WO2013099476A1 - ポリブチレンテレフタレート樹脂ペレット、及び当該ポリブチレンテレフタレート樹脂ペレットの製造方法 - Google Patents
ポリブチレンテレフタレート樹脂ペレット、及び当該ポリブチレンテレフタレート樹脂ペレットの製造方法 Download PDFInfo
- Publication number
- WO2013099476A1 WO2013099476A1 PCT/JP2012/080109 JP2012080109W WO2013099476A1 WO 2013099476 A1 WO2013099476 A1 WO 2013099476A1 JP 2012080109 W JP2012080109 W JP 2012080109W WO 2013099476 A1 WO2013099476 A1 WO 2013099476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polybutylene terephthalate
- terephthalate resin
- component
- die
- pellets
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
- C08G63/914—Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/916—Dicarboxylic acids and dihydroxy compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/006—PBT, i.e. polybutylene terephthalate
Definitions
- the present invention relates to a polybutylene terephthalate resin pellet and a method for producing the polybutylene terephthalate resin pellet.
- a reactive processing method is known as a method of using a molding machine for producing a resin molded body in a reaction field.
- so-called “reactive extrusion processing” using an extruder has high industrial added value and is actively used worldwide (see, for example, Patent Document 1). .
- Patent Document 1 exemplifies polybutylene terephthalate resin as one of many usable thermoplastic resins.
- Polybutylene terephthalate resin has excellent mechanical properties, electrical properties, heat resistance, weather resistance, water resistance, chemical resistance, and solvent resistance, so it can be used as an engineering plastic for automotive parts, electrical / electronic parts, etc. It is widely used for applications.
- the present invention has been made in order to solve the above-mentioned problems, and its purpose is to allow a polybutylene terephthalate resin to react with a reactive compound when a reactive processing method is carried out using the polybutylene terephthalate resin. On the other hand, it is to provide a technique for suppressing the thermal decomposition of polybutylene terephthalate resin.
- a polybutylene terephthalate resin pellet for producing a polybutylene terephthalate resin molded body comprising (A) a polybutylene terephthalate resin and (A) a reactive compound that reacts with the polybutylene terephthalate resin (B).
- the difference between the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin pellet and the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin molded product is 0.05 dL / g or less.
- the polybutylene terephthalate resin pellets contained in the reacted state and the polybutylene terephthalate resin pellets contained in the polybutylene terephthalate resin pellets have a terminal amount of 25 meq / kg or less can be found to solve the above problems and complete the present invention. It came to that. More specifically, the present invention provides the following.
- Polybutylene terephthalate resin pellets for producing a polybutylene terephthalate resin molding wherein (A) a polybutylene terephthalate resin and (A) a reactive compound that reacts with the polybutylene terephthalate resin (B)
- the difference between the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin pellet and the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin molded product is 0.05 dL / g or less.
- the polybutylene terephthalate resin pellet which is contained in the reacted state and the carboxyl group terminal amount of the resin contained in the polybutylene terephthalate resin pellet is 25 meq / kg or less.
- the screw disposed in the extruder includes a supply unit having a raw material supply port from the upstream side toward the downstream side, and a plasticizing unit for plasticizing the raw material sent from the supply unit side.
- the thermal decomposition of the polybutylene terephthalate resin can be suppressed while reacting the polybutylene terephthalate resin with the reactive compound.
- the polybutylene terephthalate resin pellet of the present invention reacts so that (A) the polybutylene terephthalate resin and (A) the reactive compound that reacts with the (B) polybutylene terephthalate resin satisfy the following conditions 1 and 2. Included in the state.
- (Condition 1) The intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin pellet and the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin molded article formed by molding the polybutylene terephthalate resin pellet. The difference is 0.05 dL / g or less.
- the carboxyl group terminal amount of the resin contained in the polybutylene terephthalate resin pellet is 25 meq / kg or less.
- the polybutylene terephthalate resin comprises at least a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) and an alkylene glycol (1, 4 carbon atoms). 4-butanediol) or a polybutylene terephthalate resin obtained by polycondensation with a glycol component containing an ester-forming derivative thereof (acetylated product or the like).
- the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
- examples of the dicarboxylic acid component (comonomer component) other than terephthalic acid and its ester-forming derivatives include, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4 C 8-14 aromatic dicarboxylic acids such as 4,4'-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 such as cyclohexanedicarboxylic acid And cycloalkane dicarboxylic acids of the above; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.). These dicarboxylic acid components can be used alone or in combination of two or more.
- glycol components (comonomer components) other than 1,4-butanediol examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexa C 2-10 alkylene glycol such as methylene glycol, neopentyl glycol, 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; fat such as cyclohexanedimethanol and hydrogenated bisphenol A Cyclic diols; aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; ethylene oxide 2-mole adducts of bisphenol A; Such as alkylene oxide 3 moles adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols (acetylene glycol, ethylene glycol, propylene glycol, trimethylene glycol, 1,
- the intrinsic viscosity of the polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired. Further, polybutylene terephthalate resins having different intrinsic viscosities may be mixed to adjust to a polybutylene terephthalate resin having a desired intrinsic viscosity.
- the amount of terminal carboxyl groups of the (A) polybutylene terephthalate resin used in the present invention is not particularly limited as long as the object of the present invention is not impaired.
- the terminal carboxyl group amount of the (A) polybutylene terephthalate resin is preferably 25 meq / kg or less.
- the melting point (T m ) of the polybutylene terephthalate resin varies depending on the molecular weight and whether or not a monomer other than terephthalic acid or 1,4-butanediol is used. Generally, it is in the range of 230 ° C. or lower.
- T m a value obtained by measuring with a differential scanning calorimeter at 20 ° C./min.
- the reactive compound is a compound that reacts with the polybutylene terephthalate resin, and the type of the reactive compound is not particularly limited, and a preferable compound is appropriately selected according to the physical properties required for the polybutylene terephthalate resin molded product. And use.
- (B) It does not specifically limit which part of (A) polybutylene terephthalate resin reacts with a reactive compound, (A) It may react with the carboxyl group and hydroxyl group of the terminal of polybutylene terephthalate resin. And (A) what reacts with the ester bond in the polymer chain of polybutylene terephthalate resin may be used.
- (A) reacts with a carboxyl group or a hydroxyl group at the terminal of the polybutylene terephthalate resin. If (B) a reactive compound "or" (A) a reactive compound that reacts with an ester bond in a polymer chain of a polybutylene terephthalate resin ", the reaction proceeds smoothly in a molten state.
- the reactive compound that reacts with the terminal carboxyl group or hydroxyl group of the polybutylene terephthalate resin includes (B) a hydroxyl group, a carboxylic anhydride group, an epoxy group, an isocyanate group, a carbodiimide group, an oxazoline group, a glycidyl group, an amino group.
- Examples thereof include compounds having a group, imino group, cyano group, azo group, thiol group, sulfo group, nitro group, alkoxy group, ether bond, ester bond, amide bond, urethane bond and the like.
- Examples of (B) reactive compounds that react with ester bonds in the polymer chain of polybutylene terephthalate resin include (A) (B) reactive compounds that transesterify with polybutylene terephthalate resin. Can do.
- the physical properties of the molded product of polybutylene terephthalate resin can be improved, or the polybutylene terephthalate resin molding can be performed.
- the moldability of the polybutylene terephthalate resin pellets as the raw material of the body can be improved.
- the polybutylene terephthalate resin pellet of the present invention contains the component (A) and the component (B) in a state of reacting so as to satisfy the above conditions 1 and 2, so that (A) the polybutylene terephthalate resin And the thermal decomposition of the part derived from the component (A) in the reaction product of the component (A) and the component (B) can be suppressed.
- polybutylene terephthalate resin pellets when (A) polybutylene terephthalate resin and (B) a polyvalent hydroxyl group-containing compound corresponding to a reactive compound are melt-kneaded, (A) polybutylene terephthalate resin and polyvalent hydroxyl group-containing compound By transesterifying, the fluidity of the resin composition in the molten state is increased. As a result, the resulting polybutylene terephthalate resin pellets are also excellent in fluidity during melting.
- the polyvalent hydroxyl group-containing compound is a compound having two or more hydroxyl groups in one molecule.
- the hydroxyl value of the polyvalent hydroxyl group-containing compound is preferably 200 or more, more preferably 250 or more.
- a hydroxyl value of 200 or more is preferable because the effect of improving the fluidity tends to increase.
- glycerin fatty acid ester is an ester composed of glycerin and / or a dehydration condensate thereof and a fatty acid.
- glycerin fatty acid esters those obtained using fatty acids having 12 or more carbon atoms are preferred.
- the fatty acid having 12 or more carbon atoms include lauric acid, oleic acid, palmitic acid, stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid.
- Fatty acids having 12 to 32 carbon atoms are preferred, and fatty acids having 12 to 22 carbon atoms are particularly preferred.
- lauric acid, stearic acid, 12-hydroxystearic acid or behenic acid is particularly preferable. It is preferable to use a fatty acid having 12 or more carbon atoms because the heat resistance of the resin tends to be sufficiently maintained. A carbon number of 32 or less is preferable because the effect of improving the fluidity is high.
- Examples of preferred glycerin fatty acid esters include glycerin monostearate, glycerin monobehenate, diglycerin monostearate, triglycerin monostearate, triglycerin stearic acid partial ester, tetraglycerin stearic acid partial ester, polyglycerin stearic acid partial ester And decaglycerin lauric acid partial ester, glycerin mono-12-hydroxystearate and the like.
- the method of reacting the component (A) and the component (B) is not particularly limited, and the reaction conditions and the like can be appropriately adjusted by a conventionally known method, but the polybutylene terephthalate resin pellet of the present invention to be described later is used. It is preferable to make it react by the method as described in the manufacturing method.
- the polybutylene terephthalate resin pellet of the present invention includes a reaction product in which the component (A) and the component (B) are reacted so as to satisfy the above conditions 1 and 2.
- Condition 1 is that the intrinsic viscosity of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin pellet and the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin molded body formed by molding the polybutylene terephthalate resin pellet.
- the difference from the intrinsic viscosity is 0.05 dL / g or less.
- the difference in intrinsic viscosity is preferably 0.04 dL / g or less.
- the condition 2 is that the terminal amount of carboxyl group of the resin contained in the polybutylene terephthalate resin pellet is 25 meq / kg or less. This represents that the thermal decomposition of the (A) polybutylene terephthalate resin and the thermal decomposition of the portion derived from the (A) component in the reaction product of the (A) component and the (B) component are suppressed. In this invention, it is preferable that the said carboxyl group terminal amount is 24 meq / kg.
- the polybutylene terephthalate resin pellet of the present invention contains unreacted (A) component and unreacted (B) component in addition to the reaction product of component (A) and component (B). Is not particularly limited, and is appropriately adjusted depending on the use of the molded product of polybutylene terephthalate resin.
- the polybutylene terephthalate resin pellets of the present invention can be further blended with various known stabilizers and additives as long as the objects and effects of the present invention are not impaired.
- examples thereof include reinforcing materials, various colorants, mold release agents, nucleating agents, antistatic agents, other surfactants, and different polymers.
- examples of the reinforcing material include inorganic fillers (preferably fibrous inorganic fillers (particularly preferably glass fibers)), which are used for the purpose of improving the mechanical properties of a molded product of polybutylene terephthalate resin. In many cases, the addition of such an inorganic filler hardly prevents the reaction between the component (A) and the component (B) or accelerates the thermal decomposition.
- the method for producing the polybutylene terephthalate resin pellets of the present invention is not particularly limited, and any method can be adopted as long as the polybutylene terephthalate resin pellets satisfying the above conditions 1 and 2 can be produced.
- the resin pellet of the present invention can be produced by the method for producing a polybutylene terephthalate resin pellet of the present invention described below.
- a screw is disposed in the cylinder of the extruder, and this screw has a supply part, a plasticizing part, and a kneading part from the upstream side toward the downstream side.
- a hopper for supplying the raw material is provided at the upstream end of the cylinder, and a die is connected to the downstream end.
- the supply unit has a function of conveying the raw material supplied into the cylinder in the extrusion direction (downstream direction). Specifically, the screw element for conveyance comprised from a forward flight is used, and a raw material is conveyed in an extrusion direction by rotating a screw.
- the plasticizing part has a function of sufficiently melting the raw material by applying shearing force to the raw material to generate heat.
- a screw element having plasticizing ability (ability to melt resin) is used for the plasticizing part.
- screw elements such as reverse flight, forward kneading disc, reverse kneading disc, and neutral kneading disc can be exemplified.
- a plurality of screw elements having these kneading actions may be used in combination.
- even if it is a forward flight if a deep thing and a shallow thing are combined, it will become a screw element which has a plasticizing ability.
- the kneading section has a function of sufficiently kneading the molten raw material, and here, the raw materials are mixed more uniformly.
- a screw element that can apply a compressive stress, a shear stress or the like to the molten raw material can be used in the kneading part.
- the plasticizing part and the kneading part are usually connected with the screw element for conveyance interposed therebetween, the plasticizing part and the kneading part can be clearly distinguished.
- the raw material (A) polybutylene terephthalate resin and (B) reactive compound are supplied from a hopper. These raw materials are sent from the supply section to the plasticizing section by the rotation of the screw.
- the raw material sent to the plasticizing section is sent further downstream by the rotation of the screw.
- the component (A) and the component (B) are melted together.
- the plasticizing part sends the raw material to the kneading part side while melting the raw material. If the (A) component and the (B) component are melted together, the reaction between the (A) component and the (B) component proceeds. Therefore, even in the plasticized part, the (A) component and the (B) component The reaction proceeds.
- the (A) component when heat is applied to the molten (A) component or the reaction product of the (A) component and the (B) component, the (A) component is thermally decomposed or the part derived from the (A) component in the reaction product May thermally decompose.
- the reaction between the component (A) and the component (B), the thermal decomposition mainly occurs in the kneading part.
- the reaction between the component (A) and the component (B) proceeds while mixing the raw materials more uniformly.
- the reaction between the component (A) and the component (B) proceeds.
- the thermal decomposition of the (A) component and the thermal decomposition of the part originating in the (A) component in the said reaction material occur. While carrying out the above reaction and thermal decomposition, the raw material is sent to the die and discharged from the die in a strand shape.
- the temperature at the time of kneading In order to promote the reaction, it is preferable to increase the temperature at the time of kneading by increasing the screw rotation speed or the cylinder temperature. However, in order to proceed the reaction while suppressing the thermal decomposition, it is necessary to stay at the temperature. You need to adjust the time. In the case of the present invention, the time from supplying the raw material to discharging from the die is preferably 2 minutes or less, and more preferably less than 1 minute. It is not preferable that the reaction proceeds sufficiently and the raw materials continue to stay in the cylinder because problems such as deterioration of physical properties due to thermal decomposition become remarkable.
- the kneading part is the part most related to the decomposition of the component (A) and the reaction between the component (A) and the component (B).
- the ratio of the kneading part in the entire length of the screw is 5% or more and 20% or less.
- the reaction between the component (A) and the component (B) proceeds, while the thermal decomposition of the component (A), (A) The thermal decomposition of the part originating in a component can be suppressed.
- the resin temperature discharged from the die of the extruder is T die
- the cylinder temperature is T cylinder
- the extrusion amount is Q
- the screw rotational speed is N s
- the melting point of the polybutylene terephthalate resin is T m .
- Production conditions that sometimes satisfy the following inequality (I). 200 ⁇ ((T die ⁇ T m ) ⁇ (T cylinder / T m )) / (Q / N s ) ⁇ 300 (I)
- ((T die ⁇ T m ) ⁇ (T cylinder / T m )) represents heat applied to the component (A) in the molten state (during reaction).
- (T die ⁇ T m ) represents a temperature rise until the dissolved component (A) is discharged from the die. Therefore, by evaluating (T die -T m ), the heat applied to the component (A) in the molten state can be expressed.
- the resin temperature T die includes the effects of two types of heat history, viscous heat generation due to rotation of the screw element and heat transfer from the barrel surface by the heater. Therefore, in order to suppress the thermal decomposition while advancing the reaction between the component (A) and the component (B), it is necessary to consider the cylinder temperature.
- the cylinder temperature can be taken into consideration by multiplying (T die -T m ) by (T cylinder / T m ).
- (Q / N s ) represents the amount of extrusion per screw rotation. Therefore, ((T die ⁇ T m ) ⁇ (T cylinder / T m )) / (Q / N s ) is (A) in the molten state (during reaction) per extrusion amount when the screw is rotated once. ) Represents heat applied to the component. By adjusting this heat in the range of 200 to 300, as a result of satisfying the above conditions 1 and 2, the above thermal decomposition is suppressed while reacting the (A) polybutylene terephthalate resin with the (B) reactive compound. Can do.
- T die is the resin temperature discharged from the die of the extruder, and can be adjusted by changing the cylinder temperature, the screw rotation speed, the type of screw element used in the kneading section, and the like. More specifically, if the cylinder temperature is set to a high condition, more heat is applied to the raw material, so T die tends to increase. Moreover, if the screw rotation speed is set to a fast condition, the result T die that tends to apply a stronger force to the raw material tends to increase. Further, if a screw element having a stronger kneading action is used, T die tends to increase. Moreover, even if the screw element of the kneading part is lengthened, T die tends to increase as a result of applying more heat to the raw material.
- Tm is determined by the specific polybutylene terephthalate resin used as the component (A).
- T cylinder , (Q / N s ) is a parameter that can be easily adjusted by setting the conditions of the extruder.
- T die is 295 ° C. or more and 340 ° C. or less
- T cylinder is 220 ° C. or more and 300 ° C. or less
- Q is 50 (kg / hr) or more and 500 (kg / hr) or less at an equivalent barrel inner diameter of 47 mm
- N s is 200 rpm or more and 800 rpm or less. It is.
- the outer diameter D of the screw element vary from d1 to d2, the following relationship between the discharge amount Q M in the mass-production and discharge rate Q m in prototype (II) is satisfied, prototype between the screw rotation speed Ns m in machine and screw rotation speed Ns M at mass-production following relational formula (III) is satisfied.
- ⁇ and ⁇ in the relational expressions (II) and (III) are determined so that the specific energies applied to the molten resin are equal.
- a method for determining ⁇ and ⁇ either a theoretical determination method or an experimental determination method may be used.
- the parameter ⁇ is set so that the specific function, the total shearing amount, the residence time, etc. of the objective function are the same between the small machine and the large machine.
- ⁇ are derived. Assuming the difference in heat transfer between the small machine and the large machine, the parameters ⁇ and ⁇ can be derived so that the specific energy as the objective function matches between the small machine and the large machine.
- the objective function is a specific energy, or a parameter indicating physical properties is employed, and the parameter ⁇ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ⁇ .
- A Polybutylene terephthalate resin (PBT): DURANEX (manufactured by Wintech Polymer), melting point (T m ) 224 ° C.
- B Reactive compound: polyglycerin stearic acid partial ester (Rikenmar AF-78 manufactured by Riken Vitamin)
- C Glass fiber
- the raw material which has a composition shown in Table 1 was supplied to the extruder, and the polybutylene terephthalate resin pellet was manufactured on the conditions shown in Table 1.
- the “kneading part residence time” shown in Table 1 is the time from supplying carbon black to the downstream end of the plasticizing part until the color of the extrudate discharged from the die starts to change to black.
- the “total residence time” shown in Table 1 is the time from when carbon black is supplied to the upstream end of the supply section until the black extrudate is discharged from the die.
- the time from the supply of the raw material to the discharge was 2 minutes or less, and in all the examples, the time from the supply of the raw material to the discharge was less than 1 minute.
- the calculation result 1 in Table 1 is a calculation result of following formula (II)
- the calculation result 2 is a calculation result of following formula (III).
- Table 1 shows the carboxyl group terminal amount (CEG) of the resin contained in the polybutylene terephthalate resin pellet.
- the terminal amount of the carboxyl group was determined by dissolving a pulverized sample of polybutylene terephthalate resin pellets in benzyl alcohol at 215 ° C. for 10 minutes, titrating with a 0.01N aqueous sodium hydroxide solution, and measuring.
- the intrinsic viscosity (IV) of the polybutylene terephthalate resin composition constituting the polybutylene terephthalate resin pellets is shown in Table 1. Intrinsic viscosity (IV) was measured at 25 ° C. using o-chlorophenol as a solvent.
- a polybutylene terephthalate resin molded body (130 mm ⁇ 13 mm ⁇ 1.6 mm) was produced by an injection molding method.
- the cylinder temperature during injection molding was 260 ° C.
- the screw rotation speed was 100 rpm
- the mold temperature was 60 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
(製造条件)
ダイから吐出される樹脂温度をTdieとし、シリンダー温度をTcylinderとし、押出量をQとし、スクリュー回転数をNsとし、(A)ポリブチレンテレフタレート樹脂の融点をTmとしたときに下記不等式(I)を満たす製造条件。
200≦((Tdie-Tm)×(Tcylinder/Tm))/(Q/Ns)≦300 (I)
本発明のポリブチレンテレフタレート樹脂ペレットは、(A)ポリブチレンテレフタレート樹脂と、(A)ポリブチレンテレフタレート樹脂と反応する(B)反応性化合物とが、下記の条件1、条件2を満たすように反応した状態で含まれる。
(条件1)
ポリブチレンテレフタレート樹脂ペレットを構成するポリブチレンテレフタレート樹脂組成物の固有粘度と、上記ポリブチレンテレフタレート樹脂ペレットを成形してなるポリブチレンテレフタレート樹脂成形体を構成するポリブチレンテレフタレート樹脂組成物の固有粘度との差が0.05dL/g以下である。
(条件2)
ポリブチレンテレフタレート樹脂ペレットに含まれる樹脂のカルボキシル基末端量が25meq/kg以下である。
(A)ポリブチレンテレフタレート樹脂は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート樹脂である。ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
(B)反応性化合物とは、ポリブチレンテレフタレート樹脂と反応する化合物であり、その種類は特に限定されず、製品であるポリブチレンテレフタレート樹脂成形体に求められる物性等に応じて適宜好ましい化合物を選択して用いる。
本発明のポリブチレンテレフタレート樹脂ペレットは、上記の条件1、条件2を満たすように(A)成分と(B)成分とが反応した反応物が含まれる。
本発明のポリブチレンテレフタレート樹脂ペレットには、本発明の目的や効果を損なわない範囲であれば、公知の各種安定剤や添加剤をさらに配合することができる。例えば、強化材、各種の着色剤、離型剤、核剤、帯電防止剤、その他の界面活性剤、異種ポリマー等を挙げることができる。なお、強化材としては無機充填材(好ましくは繊維状無機充填材(特に好ましくはガラス繊維))が挙げられ、これらは製品であるポリブチレンテレフタレート樹脂成形体の機械的物性を向上させる目的で使用されることが多いが、このような無機充填材の添加が、(A)成分と(B)成分との反応を大きく妨げたり、上記の熱分解を促進したりすることはほとんどない。
上記の本発明のポリブチレンテレフタレート樹脂ペレットの製造方法は特に限定されず、上記の条件1、条件2を満たすポリブチレンテレフタレート樹脂ペレットを製造できれば、どのような方法でも採用できる。例えば、以下に説明する本発明のポリブチレンテレフタレート樹脂ペレットの製造方法で本発明の樹脂ペレットを製造できる。
(製造条件)
押出機のダイから吐出される樹脂温度をTdieとし、シリンダー温度をTcylinderとし、押出量をQとし、スクリュー回転数をNsとし、(A)ポリブチレンテレフタレート樹脂の融点をTmとしたときに下記不等式(I)を満たす製造条件。
200≦((Tdie-Tm)×(Tcylinder/Tm))/(Q/Ns)≦300 (I)
(A)ポリブチレンテレフタレート樹脂(PBT):ジュラネックス(ウィンテックポリマー社製)、融点(Tm)224℃
(B)反応性化合物:ポリグリセリンステアリン酸部分エステル(理研ビタミン社製リケマールAF-78)
(C)ガラス繊維
日本製鋼所社製の二軸押出機を使用した。二軸押出機のシリンダーに配設されたスクリューの長さはL/D=45.5(Lはスクリューの全長、Dはスクリュー径、本実施例ではD=47mmのものを使用した)である。スクリューは上流側から下流側に向けて、供給部(=13.5L/D、順フライトを10ピース)、可塑化部(L/D=5、ニーディングエレメントを6ピース)、可塑化部と混練部との間の搬送用エレメント(L/D=11.25、順フライトを8ピース)、混練部(下記A~C)を有する。
[混練部A]
L/D=4.0、ニーディングエレメントを4ピース
[混練部B]
L/D=2.0、ニーディングエレメントを2ピース
[混練部C]
L/D=4.0、切り欠き付き1条逆フライト(株式会社日本製鋼所製、BMS(Backward Mixing Single flight screw))を2ピース
表1に示す組成を有する原料を押出機に供給し、表1に示す条件でポリブチレンテレフタレート樹脂ペレットを製造した。表1に示す「混練部滞留時間」は、可塑化部の下流側末端にカーボンブラックを供給してから、ダイから吐出される押出物の色が黒色に変化し始めるまでの時間である。表1に示す「総滞留時間」は、供給部の上流側末端にカーボンブラックを供給し、ダイから黒色の押出物が吐出されるまでの時間である。いずれの実施例及び比較例においても原料供給から吐出までの時間は2分以下であり、全ての実施例において原料供給から吐出までの時間は1分未満であった。また、表1中の計算結果1は下記式(II)の計算結果であり、計算結果2は下記式(III)の計算結果である。
(Tdie-Tm)/(Q/Ns) (II)
((Tdie-Tm)×(Tcylinder/Tm))/(Q/Ns) (III)
各ポリブチレンテレフタレート樹脂ペレットを用いて、ポリブチレンテレフタレート樹脂成形体(130mm×13mm×1.6mm)を射出成形法により製造した。射出成形の際のシリンダー温度は260℃、スクリュー回転数は100rpm、金型温度は60℃とした。
Claims (4)
- ポリブチレンテレフタレート樹脂成形体を製造するためのポリブチレンテレフタレート樹脂ペレットであって、
(A)ポリブチレンテレフタレート樹脂と、前記(A)ポリブチレンテレフタレート樹脂と反応する(B)反応性化合物とが、前記ポリブチレンテレフタレート樹脂ペレットを構成するポリブチレンテレフタレート樹脂組成物の固有粘度と、前記ポリブチレンテレフタレート樹脂成形体を構成するポリブチレンテレフタレート樹脂組成物の固有粘度との差が0.05dL/g以下になるように反応した状態で含まれ、
ポリブチレンテレフタレート樹脂ペレットに含まれる樹脂のカルボキシル基末端量は、25meq/kg以下であるポリブチレンテレフタレート樹脂ペレット。 - 前記(B)反応性化合物は、多価水酸基化合物である請求項1に記載のポリブチレンテレフタレート樹脂ペレット。
- (A)ポリブチレンテレフタレート樹脂と、前記(A)ポリブチレンテレフタレート樹脂と反応する(B)反応性化合物とを、下記の製造条件で、押出機内で反応させるポリブチレンテレフタレート樹脂ペレット製造方法。
(製造条件)
ダイから吐出される樹脂温度をTdieとし、シリンダー温度をTcylinderとし、押出量をQとし、スクリュー回転数をNsとし、(A)ポリブチレンテレフタレート樹脂の融点をTmとしたときに下記不等式(I)を満たす製造条件。
200≦((Tdie-Tm)×(Tcylinder/Tm))/(Q/Ns)≦300 (I) - 前記押出機に配設されたスクリューは、上流側から下流側に向けて、原料供給口を有する供給部と、供給部側から送られてきた原料を可塑化する可塑化部と、前記可塑化部で可塑化された原料を混練する混練部と、を備え、
前記スクリューの全長における前記混練部の割合が5%以上20%以下である請求項3に記載のポリブチレンテレフタレート樹脂ペレットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2014007691A MX2014007691A (es) | 2011-12-26 | 2012-11-20 | Gránulos de resina de polibutilentereftalato, y método de producción para dichos gránulos de resina de polibutilenterftalato . |
CN201280064354.1A CN104053696B (zh) | 2011-12-26 | 2012-11-20 | 聚对苯二甲酸丁二醇酯树脂颗粒、以及该聚对苯二甲酸丁二醇酯树脂颗粒的制造方法 |
US14/368,935 US9221946B2 (en) | 2011-12-26 | 2012-11-20 | Polybutylene terephthalate resin pellets, and production method for said polybutylene terephthalate resin pellets |
JP2013551535A JP5650852B2 (ja) | 2011-12-26 | 2012-11-20 | ポリブチレンテレフタレート樹脂ペレット、及び当該ポリブチレンテレフタレート樹脂ペレットの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011284399 | 2011-12-26 | ||
JP2011-284399 | 2011-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099476A1 true WO2013099476A1 (ja) | 2013-07-04 |
Family
ID=48696975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080109 WO2013099476A1 (ja) | 2011-12-26 | 2012-11-20 | ポリブチレンテレフタレート樹脂ペレット、及び当該ポリブチレンテレフタレート樹脂ペレットの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9221946B2 (ja) |
JP (1) | JP5650852B2 (ja) |
CN (1) | CN104053696B (ja) |
MX (1) | MX2014007691A (ja) |
MY (1) | MY165747A (ja) |
TW (1) | TW201336899A (ja) |
WO (1) | WO2013099476A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3024216C (en) | 2010-02-12 | 2021-03-30 | Pfizer Inc. | Salts and polymorphs of 8-fluoro-2-{4-[(methylamino)methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347151A (ja) * | 2005-03-29 | 2006-12-28 | Toray Ind Inc | 熱可塑性樹脂組成物の製造方法 |
JP2007077205A (ja) * | 2005-09-12 | 2007-03-29 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物及び一体成形品 |
WO2009050859A1 (ja) * | 2007-10-17 | 2009-04-23 | Wintech Polymer Ltd. | ポリブチレンテレフタレート樹脂組成物及び薄肉成形品 |
JP2009138179A (ja) * | 2007-11-12 | 2009-06-25 | Wintech Polymer Ltd | ポリブチレンテレフタレート樹脂組成物及び薄肉成形品 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6409949B1 (en) * | 1999-03-29 | 2002-06-25 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for thickening a polyester resin |
JP4674989B2 (ja) | 2001-04-13 | 2011-04-20 | 旭化成ケミカルズ株式会社 | 物性が良好な混練方法 |
US20100167016A1 (en) * | 2006-02-15 | 2010-07-01 | Toray Industries, Inc. | Polyester film for molded part |
JP5843439B2 (ja) * | 2010-11-29 | 2016-01-13 | ウィンテックポリマー株式会社 | ポリブチレンテレフタレート系樹脂組成物の製造方法及び成形用ポリブチレンテレフタレート系樹脂組成物 |
-
2012
- 2012-11-20 US US14/368,935 patent/US9221946B2/en active Active
- 2012-11-20 WO PCT/JP2012/080109 patent/WO2013099476A1/ja active Application Filing
- 2012-11-20 MX MX2014007691A patent/MX2014007691A/es not_active Application Discontinuation
- 2012-11-20 MY MYPI2014001910A patent/MY165747A/en unknown
- 2012-11-20 JP JP2013551535A patent/JP5650852B2/ja active Active
- 2012-11-20 CN CN201280064354.1A patent/CN104053696B/zh active Active
- 2012-12-06 TW TW101145800A patent/TW201336899A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347151A (ja) * | 2005-03-29 | 2006-12-28 | Toray Ind Inc | 熱可塑性樹脂組成物の製造方法 |
JP2007077205A (ja) * | 2005-09-12 | 2007-03-29 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物及び一体成形品 |
WO2009050859A1 (ja) * | 2007-10-17 | 2009-04-23 | Wintech Polymer Ltd. | ポリブチレンテレフタレート樹脂組成物及び薄肉成形品 |
JP2009138179A (ja) * | 2007-11-12 | 2009-06-25 | Wintech Polymer Ltd | ポリブチレンテレフタレート樹脂組成物及び薄肉成形品 |
Also Published As
Publication number | Publication date |
---|---|
US20140357807A1 (en) | 2014-12-04 |
MY165747A (en) | 2018-04-23 |
CN104053696B (zh) | 2015-07-08 |
US9221946B2 (en) | 2015-12-29 |
JPWO2013099476A1 (ja) | 2015-04-30 |
TW201336899A (zh) | 2013-09-16 |
MX2014007691A (es) | 2015-02-10 |
CN104053696A (zh) | 2014-09-17 |
JP5650852B2 (ja) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3186310B1 (en) | Modification of engineering plastics using olefin-maleic anhydride copolymers | |
CN114206995B (zh) | 液晶聚酯树脂组合物和成型体 | |
KR102190181B1 (ko) | 강화 폴리알킬렌 테레프탈레이트의 조성물과 이의 제법 및 용도 | |
CN113956623A (zh) | 一种适于膜袋的全生物降解塑料复合改性材料及其制备方法 | |
CN106947247A (zh) | 玻璃纤维-矿物复合改性半芳香族尼龙/聚苯醚复合材料及其制备方法 | |
CN106566176A (zh) | 聚酯作为流动促进剂在提高增强abs组合物光泽度的用途 | |
JP5650852B2 (ja) | ポリブチレンテレフタレート樹脂ペレット、及び当該ポリブチレンテレフタレート樹脂ペレットの製造方法 | |
JP6263428B2 (ja) | 熱可塑性ポリエステル樹脂ペレットブレンド物、ペレットブレンド物の製造方法及び成形品 | |
JPH0525903B2 (ja) | ||
JP5616536B2 (ja) | 風向制御板、及び風向制御板の製造方法 | |
TWI825450B (zh) | 含有再循環及可再生聚合組成物之風扇單元 | |
JP7261841B2 (ja) | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 | |
JP7364838B2 (ja) | 無機強化熱可塑性ポリエステル樹脂組成物及びその製造方法 | |
JP2013023552A (ja) | 樹脂ペレットの製造方法及び自動車内装部品 | |
CN105860422A (zh) | 一种高性能聚甲醛复合材料及其制备方法 | |
JP7120212B2 (ja) | 無機強化熱可塑性ポリエステル樹脂組成物 | |
KR102176289B1 (ko) | 금속-수지 접합 성형품용 폴리에스테르계 수지 조성물, 이의 제조방법 및 이를 포함하는 금속-수지 접합 성형품 | |
JP7084144B2 (ja) | ペレットの製造方法 | |
JP2007262259A (ja) | リサイクルポリアミド樹脂組成物 | |
CN107501872B (zh) | 一种碳纤维增强pet组合物及其制备方法 | |
KR20150089284A (ko) | 용융 유동성이 향상된 폴리아미드 수지의 제조 방법 | |
JP2013023553A (ja) | 樹脂成形体の製造方法、及び樹脂成形体の製造条件決定方法 | |
CN111040401A (zh) | 高性能改性聚乳酸复合材料及其制备方法 | |
JP6087818B2 (ja) | 樹脂成形体及び自動車内装部品 | |
CN114479402A (zh) | 一种3d打印用聚碳酸酯组合物及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013551535 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/007691 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14368935 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12861982 Country of ref document: EP Kind code of ref document: A1 |