrusion 55 and the rotor outer peripheral surface protrusion 8. Can be obtained. At this time, if the peak load appears at equal intervals with respect to the motor rotation angle, the stator teeth protrusions 55 are arranged to face each other with the rotation shaft therebetween, and the rotor outer peripheral surface protrusions 8 are similarly arranged. A greater effect can be obtained by arranging the rotating shafts so as to face each other.
  • stator teeth protruding portion 55 and the rotor outer peripheral surface protruding portion 8 are arranged in accordance with the appearance intervals, thereby increasing the load. An effect is obtained.
  • the motor is configured to have ⁇ pulsation in one rotation of the motor, that is, by providing ⁇ combinations of the stator tooth protrusion 55 and the rotor outer peripheral surface protrusion 8. In the same manner as described above, it is possible to generate torque suitable for load fluctuation under a constant current.
  • the rotational width of the stator tooth protrusion 55 is about half of the rotational width of the tooth tip, and the rotational width of the rotor outer peripheral surface protrusion 8 is one rotor pole. Although it is about half of the width in the rotation direction, the width of the protrusion may be freely adjusted according to the period during which the peak load is applied or the mechanical angle pitch.
  • Example 2 of the present invention will be described with reference to FIG.
  • the configuration described in the first embodiment can output torque in accordance with the pulsation of the load, but has a protruding portion in the gap direction, so that the stator inner diameter and the rotor are caused by shaft misalignment and eccentricity during motor assembly. There was a possibility that the outer diameter would interfere mechanically. Interference may cause an increase in vibration and noise. In order to avoid mechanical interference and increase in vibration and noise, if the gap length when facing the protrusion is adjusted to the level of the conventional design, the gap length of the non-protrusion will become large, and sufficient torque will be applied during periods other than the pulsation peak. It cannot be generated.
  • the permanent magnet motor of the present embodiment avoids mechanical interference and increases in vibration and noise by providing a portion that is magnetically easy to transmit magnetic flux rather than a portion that is mechanically easy to transmit magnetic flux.
  • FIG. 3 shows a sectional view in the radial direction of the permanent magnet motor of this embodiment.
  • the configuration of FIG. 3 is different from that of FIG. 2 in that, as shown in the stator magnetic flux transmission facilitating portion 56, at least one tooth, the magnetic permeability of all or part of the magnetic material constituting the tooth is changed to the other It is to make it higher than the magnetic permeability of the magnetic material. That is, as the stator teeth 52 configured to increase the transmitted magnetic flux, a part or all of the stator teeth 52 is formed by a member (stator magnetic flux transmission easy portion 56) having a higher magnetic permeability than other teeth. As this member (the stator magnetic flux transmission facilitating portion 56), for example, an amorphous material or a nanocrystal material may be used.
  • the magnetic permeability of all or a part of the magnetic body constituting the pole is determined by the other magnetic body constituting the rotor.
  • the part (rotor magnetic flux transmission easy part 9) configured to increase the transmitted magnetic flux is formed by a member having a higher magnetic permeability than other parts.
  • an amorphous material or a nanocrystal material may be used as the member (the rotor magnetic flux transmission easy portion 9).
  • At least one pole of the rotor 1 relates to all or a part of the permanent magnet 4 constituting the pole.
  • the residual magnetic flux density may be larger than that of other magnets.
  • FIG. 4 shows a radial sectional view of the permanent magnet motor according to the present embodiment.
  • the same components as those in FIG. 4 differs from FIG. 2 in that a stator slit 53 (hole) is first provided in at least one of the stator teeth 52 so that the magnetic flux can be relatively easily transmitted (stator magnetic flux transmission).
  • the easy part 56) is provided.
  • a rotor slit 7 (hole) is provided in a part of a magnetic body constituting the poles, and at least one pole of the rotor 1 is the rotation A portion (rotor magnetic flux transmission easy portion 9) that relatively facilitates magnetic flux transmission by reducing the sectional area of the slit or eliminating the slit is provided for a plurality of poles provided with the child slit 7. It is.
  • stator slit 53 when punching a motor core, a punching die provided with a stator slit 53 and a rotor slit 7 as shown in FIG. 4 is used. It can be manufactured by preparing, and unlike the second embodiment, it does not take time and effort to change the constituent material and physical properties of a specific portion.
  • the stator slit 53 provided in the stator tooth 52 may be formed in a groove shape that is concave with respect to the gap surface.
  • FIG. 7 shows a radial sectional view of the permanent magnet motor according to the first embodiment of the present invention.
  • the configuration of FIG. 7 is different from that of FIG. 4 in that the width of the teeth 52a in the rotational direction is made larger than that of the other teeth and a portion (stator magnetic flux transmission easy portion 56) that facilitates magnetic flux transmission is provided. .
  • a large torque can be obtained when the stator magnetic flux transmission easy part 56 and the rotor magnetic flux transmission easy part 9 face each other, and such a positional relationship occurs only once per rotation. Therefore, in a system having a peak load once per revolution, it is possible to generate a torque suitable for the load fluctuation under a constant current.
  • a compression mechanism (compression chamber 19) that sucks in and compresses and discharges the refrigerant, and this compression mechanism (compression chamber) 19)
  • the permeation magnetic flux of the stator 50 increases so that the load torque of the compressor increases during one rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

負荷の脈動に合わせたトルクを出力し、電流増加を抑制することでモータ効率を向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性を向上することが可能な、永久磁石電動機およびこれを用いた駆動システムを提供することである。複数のティースを具備する固定子と、前記固定子に対して所定のギャップを介して配置される回転子と、からなる永久磁石電動機において、前記ティースのうち少なくとも一つにおいてギャップ方向の透過磁束が、他のティースよりも透過容易となるよう構成するとともに、前記回転子の少なくとも一極において、ギャップ方向の透過磁束が、他の極よりも透過容易となるよう構成することを特徴とする永久磁石電動機、およびこれを用いた駆動システム。

Description

永久磁石電動機及び圧縮機
 本発明は永久磁石電動機、およびこれを用いた圧縮機に関するものである。
 一般に電動機のトルクは、固定子と回転子との間のギャップに発生する磁束密度ベクトルの2乗に比例する。一定トルクを発生するためには、固定子がギャップに発生する起磁力分布を正弦波とし、かつ回転子がギャップに発生する起磁力分布を正弦波とすることが望ましい。しかしながら実際には、固定子は、巻線を具備するための複数のスロット部と、該巻線を巻き回した複数のティース部と、を回転方向に対して周期的に有するため、起磁力分布にはスロット高調波と呼ばれる高調波成分が含まれ、歪みが生じる。また、固定子巻線が複数相で構成される(一般に、永久磁石電動機はUVWの三相交流の構成が多く、ほかには単相交流をコンデンサ等で分相し二相交流で構成するもの等がある)ことから、各相の合成起磁力の分布には起磁力高調波と呼ばれる高調波成分が含まれ、同様に歪みが生じる。このような起磁力分布の歪みが、トルクリプルを発生し、駆動安定性および静音性を悪化させる要因となっていた。先行技術文献1では、トルクリプルを低減する目的で、複数のティース部を周期的にギャップ方向に突出させ、起磁力分布の歪みを低減する技術に関して述べている。
実用新案第2559450号公報
 上述したように、永久磁石電動機のトルクにはリプルが含まれるため、このリプルを可能な限り低減し、一定トルクを発生するよう設計するのが一般的である。
 しかしながら、モータを搭載する駆動システムによっては、必ずしも一定トルクを発生することが得策とは言えない場合がある。例えば冷媒を圧縮するための冷媒圧縮機においては、冷媒圧縮動作の際に負荷変動が発生しており、冷媒吐出時に最も負荷トルクが大きくなる。このような負荷変動を有する駆動システムに対して、一定トルクを発生するモータを設計・適用すると、図8に示すように負荷の脈動がピークとなる時には電流が増加し、効率の低下を招く。また、最大負荷での運転時には、前記の電流増加が過電流検出の閾値をオーバーすることで、モータ停止頻度が増加し、システムの信頼性低下を招く虞もある。
 本発明の目的は、負荷の脈動に合わせたトルクを出力し、電流増加を抑制することでモータ効率を向上するとともに、負荷変動に起因する過電流検出を抑制し、信頼性を向上することが可能な永久磁石電動機及びこれを用いた圧縮機を提供することである。
 複数のティースを有する固定子と、該固定子に対して所定のギャップを介して内周側に配置される回転子と、を備えた永久磁石電動機において、前記複数のティースのうち少なくとも一つのティースのギャップ方向における透過磁束が、他のティースのギャップ方向における透過磁束よりも多くなるように構成され、前記回転子において、透過磁束が多くなるように構成された前記ティースと同じ数の部位におけるギャップ方向の透過磁束が、他の部位のギャップ方向における透過磁束よりも多くなるように構成される。
 本発明によれば、負荷の脈動に合わせたトルクを出力し、電流増加を抑制することでモータ効率を向上するとともに、負荷変動に起因する過電流検出を抑制し、信頼性を向上することが可能な永久磁石電動機及びこれを用いた圧縮機を提供することができる。  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例による圧縮機の断面構造図。 本発明の第1の実施例による永久磁石電動機の径方向断面図。 本発明の第2の実施例による永久磁石電動機の径方向断面図。 本発明の第3の実施例による永久磁石電動機の径方向断面図。 本発明の第3の実施例による永久磁石電動機の径方向断面図。 本発明の第3の実施例による永久磁石電動機の径方向断面図。 本発明の第4の実施例による永久磁石電動機の径方向断面図。 冷媒圧縮機の負荷変動を説明するための図。
 以下、本発明の一実施例について図面を参照して説明する。引用する図面において、回転方向は反時計回りとするが、時計回りの回転方向であっても、形状を反転することで本発明で意図する効果と同様の効果を得ることができる。
 図1は、本発明の一実施例による圧縮機の断面構造図である。図1において、圧縮機構部は、固定スクロール部材13の端板14に直立する渦巻状ラップ15と、旋回スクロール部材16の端板17に直立する渦巻状ラップ18とを噛み合わせて形成されている。吸込み配管23から吸入された空気は、旋回スクロール部材16をクランクシャフト6によって旋回運動させることで圧縮動作が行われる。
 固定スクロール部材13及び旋回スクロール部材16によって形成される圧縮室19(19a、19b、……)のうち、最も外径側に位置している圧縮室19は、旋回運動に伴って両スクロール部材13、16の中心に向かって移動し、容積が次第に縮小する。両圧縮室19a、19bが固定スクロール部材13及び旋回スクロール部材16の中心近傍に達すると、両圧縮室19内の圧縮ガスは圧縮室19と連通した吐出口20から吐出される。吐出された圧縮ガスは、固定スクロール部材13及びフレーム21に設けられたガス通路(図示せず)を通ってフレーム21下部の圧力容器22内に至り、圧力容器22の側壁に設けられた吐出パイプ(図示せず)から圧縮機外に排出される。
 圧力容器22内に、永久磁石電動機24が内封されており、任意の速度で回転し、圧縮動作を行う。永久磁石電動機24の下部には、油溜部25が設けられている。油溜部25内の油は回転運動により生ずる圧力差によって、クランクシャフト6内に設けられた油孔26を通って、旋回スクロール部材16とクランクシャフト6との摺動部、滑り軸受け27等の潤滑に供される。
 この圧縮機は、冷媒圧縮動作の際に負荷変動が発生しており、冷媒吐出時に最も負荷トルクが大きくなる。このような負荷変動を有する駆動システム(圧縮機)を駆動する永久磁石電動機24として、一定トルクを発生するものを適用すると、図8に示すように負荷の脈動がピークとなる時には電流が増加し、効率の低下を招くことになる。そこで、本実施例においては、以下に説明するように、負荷のピーク時に合わせてトルクを出力することが可能な永久磁石電動機24を採用するものである。
 図2に本実施例による永久磁石電動機24の径方向断面図を示す。図2の永久磁石電動機24は、複数の固定子ティース52を具備する固定子50と、固定子50に対して所定のギャップを介して配置される回転子1と、から構成される。そして、固定子ティース52のうち少なくとも一つにおいてギャップ方向の透過磁束が、他のティースよりも透過容易となるよう構成するとともに、回転子1の少なくとも一極において、ギャップ方向の透過磁束が、他の極よりも透過容易となるよう構成する。
 すなわち、固定子50においては、複数の固定子ティース52のうち少なくとも一つの固定子ティース52のギャップ方向における透過磁束が、他の固定子ティース52のギャップ方向における透過磁束よりも多くなるように構成される。そして一方で、回転子1において、透過磁束が多くなるように構成された固定子ティース52と同じ数の部位におけるギャップ方向の透過磁束が、他の部位のギャップ方向における透過磁束よりも多くなるように構成されるものである。
 図2では、そのための手段として、固定子ティース52のうち少なくとも一つが前記ギャップ方向に突出する部位(固定子ティース突出部55)を有するとともに、回転子1の一極における外周面の一部がギャップ方向に突出する部位(回転子外周面突出部8)を有する構成となっている。すなわち、固定子50においては、透過磁束が多くなるように構成されたティースは、他のティースに比べてギャップ方向に突出した部位(固定子ティース突出部55)が形成される。そして一方で回転子においては、透過磁束が多くなるように構成された部位(回転子外周面突出部8)は、他の部位に比べてギャップ方向に突出するように形成される。
 このように図2の構成が通常のモータと異なっている点は、固定子ティース突出部55と回転子外周面突出部8とを有する点である。通常のモータでは、このような突出部は設けず、トルクリプルの少ない一定トルクを出力するよう設計する。これに対し、図2のような構成とする場合には、固定子ティース突出部55と回転子外周面突出部8とが対向するときに大きなトルクを得られるとともに、そのような位置関係は一回転につき1回のみ生じさせることができる。
 したがって、例えば、シングルロータリ圧縮機のように一回転につき1回のピーク負荷を有するシステムに本実施例の永久磁石電動機を適用すれば、負荷変動に適合したトルクを一定電流下で発生することが可能となる。これにより、負荷変動に起因する電流増加を抑制することが可能となるので、一定トルクを出力するよう設計されたモータと比較して、モータ効率が向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性が向上する。
 また、例えばツインロータリ圧縮機のように一回転につき2回のピーク負荷を有するシステムの場合は、固定子ティース突出部55と回転子外周面突出部8をもう一組設けることで、同様の効果を得ることができる。このとき、ピーク負荷がモータ回転角に対して等間隔で出現するのであれば、固定子ティース突出部55は回転軸を挟んで対向するよう配置するとともに、回転子外周面突出部8も同様に回転軸を挟んで対向するよう配置することで、より大きな効果が得られる。一方、ピーク負荷がモータ回転軸に対して不等間隔で出現するのであれば、その出現間隔に合わせて、固定子ティース突出部55および回転子外周面突出部8を配置することで、より大きな効果が得られる。
 同様にして、一回転につき2回よりも多いピーク負荷を有するシステムにおいても突出部を構成することで、負荷変動に起因する電流増加を抑制することが可能となるので、一定トルクを出力するよう設計されたモータと比較して、モータ効率が向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性が向上する。
 また、モータ出力軸にギア比α(α>1)の増速ギアを連結したシステムで、かつギアの出力軸側が、一回転につき1回のピーク負荷を有するシステムの場合、モータ一回転がα倍の回転数として出力される。したがって、モータの一回転において、α回の脈動を持たせる構成とする、すなわち、固定子ティース突出部55と回転子外周面突出部8の組合せをα組設けることで、シングルロータリ圧縮機の場合と同様に、負荷変動に適合したトルクを一定電流下で発生することが可能となる。これにより、負荷変動に起因する電流増加を抑制することが可能となるので、一定トルクを出力するよう設計されたモータと比較して、モータ効率が向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性が向上する。一方、ギア出力軸側が一回転につき複数回のピーク負荷を有するシステムの場合においても、上述した考え方に依って突出部を設けることで、同様の効果を得ることができる。
 なお、図2では固定子ティース突出部55の回転方向幅は、ティース先端部回転方向幅の約半分となっており、また回転子外周面突出部8の回転方向幅は、回転子一極の回転方向幅の約半分となっているが、突出部の幅は、ピーク負荷が印加される期間もしくは機械角ピッチに合わせて、自由に調整してよい。
 以下、図3を用いて本発明の実施例2について説明する。  実施例1で述べた構成は、負荷の脈動に合わせてトルクを出力することができる反面、ギャップ方向に突出部を設けるため、モータ組み立て時の軸ズレ・偏芯により、固定子内径と回転子外径が機械的に干渉する虞があった。干渉すると振動・騒音の増大を招く虞が生じる。機械的干渉や振動・騒音増加を回避するべく、突出部対向時のギャップ長を従来設計の水準に合わせると、非突出部のギャップ長が甚大となり、脈動ピーク以外の期間では、十分なトルクを発生できなくなる。
 本実施例ではこの課題を解決するための手段について説明する。すなわち本実施例の永久磁石電動機は、機械的に磁束透過容易な部分を設ける構成ではなく、磁気的に磁束透過容易な部分を設ける構成とすることにより、機械的干渉や振動・騒音増加を回避しつつ、さらに脈動ピーク以外の期間も十分なトルクを出すことを可能としながら、さらに実施例1と同様の効果を得ることを可能とするものである。
 図3に本実施例の永久磁石電動機の径方向断面図を示す。図3において、図2と同一構成要素には同一符号を付け、重複説明は避ける。図3の構成が図2と異なる点は、まず固定子磁束透過容易部56に示すように、少なくとも一つのティースにおいて、該ティースを構成する磁性体の全部または一部の透磁率を、他の磁性体の透磁率よりも高くすることである。すなわち透過磁束が多くなるように構成された固定子ティース52として、その一部又は全部を他のティースに比べて透磁率の高い部材(固定子磁束透過容易部56)により形成するものであり、この部材(固定子磁束透過容易部56)としてはたとえばアモルファス材やナノクリスタル材を用いると良い。
 一方で回転子1として回転子磁束透過容易部9に示すように、少なくとも一極において、その極を構成する磁性体の全部または一部の透磁率を、回転子を構成する他の磁性体の透磁率よりも高くしている点である。すなわち透過磁束が多くなるように構成された部位(回転子磁束透過容易部9)は、他の部位に比べて透磁率の高い部材により形成される。なお、この部材(回転子磁束透過容易部9)としてはたとえばアモルファス材やナノクリスタル材を用いると良い。
 このような構成とすることで、固定子磁束透過容易部56と回転子磁束透過容易部9とが対向するときに大きなトルクを得られるとともに、そのような位置関係は一回転につき1回のみ生じさせることができる。したがって実施例1と同じく、一回転につき1回のピーク負荷を有するシステムにおいて、負荷変動に適合したトルクを一定電流下で発生することが可能となる。これにより、負荷変動に起因する電流増加を抑制することが可能となるので、一定トルクを出力するよう設計されたモータと比較して、モータ効率が向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性が向上する。
 さらに、機械的なギャップ長は周方向でほぼ一様なので、従来モータの設計を踏襲することで、モータ組み立て時の軸ズレ・偏芯による機械的干渉や振動・騒音増加を回避できると同時に、脈動ピーク以外の期間でトルクが大幅に低下することも無い。
 なお、上記は一回転につき1回のピーク負荷を有するシステムを対象として述べているが、固定子磁束透過容易部56および回転子磁束透過容易部9を複数組設けることで、一回転につき2回以上のピーク負荷を有するシステムや、ギアを連結したシステムにおいても、実施例1で述べたのと同様の効果を得ることができる。また、図2の回転子1又は固定子50の構成を、実施例1に示した回転子1又は固定子50の構成と組合せても良い。
 本実施例の他の形態としては、回転子磁束透過容易部9を設ける代わりに、回転子1のうち少なくとも一極において、その極を構成する永久磁石4の全部または一部に関し、当該永久磁石の残留磁束密度を他の磁石よりも大きくする構成としても良い。このような構成とすることで、残留磁束密度の高い永久磁石と回転子磁束透過容易部9とが対向するときに大きなトルクを得られるとともに、そのような位置関係は一回転につき1回のみ生じさせることができるので、上記した本実施例により得られる効果と同様の効果を得ることができる。なお、この構成を実施例1に示した構成と組合せても良いし、または、図3に示した構成と組合せても良い。
 以下、図4~図6を用いて本発明の実施例3について説明する。  図4は本実施例による永久磁石電動機の径方向断面図を示す。図4において、図2と同一構成要素には同一符号を付け、重複説明は避ける。図4の構成が図2と異なる点は、まず固定子ティース52のうち少なくとも一つに固定子スリット53(空孔)を設けることで、相対的に磁束透過容易となる部位(固定子磁束透過容易部56)を設ける点である。また一方で回転子1の複数の極において、それらの極を構成する磁性体の一部に回転子スリット7(空孔)を設け、かつ、前記回転子1のうち少なくとも一極は、前記回転子スリット7を設けた複数の極に対して、スリットの断面積を小さくするかスリットを無くすことで、相対的に磁束透過容易となる部位(回転子磁束透過容易部9)を設けている点である。
 このような構成とすることで、固定子磁束透過容易部56と回転子磁束透過容易部9とが対向するときに大きなトルクを得られるとともに、そのような位置関係は一回転につき1回のみ生じさせることができる。よって冷媒圧縮機などの一回転につき1回のピーク負荷を有するシステムの負荷ピークに合わせて本実施例の永久磁石電動機を採用することで、負荷変動に適合したトルクを一定電流下で発生することが可能となる。詳細な説明は省略するが、実施例1、2と同様の効果が得られることは明らかである。
 なお、図4の構成は製作性の面でも優れており、基本的には、モータコアを打ち抜き加工する際に、図4に示すような固定子スリット53よび回転子スリット7を設けた打ち抜き型を用意することで製作でき、実施例2のように、特定箇所の構成材料や物性を変えるといった手間がかからない。また、図5に示すように、固定子ティース52に設ける固定子スリット53をギャップ面に対して凹となる溝状に構成してもよい。また、図6に示すように、回転子に設ける回転子スリット7のうち、ギャップ面に対して凹となる溝状の回転子スリット7bを追加しても良い。
 なお、上記は一回転につき1回のピーク負荷を有するシステムを対象として述べているが、固定子磁束透過容易部56および回転子磁束透過容易部9を複数組設けることで、一回転につき2回以上のピーク負荷を有するシステムや、ギアを連結したシステムにおいても、実施例1で述べたのと同様の効果を得ることができる。また、図4、図5、図6の構成を、実施例1および実施例2に示したいずれかまたは両方の構成と組合せても良い。
 図7に本発明の第1の実施例による永久磁石電動機の径方向断面図を示す。図7において、図4と同一構成要素には同一符号を付け、重複説明は避ける。図7の構成が図4と異なる点は、ティース52aの回転方向の幅を他のティースよりも大きくし、磁束透過容易となる部位(固定子磁束透過容易部56)を設けている点である。このような構成とすることで、固定子磁束透過容易部56と回転子磁束透過容易部9とが対向するときに大きなトルクを得られるとともに、そのような位置関係は一回転につき1回のみ生じるので、一回転につき1回のピーク負荷を有するシステムにおいて、負荷変動に適合したトルクを一定電流下で発生することが可能となる。これにより、負荷変動に起因する電流増加を抑制することが可能となるので、一定トルクを出力するよう設計されたモータと比較して、モータ効率が向上するとともに、過電流検出を抑制し、システムの信頼性および冗長性が向上する。また、機械的なギャップ長は周方向でほぼ一様なので、従来モータの設計を踏襲することで、モータ組み立て時の軸ズレ・偏芯による機械的干渉や振動・騒音増加を回避できると同時に、脈動ピーク以外の期間でトルクが大幅に低下することも無い。また、図7の構成は製作性の面でも優れており、基本的には、モータコアを打ち抜き加工する際に、図7に示すような固定子スリット53よび回転子スリット7を設けた打ち抜き型を用意することで製作でき、実施例2のように、特定箇所の構成材料や物性を変えるといった手間がかからない。
 なお、上記は一回転につき1回のピーク負荷を有するシステムを対象として述べているが、固定子磁束透過容易部56および回転子磁束透過容易部9を複数組設けることで、一回転につき2回以上のピーク負荷を有するシステムや、ギアを連結したシステムにおいても、実施例1で述べたのと同様の効果を得ることができる。また、図7の構成を、実施例1、実施例2、および実施例3に示したいずれかまたは全ての構成と組合せても良い。
 以上に説明した実施例のいずれかの永久磁石電動機を図1の圧縮機に採用すれば、冷媒を吸い込んで圧縮し、吐出する圧縮機構部(圧縮室19)と、この圧縮機構部(圧縮室19)を駆動する永久磁石電動機24を備えた圧縮機において、永久磁石電動機24は、一回転する間で当該圧縮機の負荷トルクが大きくなる時間に、固定子50の透過磁束が多くなるように形成されたティースと、回転子1の透過磁束が多くなるように形成された部位とがギャップを介して対向する位置となるように構成されると、それぞれの実施例で説明した効果を得ることができる。
1 回転子
2 回転子鉄心
3 永久磁石
4 永久磁石挿入孔
5 シャフト孔
6 クランクシャフト
7 回転子スリット
8 回転子外周面突出部
9 回転子磁束透過容易部
13 固定スクロール部材
14、17 端板
15、18 渦巻状ラップ
16 旋回スクロール部材
19 圧縮室
20 吐出口
21 フレーム
22 圧力容器
23 吸込み配管
24 永久磁石電動機
25 油溜部
26 油孔
27 滑り軸受け
50 固定子
51 固定子鉄心
52 固定子ティース
53 固定子スリット
54 固定子巻線
55 固定子ティース突出部
56 固定子磁束透過容易部

Claims (11)

  1.  複数のティースを有する固定子と、 該固定子に対して所定のギャップを介して内周側に配置される回転子と、を備えた永久磁石電動機において、 前記複数のティースのうち少なくとも一つのティースのギャップ方向における透過磁束が、他のティースのギャップ方向における透過磁束よりも多くなるように構成され、 前記回転子において、透過磁束が多くなるように構成された前記ティースと同じ数の部位におけるギャップ方向の透過磁束が、他の部位のギャップ方向における透過磁束よりも多くなるように構成されることを特徴とする永久磁石電動機。
  2.  請求項1において、 透過磁束が多くなるように構成された前記ティースは、他のティースに比べてギャップ方向に突出した部位が形成されることを特徴とする永久磁石電動機。
  3.  請求項1又は2に記載の永久磁石電動機において、 前記回転子において、透過磁束が多くなるように構成された前記部位は、他の部位に比べてギャップ方向に突出するように形成されることを特徴とする永久磁石電動機。
  4.  請求項1において、 透過磁束が多くなるように構成された前記ティースは、その一部又は全部を他のティースに比べて透磁率の高い部材により形成されることを特徴とする永久磁石電動機。
  5.  請求項1又は4において、 前記回転子において、透過磁束が多くなるように構成された前記部位は、他の部位に比べて透磁率の高い部材により形成されることを特徴とする永久磁石電動機。
  6.  請求項1又は4において、 前記回転子において、透過磁束が多くなるように構成された前記部位は、他の部位に比べて永久磁石の残留磁束密度の高い部材により形成されることを特徴とする永久磁石電動機。
  7.  請求項1において、 前記複数のティースの一部または全部は内部に空孔が形成され、透過磁束が多くなるように構成された前記ティースは、前記した空孔が形成されない、あるいは他のティースに比べて空孔の断面積が小さいことを特徴とする永久磁石電動機。
  8.  請求項1又は7において、 前記回転子は外周側に複数の空孔が形成され、透過磁束が多くなるように構成された前記部位は、他の部位に比べて前記空孔が少なくなるように、又は空孔の断面積が小さくなるように形成されることを特徴とする永久磁石電動機。
  9.  請求項1において、 透過磁束が多くなるように構成された前記ティースは、他のティースに比べて回転方向の幅を大きく形成されることを特徴とする永久磁石電動機。
  10.  請求項9において、 回転方向の幅を小さくしたティースと、回転方向の幅を大きくしたティースの少なくとも一組が、回転軸を挟んで互いに対抗するよう配置したことを特徴とする永久磁石電動機。
  11.  冷媒を吸い込んで圧縮し、吐出する圧縮機構部と、この圧縮機構部を駆動する電動機を備えた圧縮機において、 前記電動機が請求項1~10の何れかに記載の永久磁石電動機であり、 該永久磁石電動機は、 一回転する間で当該圧縮機の負荷トルクが大きくなる時間に、前記固定子の透過磁束が多くなるように形成されたティースと、前記回転子の透過磁束が多くなるように形成された部位とがギャップを介して対向する位置となるように構成されることを特徴とする圧縮機。
PCT/JP2012/080117 2011-12-28 2012-11-21 永久磁石電動機及び圧縮機 WO2013099477A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280064321.7A CN104025433B (zh) 2011-12-28 2012-11-21 永磁电动机及压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011287255A JP5783898B2 (ja) 2011-12-28 2011-12-28 永久磁石電動機及び圧縮機
JP2011-287255 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099477A1 true WO2013099477A1 (ja) 2013-07-04

Family

ID=48696976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080117 WO2013099477A1 (ja) 2011-12-28 2012-11-21 永久磁石電動機及び圧縮機

Country Status (3)

Country Link
JP (1) JP5783898B2 (ja)
CN (1) CN104025433B (ja)
WO (1) WO2013099477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464046A (zh) * 2014-06-17 2017-02-22 三菱电机株式会社 压缩机、制冷循环装置和空调机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118227B2 (ja) * 2013-10-22 2017-04-19 株式会社日立産機システム 永久磁石回転電機およびそれを用いる圧縮機
JP6370655B2 (ja) * 2014-09-18 2018-08-08 株式会社東芝 永久磁石型回転電機
JP7022269B2 (ja) * 2017-04-21 2022-02-18 ダイキン工業株式会社 電動機およびそれを備えた流体機械
CN110535255B (zh) * 2019-08-09 2020-12-25 珠海格力节能环保制冷技术研究中心有限公司 一种定子及压缩机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984285A (ja) * 1995-09-13 1997-03-28 Aichi Emerson Electric Co Ltd 磁石回転子
JP2011030325A (ja) * 2009-07-23 2011-02-10 Daikin Industries Ltd 回転子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114372B2 (ja) * 2002-03-08 2008-07-09 松下電器産業株式会社 電動機
JP2005184872A (ja) * 2003-12-16 2005-07-07 Nippon Steel Corp モータのステータ磁心
JP5259934B2 (ja) * 2006-07-20 2013-08-07 株式会社日立産機システム 永久磁石式回転電機及びそれを用いた圧縮機
JP2009124892A (ja) * 2007-11-16 2009-06-04 Mitsuba Corp 電動モータ
JP5462011B2 (ja) * 2010-01-28 2014-04-02 株式会社日立産機システム 永久磁石式回転電機及びそれを用いた圧縮機
JP5120440B2 (ja) * 2010-11-12 2013-01-16 ダイキン工業株式会社 回転子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984285A (ja) * 1995-09-13 1997-03-28 Aichi Emerson Electric Co Ltd 磁石回転子
JP2011030325A (ja) * 2009-07-23 2011-02-10 Daikin Industries Ltd 回転子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464046A (zh) * 2014-06-17 2017-02-22 三菱电机株式会社 压缩机、制冷循环装置和空调机
CN106464046B (zh) * 2014-06-17 2019-05-31 三菱电机株式会社 压缩机、制冷循环装置和空调机

Also Published As

Publication number Publication date
JP5783898B2 (ja) 2015-09-24
JP2013138531A (ja) 2013-07-11
CN104025433A (zh) 2014-09-03
CN104025433B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5259934B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP5372468B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
US8405271B2 (en) Interior permanent magnet type brushless direct current motor
JP5401204B2 (ja) 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
JP3938726B2 (ja) 永久磁石式回転電機およびそれを用いた圧縮機
WO2015159658A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP5783898B2 (ja) 永久磁石電動機及び圧縮機
JP2006230087A (ja) 電動機,圧縮機及び空気調和機
WO2010016583A1 (ja) ステータ、モータおよび圧縮機
JP2007074898A (ja) 永久磁石式回転電機およびそれを用いた圧縮機
JP2010081659A (ja) 電動機及びそれを用いた電動圧縮機
JP2008245439A (ja) 電動機及びそれを用いた圧縮機
WO2018096887A1 (ja) 永久磁石式回転電機及びそれを用いる圧縮機
WO2016098574A1 (ja) コンプレッサ用モータ及びそれを備えたコンプレッサ
JP5208662B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP6081315B2 (ja) 永久磁石型電動機、これを用いた圧縮機、及び冷凍サイクル装置
JP6470598B2 (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
JP2016100927A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2008005637A (ja) 永久磁石埋込型電動機
JP4160410B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP4969216B2 (ja) 永久磁石同期電動機及び圧縮機
WO2019146030A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
RU2264022C2 (ru) Магнитная система ротора и способ ее изготовления
JP2017055583A (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
JP2020188594A (ja) 永久磁石式回転電機及びそれを用いた圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862985

Country of ref document: EP

Kind code of ref document: A1