WO2013099434A1 - シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法 - Google Patents

シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2013099434A1
WO2013099434A1 PCT/JP2012/078261 JP2012078261W WO2013099434A1 WO 2013099434 A1 WO2013099434 A1 WO 2013099434A1 JP 2012078261 W JP2012078261 W JP 2012078261W WO 2013099434 A1 WO2013099434 A1 WO 2013099434A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
dimensional shape
measurement
measuring unit
distance measuring
Prior art date
Application number
PCT/JP2012/078261
Other languages
English (en)
French (fr)
Inventor
俊明 須藤
忠広 佐藤
賢 北原
Original Assignee
ジャパンスーパークォーツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011285295A external-priority patent/JP5808667B2/ja
Priority claimed from JP2011285331A external-priority patent/JP5657515B2/ja
Application filed by ジャパンスーパークォーツ株式会社 filed Critical ジャパンスーパークォーツ株式会社
Priority to KR1020147020096A priority Critical patent/KR101688125B1/ko
Priority to EP12861132.4A priority patent/EP2801787B1/en
Priority to CN201280064551.3A priority patent/CN104114976B/zh
Priority to US14/365,544 priority patent/US9810526B2/en
Publication of WO2013099434A1 publication Critical patent/WO2013099434A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a method for measuring a three-dimensional shape of a silica glass crucible and a method for producing a silicon single crystal.
  • Czochralski method using a silica glass crucible is employed for the production of silicon single crystals.
  • a silicon melt obtained by melting a silicon polycrystal raw material is stored inside a silica glass crucible, and a silicon single crystal seed crystal is brought into contact with the silicon crystal crucible and is gradually pulled up to rotate the silicon single crystal seed crystal as a nucleus.
  • the softening point of silica glass is about 1200 to 1300 ° C.
  • the pulling temperature of silicon single crystal is 1450 to 1500 ° C., which is a very high temperature exceeding the softening point of silica glass.
  • the lifting time may be more than 2 weeks.
  • the silica glass crucible used for pulling is also required to be extremely high purity.
  • Silica glass crucible sizes include 28 inches (about 71 cm), 32 inches (about 81 cm), 36 inches (about 91 cm), 40 inches (about 101 cm), and the like.
  • the crucible having a diameter of 101 cm is a huge one weighing about 120 kg, and the mass of the silicon melt accommodated therein is 900 kg or more. In other words, when the silicon single crystal is pulled, 900 kg or more of silicon melt at about 1500 ° C. is stored in the crucible.
  • such a method for producing a silica glass crucible includes a silica powder layer forming step of forming a silica powder layer by depositing silica powder having an average particle size of about 300 ⁇ m on the inner surface of the rotary mold, and a silica powder from the mold side.
  • An arc melting step of forming a silica glass layer by arc melting the silica powder layer while depressurizing the layer is provided (this method is referred to as “rotary molding method”).
  • the silica powder layer is strongly depressurized to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”).
  • transparent layer a transparent silica glass layer
  • bubble-containing layer a two-layered silica glass having a transparent layer on the inner surface side and a bubble-containing layer on the outer surface side A crucible can be formed.
  • Silica powder used for crucible production includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis, but natural silica powder is made from natural products. Therefore, physical properties, shapes, and sizes tend to vary. When the physical properties, shape, and size change, the melting state of the silica powder changes, so even if arc melting is performed under the same conditions, the three-dimensional shape of the manufactured crucible varies.
  • the three-dimensional shape data of the object to be measured is obtained by receiving the reflected light reflected by the object to be measured and analyzing the data derived from the reflected light. Therefore, it is important to receive the reflected light accurately, but when the object to be measured is a transparent body such as a silica glass crucible, the three-dimensional shape is appropriately adjusted due to the influence of internally scattered light. Measurement may not be possible.
  • the reflective coating material is applied to the inner surface of the crucible.
  • the coating material may contaminate the inner surface or the reflective coating material may remain. In this case, the yield of the silicon single crystal may be adversely affected. Therefore, the method of applying the reflective coating material cannot be used for the three-dimensional shape of the inner surface of the crucible.
  • the present invention has been made in view of such circumstances, and provides a method for measuring the three-dimensional shape of a silica glass crucible that enables measurement of the three-dimensional shape of the inner surface of the crucible without contaminating the inner surface of the crucible. It is to provide.
  • the step of causing fogging on the inner surface of the silica glass crucible and the step of measuring the three-dimensional shape of the inner surface by irradiating the inner surface with light and detecting the reflected light A method for measuring a three-dimensional shape of a silica glass crucible is provided.
  • the present inventors have examined a method that enables measurement of the three-dimensional shape of the inner surface of the crucible without contaminating the inner surface of the crucible. If the crucible becomes cloudy and whitish, the inner surface of the crucible With the idea that diffusely reflected light can be detected properly and diffusely reflected light can be detected properly, and the 3D shape of the inner surface can be measured, actually, using a commercially available 3D shape measuring instrument, As a result, when there was no cloudiness, the reflected light from the inner surface of the crucible was not properly detected, and measurement of the three-dimensional shape was impossible.However, the crucible sufficiently cooled in the refrigerator room was placed in a room temperature room.
  • the cloudiness component of the crucible is water vapor in the air
  • the cloudiness and moisture can be removed from the surface of the crucible by simply heating or drying the crucible after the measurement is completed. Does not contaminate the surface.
  • the advantage of the method of the present invention is that the three-dimensional shape of the actual product can be known because the three-dimensional shape of the entire inner surface of the crucible can be determined nondestructively. Previously, a crucible was cut to create a sample, and the three-dimensional shape of this sample was measured. However, with this method, actual product data could not be obtained, and sample preparation took time and cost. Therefore, the present invention has a great advantage in that the three-dimensional shape of an actual product can be measured at low cost.
  • the present invention is particularly advantageous in a large crucible having an outer diameter of 28 inches or more and a super large crucible having a diameter of 40 inches or more.
  • the time and cost required for sample preparation are very large compared to a small crucible.
  • the method of the present invention it is another advantage that the three-dimensional shape of the inner surface of the crucible can be measured without contact.
  • the non-contact method as in the present invention can prevent contamination of the inner surface.
  • the three-dimensional shape of the inner surface of the crucible can be measured without contaminating the inner surface of the crucible.
  • the present invention makes it possible to measure the three-dimensional shape of the transparent body by making the transparent body substantially non-transparent by a very simple method. Applicable.
  • the inner surface shape of the crucible directly affects the silicon single crystal yield, it is necessary to measure it with high accuracy.
  • the three-dimensional shape measured by the above method is accurate as the inner surface shape of the crucible. It may be insufficient.
  • the present invention preferably moves the internal distance measurement unit in a non-contact manner along the inner surface of the crucible based on the three-dimensional shape, and at a plurality of measurement points on the movement path, the internal distance measurement unit
  • the inner surface distance between the inner distance measuring unit and the inner surface is measured by irradiating laser light obliquely to the inner surface of the crucible from the inner surface and detecting the inner surface reflected light from the inner surface.
  • the step of obtaining the three-dimensional shape of the inner surface of the crucible by associating the three-dimensional coordinates of each measurement point with the inner surface distance is provided.
  • the inventors of the present invention have found that when the laser beam is irradiated from the oblique direction to the inner surface of the crucible, the reflected light (inner surface reflected light) from the inner surface of the crucible can be detected.
  • the inner surface reflected light is detected at different positions of the detector provided in the inner distance measuring unit according to the distance between the inner distance measuring unit and the inner surface. An inner surface distance between the distance measuring unit and the inner surface is measured.
  • the measurement is performed at a plurality of measurement points along the inner surface of the crucible, and the inner surface distance of the crucible corresponding to each measurement point is obtained by associating the inner surface distance with the coordinates of the internal distance measuring unit at each measurement point. Coordinates are obtained.
  • the mesh-like inner surface coordinates are obtained, thereby obtaining the tertiary of the inner surface of the crucible.
  • the original shape can be obtained.
  • the superiority of this method is that the data sampling rate is extremely high. According to preliminary experiments, even when 100,000 points are measured with a 1 m diameter crucible, the entire inner surface can be measured in about 10 minutes. We were able to finish the measurement of the three-dimensional shape.
  • the internal distance measuring unit irradiates the inner surface with laser light and detects the reflected light to measure the distance.
  • the internal distance measuring unit and the inner surface The distance and the incident angle of the laser beam on the inner surface must be known with a certain degree of accuracy. For this reason, it is not easy to appropriately set the distance and direction of the internal distance measuring portion with respect to the inner surface in a bent portion such as a corner portion of the crucible.
  • the three-dimensional shape of the inner surface is obtained in advance, and the internal distance measuring unit is moved based on the three-dimensional shape. It can be set appropriately.
  • the silica glass crucible is suitably used for manufacturing a large single crystal silicon ingot having a diameter of 200 to 450 mm (eg, 200 mm, 300 mm, 450 mm) and a length of 2 m or more.
  • a single crystal silicon wafer manufactured from such a large ingot is preferably used for manufacturing a flash memory and a DRAM.
  • Flash memories and DRAMs are rapidly becoming cheaper. To meet these demands, it is necessary to manufacture large single crystal silicon ingots with high quality and low cost. It is necessary to manufacture crucibles with high quality and low cost.
  • the three-dimensional shape of the inner surface of the crucible is measured over the entire circumference, and according to the present invention, it is determined whether the inner surface shape of the manufactured crucible matches the specifications. It can be easily judged. If the inner surface shape deviates from the specification, it is possible to manufacture a high-quality crucible having an inner surface shape that matches the specification with a high yield by changing manufacturing conditions such as arc melting conditions. .
  • the advantage of such a method is that the coordinates of the measurement point can be obtained.
  • the operator moves the probe and performs measurements, the exact coordinates of the measurement point cannot be obtained, so it is impossible to know exactly which position the obtained measurement value corresponds to. . Since accurate coordinates can be obtained by using a robot arm, the utility value of measured data is high.
  • the crucible becomes more difficult to manufacture as it becomes larger. Although it is easy to bake a pancake with a diameter of 10 cm and a thickness of 1 cm, it is easy to understand if it is difficult to bake a pancake with a diameter of 50 cm and a thickness of 5 cm. Large pancakes are burnt on the surface and the inside becomes burnt, but in the same way, heat management during the production of large crucibles is more difficult than small crucibles. Variations in shape and internal surface properties are likely to occur. Therefore, in large crucibles, it is particularly necessary to measure the three-dimensional shape of the inner surface and the three-dimensional distribution of the inner surface properties using the method of the present invention.
  • the silicon melt is heated from around the crucible with a carbon heater or the like in order to keep the temperature of the silicon melt held in the crucible at a high temperature of 1450 to 1500 ° C.
  • the larger the crucible the longer the distance from the carbon heater to the center of the crucible (when the radius of the crucible is increased from 25 cm to 50 cm, the distance from the carbon heater to the center of the crucible is almost doubled).
  • the amount of heat given from the carbon heater to the silicon melt through the crucible also increases.
  • the large crucible weighs 39 kg or more (eg, 39 kg for a 71 cm crucible, 59 kg for a 81 cm crucible, 77 kg for a 91 cm crucible, 121 kg for a 101 cm diameter crucible) It is very difficult.
  • to measure the three-dimensional shape of the inner surface over the entire circumference of the crucible it is necessary to rotate the crucible, but it is difficult to rotate the crucible manually, and the rotation angle must be accurately acquired. It is also difficult. Accordingly, the present inventors have come up with the idea that the crucible is gripped by the transfer robot arm and the measurement is performed while holding the crucible.
  • the transfer robot arm If the transfer robot arm is used, a crucible that is heavy and easily broken can be easily and safely carried, and the crucible can be set at an accurate position in the measurement area.
  • the crucible can be accurately rotated, for example, by 5 degrees, it is possible to accurately measure the three-dimensional shape of the inner surface and the three-dimensional distribution of various physical properties.
  • the crucible having a diameter of 81cm about 14400Cm 2, the crucible diameter 91cm about 16640Cm 2, the crucible diameter 101cm about 21109cm 2.
  • the tip of the internal robot arm can be moved along the inner surface of the crucible to acquire an image of the inner surface.
  • the number is about 900 for a crucible with a diameter of 81 cm, about 1000 for a crucible with a diameter of 91 cm, and about 1300 for a crucible with a diameter of 101 cm.
  • the crucible has a transparent silica glass layer on the inner surface side and a bubble-containing silica glass layer on the outer surface side
  • the internal distance measuring unit includes the transparent silica glass layer and the bubble-containing silica glass layer.
  • the inventors of the present invention irradiate the inner surface of the crucible with a laser beam from an oblique direction, in addition to the reflected light from the inner surface of the crucible (inner surface reflected light), from the interface between the transparent layer and the bubble-containing layer. It was found that reflected light (interface reflected light) can also be detected.
  • the interface between the transparent layer and the bubble-containing layer is a surface where the bubble content changes rapidly, but is not a clear interface such as the interface between air and glass. It was a surprising discovery that is detectable.
  • the inner surface distance between the inner distance measuring section and the inner surface is determined by the principle of triangulation. And the interface distance between the internal distance measuring unit and the interface is measured.
  • Measurement is performed at a plurality of measurement points along the inner surface of the crucible. Corresponding to each measurement point by associating the coordinates of the internal distance measuring unit, the inner surface distance, and the interface distance at each measurement point. The crucible inner surface coordinates and the crucible interface coordinates are obtained.
  • the mesh-like inner surface coordinates and interface coordinates are obtained along the inner surface of the crucible.
  • the three-dimensional shape of the surface and interface can be determined. Further, by calculating the distance between the inner surface and the interface, the thickness of the transparent layer at an arbitrary position can be calculated, and therefore, the three-dimensional distribution of the thickness of the transparent layer can be obtained.
  • FIG. 1 is an explanatory diagram of a silica glass crucible according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a method for measuring the three-dimensional shape of a silica glass crucible.
  • FIG. 3 is an explanatory view of a detailed three-dimensional shape measuring method of the silica glass crucible.
  • FIG. 4 is an enlarged view of the internal distance measuring unit of FIG. 3 and the silica glass crucible in the vicinity thereof.
  • FIG. 5 shows the measurement results of the internal distance measuring unit of FIG.
  • FIG. 6 shows the measurement results of the external distance measuring unit in FIG. (A)
  • (b) shows the shape of the crucible with the smallest wall thickness and the largest wall thickness within the dimensional tolerance, respectively.
  • (A)-(c) is explanatory drawing of the method of measuring in the state which hold
  • the silica glass crucible 11 used in the present embodiment will be described with reference to FIG.
  • the crucible 11 includes a silica powder layer forming step in which silica powder having an average particle size of about 300 ⁇ m is deposited on the inner surface of the rotary mold to form a silica powder layer, and while reducing the silica powder layer from the mold side, It is manufactured by a method including an arc melting step of forming a silica glass layer by arc-melting a powder layer (this method is referred to as “rotary molding method”).
  • the silica powder layer is strongly decompressed to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”) 13, and then the decompression is weakened to reduce the bubbles.
  • transparent layer a transparent silica glass layer
  • bubble-containing layer Forming a bubble-containing silica glass layer 15 (hereinafter referred to as “bubble-containing layer”) 15, thereby having two layers having a transparent layer 13 on the inner surface side and a bubble-containing layer 15 on the outer surface side.
  • a structured silica glass crucible can be formed.
  • Silica powder used for crucible production includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis, but natural silica powder is made from natural products. Therefore, physical properties, shapes, and sizes tend to vary. When the physical properties, shape, and size change, the melting state of the silica powder changes. Therefore, even if arc melting is performed under the same conditions, the three-dimensional shape of the inner surface of the manufactured crucible varies from crucible to crucible. Therefore, it is necessary to measure the three-dimensional shape of the inner surface of each manufactured crucible.
  • the silica glass crucible 11 includes a cylindrical side wall part 11a, a curved bottom part 11c, and a corner part 11b that connects the side wall part 11a and the bottom part 11c and has a larger curvature than the bottom part 11c.
  • the corner portion 11b is a portion connecting the side wall portion 11a and the bottom portion 11c, from a point where the tangent line of the corner portion curve overlaps the side wall portion 11a of the silica glass crucible to a point having a common tangent line with the bottom portion 11c. Means the part.
  • the point where the side wall portion 11a of the silica glass crucible 11 begins to bend is the boundary between the side wall portion 11a and the corner portion 11b.
  • the portion where the curvature of the bottom of the crucible is constant is the bottom portion 11c, and the point where the curvature starts to change when the distance from the center of the bottom of the crucible increases is the boundary between the bottom portion 11c and the corner portion 11b.
  • the crucible 11 manufactured by the above method is a transparent body, the conventional non-contact type three-dimensional shape measurement method using the light irradiation method cannot appropriately detect the reflected light. It was difficult. Therefore, in the present embodiment, before performing the three-dimensional shape measurement, the inner surface is irradiated with light for shape measurement in a state where the inner surface of the crucible is clouded and the inner surface becomes whitish. In the state without cloudiness, the surface reflected light from the inner surface of the crucible and the internal scattered light from the inside of the crucible were superposed, making accurate three-dimensional shape measurement difficult. Then, since most of the measurement light is diffused on the surface and hardly penetrates into the crucible, the influence of the internal scattered light can be excluded, and therefore an appropriate three-dimensional shape measurement can be performed.
  • cloudy refers to a phenomenon similar to a window glass becoming whitish in winter. Air around a cold object is cooled and water vapor contained in the air is condensed. It means that the obtained fine particles are adhered to the surface of the object and the surface is whitish.
  • Cloudiness occurs when the temperature of the air on the surface of the object falls below the dew point, but the dew point increases as the amount of water vapor contained in the surrounding air increases. Therefore, in order to easily cause fogging, the object may be cooled or the amount of water vapor in the ambient air may be increased.
  • the water used for increasing the amount of water vapor is preferably ultrapure water used in semiconductor manufacturing or the like. This is because the cleanliness of the inner surface of the crucible can be maintained in a very high state.
  • the crucible 11 may be sufficiently cooled in the refrigeration room and then brought into the measurement room at room temperature, and a cooling body is brought into contact with the crucible 11 in the measurement room.
  • the crucible 11 may be cooled.
  • the temperature of the measurement chamber is kept relatively low, and in that state, the amount of water vapor in the air in the measurement chamber is increased using a humidifier (ultrasonic type, heating type, etc.).
  • a humidifier ultrasonic type, heating type, etc.
  • the method of cooling the crucible 11 itself and the method of increasing the amount of water vapor in the measurement chamber may be used in combination.
  • the crucible 11 when the crucible 11 is placed with the opening of the crucible 11 facing downward, the exchange of air between the inner space and the outer space of the crucible 11 is reduced. If water vapor is supplied to the internal space of the crucible 11 in this state, the amount of water vapor in the air in contact with the inner surface of the crucible 11 can be easily increased.
  • the cloudiness on the surface of the crucible 11 is slightly light at first. In this state, the influence of the internal scattered light is not sufficiently excluded, and appropriate three-dimensional shape measurement cannot be performed. As time goes by, the whiteness gradually increases, and the water fine particles are uniformly dispersed and become attached to the surface. This state is suitable for a three-dimensional shape. As time further elapses, the amount of water adhering to the surface increases, so that adjacent water fine particles come into contact with each other and agglomerate, or the agglomerated water droplets fall by gravity, and the aggregation further proceeds. Even in this state, appropriate three-dimensional shape measurement cannot be performed. Therefore, the three-dimensional shape measurement needs to be performed at an appropriate timing. Therefore, it is preferable that the three-dimensional shape measurement is performed a plurality of times with a predetermined interval after the crucible 11 is clouded. Thereby, the three-dimensional shape measurement can be performed in an appropriate cloudy state.
  • the silica glass crucible 11 to be measured is placed on a turntable 9 that can be rotated so that the opening faces downward.
  • the crucible 11 may be installed on the turntable 9 immediately after being taken out of a refrigerator room (not shown), and the turntable 9 has a cooling function and can cool the crucible 11. Also good.
  • a crucible having a temperature lower than the ambient temperature is installed on the turntable 9. Water vapor is supplied to the internal space of the crucible 11 from the opening 12 between the base 1 and the turntable 9. As a result, the amount of water vapor in the air in the internal space of the crucible 11 is increased, and the inner surface of the crucible 11 is likely to be cloudy.
  • a robot arm 4 is installed on a base 1 provided at a position covered by the crucible 11.
  • the robot arm 4 includes an arm 4a, a joint 4b that rotatably supports the arm 4a, and a main body 4c.
  • the main body portion 4c is provided with an external terminal (not shown) so that data exchange with the outside is possible.
  • a three-dimensional shape measurement unit 51 that measures the three-dimensional shape of the inner surface of the crucible 11 is provided at the tip of the robot arm 4.
  • the three-dimensional shape measuring unit 51 irradiates the inner surface of the crucible 11 with measurement light in a state where the inner surface of the crucible 11 is cloudy, and detects the reflected light from the inner surface, thereby detecting the inner surface of the crucible 11.
  • a control unit that controls the joint 4b and the three-dimensional shape measuring unit 51 is provided in the main body 4c.
  • the control unit changes the direction in which the three-dimensional shape measuring unit 51 irradiates the measuring light 8 by rotating the joint 4b and moving the arm 4a based on a program provided in the main body 4c or an external input signal. Specifically, for example, measurement is started from a position close to the vicinity of the opening of the crucible 11, the three-dimensional shape measurement unit 51 is moved toward the bottom 11c of the crucible 11, and measurement is performed at a plurality of measurement points on the movement path. I do.
  • the turntable 9 When the measurement from the opening of the crucible to the bottom 11c is completed, the turntable 9 is slightly rotated and the same measurement is performed. This measurement may be performed from the bottom 11c toward the opening.
  • the rotation angle of the turntable 9 is determined in consideration of accuracy and measurement time. If the rotation angle is too large, the measurement accuracy is not sufficient, and if it is too small, it takes too much measurement time.
  • the rotation of the turntable 9 is controlled based on a built-in program or an external input signal.
  • the rotation angle of the turntable 9 can be detected by a rotary encoder or the like.
  • the three-dimensional shape of the entire inner surface of the crucible can be measured.
  • dry air may be supplied to the inner space of the crucible 11 to dry the inner surface of the crucible 11.
  • the obtained three-dimensional shape can be used for various purposes. For example, by comparing the measured three-dimensional shape with the three-dimensional shape at the design value, it is possible to determine how much the inner surface shape of each crucible deviates from the design value. When the deviation from the design value exceeds the standard value, it is possible to take steps such as correcting the shape of the crucible or stop shipping, and improve the quality of the crucible to be shipped. Can do. Further, by associating the shape of each crucible with its manufacturing conditions (such as arc melting conditions), the crucible shape can be fed back to the manufacturing conditions when it falls within the reference range.
  • manufacturing conditions such as arc melting conditions
  • a three-dimensional distribution of these measured values is obtained by measuring a Raman spectrum, an infrared absorption spectrum, a surface roughness, a bubble content rate, etc.
  • This three-dimensional distribution can be used for shipping inspection of crucibles.
  • three-dimensional shape and data of three-dimensional distribution of various measured values on the three-dimensional shape can be used as parameters for pulling up the silicon single crystal. This makes it possible to control the silicon single crystal pulling with higher accuracy.
  • the method for measuring the three-dimensional shape of the inner surface of the crucible has been described in detail, but the three-dimensional shape of the outer surface of the crucible can also be measured by the same method.
  • the three-dimensional shape obtained by the above method can also be used as three-dimensional shape data which is the basis for measuring the three-dimensional shape of the inner surface and interface of the crucible in detail.
  • a method for measuring the three-dimensional shape of the inner surface and interface of the crucible in more detail will be described in detail.
  • the internal distance measuring unit 17 including a laser displacement meter is moved in a non-contact manner along the inner surface of the crucible, and laser light is obliquely directed to the inner surface of the crucible at a plurality of measurement points on the movement path. And measuring the three-dimensional shape of the inner surface of the crucible by detecting the reflected light. Details will be described below.
  • the three-dimensional shape of the interface between the transparent layer 13 and the bubble-containing layer 15 can also be measured at the same time, and by using the internal distance measuring unit 19, the tertiary of the outer surface of the crucible can be measured. Since the original shape can also be measured, these points will be described together.
  • the silica glass crucible 11 to be measured is placed on a turntable 9 that can be rotated so that the opening is directed downward.
  • an internal robot arm 5 is installed on the base 1 provided at a position covered with the crucible 11.
  • the internal robot arm 5 is preferably a six-axis articulated robot, and includes a plurality of arms 5a, a plurality of joints 5b that rotatably support these arms 5a, and a main body 5c.
  • the main body 5c is provided with an external terminal (not shown) so that data exchange with the outside is possible.
  • An internal distance measuring unit 17 for measuring the inner surface shape of the crucible 11 is provided at the tip of the internal robot arm 5.
  • the internal distance measuring unit 17 measures the distance from the internal distance measuring unit 17 to the inner surface of the crucible 11 by irradiating the inner surface of the crucible 11 with laser light and detecting reflected light from the inner surface.
  • a control unit that controls the joint 5b and the internal distance measuring unit 17 is provided in the main body 5c.
  • the control unit moves the internal distance measuring unit 17 to an arbitrary three-dimensional position by rotating the joint 5b and moving the arm 5 based on a program provided in the main body 5c or an external input signal. Specifically, the internal distance measuring unit 17 is moved in a non-contact manner along the inner surface of the crucible.
  • the internal distance measuring unit 17 is moved to perform measurement at a plurality of measurement points on the movement path.
  • the measurement interval is, for example, 1 to 5 mm, for example 2 mm.
  • the measurement is performed at a timing stored in the internal distance measuring unit 17 in advance or according to an external trigger.
  • the measurement results are stored in the storage unit in the internal distance measuring unit 17, and are sent to the main body unit 5c collectively after the measurement is completed, or are sequentially sent to the main body unit 5c for each measurement.
  • the internal distance measuring unit 17 may be configured to be controlled by a control unit provided separately from the main body 5c.
  • the turntable 9 When the measurement from the opening of the crucible to the bottom 11c is completed, the turntable 9 is slightly rotated and the same measurement is performed. This measurement may be performed from the bottom 11c toward the opening.
  • the rotation angle of the turntable 9 is determined in consideration of accuracy and measurement time, and is, for example, 2 to 10 degrees (preferably 6.3 degrees or less). If the rotation angle is too large, the measurement accuracy is not sufficient, and if it is too small, it takes too much measurement time.
  • the rotation of the turntable 9 is controlled based on a built-in program or an external input signal.
  • the rotation angle of the turntable 9 can be detected by a rotary encoder or the like.
  • the rotation of the turntable 9 be interlocked with the movement of the internal distance measuring unit 17 and the external distance measuring unit 19 which will be described later, whereby the three-dimensional coordinates of the internal distance measuring unit 17 and the external distance measuring unit 19 are changed. Calculation becomes easy.
  • the internal distance measuring unit 17 includes a distance from the internal distance measuring unit 17 to the inner surface (inner surface distance) and a distance from the inner distance measuring unit 17 to the interface between the transparent layer 13 and the bubble-containing layer 15 (interface). Both distances can be measured. Since the angle of the joint 5b is known by a rotary encoder or the like provided in the joint 5b, the three-dimensional coordinates and direction of the position of the internal distance measuring unit 17 at each measurement point are known. Is obtained, the three-dimensional coordinates on the inner surface and the three-dimensional coordinates on the interface are known.
  • the three-dimensional shape of the inner surface of the crucible 11 and the three-dimensional shape of the interface become known. Further, since the distance between the inner surface and the interface is known, the thickness of the transparent layer 13 is also known, and a three-dimensional distribution of the thickness of the transparent layer is obtained.
  • External robot arm, external distance measuring unit> An external robot arm 7 is installed on a base 3 provided outside the crucible 11.
  • the external robot arm 7 is preferably a six-axis articulated robot, and includes a plurality of arms 7a, a plurality of joints 7b that rotatably support these arms, and a main body portion 7c.
  • the main body 7c is provided with an external terminal (not shown) so that data exchange with the outside is possible.
  • An external distance measuring unit 19 that measures the outer surface shape of the crucible 11 is provided at the tip of the external robot arm 7.
  • the external distance measuring unit 19 measures the distance from the external distance measuring unit 19 to the outer surface of the crucible 11 by irradiating the outer surface of the crucible 11 with laser light and detecting the reflected light from the outer surface.
  • a control unit that controls the joint 7b and the external distance measuring unit 19 is provided in the main body 7c.
  • the control unit moves the external distance measuring unit 19 to an arbitrary three-dimensional position by rotating the joint 7b and moving the arm 77 based on a program provided in the main body 7c or an external input signal. Specifically, the external distance measuring unit 19 is moved in a non-contact manner along the outer surface of the crucible.
  • the position of the external distance measuring unit 19 is moved according to the data. More specifically, for example, the measurement is started from a position near the opening of the crucible 11 as shown in FIG. 3A, and toward the bottom 11c of the crucible 11 as shown in FIG.
  • the external distance measuring unit 19 is moved to perform measurement at a plurality of measurement points on the movement path.
  • the measurement interval is, for example, 1 to 5 mm, for example 2 mm.
  • the measurement is performed at a timing stored in advance in the external distance measuring unit 19 or according to an external trigger.
  • the measurement results are stored in the storage unit in the external distance measuring unit 19 and are collectively sent to the main unit 7c after the measurement is completed, or are sequentially sent to the main unit 7c every measurement.
  • the external distance measuring unit 19 may be configured to be controlled by a control unit provided separately from the main body unit 7c.
  • the internal distance measuring unit 17 and the external distance measuring unit 19 may be moved in synchronization, the measurement of the inner surface shape and the measurement of the outer surface shape are performed independently, and thus do not necessarily need to be synchronized.
  • the external distance measuring unit 19 can measure the distance (outer surface distance) from the external distance measuring unit 19 to the outer surface. Since the angle of the joint 7b is known by a rotary encoder or the like provided in the joint 7b, the three-dimensional coordinates and direction of the position of the external distance measuring unit 19 are known. The three-dimensional coordinates are known. And since the measurement from the opening part of the crucible 11 to the bottom part 11c is performed over the perimeter of the crucible 11, the three-dimensional shape of the outer surface of the crucible 11 becomes known. From the above, since the three-dimensional shape of the inner surface and the outer surface of the crucible becomes known, a three-dimensional distribution of the wall thickness of the crucible is obtained.
  • the internal distance measuring unit 17 is disposed on the inner surface side (transparent layer 13 side) of the crucible 11, and the external distance measuring unit 19 is disposed on the outer surface side (bubble-containing layer 15 side) of the crucible 11. Placed in.
  • the internal distance measuring unit 17 includes an emitting unit 17a and a detecting unit 17b.
  • the external distance measuring unit 19 includes an emitting unit 19a and a detecting unit 19b.
  • the measurement range of the internal distance measuring unit 17 and the external distance measuring unit 19 is approximately ⁇ 5 to 10 mm, depending on the type of measuring instrument.
  • the internal distance measuring unit 17 and the external distance measuring unit 19 include a control unit and an external terminal (not shown).
  • the emitting portions 17a and 19a emit laser light, and include, for example, a semiconductor laser.
  • the wavelength of the emitted laser light is not particularly limited, but is, for example, red laser light having a wavelength of 600 to 700 nm.
  • the detectors 17b and 19b are composed of, for example, a CCD, and the distance to the target is determined based on the principle of triangulation based on the position where the light hits.
  • a part of the laser light emitted from the emitting part 17a of the internal distance measuring part 17 is reflected by the inner surface (the surface of the transparent layer 13), and partly reflected by the interface between the transparent layer 13 and the bubble-containing layer 15, These reflected lights (inner surface reflected light and interface reflected light) strike the detection unit 17b and are detected. As is clear from FIG. 4, the inner surface reflected light and the interface reflected light hit different positions of the detection unit 17b. Due to the difference in position, the distance from the inner distance measuring unit 17 to the inner surface (inner surface distance) and The distance to the interface (interface distance) is determined.
  • a suitable incident angle ⁇ may vary depending on the state of the inner surface, the thickness of the transparent layer 13, the state of the bubble-containing layer 15, etc., but is, for example, 30 to 60 degrees.
  • FIG. 5 shows an actual measurement result measured using a commercially available laser displacement meter. As shown in FIG. 5, two peaks are observed, the peak on the inner surface side corresponds to the peak due to the inner surface reflected light, and the peak on the outer surface side corresponds to the peak due to the interface reflected light. Thus, the peak due to the reflected light from the interface between the transparent layer 13 and the bubble-containing layer 15 is also clearly detected. Conventionally, the interface has not been specified in this way, and this result is very novel.
  • the internal distance measuring unit 17 can be measured based on this three-dimensional shape and moved in advance, it is easy to set the internal distance measuring unit 17 to an appropriate position and direction as shown in FIG. The same applies to the external distance measuring unit 19.
  • the internal distance measuring unit 17 may detect the reflected light from the bubbles, and the interface between the transparent layer 13 and the bubble-containing layer 15 may not be detected properly. is there. Therefore, when the position of the interface measured at a certain measurement point A is greatly deviated (exceeding a predetermined reference value) from the position of the interface measured at the preceding and following measurement points, the data at the measurement point A is It may be excluded. In that case, data obtained by performing measurement again at a position slightly deviated from the measurement point A may be employed.
  • the laser light emitted from the emitting portion 19a of the external distance measuring section 19 is reflected by the surface of the outer surface (bubble-containing layer 15), and the reflected light (outer surface reflected light) strikes the detecting portion 19b and is detected.
  • the distance between the external distance measuring unit 19 and the outer surface is determined based on the detection position on the detection unit 19b.
  • FIG. 6 shows the actual measurement results measured using a commercially available laser displacement meter. As shown in FIG. 6, only one peak is observed. When the peak is not observed, the external distance measuring unit 19 is brought closer to the inner surface, or the external distance measuring unit 19 is tilted to change the emission direction of the laser light to search for the position and angle at which the peak is observed. Is preferred.
  • the obtained coordinate data of the three-dimensional shape of the inner surface / interface / outer surface may be output.
  • the format of the coordinate data is not particularly limited, and may be text format data such as CSV, or various CAD format data.
  • the shape inspection can be passed, as shown in FIG.
  • the shape inspection can be rejected.
  • Probes for measuring various physical properties can be attached to the internal robot arm 5 and the external robot arm 7, and this probe is moved along the three-dimensional shape of the inner surface or the outer surface of the crucible 11. Thus, it is possible to determine a three-dimensional distribution of various physical properties.
  • a plurality of types of probes may be attached to the internal robot arm 5 and the external robot arm 7 to measure a plurality of physical properties at the same time, or a plurality of types of physical properties may be measured by appropriately replacing the probes. Good. Further, the probe replacement may be performed manually or automatically using an autochanger.
  • the internal distance measuring unit 17, the external distance measuring unit 19, and various probes described later are connected to an external processing device having a database function, and the measurement data can be immediately taken into the database. Is possible. And in an external processing apparatus, the quality inspection of a crucible can be easily performed by performing OK / NG determination about various shapes and physical properties.
  • the transfer robot arm 6 is installed on the robot arm installation table 41.
  • the transfer robot arm 6 is preferably a six-axis articulated robot, and includes a plurality of arms 6a, a plurality of joints 6b that rotatably support these arms 6a, and a main body 6c.
  • the main body 6c is provided with an external terminal (not shown) so that data exchange with the outside is possible.
  • a grip 49 for gripping the crucible 11 is provided at the tip of the transfer robot arm 6.
  • the grip portion 49 includes a base 45 and at least four arms 47 extending from the base 45.
  • each arm 47 is arranged at intervals of 90 degrees in the circumferential direction.
  • the arm 47 is movable toward the center in the radial direction of the crucible 11, that is, in the direction of the arrow X in FIG. 8A, and the grip portion 49 so that the crucible 11 is positioned between the four arms 47.
  • the arm 47 is pressed against the side surface of the crucible 11 in a state in which is placed.
  • the outer surface of the crucible 11 is the bubble-containing layer 15 and has a rough surface.
  • An elastic member 48 such as urethane rubber is provided on the surface of the arm 47 on the crucible 11 side, and the grip portion 49 stably holds the crucible 11 by friction between the elastic member 48 and the side surface of the crucible 11. Note that the force for pressing the arm 47 against the crucible is controlled to an appropriate value by using a pressure sensor or the like so that the force for pressing the arm 47 against the crucible 11 is too strong to destroy the crucible 11.
  • FIG. 8B shows a state in which the grip portion 49 is gripping the crucible 11. From this state, the transfer robot arm 6 lifts the crucible 11 and moves it to the measurement area where the internal robot arm 5 is installed. Although not shown, an external robot arm 7 may be installed in the measurement area.
  • the transfer robot arm 6 holds the crucible 11 in the measurement area, and in this state, the internal robot arm 5 moves the internal distance measuring unit 17 and various probes to the crucible 11. The measurement is performed by moving along the inner surface.
  • the transfer robot arm 6 After measuring by moving the internal distance measuring unit 17 between the bottom 11c of the crucible 11 and the opening at a certain position in the circumferential direction of the crucible 11, the transfer robot arm 6 moves the crucible 11 in the circumferential direction ( It is rotated in the direction of arrow Y in FIG. Then, at the position after the rotation, the internal distance measuring unit 17 is moved again between the bottom 11c of the crucible 11 and the opening to perform measurement.
  • the measurement can be performed on the entire inner peripheral surface of the crucible 11.
  • the rotation angle for each measurement is, for example, 2 to 10 degrees, and preferably 6.3 degrees or less.
  • the total length of the sides of the polygon formed by connecting each measurement point in the circumferential direction is less than 1% of the error from the circumference of the perfect circle. This is because high accuracy can be achieved.
  • the three-dimensional shape measurement performed by fogging the crucible described above may be performed in another place before the crucible 11 is placed on the mounting table 43, may be performed on the mounting table 43, or may be performed in the measurement area.
  • another measurement area may be provided in the movable area of the transfer robot arm 6 and the measurement may be performed there.
  • the three-dimensional shape measurement of the silica glass crucible was attempted using a three-dimensional shape measurement apparatus that measures the three-dimensional shape by irradiating the object to be measured with pattern light and measuring the reflected light.
  • the crucible shape could not be detected when the crucible was not fogged, but when the cooled crucible was left in the air and the surface was clouded, the inner surface shape of the crucible was measured. I was able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 ルツボの内表面を汚染することなくルツボの内表面の三次元形状の測定を可能とする、シリカガラスルツボの三次元形状測定方法を提供する。 本発明によれば、シリカガラスルツボの内表面に曇りを生じさせる工程と、前記内表面に対して光を照射し、その反射光を検出することによって前記内表面の三次元形状を測定する工程とを備える、シリカガラスルツボの三次元形状測定方法が提供される。

Description

シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法
 本発明は、シリカガラスルツボの三次元形状測定方法、及びシリコン単結晶の製造方法に関する。
 シリコン単結晶の製造にはシリカガラスルツボを用いたチョクラルスキー法(CZ法)が採用されている。具体的には、シリカガラスルツボの内部にシリコン多結晶原料を熔融したシリコン融液を貯留し、シリコン単結晶の種結晶を接触させ、回転させながら徐々に引き上げ、シリコン単結晶の種結晶を核として成長させてシリコン単結晶を製造する。シリカガラスの軟化点は、1200~1300℃程度であるのに対し、シリコン単結晶の引き上げ温度は、1450~1500℃という、シリカガラスの軟化点を超える非常に高温である。また、引き上げ時間は、2週間以上にもなることがある。
 引き上げられるシリコン単結晶の純度は、99.999999999%以上であることが要求されるので、引き上げに利用されるシリカガラスルツボも極めて高純度であることが要求される。
 シリカガラスルツボのサイズは、直径が28インチ(約71cm)、32インチ(約81cm)、36インチ(約91cm)、40インチ(約101cm)などのものがある。直径101cmのルツボは、重量が約120kgという巨大なものであり、そこに収容されるシリコン融液の質量は900kg以上である。つまり、シリコン単結晶の引き上げ時には、約1500℃のシリコン融液が900kg以上もルツボに収容されることになる。
 このようなシリカガラスルツボの製造方法は、一例では、回転モールドの内表面に平均粒径300μm程度のシリカ粉を堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程を備える(この方法を「回転モールド法」と称する)。
 アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡含有層」と称する。)を形成することによって、内表面側に透明層を有し、外表面側に気泡含有層を有する二層構造のシリカガラスルツボを形成することができる。
 ルツボの製造に使用されるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉や化学合成によって製造される合成シリカ粉があるが、特に天然シリカ粉は、天然物を原料としているので、物性・形状・サイズがばらつきやすい。物性・形状・サイズが変化すると、シリカ粉の溶融状態が変化するので、同じ条件でアーク熔融を行っても、製造されるルツボの三次元形状がばらついてしまう。
 このようなばらつきを低減させるようにアーク熔融を行ったり、このようなばらつきを考慮したシリコン単結晶の引き上げを行うには、全てのルツボについて、その三次元形状を把握することが必要である。
 三次元形状を測定する方法としては、特許文献1の従来技術に記載されているように、被測定物にスリット光を照射する光切断法や、被測定物にパターン光を照射するパターン投影法などが知られている。
 ところで、光照射方式による三次元形状測定では、被測定物で反射された反射光を受光し、該反射光に由来するデータを解析することで被測定物の三次元形状データが求められる。従って、適確な反射光を受光することが重要になるのであるが、被測定物がシリカガラスルツボのように透明体である場合には、内部散乱光の影響で、三次元形状を適切に測定できない場合がある。
 このため従来は、透明体の測定には、その表面に白色パウダー等の反射コート材を塗布し、内部散乱光の発生を規制する方法が取られている。
特開2008-281399号公報
 従来の方法で、シリカガラスルツボの内表面の三次元形状を測定するには、反射コート材をルツボの内表面に塗布することになるが、ルツボの内表面に反射コート材を塗布すると、反射コート材が内表面を汚染したり、反射コート材が残留したりする場合があり、その場合、シリコン単結晶の収率に悪影響を与える可能性がある。従って、ルツボの内表面の三次元形状には、反射コート材を塗布する方法は、使用できない。
 本発明はこのような事情に鑑みてなされたものであり、ルツボの内表面を汚染することなくルツボの内表面の三次元形状の測定を可能とする、シリカガラスルツボの三次元形状測定方法を提供するものである。
 本発明によれば、シリカガラスルツボの内表面に曇りを生じさせる工程と、前記内表面に対して光を照射し、その反射光を検出することによって前記内表面の三次元形状を測定する工程とを備える、シリカガラスルツボの三次元形状測定方法が提供される。
 本発明者らは、ルツボの内表面を汚染することなくルツボの内表面の三次元形状の測定を可能とする方法について検討したところ、ルツボが曇って白っぽくなった状態であれば、ルツボ内表面で光が乱反射して拡散反射光を適切に検出することができ、従って、内表面の三次元形状を測定できるというアイデアを得て、実際に、市販の三次元形状測定機を用いて、実験を行ったところ、曇りのない状態では、ルツボ内表面からの反射光が適切に検出されず三次元形状の測定が不可能であったが、冷蔵室で十分に冷却したルツボを常温の室内に持ってきて表面に曇りが生じたところで、同じ三次元形状測定機を用いて測定を行ったところ、ルツボ内表面からの反射光が検出され、従って、ルツボ内表面の三次元形状を測定することができた。
 ルツボの曇りの成分は、空気中の水蒸気であるので、測定終了後は、単純にルツボを加温又は乾燥させるだけで、ルツボ表面から曇りや水分を除去することができ、従って、ルツボの内表面を汚染することがない。
 また、本発明の方法が優れている点は、ルツボの内表面全体の三次元形状が非破壊で決定できるため、実際の製品の三次元形状が分かることである。従来は、ルツボを切断してサンプルを作成し、このサンプルの三次元形状を測定していたが、この方法では、実際の製品のデータが取得できないこと、サンプル作成に時間とコストがかかるという問題があるので、本発明は、実際の製品の三次元形状を低コストで測定できる点で利点が大きい。また、本発明は、外径28インチ以上の大型ルツボや、40インチ以上の超大型ルツボにおいて特に利点がある。なぜなら、このようなルツボにおいては、サンプル作成にかかる時間とコストが小型ルツボに比べて非常に大きいからである。
 さらに、本発明の方法によれば非接触でルツボ内表面の三次元形状を測定することができることが別の利点である。上述したように、99.999999999%以上という極めて高純度のシリコン単結晶を製造するためには、ルツボ内表面が極めて清純に維持されることが必須であるが、接触式の方法ではルツボ内表面が汚染されやすいのに対して、本発明のように非接触式の方法では、内表面の汚染を防ぐことができる。
 以上より、本発明によれば、ルツボの内表面を汚染することなくルツボの内表面の三次元形状を測定することができる。
 本発明は、非常に簡単な方法で透明体を実質的に非透明体にすることによって、その三次元形状の測定を可能にするものであるので、種々の光照射方式の三次元測定方法に適用可能である。
<ルツボの内表面三次元形状の精密測定>
 ルツボの内表面形状は、シリコン単結晶収率に直接影響を与えるものであるから高精度に測定する必要があるが、上記方法で測定された三次元形状は、ルツボの内表面形状として精度が不十分である場合がある。
 そこで、本発明は、好ましくは、前記三次元形状にもとづいて、前記ルツボの内表面に沿って非接触で内部測距部を移動させ、移動経路上の複数の測定点において、内部測距部から前記ルツボの内表面に対して斜め方向にレーザー光を照射し、前記内表面からの内表面反射光を検出することによって、内部測距部と前記内表面の間の内表面距離を測定し、各測定点の三次元座標と、前記内表面距離を関連付けることによって、前記ルツボの内表面三次元形状を求める工程を備える。
 本発明者らは、ルツボの内表面に対して斜め方向からレーザー光を照射したところ、ルツボ内表面からの反射光(内表面反射光)が検出可能であることを見出した。
 そして、内表面反射光は、内部測距部と内表面との間の距離に応じて、内部測距部に設けられている検出器の異なる位置で検出されるので、三角測量の原理によって内部測距部と内表面の間の内表面距離が測定される。
 また、ルツボの内表面に沿った複数の測定点において測定が行われるが、各測定点での内部測距部の座標と、内表面距離を関連付けることによって、各測定点に対応するルツボ内表面座標が得られる。
 そして、ルツボの内表面に沿って、例えば2mm間隔のメッシュ状に多数の測定点を配置して測定を行うことによって、メッシュ状の内表面座標が得られ、これによって、ルツボの内表面の三次元形状を求めることができる。
 この方法が優れているのは、データのサンプリングレートが極めて大きいことであり、予備実験によると、直径1mのルツボで10万点の測定をする場合であっても、10分程度で内表面全体の三次元形状の測定を終えることができた。
 また、内部測距部は、内表面に対してレーザー光を照射し、その反射光を検出することによって距離測定を行うが、この測定を正確に行うには、内部測距部と内表面の距離と、内表面へのレーザー光の入射角がある程度の精度で分かっている必要がある。そのため、ルツボのコーナー部等の曲がっている部分では、内部測距部の、内表面に対する距離及び方向を適切に設定することが容易ではなかった。これに対して、本発明では、内表面の三次元形状を予め求めておき、その三次元形状に基づいて内部測距部を移動させるので、内部測距部の、内表面に対する距離及び方向を適切に設定することができる。
 ところで、シリカガラスルツボは、直径200~450mm(例:200mm,300mm、450mm)で長さが2m以上のような大型の単結晶シリコンインゴットの製造に好適に利用される。このような大型インゴットから製造される単結晶シリコンウェハは、フラッシュメモリやDRAMの製造に好適に利用される。
 フラッシュメモリやDRAMは、低価格化が急速に進んでいるので、その要求に答えるために、大型の単結晶シリコンインゴットを高品質・低コストで製造することが必要であり、そのためには、大型のルツボを高品質・低コストで製造することが必要である。
 また、現在は、直径300mmのウェハを用いたプロセスが主流であり、直径450mmのウェハを用いたプロセスが開発中である。そして、直径450mmのウェハを安定的に製造するために、高品質の大型ルツボがますます要望されている。
 本発明では、ルツボの内表面の三次元形状を、その全周に渡って測定するものであり、本発明によれば、製造したルツボの内表面形状が、その仕様と一致しているかどうかを容易に判断することができる。そして、内表面形状が仕様から外れている場合には、アーク熔融条件などの製造条件を変更することによって、仕様と一致した内表面形状を有する高品質なルツボを高歩留まりで製造できるようになる。
 また、正確な内表面三次元形状が得られれば、カメラ、顕微鏡、赤外吸収スペクトル測定用プローブ、ラマンスペクトル測定用プローブなどといった各種の測定機器をルツボの内表面に沿って移動させながら測定を行うことによって、ルツボ内表面の各種物性の三次元分布を得ることができる。従来は、ルツボからサンプルを切り出して各種物性を測定していたが、その方法では非破壊・全数検査が不可能であるので、ルツボの品質向上には繋がらない。本発明では、非破壊・全数検査によってルツボの各種物性が測定できるので、おかしなデータが得られれば、すぐに検討を行い、その原因追求を行うことが容易になる。このように、本発明は、従来技術では不可能であった非破壊・全数検査が可能になる点で大きな技術的意義を有するものである。
 内表面の三次元形状測定や、各種物性の三次元分布の測定は、ロボットアームの先端をルツボ内表面に沿って移動させ、その移動中の複数点で測定を行うことによって行うことが好ましい。このような方法の利点は、測定点の座標を取得できることである。作業者がプローブを移動させて測定を行った場合、測定地点の正確な座標を得ることができないので、得られた測定値がルツボのどの位置に対応しているのかを正確に知ることができない。ロボットアームを用いれば正確な座標が得られるので、測定したデータの利用価値が高い。
 ルツボは、大型化するほど、製造が難しくなる。直径10cmで厚さ1cmのパンケーキを焼くのは容易ではあるが、直径50cmで厚さ5cmのパンケーキをうまく焼くのは至難の技であることを想像すると理解しやすい。大型サイズのパンケーキは、表面が焦げてしまったり、内部が生焼けになってしまったりするが、それと同じように、大型ルツボの製造の際の熱管理は、小型ルツボに比べて難しく、内表面形状や内表面物性にばらつきが生じやすい。従って、大型ルツボでは、本発明の方法を使って、内表面の三次元形状や内表面物性の三次元分布を測定する必要性が特に大きい。
 また、シリコン単結晶の引き上げ時には、ルツボ内に保持されたシリコン融液の温度を1450~1500℃といった高温に保持するために、ルツボの周囲からカーボンヒーターなどでシリコン融液が加熱される。ルツボが大型化するほど、カーボンヒーターからルツボの中心までの距離が長くなり(ルツボの半径が25cmから50cmに増大すると、カーボンヒーターからルツボの中心までの距離はほぼ倍になる。)、その結果、ルツボ中心でのシリコン融液の温度をその融点以上の温度に維持するために、カーボンヒーターからルツボを通じてシリコン融液に与える熱量も増大する。このため、ルツボが大型化するに従って、ルツボに加わる熱量も増大し、ルツボが変形する等の問題が起きやすくなる。そのため、大型ルツボでは、小型ルツボよりも、ルツボ形状や内表面の物性のバラツキが、シリコン単結晶の引き上げにおいて問題を生じさせやすい。従って、大型ルツボでは、本発明の方法を使って、内表面の三次元形状や内表面物性の三次元分布を測定する必要性が特に大きい。
 また、大型ルツボの重量は39kg以上(例えば、直径71cmのルツボでは39kg、直径81cmのルツボでは59kg、直径91cmのルツボでは77kg、直径101cmのルツボでは121kg)になるので、人力でハンドリングすることは非常に困難である。また、ルツボの全周に渡って内表面三次元形状を測定するには、ルツボを回転させる必要があるが、人力でルツボを回転させることは困難であるし、回転角を正確に取得することも難しい。そこで、本発明者らは、搬送用ロボットアームでルツボを把持し、把持したまま測定を行うことを思いついた。搬送用ロボットアームを使えば、重くて割れやすいルツボを容易且つ安全に運ぶことができ、且つ測定エリアの正確な位置にルツボをセットすることができる。また、ルツボを例えば5度ずつ正確に回転させることができるので、内表面の三次元形状や各種物性の三次元分布を精度よく測定することが可能になる。
 ルツボの内表面積は、直径81cmのルツボでは約14400cm、直径91cmのルツボでは約16640cm、直径101cmのルツボでは約21109cmである。ルツボの内表面に沿って内部ロボットアームの先端を移動させて内表面の画像を取得することができるが、1枚の写真が4cm×4cmである場合、内表面全体を撮影した場合、写真の枚数は、直径81cmのルツボでは約900枚、直径91cmのルツボでは約1000枚、直径101cmのルツボでは約1300枚である。各ルツボについて、これだけの枚数の写真が必要になるが、本発明の方法によれば、内部ロボットアームと搬送用ロボットアームを協働させて撮影を行うことによって、比較的短時間でこれだけ多くの枚数の写真撮影が可能になった。
<ルツボの界面三次元形状の精密測定>
 好ましくは、前記ルツボは、内表面側に透明シリカガラス層と、外表面側に気泡含有シリカガラス層を有し、前記内部測距部は、前記透明シリカガラス層と前記気泡含有シリカガラス層の界面からの界面反射光を検出し、前記内部測距部と前記界面の間の界面距離を測定し、各測定点の三次元座標と、前記界面距離を関連付けることによって、前記ルツボの界面三次元形状を求める工程をさらに備える。
 本発明者らが、ルツボの内表面に対して斜め方向からレーザー光を照射したところ、ルツボ内表面からの反射光(内表面反射光)に加えて、透明層と気泡含有層の界面からの反射光(界面反射光)も検出が可能であることを見出した。透明層と気泡含有層の界面は、気泡含有率が急激に変化する面であるが、空気とガラスの界面のような明確な界面ではないため、透明層と気泡含有層の界面からの反射光が検出可能であることは驚くべき発見であった。
 そして、内表面反射光と界面反射光は、内部測距部に設けられている検出器の異なる位置で検出されるので、三角測量の原理によって内部測距部と内表面の間の内表面距離、及び内部測距部と界面の間の界面距離が測定される。
 また、ルツボの内表面に沿った複数の測定点において測定が行われるが、各測定点での内部測距部の座標と、内表面距離及び界面距離を関連付けることによって、各測定点に対応するルツボ内表面座標とルツボ界面座標が得られる。
 そして、ルツボの内表面に沿って、例えば2mm間隔のメッシュ状に多数の測定点を配置して測定を行うことによって、メッシュ状の内表面座標と界面座標が得られ、これによって、ルツボの内表面及び界面の三次元形状を求めることができる。また、内表面と界面の間の距離を算出することによって、任意の位置での透明層の厚さを算出することができ、従って、透明層の厚さの三次元分布を求めることができる。
図1は、本発明の一実施形態のシリカガラスルツボの説明図である。 図2は、シリカガラスルツボの三次元形状測定方法の説明図である。 図3は、シリカガラスルツボの詳細な三次元形状測定方法の説明図である。 図4は、図3の内部測距部及びその近傍のシリカガラスルツボの拡大図である。 図5は、図3の内部測距部の測定結果を示す。 図6は、図3の外部測距部の測定結果を示す。 (a),(b)は、それぞれ寸法公差内の肉厚最小及び肉厚最大のルツボの形状を示す。 (a)~(c)は、搬送用ロボットアームでルツボを把持した状態で測定を行う方法の説明図である。
 以下、図面を用いて、本発明の実施形態のシリカガラスルツボの三次元形状測定方法を説明する。
<1.シリカガラスルツボ>
 以下、図1を用いて、本実施形態で使用されるシリカガラスルツボ11について説明する。ルツボ11は、一例では、回転モールドの内表面に平均粒径300μm程度のシリカ粉を堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程を備える(この方法を「回転モールド法」と称する)方法によって製造される。
 アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)13を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡含有層」と称する。)15を形成することによって、内表面側に透明層13を有し、外表面側に気泡含有層15を有する二層構造のシリカガラスルツボを形成することができる。
 ルツボの製造に使用されるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉や化学合成によって製造される合成シリカ粉があるが、特に天然シリカ粉は、天然物を原料としているので、物性・形状・サイズがばらつきやすい。物性・形状・サイズが変化すると、シリカ粉の溶融状態が変化するので、同じ条件でアーク熔融を行っても、製造されるルツボの内表面の三次元形状は、ルツボ毎にばらついてしまう。従って、製造したルツボの一つ一つについて、内表面の三次元形状を測定する必要がある。
 シリカガラスルツボ11は、円筒状の側壁部11aと、湾曲した底部11cと、側壁部11aと底部11cを連結し且つ底部11cよりも曲率が大きいコーナー部11bを備える。本発明において、コーナー部11bとは、側壁部11aと底部11cを連接する部分で、コーナー部の曲線の接線がシリカガラスルツボの側壁部11aと重なる点から、底部11cと共通接線を有する点までの部分のことを意味する。言い換えると、シリカガラスルツボ11の側壁部11aが曲がり始める点が側壁部11aとコーナー部11bの境界である。さらに、ルツボの底の曲率が一定の部分が底部11cであり、ルツボの底の中心からの距離が増したときに曲率が変化し始める点が底部11cとコーナー部11bとの境界である。
<2.三次元形状測定方法>
 上記方法で製造したルツボ11は、透明体であるため、従来の光照射方式による非接触式の三次元形状測定方法では、反射光を適切に検出することができず、従って、三次元形状測定が困難であった。そこで、本実施形態では、三次元形状測定を行う前に、ルツボの内表面に曇りを生じさせて内表面が白っぽくなった状態で形状測定用の光を内表面に対して照射する。曇りが生じていない状態では、ルツボ内表面からの表面反射光と、ルツボ内部からの内部散乱光が重畳されてしまって正確な三次元形状測定が困難であったが、曇りが生じている状態では、測定光の大部分が表面で拡散されてしまい、ルツボ内部にはほとんど侵入しないため、内部散乱光の影響を除外することができ、従って、適切な三次元形状測定が可能になる。
 本明細書において、「曇り」とは、冬に窓ガラスが白っぽくなるのと同様の現象を指しており、冷たい物体の周囲の空気が冷却されて、その空気中に含まれる水蒸気が凝縮されて得られた微粒子が物体の表面に多数付着して、表面が白っぽくなっている状態を意味する。
 曇りは、物体表面での空気の温度が露点以下になった場合に生じるが、露点は、周囲の空気中に含まれる水蒸気量が多くなるに従って高くなる。従って、曇りを生じやすくするには、物体を冷却するか、周囲空気中の水蒸気量を増大させればよい。水蒸気量を増大させる際に使用する水は、半導体製造等で用いられる超純水が好ましい。この場合、ルツボ内表面の清浄度を極めて高い状態に維持することができるからである。
 従って、ルツボ11の内表面に曇りを生じさせるためには、ルツボ11を冷蔵室で十分に冷却した上で常温の測定室内に持ってきてもよく、測定室内においてルツボ11に冷却体を接触させてルツボ11を冷却してもよい。また、別の方法では、測定室の温度を比較的低くしておき、その状態で、加湿器(超音波式、加熱式等)などを用いて測定室内の空気中の水蒸気量を増大させることによって、ルツボ11に曇りを生じさせてもよい。ルツボ11自体を冷却する方法と測定室内の水蒸気量を増大させる方法は併用してもよい。また、ルツボ11の開口部を下向きにした状態で載置した場合、ルツボ11の内部空間と外側の空間との間の空気の入れ替わりが少なくなる。この状態で、ルツボ11の内部空間に水蒸気を供給すれば、ルツボ11の内表面に接する空気中の水蒸気量を容易に増大させることができる。
 ルツボ11の表面の曇りは、最初はうっすらとしたものである。この状態では、内部散乱光の影響が十分に除外されず、適切な三次元形状測定ができない。時間が経つに従って段々とその白さが増して、水微粒子が均一に分散された状態で表面に付着した状態になる。この状態が三次元形状に適している。そして、さらに時間が経過すると、表面の付着している水の量が増えることによって隣接する水微粒子が接触して凝集したり、凝集した水滴が重力で落下したりしてさらに凝集が進む。この状態でも適切な三次元形状測定はできない。従って、三次元形状測定は、適切なタイミングで行う必要がある。そこで、三次元形状測定は、ルツボ11に曇りが発生する条件にした後、所定の間隔を空けて複数回行うことが好ましい。これによって、適切な曇り状態で三次元形状測定を行うことができる。
 ここで、図2を用いて、本実施形態による、ルツボの内表面の三次元形状測定の一例を説明する。
 測定対象であるシリカガラスルツボ11は、開口部が下向きになるように回転可能な回転台9上に載置される。ルツボ11は、図示しない冷蔵室から取り出された直後に回転台9に設置されたものであってもよく、回転台9が冷却機能を有していて、ルツボ11を冷却可能なものであってもよい。何れにしても、周囲温度よりも低温のルツボが回転台9上に設置される。基台1と回転台9の間の開口部12からはルツボ11の内部空間に水蒸気が供給される。これによって、ルツボ11の内部空間の空気中の水蒸気量が増大し、ルツボ11の内表面が曇りやすい状態になる。
 ルツボ11に覆われる位置に設けられた基台1上には、ロボットアーム4が設置されている。ロボットアーム4は、アーム4aと、このアーム4aを回転可能に支持するジョイント4bと、本体部4cを備える。本体部4cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。ロボットアーム4の先端にはルツボ11の内表面の三次元形状の測定を行う三次元形状測定部51が設けられている。三次元形状測定部51は、ルツボ11の内表面が曇った状態でルツボ11の内表面に対して測定光を照射し、内表面からの反射光を検出することによって、ルツボ11の内表面の三次元形状を測定する。本体部4c内には、ジョイント4b及び三次元形状測定部51の制御を行う制御部が設けられている。制御部は、本体部4c設けられたプログラム又は外部入力信号に基づいてジョイント4bを回転させてアーム4aを動かすことによって、三次元形状測定部51が測定光8を照射する方向を変化させる。具体的には、例えば、ルツボ11の開口部近傍に近い位置から測定を開始し、ルツボ11の底部11cに向かって三次元形状測定部51を移動させ、移動経路上の複数の測定点において測定を行う。
 ルツボの開口部から底部11cまでの測定が終わると、回転台9を少し回転させ、同様の測定行う。この測定は、底部11cから開口部に向かって行ってもよい。回転台9の回転角は、精度と測定時間とを考慮して決定される。回転角が大きすぎると測定精度が十分でなく、小さすぎると測定時間が掛かりすぎる。回転台9の回転は、内蔵プログラム又は外部入力信号に基づいて制御される。回転台9の回転角は、ロータリーエンコーダ等によって検出可能である。
 以上によって、ルツボの内表面全体の三次元形状を測定することができる。ルツボの内表面全体の三次元形状測定後は、ルツボ11の内部空間に乾燥した空気を供給してルツボ11の内表面を乾燥させてもよい。
 得られた三次元形状は、種々の用途に利用可能である。例えば、測定された三次元形状と、設計値での三次元形状とを比較することによって、個々のルツボの内表面形状が設計値からどの程度ずれているのかをできる。設計値からのズレが基準値を超えている場合は、ルツボの形状を修正する工程を行ったり、出荷を停止したりするといった対応を行うことができ、出荷されるルツボの品質を向上させることができる。また、個々のルツボの形状と、その製造条件(アーク熔融の条件等)とを関連付けることによって、ルツボの形状が基準範囲になった場合に、製造条件にフィードバックさせることができる。さらに、ルツボ内表面の三次元形状上の複数の測定点において、ラマンスペクトル、赤外吸収スペクトル、表面粗さ、気泡含有率等を測定することによって、これらの測定値の三次元分布を得ることができ、この三次元分布をルツボの出荷検査に利用することができる。また、三次元形状や、三次元形状上の種々の測定値の三次元分布のデータをシリコン単結晶引き上げのパラメーターにすることができる。これによって、シリコン単結晶引き上げをより高精度に制御することが可能になる。
 ここでは、ルツボの内表面の三次元形状の測定方法について詳細に説明したが、ルツボの外表面の三次元形状についても、同様の方法で測定することができる。
 ところで、上記方法で求まった三次元形状は、ルツボの内表面及び界面の三次元形状を詳細に測定する際の基礎となる三次元形状データとして利用することもできる。以下、ルツボの内表面及び界面の三次元形状をさらに詳細に測定する方法について詳細に説明する。
<3.詳細な三次元形状の測定方法>
 以下、図3~図6を用いて、ルツボの内表面の詳細な三次元形状の測定方法について説明する。本実施形態では、レーザー変位計などからなる内部測距部17をルツボ内表面に沿って非接触で移動させ、移動経路上の複数の測定点において、ルツボ内表面に対してレーザー光を斜め方向に照射し、その反射光を検出することによって、ルツボの内表面の三次元形状を測定する。以下、詳細に説明する。また、内表面形状を測定する際に、透明層13と気泡含有層15の界面の三次元形状も同時に測定することができ、また、内部測距部19を用いることによってルツボの外表面の三次元形状も測定することができるので、これらの点についても合わせて説明する。
<3-1.シリカガラスルツボの設置、内部ロボットアーム、内部測距部>
 測定対象であるシリカガラスルツボ11は、開口部が下向きになるように回転可能な回転台9上に載置されている。ルツボ11に覆われる位置に設けられた基台1上には、内部ロボットアーム5が設置されている。内部ロボットアーム5は、好ましくは六軸多関節ロボットであり、複数のアーム5aと、これらのアーム5aを回転可能に支持する複数のジョイント5bと、本体部5cを備える。本体部5cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。内部ロボットアーム5の先端にはルツボ11の内表面形状の測定を行う内部測距部17が設けられている。内部測距部17は、ルツボ11の内表面に対してレーザー光を照射し、内表面からの反射光を検出することによって内部測距部17からルツボ11の内表面までの距離を測定する。本体部5c内には、ジョイント5b及び内部測距部17の制御を行う制御部が設けられている。制御部は、本体部5c設けられたプログラム又は外部入力信号に基づいてジョイント5bを回転させてアーム5を動かすことによって、内部測距部17を任意の三次元位置に移動させる。具体的には、内部測距部17をルツボ内表面に沿って非接触で移動させる。従って、制御部には、ルツボ内表面の大まかな形状データを与え、そのデータに従って、内部測距部17の位置を移動させる。この大まかな形状データが、<2.三次元形状測定方法>で測定した三次元形状データである。ルツボ11bのコーナー部等の曲がっている部分では、内部測距部17の、内表面に対する距離及び方向を適切に設定することが容易ではなかった。これに対して、本実施形態では、内表面の三次元形状を予め求めておき、その三次元形状に基づいて内部測距部を移動させるので、内部測距部の、内表面に対する距離及び方向を適切に設定することができる。
 より具体的には、例えば、図3(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図3(b)に示すように、ルツボ11の底部11cに向かって内部測距部17を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1~5mmであり、例えば2mmである。測定は、予め内部測距部17内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、内部測距部17内の記憶部に格納されて、測定終了後にまとめて本体部5cに送られるか、又は測定の度に、逐次本体部5cに送られるようにする。内部測距部17は、本体部5cとは別に設けられた制御部によって制御するように構成してもよい。
 ルツボの開口部から底部11cまでの測定が終わると、回転台9を少し回転させ、同様の測定行う。この測定は、底部11cから開口部に向かって行ってもよい。回転台9の回転角は、精度と測定時間との考慮して決定されるが、例えば、2~10度(好ましくは6.3度以下)である。回転角が大きすぎると測定精度が十分でなく、小さすぎると測定時間が掛かりすぎる。回転台9の回転は、内蔵プログラム又は外部入力信号に基づいて制御される。回転台9の回転角は、ロータリーエンコーダ等によって検出可能である。回転台9の回転は、内部測距部17及び後述する外部測距部19の移動と連動してすることが好ましく、これによって、内部測距部17及び外部測距部19の3次元座標の算出が容易になる。
 後述するが、内部測距部17は、内部測距部17から内表面までの距離(内表面距離)、及び内部測距部17から透明層13と気泡含有層15の界面までの距離(界面距離)の両方を測定することができる。ジョイント5bの角度はジョイント5bに設けられたロータリーエンコーダ等によって既知であるので、各測定点での内部測距部17の位置の三次元座標及び方向が既知になるので、内表面距離及び界面距離が求まれば、内表面での三次元座標、及び界面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の内表面の三次元形状、及び界面の三次元形状が既知になる。また、内表面と界面の間の距離が既知になるので、透明層13の厚さも既知になり、透明層の厚さの三次元分布が求められる。
<3-2.外部ロボットアーム、外部測距部>
 ルツボ11の外部に設けられた基台3上には、外部ロボットアーム7が設置されている。外部ロボットアーム7は、好ましくは六軸多関節ロボットであり、複数のアーム7aと、これらのアームを回転可能に支持する複数のジョイント7bと、本体部7cを備える。本体部7cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。外部ロボットアーム7の先端にはルツボ11の外表面形状の測定を行う外部測距部19が設けられている。外部測距部19は、ルツボ11の外表面に対してレーザー光を照射し、外表面からの反射光を検出することによって外部測距部19からルツボ11の外表面までの距離を測定する。本体部7c内には、ジョイント7b及び外部測距部19の制御を行う制御部が設けられている。制御部は、本体部7c設けられたプログラム又は外部入力信号に基づいてジョイント7bを回転させてアーム77を動かすことによって、外部測距部19を任意の三次元位置に移動させる。具体的には、外部測距部19をルツボ外表面に沿って非接触で移動させる。従って、制御部には、ルツボ外表面の大まかな形状データを与え、そのデータに従って、外部測距部19の位置を移動させる。より具体的には、例えば、図3(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図3(b)に示すように、ルツボ11の底部11cに向かって外部測距部19を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1~5mmであり、例えば2mmである。測定は、予め外部測距部19内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、外部測距部19内の記憶部に格納されて、測定終了後にまとめて本体部7cに送られるか、又は測定の度に、逐次本体部7cに送られるようにする。外部測距部19は、本体部7cとは別に設けられた制御部によって制御するように構成してもよい。
 内部測距部17と外部測距部19は、同期させて移動させてもよいが、内表面形状の測定と外表面形状の測定は独立して行われるので、必ずしも同期させる必要はない。
 外部測距部19は、外部測距部19から外表面までの距離(外表面距離)を測定することができる。ジョイント7bの角度はジョイント7bに設けられたロータリーエンコーダ等によって既知であるので、外部測距部19の位置の三次元座標及び方向が既知になるので、外表面距離が求まれば、外表面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の外表面の三次元形状が既知になる。
 以上より、ルツボの内表面及び外表面の三次元形状が既知になるので、ルツボの壁厚の三次元分布が求められる。
<3-3.距離測定の詳細>
 次に、図4を用いて、内部測距部17及び外部測距部19による距離測定の詳細を説明する。
 図4に示すように、内部測距部17は、ルツボ11の内表面側(透明層13側)に配置され、外部測距部19は、ルツボ11の外表面側(気泡含有層15側)に配置される。内部測距部17は、出射部17a及び検出部17bを備える。外部測距部19は、出射部19a及び検出部19bを備える。内部測距部17及び外部測距部19の測定範囲は、測定器の種類によるが、概ね±5~10mm程度である。従って、内部測距部17及び外部測距部19から内表面・外表面までの距離は、ある程度正確に設定する必要がある。また、内部測距部17及び外部測距部19は、図示しない制御部及び外部端子を備える。出射部17a及び19aは、レーザー光を出射するものであり、例えば、半導体レーザーを備えるものである。出射されるレーザー光の波長は、特に限定されないが、例えば、波長600~700nmの赤色レーザー光である。検出部17b及び19bは、例えばCCDで構成され、光が当たった位置に基づいて三角測量法の原理に基づいてターゲットまでの距離が決定される。
 内部測距部17の出射部17aから出射されたレーザー光は、一部が内表面(透明層13の表面)で反射し、一部が透明層13と気泡含有層15の界面で反射し、これらの反射光(内表面反射光、界面反射光)が検出部17bに当たって検出される。図4から明らかなように、内表面反射光と界面反射光は、検出部17bの異なる位置に当たっており、この位置の違いによって、内部測距部17から内表面までの距離(内表面距離)及び界面までの距離(界面距離)がそれぞれ決定される。好適な入射角θは、内表面の状態、透明層13の厚さ、気泡含有層15の状態等によって、変化しうるが例えば30~60度である。
 図5は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図5に示すように、2つのピークが観察されており、内表面側のピークが内表面反射光によるピークであり、外表面側のピークが界面反射光によるピークに対応する。このように、透明層13と気泡含有層15の界面からの反射光によるピークもクリアに検出されている。従来は、このような方法で界面の特定がなされたことがなく、この結果は非常に斬新である。
 内部測距部17から内表面までの距離が遠すぎる場合や、内表面又は界面が局所的に傾いている場合には、2つのピークが観測されない場合がある。その場合には、内部測距部17を内表面に近づけたり、内部測距部17を傾けてレーザー光の出射方向を変化させて、2つのピークが観測される位置及び角度を探索することが好ましい。また、2つのピークが同時に観測されなくても、ある位置及び角度において内表面反射光によるピークを観測し、別の位置及び角度において界面反射光によるピークを観測するようにしてもよい。また、内部測距部17が内表面に接触することを避けるために、最大近接位置を設定しておいて、ピークが観測されない場合でも、その位置よりも内表面に近づけないようにすることが好ましい。
 なお、例えばコーナー部11bでは、内表面が曲がっているので、内部測距部17の位置及び方向を適切に設定することは容易ではないが、本実施形態では、ルツボ内表面の三次元形状を予め測定し、この三次元形状に基づいて内部測距部17を動かすことができるので、図4に示すように、内部測距部17を適切な位置及び方向に設定することが容易である。外部測距部19についても同様である。
 また、透明層13中に独立した気泡が存在する場合、この気泡からの反射光を内部測距部17が検出してしまい、透明層13と気泡含有層15の界面を適切に検出できない場合がある。従って、ある測定点Aで測定された界面の位置が前後の測定点で測定された界面の位置から大きく(所定の基準値を超えて)ずれている場合には、測定点Aでのデータを除外してもよい。また、その場合、測定点Aからわずかにずれた位置で再度測定を行って、得られたデータを採用してもよい。
 また、外部測距部19の出射部19aから出射されたレーザー光は、外表面(気泡含有層15)の表面で反射し、その反射光(外表面反射光)が検出部19bに当たって検出され、検出部19b上での検出位置に基づいて外部測距部19と外表面の間の距離が決定される。図6は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図6に示すように、1つのピークのみが観察される。ピークが観測されない場合には、外部測距部19を内表面に近づけたり、外部測距部19を傾けてレーザー光の出射方向を変化させて、ピークが観測される位置及び角度を探索することが好ましい。
 得られた内表面・界面・外表面の三次元形状の座標データを出力してもよい。座標データの形式は、特に限定されず、CSVなどのテキスト形式のデータであってもよく、種々のCAD形式のデータであってもよい。
<3-4.寸法公差を考慮したルツボ形状の評価>
 図7(a)、(b)は、それぞれ、ルツボの設計値に対して許容される寸法公差を考慮したときの、肉厚が最小となるルツボの形状、及び肉厚が最大となるルツボの形状を示す。側壁部11a、コーナー部11b,底部11cは、それぞれ、許容される寸法公差が異なっているので、その境界は不連続になっている。上記方法によって決定されるルツボ11の内表面三次元形状と外表面三次元形状から定まるルツボ11の形状が、図7(a)に示す公差範囲内の肉厚最小のルツボ形状と、図7(b)に示す公差範囲内の肉厚最大のルツボ形状の間の形状である場合には、ルツボ11の形状が公差範囲内であり、形状検査合格とすることができ、図7(a)の形状と図7(b)の形状から一部でも外れた場合には、形状検査不合格にすることができる。このような方法によって、ルツボ形状が公差範囲外になっているルツボの出荷を未然に防ぐことができる。
<4.種々の物性の三次元分布>
 内部ロボットアーム5及び外部ロボットアーム7には、種々の物性を測定するためのプローブを取り付けることができ、このブローブをルツボ11の内表面三次元形状又は外表面三次元形状に沿って移動させることによって、種々の物性の三次元分布を決定することが可能にある。内部ロボットアーム5及び外部ロボットアーム7には、複数種類のプローブを取り付けて、複数の物性を同時に測定するようにしてもよく、プローブを適宜交換して複数種類の物性を測定するようにしてもよい。また、プローブの交換は、手動で行ってもよく、オートチェンジャーを用いて自動で行ってもよい。
 また、上記の内部測距部17、外部測距部19、及び後述する各種プローブは、データベース機能を有する外部処理装置に接続されており、測定データが直ちにデータベースに取り込まれるように構成することが可能である。そして、外部処理装置において、各種の形状及び物性についてOK/NG判定を行うことによって、ルツボの品質検査を容易に行うことができる。
<5.ロボットアームで把持したまま測定>
 図3(a)及び(b)を用いて説明した上記実施形態では、ルツボ11を回転台9に載せて測定を行ったが、別の実施形態では、図8(a)~(c)に示すように、搬送用ロボットアーム6でルツボ11を把持したまま、測定を行うことができる。以下、詳細に説明する。
 図8(a)に示すように、測定対象であるルツボ11は、開口部が下向きになるように載置台43に載置されている。載置台43の近くには、ロボットアーム設置台41に搬送用ロボットアーム6が設置されている。搬送用ロボットアーム6は、好ましくは六軸多関節ロボットであり、複数のアーム6aと、これらのアーム6aを回転可能に支持する複数のジョイント6bと、本体部6cを備える。本体部6cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。搬送用ロボットアーム6の先端にはルツボ11を把持するための把持部49が設けられている。把持部49は、ベース45と、ベース45から延びる少なくとも4本のアーム47を有している。図8(a)では、4本のアーム47が円周方向に90度間隔で配置されている。アーム47は、ルツボ11の半径方向の中心に向かって、つまり図8(a)の矢印Xの方向に移動可能であり、4本のアーム47の間にルツボ11が位置するように把持部49を配置した状態でアーム47をルツボ11の側面に対して押し付ける。ルツボ11の外面は、気泡含有層15であり、表面がざらざらである。アーム47のルツボ11側の面には、ウレタンゴムなどの弾性部材48が設けられており、弾性部材48とルツボ11の側面との間の摩擦によって把持部49はルツボ11を安定に把持する。なお、アーム47をルツボ11に押し付ける力が強すぎてルツボ11を破壊しないように、アーム47をルツボに押し付ける力は、圧力センサーなどを用いて、適正値に制御される。
 図8(b)は、把持部49がルツボ11を把持している状態を示す。この状態から、搬送用ロボットアーム6は、ルツボ11を持ち上げて、内部ロボットアーム5が設置されている測定エリアに移動させる。なお、図示していないが、測定エリアには、外部ロボットアーム7が設置されていてもよい。
 次に、図8(c)に示すように、搬送用ロボットアーム6は、測定エリアにおいて、ルツボ11を保持し、その状態で、内部ロボットアーム5が内部測距部17及び各種プローブをルツボ11の内表面に沿って移動させて測定を行う。
 ルツボ11の円周方向の、ある位置においてルツボ11の底部11cと開口部の間で内部測距部17を移動させて測定を行った後、搬送用ロボットアーム6がルツボ11を円周方向(図8(c)の矢印Yの方向)に回転させる。そして、回転後の位置で、再度、ルツボ11の底部11cと開口部の間で内部測距部17を移動させて測定を行う。このように、ルツボ11の回転と、測定を繰り返すことによって、ルツボ11の内周面全体での測定を行うことができる。
 各測定毎の回転角度は、例えば2~10度であり、好ましくは6.3度以下である。回転角度が6.3度以下である場合に、各測定点を円周方向につないで構成される多角形の辺の合計長が、真円の円周長と誤差1%以下となり、十分に高い精度が達成できるからである。
 上述したルツボを曇らせて行う三次元形状測定は、ルツボ11を載置台43に載置する前に別の場所で行ってもよく、載置台43上で行ってもよく、測定エリアで行ってもよく、搬送用ロボットアーム6の可動エリア内に別の測定エリアを設け、そこで行ってもよい。
 被測定物に対してパターン光を照射して、その反射光を測定することによって三次元形状を測定する三次元形状測定裝置を用いて、シリカガラスルツボの三次元形状測定を試みた。ルツボを曇らせていない状態では、ルツボ形状を検出することができなかったが、冷却したルツボを空気中に放置して表面が曇った状態で測定を行ったところ、ルツボの内表面形状を測定することができた。

Claims (13)

  1. シリカガラスルツボの内表面に曇りを生じさせる工程と、
    前記内表面に対して光を照射し、その反射光を検出することによって前記内表面の三次元形状を測定する工程とを備える、シリカガラスルツボの三次元形状測定方法。
  2. 前記曇りは、前記シリカガラスルツボを冷却することによって生じさせる、請求項1に記載の方法。
  3. 前記曇りは、前記シリカガラスルツボの周囲の空気中の水蒸気量を増大させることによって生じさせる請求項1又は2に記載の方法。
  4. 前記三次元形状にもとづいて、前記ルツボの内表面に沿って非接触で内部測距部を移動させ、
    移動経路上の複数の測定点において、内部測距部から前記ルツボの内表面に対して斜め方向にレーザー光を照射し、前記内表面からの内表面反射光を検出することによって、内部測距部と前記内表面の間の内表面距離を測定し、
    各測定点の三次元座標と、前記内表面距離を関連付けることによって、前記ルツボの内表面三次元形状を求める工程を備える、請求項1~請求項3の何れか1つに記載の方法。
  5. 前記内部測距部からのレーザー光は、前記内表面に対して30~60度の入射角で照射される、請求項4に記載の方法。
  6. 前記ルツボは、内表面側に透明シリカガラス層と、外表面側に気泡含有シリカガラス層を有し、
    前記内部測距部は、前記透明シリカガラス層と前記気泡含有シリカガラス層の界面からの界面反射光を検出し、前記内部測距部と前記界面の間の界面距離を測定し、
    各測定点の三次元座標と、前記界面距離を関連付けることによって、前記ルツボの界面三次元形状を求める工程をさらに備える、請求項4又は請求項5に記載の方法。
  7. 前記内表面及び界面の三次元形状の座標データを出力する工程をさらに備える、請求項6に記載の方法。
  8. 前記ルツボの外表面に沿って外部測距部を移動させ、
    移動経路上の複数の測定点において、外部測距部から前記ルツボの外表面に対してレーザー光を照射し、前記外表面からの外表面反射光を検出することによって、前記外部測距部と前記外表面の間の外表面距離を測定し、
    各測定点の三次元座標と、前記外表面距離を関連付けることによって、前記ルツボの外表面三次元形状を求める工程をさらに備える、請求項4~請求項7の何れか1つに記載の方法。
  9. 前記内表面三次元形状と前記外表面三次元形状から定まる前記ルツボの形状が、公差範囲内の肉厚最小のルツボ形状と、公差範囲内の肉厚最大のルツボ形状の間の形状であるか否かに従って、ルツボの評価を行う工程をさらに備える、請求項8に記載の方法。
  10. 前記内表面三次元形状の測定は、前記ルツボを測定エリアに搬送する搬送用ロボットアームで把持した状態で行われ、
    前記ルツボの円周方向の、ある位置において前記ルツボの底部と開口部の間で前記内部ロボットアームの先端を移動させて測定を行った後、前記搬送用ロボットアームが前記ルツボを円周方向に回転させる工程を繰り返すことによって、前記ルツボの内表面全体が測定される、請求項4~請求項9の何れか1つに記載の方法。
  11. 前記ロボットアームによる前記ルツボの回転の角度は、6.3度以下である、請求項10に記載の方法。
  12. 前記ロボットアームは、把持部を介して前記ルツボを把持し、
    前記把持部は、前記ルツボの側面に対して少なくとも四方から、前記ルツボに接触する面に弾性部材が設けられたアームを前記ルツボに押し付けることによって前記ルツボを把持する、請求項10又は請求項11に記載の方法。
  13. 前記ルツボ内に保持されたシリコン融液からシリコン単結晶を引き上げる工程を備え、
    前記シリコン単結晶の引き上げ条件が、前記シリカガラスルツボの三次元形状に基づいて決定され、
    前記三次元形状は、請求項1~請求項12の何れか1つに記載の方法によって決定される、シリコン単結晶の製造方法。
PCT/JP2012/078261 2011-12-27 2012-10-31 シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法 WO2013099434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147020096A KR101688125B1 (ko) 2011-12-27 2012-10-31 실리카 유리 도가니의 삼차원 형상 측정 방법, 실리콘 단결정의 제조 방법
EP12861132.4A EP2801787B1 (en) 2011-12-27 2012-10-31 Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
CN201280064551.3A CN104114976B (zh) 2011-12-27 2012-10-31 氧化硅玻璃坩埚的三维形状测量方法、单晶硅的制造方法
US14/365,544 US9810526B2 (en) 2011-12-27 2012-10-31 Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011285295A JP5808667B2 (ja) 2011-12-27 2011-12-27 シリカガラスルツボの三次元形状測定方法
JP2011-285331 2011-12-27
JP2011285331A JP5657515B2 (ja) 2011-12-27 2011-12-27 シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法
JP2011-285295 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099434A1 true WO2013099434A1 (ja) 2013-07-04

Family

ID=48696934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078261 WO2013099434A1 (ja) 2011-12-27 2012-10-31 シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法

Country Status (6)

Country Link
US (1) US9810526B2 (ja)
EP (1) EP2801787B1 (ja)
KR (1) KR101688125B1 (ja)
CN (1) CN104114976B (ja)
TW (1) TWI480506B (ja)
WO (1) WO2013099434A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345526A1 (en) * 2013-05-23 2014-11-27 Applied Materials, Inc. Coated liner assembly for a semiconductor processing chamber

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809902B2 (en) * 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals
CN105849321B (zh) 2013-12-28 2019-04-12 胜高股份有限公司 石英玻璃坩埚及其应变测定装置
CN107743572B (zh) 2015-06-08 2021-03-30 株式会社高迎科技 湿空气形成装置、包括其的检查装置及检查方法
KR102520511B1 (ko) * 2015-06-08 2023-04-12 주식회사 고영테크놀러지 기판 검사 장치
US11195294B2 (en) * 2016-04-22 2021-12-07 Nikon Corporation Image measurement method, image measurement program, image measurement device, and object manufacture method
GB2572781B (en) * 2018-04-10 2023-01-04 E M & I Maritime Ltd Inspection Method And Associated Apparatus
CN108592844A (zh) * 2018-04-23 2018-09-28 内蒙古欧晶科技股份有限公司 一种自动测量坩埚透明层厚度的装置及方法
CN108955542B (zh) * 2018-09-04 2023-11-21 宁波兰辰光电有限公司 一种汽车曲面玻璃激光自动检测设备及检测方法
CN112840175A (zh) * 2018-10-15 2021-05-25 成都频泰鼎丰企业管理中心(有限合伙) 用于透明或半透明材料曲面的测量系统
DE102020210684A1 (de) 2020-08-23 2022-02-24 Volkswagen Aktiengesellschaft Verfahren zum ortsaufgelösten Prüfen einer Eigenschaft einer Wand und Prüfvorrichtung

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131859A (ja) * 1984-11-30 1986-06-19 Kawasaki Heavy Ind Ltd 立体形状の形成方法及び形成装置
JPH06226658A (ja) * 1993-01-28 1994-08-16 Kajima Corp 多目的移動ロボット
JPH08208376A (ja) * 1995-02-06 1996-08-13 Mitsubishi Materials Corp ルツボの計測方法
JPH11211437A (ja) * 1998-01-28 1999-08-06 Mitsubishi Rayon Co Ltd シートの界面形状測定装置及び方法
JP2000221009A (ja) * 1999-01-28 2000-08-11 Sumitomo Metal Ind Ltd ガラス材の厚み測定装置及び測定方法
JP2003172614A (ja) * 2001-12-10 2003-06-20 Tdk Corp 変位計測方法、変位計測装置、x線分析方法及びx線分析装置
JP2005249487A (ja) * 2004-03-02 2005-09-15 Seiko Epson Corp 表面形状測定方法及び眼鏡レンズの特性測定方法
JP2006096618A (ja) * 2004-09-29 2006-04-13 Toshiba Ceramics Co Ltd 石英ガラスルツボの除去対象物の除去装置
JP2008281399A (ja) 2007-05-09 2008-11-20 Konica Minolta Sensing Inc 三次元測定装置及び携帯型計測器
JP2008298477A (ja) * 2007-05-29 2008-12-11 Ihi Corp ロータ寸法測定装置及びロータ寸法測定方法
JP2009002823A (ja) * 2007-06-22 2009-01-08 Bridgestone Corp 3次元形状測定システム、及び、3次元形状測定方法
JP2010030884A (ja) * 2008-06-30 2010-02-12 Japan Siper Quarts Corp 石英ガラスルツボおよび石英ガラスルツボを用いたシリコン単結晶の引き上げ方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163076B1 (en) 1984-04-17 1991-11-13 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for producing a three-dimensional copy of an object
EP0471196A3 (en) * 1990-08-13 1994-09-07 Siemens Ag Image analysis method
DE19506642C1 (de) * 1995-02-25 1996-03-21 Focus Mestechnik Gmbh & Co Kg Verfahren und Vorrichtung zum optischen Ausmessen der Oberflächenkontur eines Werkstückes
DE10108221A1 (de) * 2001-02-21 2002-09-12 Charalambos Tassakos Verfahren und Vorrichtung zur optischen Erfassung eines Objekts
WO2005047856A2 (en) * 2003-11-07 2005-05-26 Kent John H Automated mineral processing systems and methods
DE102004025490A1 (de) * 2004-05-22 2005-12-15 Hubert Kammer Verfahren zum optischen Vermessen reflektierender und/oder transparenter Objekte mittels Lasermesstechnik
US7573974B2 (en) * 2006-02-22 2009-08-11 Novartis Ag Device and method for non-contact scanning of contact lens and contact lens mold geometry
CN100424465C (zh) * 2006-06-23 2008-10-08 北京神网创新科技有限公司 炉内信息激光探测装置及方法
US8578581B2 (en) * 2007-04-16 2013-11-12 Pratt & Whitney Canada Corp. Method of making a part and related system
CN100573034C (zh) * 2008-04-15 2009-12-23 友达光电股份有限公司 检测装置与机台
CN102016499B (zh) * 2008-05-01 2012-12-05 株式会社普利司通 圆筒形状的被测量体的测量装置和测量方法以及轮胎外观检查装置
JP5011215B2 (ja) * 2008-06-05 2012-08-29 株式会社日立製作所 非接触寸法計測方法および装置
CN101619485A (zh) * 2008-06-30 2010-01-06 日本特级石英株式会社 二氧化硅玻璃坩埚和用二氧化硅玻璃坩埚提拉单晶硅的方法
US9809902B2 (en) * 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131859A (ja) * 1984-11-30 1986-06-19 Kawasaki Heavy Ind Ltd 立体形状の形成方法及び形成装置
JPH06226658A (ja) * 1993-01-28 1994-08-16 Kajima Corp 多目的移動ロボット
JPH08208376A (ja) * 1995-02-06 1996-08-13 Mitsubishi Materials Corp ルツボの計測方法
JPH11211437A (ja) * 1998-01-28 1999-08-06 Mitsubishi Rayon Co Ltd シートの界面形状測定装置及び方法
JP2000221009A (ja) * 1999-01-28 2000-08-11 Sumitomo Metal Ind Ltd ガラス材の厚み測定装置及び測定方法
JP2003172614A (ja) * 2001-12-10 2003-06-20 Tdk Corp 変位計測方法、変位計測装置、x線分析方法及びx線分析装置
JP2005249487A (ja) * 2004-03-02 2005-09-15 Seiko Epson Corp 表面形状測定方法及び眼鏡レンズの特性測定方法
JP2006096618A (ja) * 2004-09-29 2006-04-13 Toshiba Ceramics Co Ltd 石英ガラスルツボの除去対象物の除去装置
JP2008281399A (ja) 2007-05-09 2008-11-20 Konica Minolta Sensing Inc 三次元測定装置及び携帯型計測器
JP2008298477A (ja) * 2007-05-29 2008-12-11 Ihi Corp ロータ寸法測定装置及びロータ寸法測定方法
JP2009002823A (ja) * 2007-06-22 2009-01-08 Bridgestone Corp 3次元形状測定システム、及び、3次元形状測定方法
JP2010030884A (ja) * 2008-06-30 2010-02-12 Japan Siper Quarts Corp 石英ガラスルツボおよび石英ガラスルツボを用いたシリコン単結晶の引き上げ方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140345526A1 (en) * 2013-05-23 2014-11-27 Applied Materials, Inc. Coated liner assembly for a semiconductor processing chamber

Also Published As

Publication number Publication date
EP2801787B1 (en) 2019-04-24
KR20140105592A (ko) 2014-09-01
US20150007764A1 (en) 2015-01-08
CN104114976A (zh) 2014-10-22
KR101688125B1 (ko) 2016-12-20
CN104114976B (zh) 2017-08-04
TW201337210A (zh) 2013-09-16
EP2801787A1 (en) 2014-11-12
US9810526B2 (en) 2017-11-07
EP2801787A4 (en) 2015-06-17
TWI480506B (zh) 2015-04-11

Similar Documents

Publication Publication Date Title
WO2013099434A1 (ja) シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法
EP2796595B1 (en) Method for evaluating silica glass crucible, method for producing silicon single crystals
KR101623178B1 (ko) 실리카 유리 도가니의 제조 조건의 설정을 지원하는 장치, 실리카 유리 도가니 제조용 몰드의 제조 조건의 설정을 지원하는 장치, 실리카 유리 도가니를 이용한 실리콘 단결정 인상의 조건 설정을 지원하는 장치
JP5614857B2 (ja) シリカガラスルツボの評価方法
JP5808667B2 (ja) シリカガラスルツボの三次元形状測定方法
JP5749151B2 (ja) シリカガラスルツボのラマンスペクトルの三次元形状測定方法
JP5657515B2 (ja) シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法
JP5818675B2 (ja) シリカガラスルツボの気泡分布の三次元分布の決定方法、シリコン単結晶の製造方法
JP5749149B2 (ja) シリカガラスルツボの三次元形状測定方法
JP6162847B2 (ja) シリカガラスルツボの赤外吸収スペクトルの三次元分布の決定方法、及びシリコン単結晶の製造方法
JP6162870B2 (ja) シリカガラスルツボの製造方法
JP5923644B2 (ja) シリカガラスルツボの赤外吸収スペクトルの三次元分布の決定方法、シリコン単結晶の製造方法
JP6123000B2 (ja) シリカガラスルツボの評価方法、シリコン単結晶の製造方法
JP5996718B2 (ja) シリカガラスルツボの三次元形状測定方法、シリコン単結晶の製造方法
JP5946560B2 (ja) シリカガラスルツボのラマンスペクトルの三次元分布の決定方法、シリコン単結晶の製造方法
JP6114795B2 (ja) シリカガラスルツボの気泡分布の三次元分布の決定方法、シリコン単結晶の製造方法
JP5749150B2 (ja) シリカガラスルツボの赤外吸収スペクトルの三次元分布の決定方法、シリコン単結晶の製造方法
JP2017215325A (ja) シリカガラスルツボの測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14365544

Country of ref document: US

Ref document number: 2012861132

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147020096

Country of ref document: KR

Kind code of ref document: A