WO2013099241A1 - 走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法 - Google Patents

走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法 Download PDF

Info

Publication number
WO2013099241A1
WO2013099241A1 PCT/JP2012/008321 JP2012008321W WO2013099241A1 WO 2013099241 A1 WO2013099241 A1 WO 2013099241A1 JP 2012008321 W JP2012008321 W JP 2012008321W WO 2013099241 A1 WO2013099241 A1 WO 2013099241A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
sample
support member
conductive thin
sample support
Prior art date
Application number
PCT/JP2012/008321
Other languages
English (en)
French (fr)
Inventor
小椋 俊彦
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to EP12863530.7A priority Critical patent/EP2800123A4/en
Priority to US14/364,530 priority patent/US9589765B2/en
Publication of WO2013099241A1 publication Critical patent/WO2013099241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/08Holders for targets or for other objects to be irradiated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells
    • H01J2237/2004Biological samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application

Definitions

  • the present invention relates to a scanning electron microscope image observation technique, and more particularly to a technique suitable for observing an electron microscope image of an organic material sample or biological sample that is easily damaged by an irradiation electron beam with high resolution.
  • Scanning electron microscopes are widely used not only for morphological observation of inorganic and organic material samples, but also for observation of biological samples, and are suitable for observing microorganisms such as bacteria and viruses that cannot be observed with the naked eye. is there.
  • Patent Document 1 a technique for obtaining a high-contrast image without applying the above-described coating or staining to a biological sample.
  • a sample to be observed is attached to the lower surface (back surface) of a thin sample support film (carbon film), and an electron beam accelerated at a relatively low voltage is irradiated from the upper surface (front surface) of the sample support film.
  • the electron beam incident on the sample support film spreads while diffusing inside the support film, and the electrons that have reached the vicinity of the lower surface of the support film emit secondary electrons.
  • the secondary electrons are absorbed by the observation target sample attached to the lower surface of the support film, thereby forming a contrast.
  • the energy of such secondary electrons is as extremely low as about 10 eV, and not only does it cause little damage when absorbed by a biological sample, but it is also extremely clear because the degree of absorption of this electron beam can be directly obtained as a contrast. A high contrast SEM image can be obtained. Such observation conditions are called “indirect secondary electron contrast conditions”.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide an electron microscope image of an organic material sample or a biological sample that is easily damaged by an irradiation electron beam, surface coating or staining treatment. It is an object of the present invention to provide a technique that enables observation with high resolution without performing the above.
  • a sample support member used for observation of a scanning electron microscope image includes a laminate of an insulating thin film and a conductive thin film, and the insulating thin film side is irradiated with an electron beam. And the conductive thin film side is a sample attachment surface.
  • the insulating thin film has a thickness of 10 nm to 200 nm.
  • the insulating thin film has an electrical resistivity of 1000 ⁇ m or more.
  • the insulating thin film is made of a material mainly composed of silicon nitride, silicon oxide, or polyimide.
  • the conductive thin film has a thickness of 200 nm or less.
  • the conductive thin film is made of a material mainly composed of any of nickel, titanium, aluminum, gold, silver, copper, cobalt, molybdenum, tantalum, tungsten, and osmium.
  • the sample adhering surface of the conductive thin film is subjected to a hydrophilic treatment.
  • a sample adsorption layer is provided on the sample adhesion surface of the conductive thin film.
  • the pressure-resistant thin film provided to face the sample attachment surface of the laminate of the insulating thin film and the conductive thin film is disposed so as to have a gap between the pressure-resistant thin film and the laminate.
  • the insulating thin film and conductive thin film laminate and the pressure-resistant thin film both have a pressure resistance of 1 atmosphere or more, and the space between the laminate and the pressure-resistant thin film can be sealed at atmospheric pressure.
  • the conductive thin film is provided with electrodes for controlling the potential of the conductive thin film.
  • a sample holder used for observing a scanning electron microscope image according to the present invention is a sample holder including the above-described sample support member, and includes a terminal that receives an external input and applies a voltage to the electrode.
  • a sample holder used for observing a scanning electron microscope image is a sample holder provided with the above-described sample support member, and has a field of view on at least one of the electron beam incident surface side and the electron beam emission surface side.
  • a diaphragm is provided.
  • An observation method of a scanning electron microscope image according to the present invention is an observation method of a scanning electron microscope image using the above-described sample support member, wherein an acceleration voltage of an incident electron beam is less than 60% of incident electrons. Set to a value that is scattered, absorbed, or shielded by the laminate of the conductive thin film and the conductive thin film.
  • a scanning electron microscope image observation method is a scanning electron microscope image observation method using the sample holder described above, wherein the potential of the terminal is set to the ground potential of the scanning electron microscope or the ground. Image observation is performed at a potential higher than the potential.
  • a sample support member used for observation of a scanning electron microscope image according to the present invention includes a laminate of an insulating thin film and a conductive thin film, the insulating thin film side is an electron beam incident surface, and the conductive thin film side is It has a configuration to be a sample attachment surface.
  • the structure inside the observation sample can be observed, and a high-contrast image can be obtained without performing processing such as staining.
  • the potential gradient generated in the insulating thin film is substantially parallel to the electron beam incident direction (substantially perpendicular to the electron beam incident surface of the insulating thin film), and secondary electrons transmitted to the conductive thin film by the tunnel effect. Since the emission direction is substantially perpendicular to the sample adhesion surface, the transmitted secondary electrons are incident on the observation sample without being spatially spread, so that high resolution can be obtained.
  • FIG. 2A It is a block diagram for demonstrating the outline
  • FIG. 4A It is a conceptual diagram for demonstrating a mode at the time of sealing and observing a biological sample on the sample support member which provided the pressure-resistant thin film facing the sample adhesion surface of the laminated body of an insulating thin film and an electroconductive thin film.
  • An electron beam accelerated by an applied voltage of 4 kV is incident on a sample support member in which the insulating thin film is a silicon nitride film (50 nm) and the conductive thin film is a laminated film of a Ni film (15 nm) and an Au film (10 nm).
  • the acceleration voltage of the incident electron beam 41 is such that an appropriate amount of incident electrons is scattered, absorbed, or shielded in the laminated body of the insulating thin film 11 and the conductive thin film 12 for the purpose of reducing damage to the sample 30 by the electron beam 41.
  • Value the acceleration voltage of the incident electron beam 41 is set to a value at which 60% or more of the incident electrons are scattered, absorbed, or shielded by the laminated body of the insulating thin film and the conductive thin film.
  • the incident electron beam 41 spreads while diffusing inside the insulating thin film 11 (diffusion region 14) and reaches the lower surface (sample adhering surface) of the conductive thin film 12 while generating secondary electrons.
  • the potential of the insulating thin film 11 becomes a negative potential corresponding to the electron injection amount.
  • electrons injected into the conductive thin film 12 are discharged out of the film through the upper body 21 and the lower body 22 of the sample holder 20 that accommodates the sample support member. Does not accumulate, and the potential of the conductive thin film 12 does not change.
  • the potential of the conductive thin film 12 is preferably a ground potential (0 V potential) in the SEM apparatus or higher than this ground potential. Therefore, an electrode or the like for potential control may be provided on the conductive thin film 12, and the potential of the conductive thin film 12 may be controlled by applying an external voltage from a terminal or the like provided on the sample holder 20.
  • the insulating thin film 11 has a thickness of 10 nm to 200 nm, for example, and an electrical resistivity of 1000 ⁇ m or more, for example.
  • Examples of the material of the insulating thin film 11 include a material mainly composed of any one of polyimides such as silicon nitride, silicon oxide, and Kapton (registered trademark).
  • the potential gradient is as large as 100 Mev / cm.
  • the potential barrier on the surface of the insulating thin film 11 becomes thin, and an electron emission phenomenon (field emission phenomenon) due to the tunnel effect occurs. Therefore, secondary electrons generated inside the insulating thin film 11 are tunnel-transmitted to the conductive thin film 12 side along this potential gradient. Since the energy of the secondary electrons is approximately 10 eV or less, the de Broglie wavelength is long and it can be considered that the tunnel transmittance is high. Such tunnel-transmitted secondary electrons diffuse through the conductive thin film 12 and reach the sample 30.
  • the sample support member according to the present invention including the laminated body of the insulating thin film and the conductive thin film, a negative potential is generated by the electron beam incident on the insulating thin film in which almost no free electrons are present, and the conductive property is reduced.
  • a negative potential is generated by the electron beam incident on the insulating thin film in which almost no free electrons are present, and the conductive property is reduced.
  • secondary electrons generated in the insulating thin film are tunnel-transmitted to the conductive thin film side, and the sample 30 is also tunnel-transmitted, thereby staining the sample. It is possible to obtain a high-contrast image that reflects the internal structure of the sample without performing a process such as the above.
  • the potential gradient generated inside the insulating thin film 11 is substantially parallel to the incident direction of the electron beam 41 (substantially perpendicular to the electron beam incident surface of the insulating thin film 12), it is transmitted to the conductive thin film 12 by the tunnel effect.
  • the outgoing direction of the incoming secondary electrons is substantially perpendicular to the sample attachment surface.
  • the transmitted secondary electrons from the insulating thin film 11 are incident on the observation sample 30 without spatially spreading, and high resolution is obtained.
  • the energy of electrons reaching the observation sample 30 due to the tunnel effect is significantly lower than the energy of the incident electron beam, damage to the sample 30 can be greatly reduced compared to conventional observation. .
  • the sample attachment surface of the conductive thin film 12 may be subjected to a hydrophilic treatment for adsorption of a water-soluble sample or the like. Further, a sample adsorption layer for adsorbing a biological sample or the like may be provided on the sample adhesion surface of the conductive thin film 12.
  • a field stop 23 is provided above the sample support member (on the electron beam incident surface side), or a field stop 24 is provided below the sample support member (on the electron beam emission surface side). May be.
  • the field stop 23 contributes to preventing the secondary electrons emitted upward from the electron beam incident site from leaking out of the sample holder 20. Since such secondary electrons do not include information on the sample 30, if this is detected, the image quality is degraded.
  • the field stop 24 is for limiting the viewing angle of secondary electrons emitted from the lower part of the sample holder 20 and detected by the secondary electron detector 50, and contributes to improving the resolution of the observation image.
  • 2A and 2B are a conceptual diagram for explaining a potential distribution generated in an insulating thin film during electron beam irradiation when a biological sample is attached to the sample support member of the present invention and observed with an SEM, respectively. It is the conceptual diagram which showed a mode that the secondary electron produced in the boundary vicinity of a conductive thin film and a conductive thin film permeate
  • the light passes through the tunnel and further passes through the conductive thin film 12 and the sample 30 and is emitted as secondary electrons 42 to the outside of the sample support member.
  • the energy of the secondary electrons is approximately 10 eV or less, the de Broglie wavelength is longer than the diameter of the atoms, so that the quantum effect is likely to occur and the tunnel transmittance is high.
  • a negative potential is generated by the electron beam incident on the inside of the insulating thin film 11 to form a large potential gradient with the conductive thin film 12, and this potential gradient is used to provide an insulating property. Secondary electrons generated in the thin film 11 are tunnel-transmitted to the conductive thin film 12 side.
  • the tunnel transmission efficiency of secondary electrons can be increased by setting the conductive thin film 12 side to a positive potential.
  • FIG. 3 is a conceptual diagram for explaining a state in which the potential gradient in the insulating thin film 11 is increased by applying a voltage (+ V b ) to the conductive thin film 12 to obtain a positive potential.
  • the potential gradient generated in the insulating thin film 11 increases as the conductive thin film 12 is set to a positive potential (+ V b ), and the tunneling efficiency of secondary electrons increases accordingly. This contributes to improving the resolution and contrast of the obtained SEM image.
  • electrons are relatively weakly scattered in the silicon nitride thin film, while electrons are strongly scattered or absorbed in the Ni and Au metal films.
  • an acceleration voltage of 4 kV 90% or more of the electrons incident on the silicon nitride thin film are scattered, absorbed, or shielded inside the laminate of the insulating thin film and the conductive thin film, and the incident electrons transmitted to the sample side. There are very few (primary electrons). Accordingly, damage to the sample is greatly reduced.
  • FIG. 5 shows an embodiment in which a pressure-resistant thin film 16 is provided through a spacer 15 so as to face the sample attachment surface of the laminate of the insulating thin film 11 and the conductive thin film 12, and a frame 17 is also formed on the pressure-resistant thin film 16. It is a figure for demonstrating the structure of this sample support member.
  • a sample 30 is accommodated in the space between the pressure-resistant thin film 16 and the sample attachment surface of the conductive thin film 12, the interval of which is defined by the spacer 15 of the sample support member.
  • both of the insulating thin film 11 and the conductive thin film 12 have a pressure resistance of 0.5 atm or higher
  • the laminated body has a pressure resistance of 1 atm or higher
  • the pressure resistant thin film 16 has a pressure resistance of 1 atm. It has the above pressure resistance.
  • the space between the laminated body and the pressure-resistant thin film 16 is sealed at atmospheric pressure (sealed), and it is possible to prevent damage due to vacuum and observe the original form.
  • FIG. 6A and 6B are respectively accelerated by an applied voltage of 4 kV to a sample support member in which the insulating thin film is a silicon nitride film (50 nm) and the conductive thin film is a laminated film of a Ni film (15 nm) and an Au film (10 nm).
  • FIG. 6B is a block diagram when measuring the current value of electrons transmitted through the metal laminated film, and the experimental results of determining the bias voltage dependency of the current value of transmitted electrons in the measurement system shown in FIG. 6A. It is.
  • FIG. 6B shows the current (normalized current) measured by the measuring cup 60 when the bias voltage is changed from + 2V to ⁇ 10V.
  • the acceleration voltage of the incident electron beam is 4 kV
  • the current value decreases exponentially when the bias potential is lowered from +2 V, and when the bias potential is ⁇ 10 V, the current value becomes substantially zero. This means that almost all of the transmitted electrons are of low energy of 10V or less. It also means that there is almost no transmission of incident electrons (primary electrons).
  • the acceleration voltage of the incident electron beam is 10 kV, a current of 60% is measured even when the bias potential is ⁇ 10V. This means that most of the detected electrons have energy exceeding ⁇ 10V, and indicates that incident electrons (primary electrons) are transmitted at a level that cannot be ignored.
  • FIG. 7 is an SEM image obtained by attaching a virus (baculovirus) to the sample support member of the present invention in an unstained state and observing it at a magnification of 60,000 times.
  • the sample support member used was a laminated film of a silicon nitride film (50 nm) as the insulating thin film and a Ni film (15 nm) and an Au film (10 nm) as the conductive thin film, and the acceleration voltage of the incident electron beam was 4 kV. .
  • a rod-shaped baculovirus having a length of approximately 300 nm is clearly observed in the arrow portion shown in FIG.
  • a bag-like shape enclosing a protein called an envelope is also observed below.
  • a light and dark structure inside the virus and within the envelope has been observed, which is thought to reflect the internal structure.
  • the SEM image in FIG. 7 is obtained with transmitted electrons having an energy of 10 eV or less. is there.
  • the transmission power of electrons having a low energy of 10 eV or less is considered to be about 10 nm.
  • the thickness is 50 nm or more while transmitting electrons having an energy of 10 eV or less. It is possible to observe the internal structure. This reason is considered to be a result of the quantum effect by adopting the configuration of the present invention.
  • a technique capable of observing an electron microscope image of an organic material sample or a biological sample that is easily damaged by an irradiation electron beam without performing surface coating or staining treatment is provided.

Abstract

 試料支持部材への電子注入により、電子線が入射した部位の絶縁性薄膜(11)と導電性薄膜(12)との間に電位勾配が生じると、絶縁性薄膜(11)の表面のポテンシャル障壁が薄くなり、トンネル効果による電子放出現象(電界放出現象)が起こる。絶縁性薄膜(11)の内部で生じた2次電子は、この電位勾配に沿って、導電性薄膜(12)側へとトンネル透過する。トンネル透過した2次電子は導電性薄膜(12)内を拡散して試料(30)に到達するが、試料(30)が生物試料などの電子透過率の高いものである場合には、2次電子は試料(30)内部もトンネル透過し、この2次電子(42)が2次電子検出器(50)により検知されて試料(30)の内部構造を反映するSEM画像が得られる。

Description

走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法
 本発明は走査電子顕微鏡像の観察技術に関し、特に、照射電子線によるダメージを受けやすい有機材料系試料や生物試料の電子顕微鏡像を高分解能で観察するに好適な技術に関する。
 走査型電子顕微鏡(SEM)は、無機材料系試料や有機材料系試料の形態観察はもとより生物試料の観察にも広く用いられ、バクテリアやウィルスといった肉眼では観察不能な微生物の観察に好適な機器である。
 しかし、このような生物試料は電子線の照射により損傷を受けやすいことに加え、高いコントラストの画像を得にくいという問題がある。このため、生物試料をSEM観察する場合、一般には、観察対象である試料をホルムアルデヒド等で固定化して金やプラチナあるいはカーボン等を表面にコーティングしたり重金属等で染色するなどの手法により前処理を行い、これにより、試料への電子線ダメージを軽減するとともにコントラストを高めるという工夫がなされる。
 また、最近では、生物試料に対して上述のコーティングや染色を施すことなく高コントラストの画像を得る手法も開発されている(特許文献1および非特許文献1を参照)。この方法では、薄い試料支持膜(カーボン膜)の下面(裏面)に観察対象試料を付着させ、試料支持膜の上面(表面)から比較的低い電圧で加速された電子線を照射する。試料支持膜に入射した電子線は支持膜内部で拡散しながら広がり、支持膜の下面付近に到達した電子が2次電子を放出する。この2次電子は支持膜下面に付着している観察対象試料に吸収され、これによりコントラストが形成される。
 このような2次電子のエネルギは10eV程度と極めて低く、生物試料に吸収されても殆どダメージを与えることがないだけではなく、この電子線の吸収の度合いがそのままコントラストとして得られるために極めてクリアで高コントラストなSEM画像を得ることができる。このような観察条件は、「間接2次電子コントラスト条件」と呼ばれる。
 また、電子線を金属薄膜に入射させ、金属薄膜から放出されるX線を観察対象試料に照射してX線画像を得る構成のX線顕微鏡も提案されている(特許文献2および3)。このようなX線顕微鏡では、観察対象試料に照射されるX線の透過力が大きいために、試料の内部構造を観察できるという利点がある。
特開2010-097844号公報 特開平8-43600号公報 特開2010-175389号公報
T.Ogura「A high contrast method of unstained biological samples under a thincarbon film by scanning electron microscopy」Biochem. Biophys. Res. Commun. Vol.377, p79-84(2008)
 上述したように、従来は、電子線照射により損傷を受けやすく且つ高いコントラストの画像を得にくい生物試料をSEM観察する場合、表面コーティングや染色の処理を行っていた。しかし、このような処理には熟練が必要であるのみならず、染色に用いられる薬剤は主として酢酸ウラン等の有害物質であるため環境面からも好ましくない。
 また、間接2次電子コントラスト条件で観察されたSEM画像は極めてコントラストが高いものの、分解能は比較的低いという問題がある。加えて、さらに、通常条件で加速された低エネルギの2次電子では、観察試料の内部を透過することができず、内部構造観察には適さない。
 さらに、金属薄膜に電子線を入射させて発生するX線を観察対象試料に照射する構成のX線顕微鏡で高いコントラストの画像を得ようとすると、電子線からX線への変換効率が低いために入射電子線量を大きくする必要があるが、このような大電流条件では分解能が低下することに加え、金属薄膜が発熱したり試料を損傷させてしまうという問題がある。
 本発明はこのような問題に鑑みてなされたものであり、その目的とするところは、照射電子線によるダメージを受けやすい有機材料系試料や生物試料の電子顕微鏡像を、表面コーティングや染色の処理を行うことなく、高分解能で観察することを可能とする技術を提供することにある。
 上述の課題を解決するために、本発明に係る走査型電子顕微鏡像の観察に用いられる試料支持部材は、絶縁性薄膜と導電性薄膜の積層体を備え、前記絶縁性薄膜側を電子線入射面とし、前記導電性薄膜側を試料付着面とする、ことを特徴とする。
 好ましくは、前記絶縁性薄膜の厚みが10nm~200nmである。
 また、好ましくは、前記絶縁性薄膜の電気抵抗率が1000Ωm以上である。
 例えば、前記絶縁性薄膜は、窒化シリコン、酸化シリコン、ポリイミドの何れかを主成分とする材料からなる。
 好ましくは、前記導電性薄膜の厚みが200nm以下である。
 また、好ましくは、前記導電性薄膜は、ニッケル、チタン、アルミ、金、銀、銅、コバルト、モリブデン、タンタル、タングステン、オスミウムの何れかを主成分とする材料からなる。
 例えば、前記導電性薄膜の試料付着面は親水性化処理が施されている。
 また、例えば、前記導電性薄膜の試料付着面に試料吸着層が設けられている。
 一態様として、前記絶縁性薄膜と導電性薄膜の積層体の試料付着面に対向して設けられた耐圧性薄膜が該耐圧性薄膜と前記積層体との間に間隔を有するように配置されており、前記絶縁性薄膜と導電性薄膜の積層体および前記耐圧性薄膜は何れも1気圧以上の耐圧性を有し、前記積層体と前記耐圧性薄膜の間の空間を大気圧封止可能とされている構成がある。
 また、一態様として、前記導電性薄膜には該導電性薄膜の電位制御のための電極が設けられている構成がある。
 本発明に係る走査型電子顕微鏡像の観察に用いられる試料ホルダは、上述の試料支持部材を備えた試料ホルダであって、外部入力を受けて前記電極に電圧を印加する端子を備えている。
 また、本発明に係る走査型電子顕微鏡像の観察に用いられる試料ホルダは、上述の試料支持部材を備えた試料ホルダであって、電子線入射面側および電子線出射面側の少なくとも一方に視野絞りが設けられている。
 本発明に係る走査型電子顕微鏡像の観察方法は、上述の試料支持部材を用いた走査型電子顕微鏡像の観察方法であって、入射電子線の加速電圧を入射電子の60%以上が前記絶縁性薄膜と導電性薄膜の積層体により散乱、吸収、若しくは遮蔽される値に設定する。
 また、本発明に係る走査型電子顕微鏡像の観察方法は、上述の試料ホルダを用いた走査型電子顕微鏡像の観察方法であって、前記端子の電位を走査型電子顕微鏡のグランド電位若しくは該グランド電位よりも高い電位として像観察を行う。
 本発明に係る走査型電子顕微鏡像の観察に用いられる試料支持部材は、絶縁性薄膜と導電性薄膜の積層体を備え、前記絶縁性薄膜側を電子線入射面とし、前記導電性薄膜側を試料付着面とする構成を備えている。
 電子線が入射する絶縁性薄膜内部には自由電子がほとんど存在しないため、注入された電子の量に応じて負電位が生じるため、試料を付着させる側の導電性薄膜との間に電位差が生じる。しかも、これらは何れも薄膜であるため、両者間に形成される電位勾配は顕著に大きなものとなる。絶縁性薄膜内で発生する2次電子はこの大きな電位勾配によるトンネル効果によって導電性薄膜側へと放出され、さらに、観察試料をも透過する。
 従って、この透過電子(トンネル電子)の空間的分布を記録することにより観察試料内部の構造観察が可能となり、染色等の処理を施すことなく高いコントラストの画像を得ることができる。
 また、絶縁性薄膜内で生じる電位勾配は電子線入射方向に略平行(絶縁性薄膜の電子線入射面に略垂直)であり、トンネル効果により導電性薄膜へと透過してくる2次電子の出射方向は試料付着面に略垂直であるため、透過2次電子は空間的に広がることなく観察試料に入射するため、高い分解能が得られる。
 しかも、トンネル効果により観察試料に到達する電子のエネルギは入射電子線のエネルギに比較して顕著に低いため、従来の観察に比較して、試料へのダメージを大幅に低減させることができる。
 このように、本発明よれば、簡便な構造の試料支持部材により、高コントラスト、高分解能、観察試料への低ダメージ化を実現することが可能となる。
本発明に係る試料支持部材および試料ホルダの構成例の概要を説明するためのブロック図である。 本発明の試料支持部材に生物試料を付着させてSEM観察する際の、電子線照射時に絶縁性薄膜内に生じる電位分布を説明するための概念図である。 絶縁性薄膜と導電性薄膜の境界近傍で生じた2次電子が、図2Aに示した電位分布の下でトンネル効果により導電性薄膜中を透過する様子を示した概念図である。 導電性薄膜に電圧印加してプラス電位とすることで絶縁性薄膜内の電位勾配が大きくなる様子を説明するための概念図である。 絶縁性薄膜が窒化シリコン膜(50nm)で導電性薄膜がNi膜(15nm)とAu膜(10nm)の積層膜である試料支持部材に4kVの印加電圧で加速された電子線を入射させた場合の電子線の散乱状況を、モンテカルロシミュレーションした結果の図である。 図4Aに示した電子線の散乱状況下での膜内エネルギ密度分布を、モンテカルロシミュレーションした結果の図である。 絶縁性薄膜と導電性薄膜の積層体の試料付着面に対向して耐圧性薄膜を設けた試料支持部材に、生物試料を密閉して観察する際の様子を説明するための概念図である。 絶縁性薄膜が窒化シリコン膜(50nm)で導電性薄膜がNi膜(15nm)とAu膜(10nm)の積層膜である試料支持部材に4kVの印加電圧で加速された電子線を入射させ、金属積層膜を透過した電子による電流値を測定する際のブロック図である。 図6Aに示した測定系で透過電子による電流値のバイアス電圧依存性を求めた実験結果である。 本発明の試料支持部材にウィルスを付着させ、倍率6万倍で観察したSEM画像である。 本発明の試料支持部材に大気圧に密閉した状態でバクテリアを付着させ、倍率3万倍で観察したSEM画像である。
 以下に、図面を参照して、本発明の試料支持部材および試料ホルダならびに走査型電子顕微鏡像の観察方法について説明する。
 図1は、本発明に係る試料支持部材および試料ホルダの構成例の概要を説明するためのブロック図である。試料支持部材は絶縁性薄膜11と導電性薄膜12の積層体からなり、電子銃40から射出された電子線41は絶縁性薄膜側から入射する。導電性薄膜12の下面は試料付着面であり、観察対象となる試料30が吸着等により保持されている。なお、符号13で示したものは、試料支持部材の機械的な強度を担保等するためのフレームである。電子線41は絶縁性薄膜11の電子線入射面上を走査し、試料30を透過してきた2次電子42を2次電子検出器50により検知して得られた強度プロファイルにより2次元的なSEM画像を得る。
 入射電子線41の加速電圧は、電子線41による試料30のダメージを低減する目的で、入射電子の適当量が絶縁性薄膜11と導電性薄膜12の積層体内で散乱、吸収、若しくは遮蔽される値とする。例えば、入射電子線41の加速電圧は、入射電子の60%以上が絶縁性薄膜と導電性薄膜の積層体により散乱、吸収、若しくは遮蔽される値に設定される。
 入射した電子線41は絶縁性薄膜11の内部で拡散しながら広がり(拡散領域14)、2次電子を生成しながら導電性薄膜12の下面(試料付着面)に到達する。電子線41が入射すると、絶縁性薄膜11の絶縁性のために、絶縁性薄膜11の電位は電子注入量に応じた負の電位となる。一方、導電性を有する導電性薄膜12に注入された電子は、試料支持部材を収容する試料ホルダ20の上部本体21や下部本体22を介して膜外へと排出されるため、導電性薄膜内には蓄積せず導電性薄膜12の電位変化はない。従って、試料支持部材への電子注入により、電子線が入射した部位の絶縁性薄膜11と導電性薄膜12との間に電位差が生じることとなるが、この電位差は、本発明における一般的な観察条件において、数百Vを超える値となる。
 なお、導電性薄膜12の電位は、SEM装置内のグランド電位(0V電位)か、或いはこのグランド電位よりも高い電位とすることが好ましい。そのため、導電性薄膜12に電位制御のための電極等を設け、試料ホルダ20に設けられた端子等からの外部からの電圧印加により、導電性薄膜12の電位を制御するようにしてもよい。
 絶縁性薄膜11は、その厚みを例えば10nm~200nmとし、電気抵抗率は例えば1000Ωm以上とする。このような絶縁性薄膜11の材料としては、窒化シリコン、酸化シリコン、カプトン(登録商標)などのポリイミドの何れかを主成分とする材料を例示することができる。
 また、導電性薄膜12は、その厚みを例えば200nm以下とする。導電性薄膜12の材料としては、ニッケル、チタン、アルミ、金、銀、銅、コバルト、モリブデン、タンタル、タングステン、オスミウムの何れかを主成分とする材料を例示することができる。
 例えば、絶縁性薄膜11の厚みが50nm程度で電位差が500eV程度であるとすると、その電位勾配は100Mev/cmもの大きな値となる。通常、100Mev/cmの電位勾配の下では、絶縁性薄膜11の表面のポテンシャル障壁が薄くなり、トンネル効果による電子放出現象(電界放出現象)が生じる。従って、絶縁性薄膜11の内部で生じた2次電子は、この電位勾配に沿って、導電性薄膜12側へとトンネル透過する。2次電子のエネルギは概ね10eV以下であるためドブロイ波長も長く、トンネル透過率は高いと考えることができる。このようなトンネル透過した2次電子は導電性薄膜12内を拡散して試料30に到達するが、試料30が生物試料などの電子透過率の高いものである場合には、2次電子は試料30内部もトンネル透過し、この2次電子42が2次電子検出器50により検知されて試料30の内部構造を反映するSEM画像が得られる。
 このようなSEM画像は試料30の内部のポテンシャル障壁を反映したものとなるため、染色等の特別な処理を施すことなく、高いコントラストの画像を得ることができる。また、試料30に入射し透過する電子は主としてエネルギの低いトンネル電子であるため、試料30に対するダメージは顕著に軽減される。
 このように、絶縁性薄膜と導電性薄膜の積層体を備えた本発明に係る試料支持部材では、自由電子がほとんど存在しない絶縁性薄膜内部に入射した電子線により負電位が生じさせて導電性薄膜との間に大きな電位勾配を形成しこの電位勾配を利用して絶縁性薄膜内で発生する2次電子を導電性薄膜側へとトンネル透過させ、さらに試料30もトンネル透過させることにより、染色等の処理を施すことなく、試料内部の構造を反映する高いコントラストの画像を得ることを可能としている。
 なお、絶縁性薄膜11の内部で生じる電位勾配は電子線41の入射方向に略平行(絶縁性薄膜12の電子線入射面に略垂直)であるため、トンネル効果により導電性薄膜12へと透過してくる2次電子の出射方向は試料付着面に略垂直となる。このため、絶縁性薄膜11からの透過2次電子は空間的に広がることなく観察試料30に入射し、高い分解能が得られる。しかも、トンネル効果により観察試料30に到達する電子のエネルギは入射電子線のエネルギに比較して顕著に低いため、従来の観察に比較して、試料30へのダメージを大幅に低減させることができる。
 このように、本発明よれば、簡便な構造の試料支持部材により、高コントラスト、高分解能、観察試料への低ダメージ化を実現することが可能となる。
 導電性薄膜12の試料付着面は、水溶性試料等の吸着のために親水化処理を施すようにしてもよい。また、導電性薄膜12の試料付着面に、生物試料等を吸着させるための試料吸着層を設けるようにしてもよい。
 また、図1に示したように、試料支持部材の上方(電子線入射面側)に視野絞り23を設けたり、試料支持部材の下方(電子線出射面側)に視野絞り24を設けたりしてもよい。視野絞り23は、電子線入射部位から上方へと放出される2次電子を試料ホルダ20外へと漏れ出すことを防止することに寄与する。このような2次電子は試料30の情報を含んでいないため、これが検知されてしまうと画質を落としてしまう。また、視野絞り24は、試料ホルダ20の下部から出射され2次電子検出器50によって検知される2次電子の視野角を限定するためのもので、観察画像の分解能向上に寄与する。
 図2Aおよび図2Bはそれぞれ、本発明の試料支持部材に生物試料を付着させてSEM観察する際の、電子線照射時に絶縁性薄膜内に生じる電位分布を説明するための概念図、および、絶縁性薄膜と導電性薄膜の境界近傍で生じた2次電子が、図2Aに示した電位分布の下でトンネル効果により導電性薄膜中を透過する様子を示した概念図である。
 入射電子線41は、絶縁性薄膜11の表面に、直径数nmで細く絞られた状態で照射される。電子線の入射領域には多量の入射電子が極めて狭い領域内に注入されることとなり、その結果として入射電子線41の電子線入射面側の電位は負電位(V=V)となる。導電性薄膜12が装置のグランド電位(V=0)とされている場合には、絶縁性薄膜11を透過して導電性薄膜12に入射してきた電子は速やかに導電性薄膜12内から排除され、導電性薄膜12はグランド電位(V=0)を維持し、入射電子線41の導電性薄膜12側の面の電位(V=0)との間で電位勾配が形成される。
 上述のとおり、絶縁性薄膜11の厚さが50nmで電子線入射面側の電子線照射領域の電位が-500Vであると仮定すると、絶縁性薄膜11の内部に形成される電位勾配は100MeV/cmとなり、電界放射現象により絶縁性薄膜11内の電子を導電性薄膜12側へと放出するに十分な極めて大きな値となる。この大きな電位勾配のため、電子線の照射領域の垂直下方では、絶縁性薄膜11内および絶縁性薄膜11と導電性薄膜12との界面近傍で発生した2次電子は導電性薄膜12内へとトンネル透過し、さらに導電性薄膜12および試料30をも透過して2次電子42として試料支持部材外に放出される。なお、既に説明したように、2次電子のエネルギは概ね10eV以下であるためそのドブロイ波長は原子の直径に比べて長いために量子効果が生じやすく、トンネル透過率は高い。
 このように、本発明では、絶縁性薄膜11内部に入射した電子線により負電位が生じさせて導電性薄膜12との間に大きな電位勾配を形成し、この電位勾配を利用して、絶縁性薄膜11内で発生した2次電子を導電性薄膜12側へとトンネル透過させている。
 このような2次電子のトンネル透過効率は電位勾配が大きいほど高くなるから、導電性薄膜12側を正電位にすることで2次電子のトンネル透過効率を高めることができる。
 図3は、導電性薄膜12に電圧印加(+V)してプラス電位とすることで絶縁性薄膜11内の電位勾配を大きくした様子を説明するための概念図である。この図に示したように、導電性薄膜12を正電位(+V)とした分だけ、絶縁性薄膜11内で生じる電位勾配は大きくなり、その分だけ2次電子のトンネル透過効率が高くなり、得られるSEM画像の分解能とコントラストの向上に寄与する。
 図4Aは、絶縁性薄膜が窒化シリコン膜(50nm)で導電性薄膜がNi膜(15nm)とAu膜(10nm)の積層膜である試料支持部材に4kVの印加電圧で加速された電子線を入射させた場合の電子線の散乱状況を、モンテカルロシミュレーションした結果の図である。また、図4Bは、図4Aに示した電子線の散乱状況下での膜内エネルギ密度分布を、モンテカルロシミュレーションした結果の図である。
 図4Bに示したように、窒化シリコン薄膜内では、電子は比較的弱く散乱される一方、NiとAuの金属膜内においては電子は強く散乱乃至吸収されている。4kVという加速電圧では、窒化シリコン薄膜に入射した電子の90%以上が、絶縁性薄膜と導電性薄膜の積層体の内部で散乱、吸収、若しくは遮蔽されており、試料側へと透過する入射電子(1次電子)はごく僅かである。従って、試料へのダメージは大幅に軽減される。
 図5は、絶縁性薄膜11と導電性薄膜12の積層体の試料付着面に対向して、スペーサ15を介して耐圧性薄膜16を設け、この耐圧性薄膜16にもフレーム17を形成した態様の試料支持部材の構成を説明するための図である。この試料支持部材の、スペーサ15により間隔が画定される耐圧性薄膜16と導電性薄膜12の試料付着面との間の空間内に、試料30が収容されている。例えば絶縁性薄膜11と導電性薄膜12は何れも0.5気圧以上の耐圧性を有しており、この積層体は1気圧以上の耐圧性を有しており、耐圧性薄膜16は1気圧以上の耐圧性を有している。積層体と耐圧性薄膜16の間の空間は大気圧封止(密閉)され、真空によるダメージの防止と本来の形態を観察することを可能としている。
 図6Aおよび図6Bはそれぞれ、絶縁性薄膜が窒化シリコン膜(50nm)で導電性薄膜がNi膜(15nm)とAu膜(10nm)の積層膜である試料支持部材に4kVの印加電圧で加速された電子線を入射させ、金属積層膜を透過した電子による電流値を測定する際のブロック図、および、図6Aに示した測定系で透過電子による電流値のバイアス電圧依存性を求めた実験結果である。
 積層体を透過してきた2次電子は、試料支持部材の下方に設けられた計測カップ60により、電流として計測される。ここで、例えば、計測カップ60に外部電源62から電流計61を介して負のバイアス電圧を印加すると、透過電子のうちバイアス電圧より小さなエネルギをもつ電子は試料ホルダ20側へと押し戻されるため、計測カップ60によって検出されない。従って、バイアス電圧以上のエネルギを有する透過電子のみが計測カップ60で計測される。この原理に基づけば、上述のバイアス電圧を徐々に大きくすることにより、透過電子のエネルギ分布を求めることが可能となる。
 図6Bには、バイアス電圧を+2Vから-10Vまで変化させた際の、計測カップ60により計測された電流(正規化電流)を示している。入射電子線の加速電圧が4kVの場合、バイアス電位を+2Vから下げてゆくと電流値は指数関数的に減少し、バイアス電位が-10Vでは電流値は略ゼロとなる。これは、透過電子のほぼ全てが10V以下の低いエネルギのものであることを意味している。また、入射電子(1次電子)の透過がほとんどないことも意味している。一方、入射電子線の加速電圧が10kVの場合、バイアス電位が-10Vでも60%の電流が計測されている。これは、検知された電子の多くが-10Vを越えるエネルギを有していることを意味しており、入射電子(1次電子)が無視できないレベルで透過していることを示している。
 図7は、本発明の試料支持部材に非染色の状態でウィルス(バキュロウィルス)を付着させ、倍率6万倍で観察したSEM画像である。なお、用いた試料支持部材は、絶縁性薄膜が窒化シリコン膜(50nm)で導電性薄膜がNi膜(15nm)とAu膜(10nm)の積層膜で、入射電子線の加速電圧は4kVである。
 図7中に示した矢印部分に、長さが概ね300nmの棒状のバキュロウィルスが明確に観察される。また、その下方にはエンベローブと呼ばれるタンパク質を内包する袋状の形状も観察されている。さらに、ウィルス内部やエンベローブ内の濃淡構造が観察されており、これらは内部構造を反映していると考えられる。
 図6Bに示したように、加速電圧が4kVである場合には、エネルギが10eV以下の電子のみが検知されるから、図7のSEM画像は10eV以下のエネルギの透過電子により得られたものである。一般には、10eV以下といった低エネルギの電子の透過力は10nm程度と考えられるが、本発明による試料支持部材を用いたSEM観察では、10eV以下のエネルギの透過電子でありながら、50nm以上の厚さを有する試料を透過しており、内部構造の観察も可能となっている。この理由は、本発明の構成とすることによる量子効果の結果であると考えられる。
 図8は、本発明の試料支持部材に大気圧に密閉した状態でバクテリアを付着させ、倍率3万倍で観察したSEM画像である。なお、このSEM画像は、耐圧性薄膜を窒化物シリコン薄膜とした図5に示した態様の試料支持部材を用い、試料であるバクテリアを大気圧下で観察して得られたものである。なお、入射電子線の加速電圧は4kVである。
 このSEM画像においても、極めて高い分解能で、バクテリアの内部構造が確認できる。
 上述したように、本発明によれば、バクテリアやウィルスあるいはタンパク質複合体等の試料から、特別な染色や固定作業なしに、高いコントラストの画像を得ることができる。また、試料支持部材からの透過2次電子は空間的に広がることなく観察試料に入射するため、高い分解能が得られる。
 しかも、トンネル効果により観察試料に到達する電子のエネルギは入射電子線のエネルギに比較して顕著に低いため、従来の観察に比較して、試料へのダメージを大幅に低減させることができる。
産業上の利用の可能性
 本発明により、照射電子線によるダメージを受けやすい有機材料系試料や生物試料の電子顕微鏡像を、表面コーティングや染色の処理を行うことなく、高分解能で観察することを可能とする技術が提供される。
11 絶縁性薄膜
12 導電性薄膜
13、17 フレーム
14 拡散領域
15 スペーサ
16 耐圧性薄膜
20 試料ホルダ
21 上部本体
22 下部本体
23、24 視野絞り
30 試料
40 電子銃
41 電子線
42 2次電子
50 2次電子検出器
60 計測カップ
61 電流計
62 外部電源

Claims (14)

  1.  走査型電子顕微鏡像の観察に用いられる試料支持部材であって、
     絶縁性薄膜と導電性薄膜の積層体を備え、前記絶縁性薄膜側を電子線入射面とし、前記導電性薄膜側を試料付着面とする、走査型電子顕微鏡像観察用の試料支持部材。
  2.  前記絶縁性薄膜の厚みが10nm~200nmである、請求項1に記載の試料支持部材。
  3.  前記絶縁性薄膜の電気抵抗率が1000Ωm以上である、請求項1又は2に記載の試料支持部材。
  4.  前記絶縁性薄膜は、窒化シリコン、酸化シリコン、ポリイミドの何れかを主成分とする材料からなる、請求項2に記載の試料支持部材。
  5.  前記導電性薄膜の厚みが200nm以下である、請求項1又は2に記載の試料支持部材。
  6.  前記導電性薄膜は、ニッケル、チタン、アルミ、金、銀、銅、コバルト、モリブデン、タンタル、タングステン、オスミウムの何れかを主成分とする材料からなる、請求項5に記載の試料支持部材。
  7.  前記導電性薄膜の試料付着面は親水性化処理が施されている、請求項1又は2に記載の試料支持部材。
  8.  前記導電性薄膜の試料付着面に試料吸着層が設けられている、請求項1又は2に記載の試料支持部材。
  9.  前記絶縁性薄膜と導電性薄膜の積層体の試料付着面に対向して設けられた耐圧性薄膜が該耐圧性薄膜と前記積層体との間に間隔を有するように配置されており、前記絶縁性薄膜と導電性薄膜の積層体および前記耐圧性薄膜は何れも1気圧以上の耐圧性を有し、前記積層体と前記耐圧性薄膜の間の空間を大気圧封止可能とされている、請求項1又は2に記載の試料支持部材。
  10.  前記導電性薄膜には該導電性薄膜の電位制御のための電極が設けられている、請求項1又は2に記載の試料支持部材。
  11.  請求項9に記載の試料支持部材を備えた試料ホルダであって、外部入力を受けて前記電極に電圧を印加する端子を備えている、走査型電子顕微鏡像観察用の試料ホルダ。
  12.  請求項1又は2に記載の試料支持部材を備えた試料ホルダであって、電子線入射面側および電子線出射面側の少なくとも一方に視野絞りが設けられている、走査型電子顕微鏡像観察用の試料ホルダ。
  13.  請求項1又は2に記載の試料支持部材を用いた走査型電子顕微鏡像の観察方法であって、
     入射電子線の加速電圧を入射電子の60%以上が前記絶縁性薄膜と導電性薄膜の積層体により散乱、吸収、若しくは遮蔽される値に設定する、走査型電子顕微鏡像の観察方法。
  14.  請求項11に記載の試料ホルダを用いた走査型電子顕微鏡像の観察方法であって、
     前記端子の電位を走査型電子顕微鏡のグランド電位若しくは該グランド電位よりも高い電位として像観察を行う、走査型電子顕微鏡像の観察方法。
PCT/JP2012/008321 2011-12-27 2012-12-26 走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法 WO2013099241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12863530.7A EP2800123A4 (en) 2011-12-27 2012-12-26 SAMPLE CARRIER ELEMENT FOR MONITORING A GRIDDER ELECTRONIC MICROSCOPE IMAGE AND METHOD FOR MONITORING A GRID ELECTROCUT MICROSCOPE IMAGE
US14/364,530 US9589765B2 (en) 2011-12-27 2012-12-26 Sample supporting member for observing scanning electron microscopic image and method for observing scanning electron microscopic image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-286018 2011-12-27
JP2011286018A JP5115997B1 (ja) 2011-12-27 2011-12-27 走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法

Publications (1)

Publication Number Publication Date
WO2013099241A1 true WO2013099241A1 (ja) 2013-07-04

Family

ID=47676484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008321 WO2013099241A1 (ja) 2011-12-27 2012-12-26 走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法

Country Status (4)

Country Link
US (1) US9589765B2 (ja)
EP (1) EP2800123A4 (ja)
JP (1) JP5115997B1 (ja)
WO (1) WO2013099241A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002946B2 (ja) 2012-07-23 2016-10-05 国立研究開発法人産業技術総合研究所 試料ホルダおよび電子顕微鏡像の観察方法
JP6112553B2 (ja) 2013-04-08 2017-04-12 国立研究開発法人産業技術総合研究所 観察システム及び観察方法
JP2017096666A (ja) * 2015-11-19 2017-06-01 東邦チタニウム株式会社 ポリオレフィン粒子の内部構造測定方法
JP6629424B2 (ja) 2016-03-09 2020-01-15 国立研究開発法人産業技術総合研究所 誘電率顕微鏡及び有機物試料の観察方法
JP7218381B2 (ja) * 2018-10-25 2023-02-06 株式会社日立ハイテク 荷電粒子線装置、荷電粒子線装置のオートフォーカス処理方法、及び検出器
US11631602B2 (en) 2020-06-26 2023-04-18 Kla Corporation Enabling scanning electron microscope imaging while preventing sample damage on sensitive layers used in semiconductor manufacturing processes
CN112687605B (zh) * 2020-12-28 2022-07-29 华东师范大学 一种减少电子辐射损伤的方法和芯片
CN113109375B (zh) * 2021-03-16 2022-09-16 合肥波林新材料股份有限公司 一种薄膜材料扫描电镜截面制样夹具及其制样方法
JPWO2022250049A1 (ja) * 2021-05-25 2022-12-01

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843600A (ja) 1994-08-02 1996-02-16 Horon:Kk X線観察装置
JP2004515049A (ja) * 2000-12-01 2004-05-20 エダ リサーチ アンド ディベロップメント カンパニー,リミティド 走査型電子顕微鏡を用いた非真空環境内のサンプルの検査のための装置および方法
JP2007294365A (ja) * 2006-04-27 2007-11-08 Jeol Ltd 試料検査方法、試料保持体、及び試料検査装置並びに試料検査システム
JP2010097844A (ja) 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology 走査型電子顕微鏡およびその使用方法
JP2010175389A (ja) 2009-01-29 2010-08-12 National Institute Of Advanced Industrial Science & Technology 走査型x線顕微鏡および走査型x線顕微鏡像の観察方法
WO2010134282A1 (ja) * 2009-05-22 2010-11-25 独立行政法人産業技術総合研究所 X線顕微鏡用試料支持部材、試料収容セル、x線顕微鏡、およびx線顕微鏡像の観察方法
WO2011105421A1 (ja) * 2010-02-24 2011-09-01 独立行政法人産業技術総合研究所 X線顕微鏡像観察用試料支持部材、x線顕微鏡像観察用試料収容セル、およびx線顕微鏡

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061509A (en) * 1989-08-25 1991-10-29 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
JPH08313544A (ja) 1995-05-24 1996-11-29 Hitachi Ltd 電子顕微鏡及びこれを用いた試料観察方法
WO2002056332A1 (fr) * 2001-01-10 2002-07-18 Ebara Corporation Appareil et procede d'inspection a faisceau d'electrons, et procede de fabrication de dispositif comportant l'appareil d'inspection
EP1796131A3 (en) 2005-12-09 2010-10-13 Contrel Technology Co., Ltd. Ultra-thin liquid control plate and combination of box-like member and the control plate for electron microscopy
JP2008047411A (ja) 2006-08-15 2008-02-28 Jeol Ltd 試料保持体及び試料検査方法並びに試料検査装置
US9040939B2 (en) * 2007-03-02 2015-05-26 Protochips, Inc. Membrane supports with reinforcement features
EP1998206A3 (en) 2007-05-31 2009-12-09 FEI Company Sample carrier for use in a charged particle instrument, method of using it and apparatus equipped to use such
DE102007049350B4 (de) * 2007-10-15 2011-04-07 Bruker Daltonik Gmbh APCI Ionenquelle
JP2009250904A (ja) 2008-04-10 2009-10-29 Jeol Ltd 検査装置及び検査方法
CA2768873A1 (en) * 2009-07-23 2011-01-27 Insight Nanofluidics Inc. Nanofluidic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843600A (ja) 1994-08-02 1996-02-16 Horon:Kk X線観察装置
JP2004515049A (ja) * 2000-12-01 2004-05-20 エダ リサーチ アンド ディベロップメント カンパニー,リミティド 走査型電子顕微鏡を用いた非真空環境内のサンプルの検査のための装置および方法
JP2007294365A (ja) * 2006-04-27 2007-11-08 Jeol Ltd 試料検査方法、試料保持体、及び試料検査装置並びに試料検査システム
JP2010097844A (ja) 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology 走査型電子顕微鏡およびその使用方法
JP2010175389A (ja) 2009-01-29 2010-08-12 National Institute Of Advanced Industrial Science & Technology 走査型x線顕微鏡および走査型x線顕微鏡像の観察方法
WO2010134282A1 (ja) * 2009-05-22 2010-11-25 独立行政法人産業技術総合研究所 X線顕微鏡用試料支持部材、試料収容セル、x線顕微鏡、およびx線顕微鏡像の観察方法
WO2011105421A1 (ja) * 2010-02-24 2011-09-01 独立行政法人産業技術総合研究所 X線顕微鏡像観察用試料支持部材、x線顕微鏡像観察用試料収容セル、およびx線顕微鏡

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800123A4 *
T. OGURA: "A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 377, 2008, pages 79 - 84, XP025587426, DOI: doi:10.1016/j.bbrc.2008.09.097

Also Published As

Publication number Publication date
EP2800123A4 (en) 2015-08-19
JP5115997B1 (ja) 2013-01-09
JP2013134952A (ja) 2013-07-08
US20140346352A1 (en) 2014-11-27
US9589765B2 (en) 2017-03-07
EP2800123A1 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5115997B1 (ja) 走査型電子顕微鏡像観察用の試料支持部材及び走査型電子顕微鏡像の観察方法
JP6002946B2 (ja) 試料ホルダおよび電子顕微鏡像の観察方法
JP5317120B2 (ja) X線顕微鏡用試料収容セル、x線顕微鏡、およびx線顕微鏡像の観察方法
KR20110112409A (ko) 하전 입자선 장치
WO2014167787A1 (ja) 走査電子顕微鏡用試料ホルダ、走査電子顕微鏡像の観察システム、および走査電子顕微鏡像の観察方法
WO2011071579A2 (en) Photon induced near field electron microscope and biological imaging system
Metzkes et al. An online, energy-resolving beam profile detector for laser-driven proton beams
WO2013065475A1 (ja) 電子顕微法の観察標体、電子顕微法、電子顕微鏡および観察標体作製装置
AU2012203317B2 (en) X-Ray tube and x-ray fluorescence analyser utilizing selective excitation radiation
US11538659B2 (en) Charged particle beam device, autofocus processing method of charged particle beam device, and detector
JP2016072184A (ja) 走査電子顕微鏡像の観察システム
WO2013084651A1 (ja) 走査イオン顕微鏡および二次粒子制御方法
JP5576406B2 (ja) 荷電粒子線装置
US9029768B2 (en) Detector and charged particle beam instrument
CN106373848B (zh) 采用等离子体中和的电子显微镜装置
Seiter et al. Backscattered electron SEM imaging of cells and determination of the information depth
JP2019045411A (ja) 試料解析方法
JP4958313B2 (ja) 走査型電子顕微鏡およびその使用方法
Fakhfakh et al. Study of electrical properties of silica glasses, intended for FED spacers, under electron irradiation
JP4291109B2 (ja) 複合型荷電粒子ビーム装置
JP2018066735A (ja) X線トモグラフィーのための配置
Wang et al. Determining E1 and E2 values for yttrium aluminum garnet ceramics using the Duane‐Hunt limit
Thiel et al. Charging processes in low vacuum scanning electron microscopy
Mayama et al. Dependence of field evaporation voltage on polarization angle of femtosecond laser in 3D atom probe
KR101540721B1 (ko) 주사전자 현미경의 영상 구현장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012863530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14364530

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE