WO2013099173A1 - 多層成形体およびその製造方法、並びに、電磁波シールド部材および放熱性部材 - Google Patents

多層成形体およびその製造方法、並びに、電磁波シールド部材および放熱性部材 Download PDF

Info

Publication number
WO2013099173A1
WO2013099173A1 PCT/JP2012/008167 JP2012008167W WO2013099173A1 WO 2013099173 A1 WO2013099173 A1 WO 2013099173A1 JP 2012008167 W JP2012008167 W JP 2012008167W WO 2013099173 A1 WO2013099173 A1 WO 2013099173A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
multilayer molded
diamine
tetracarboxylic dianhydride
general formula
Prior art date
Application number
PCT/JP2012/008167
Other languages
English (en)
French (fr)
Inventor
飯田 健二
裕介 富田
清水 今川
繁夫 木場
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2013519900A priority Critical patent/JP5330626B1/ja
Priority to CN201280036895.3A priority patent/CN103732403B/zh
Priority to KR1020137032169A priority patent/KR101545430B1/ko
Publication of WO2013099173A1 publication Critical patent/WO2013099173A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive

Definitions

  • the present invention relates to a multilayer molded body and a method for producing the same. Moreover, it is related with the electromagnetic wave shielding member and heat radiating member which comprise the said multilayer molded object.
  • heat-dissipating members and electromagnetic wave shielding members used for electronic members have high density inorganic fillers such as epoxy resin, silicone resin, acrylic rubber, etc. in binder resin such as epoxy resin, silicone resin, acrylic rubber, etc.
  • binder resin such as epoxy resin, silicone resin, acrylic rubber, etc.
  • a composite sheet-like binder resin / filler composite is used.
  • Patent Document 1 discloses a heat dissipation sheet in which metal particles such as alumina are bound to a binder resin such as a polyester resin or an ethylene-vinyl acetate copolymer.
  • Patent Document 2 a rubber component or oil is added to a binder resin as a plasticizer or a softening agent in order to improve the problem that the sheet-like molded body becomes hard and brittle with respect to the high filling of the inorganic filler.
  • a method has been proposed.
  • the method of Patent Document 2 has a problem that heat resistance is deteriorated by adding a rubber component or oil as a plasticizer or a softening agent. For this reason, it is not suitable for a product having a high-temperature processing process that requires a solder reflow process or the like.
  • thermoplasticity is lost due to the crosslinking of the thermal crosslinking agent, and it becomes difficult to apply the sheet to the flexibility or the bent portion to the uneven portion. is there.
  • Patent Document 3 proposes a carbon fiber reinforced polyimide benzoxazole composite. Specifically, the carbon fiber cloth is immersed in the polyamic acid solution to be impregnated, the carbon fiber impregnated with the polyamic acid solution is pulled up and the excess polyamic acid solution is squeezed, and the obtained polyimide precursor composite is obtained. A method of heating to obtain a carbon fiber reinforced polyimide composite has been proposed. In the method of Patent Document 3, although the strength of the molded product can be improved, there is a problem that the elastic modulus becomes high and it is difficult to apply to an uneven portion or a bent portion in an electronic device.
  • Patent Document 4 an electromagnetic wave absorber made of a binder resin filled with 5 to 60 mol% of carbon powder having a specific surface area of 20 to 110 m 2 / g is applied and molded on a high-strength substrate such as PET or polyimide. A method of reinforcement has been proposed. Further, Patent Document 5 discloses a shield film made of a laminate of a conductive adhesive layer and a protective layer in which a conductive filler is dispersed in a binder resin containing a siloxane residue-containing polyimide.
  • the present invention has been made in view of the above background, and the object of the present invention is to provide a multilayer molded body having excellent flexibility and high reliability while effectively extracting the function of the inorganic filler, and a method for producing the same. And providing a heat dissipating member and an electromagnetic wave shielding member comprising the multilayer molded body.
  • the multilayer molded body according to the present invention includes a binder resin and a binder resin / filler composite containing 30% by volume or more and 95% by volume or less of an inorganic filler, and at least one main surface of the binder resin / filler composite. And an adhesive reinforcing resin layer laminated to each other.
  • the adhesion reinforcing resin layer has a thickness of 50 nm or more and 9 ⁇ m or less, a glass transition temperature of 120 ° C. or more and less than 260 ° C., and a polyimide resin containing an aliphatic unit having 3 or more carbon atoms in the main chain as a main component. It consists of a polyimide composition.
  • a polyimide resin having an aliphatic unit having 3 or more carbon atoms is used as the adhesive reinforcing resin layer, and the glass transition temperature is 120 ° C. or higher and lower than 260 ° C.
  • the thickness of the adhesive reinforcing resin layer is 50 nm or more and 9 ⁇ m or less, the function of the inorganic filler of the binder resin / filler composite can be effectively brought out, and both the reinforcing property and the adhesive property can be obtained.
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and diamine, and at least of the tetracarboxylic dianhydride and the diamine.
  • One includes a benzophenone skeleton and an amino group at the molecular end.
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and diamine
  • the tetracarboxylic dianhydride has the following general formula:
  • the aromatic tetracarboxylic dianhydride having a benzophenone skeleton represented by (1) and / or the diamine constituting the polyimide includes an aromatic diamine having a benzophenone skeleton represented by the following general formula (2)
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and diamine, and the aliphatic unit having 3 or more carbon atoms is Some are contained in at least a part of the diamine, and the proportion thereof is 5 mol% or more of the total diamine units.
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and diamine, and biphenyl tetra dianhydride units are included in all tetracarboxylic dianhydride units. Some of them contain 40 mol% or more and 90 mol% or less of carboxylic dianhydride.
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and a diamine, and the diamine is represented by the following general formula (3) or / And a polyimide resin composition containing an aliphatic diamine represented by (4).
  • R 1 is the aliphatic unit having 3 or more carbon atoms which may contain N atom and O atom in the main chain, and the total number of atoms constituting the main chain is 3 to 500.
  • the aliphatic unit having 3 or more carbon atoms may further have a side chain composed of one or more atoms of C, N, H, and O, and the number of atoms per one side chain may be The total is 10 or less)
  • R 2 is an aliphatic unit having 3 or more carbon atoms which may contain N and O atoms in the main chain, and the total number of atoms constituting the main chain is 3 to 500.
  • the aliphatic unit may further have a side chain composed of one or more atoms of C, N, H, and O, and the total number of atoms per side chain is 10 or less. is there)
  • R 1 in the general formula (3) or R 2 in the general formula (4) has a main chain containing an alkyleneoxy group or a polyalkyleneoxy group.
  • the aliphatic diamine represented by the general formula (3) is a compound represented by the following general formula (5), and is represented by the general formula (4).
  • Some aliphatic diamines are compounds represented by the following general formula (6).
  • n represents an integer of 1 to 50
  • p, q and r each independently represent an integer of 0 to 10; provided that p + q + r is 1 or more
  • the aromatic tetracarboxylic dianhydride having a benzophenone skeleton represented by the general formula (1) is 3,3 ′, 4,4′-benzophenone tetra
  • the diamine is one or more selected from the group consisting of 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone and 4,4′-diaminobenzophenone.
  • an adhesive layer is further formed on the outermost surface of at least one main surface.
  • the method for producing a multilayer molded body according to the present invention comprises an adhesive reinforcing resin having a thickness of 50 nm or more and 9 ⁇ m or less, comprising a polyimide composition mainly composed of a polyimide resin containing an aliphatic unit having 3 or more carbon atoms in the main chain. Forming a layer, and forming a binder resin / filler composite laminate containing the binder resin and 30% by volume or more and 95% by volume or less of the inorganic filler on the adhesion reinforcing resin layer.
  • the glass transition temperature of the adhesive reinforcing resin layer is 120 ° C. or higher and lower than 260 ° C.
  • the polyimide resin is a polyimide containing a polycondensation unit of tetracarboxylic dianhydride and diamine, and the tetracarboxylic dianhydride and the above Some diamines contain a benzophenone skeleton and an amino group at the molecular end.
  • the adhesion reinforcing resin layer has a polyimide composition in which the imidization ratio is 80% or more with respect to the polyimide precursor and is dissolved in an organic solvent. Some are obtained by applying and drying.
  • the adhesive reinforcing resin layer is laminated on a release substrate, and after the binder resin / filler composite is laminated, the release substrate is Some are manufactured by a process of peeling from the adhesive reinforcing resin layer.
  • the electromagnetic wave shielding member according to the present invention comprises the multilayer molded body of the above aspect.
  • the heat dissipating member according to the present invention comprises the multilayer molded body of the above aspect.
  • the function of an inorganic filler is pulled out effectively, it is excellent in a softness
  • any number A to any number B means a range that is larger than the number A and the number A and smaller than the number B and the number B.
  • FIG. 1 shows a schematic cross-sectional view of an example of a multilayer molded body according to the first embodiment.
  • the multilayer molded body 1 in FIG. 1 is composed of a laminate of an adhesion reinforcing resin layer 11 and a binder resin / filler composite 21.
  • a binder resin / filler composite 21 is laminated on one main surface of the adhesion reinforcing resin layer 11.
  • the adhesion reinforcing resin layer 11 serves as a support for the binder resin / filler composite 21.
  • the binder resin / filler composite 21 has a heat dissipation function.
  • the multilayer molded body 1 can be suitably used as a heat radiating member.
  • the heat radiating member may be the multilayer molded body 1 itself, or may be composed of the multilayer molded body 1 and another member.
  • Other members are metal foil, a base material, etc., for example.
  • the substrate can be made of silicon, ceramics, resin, metal, or the like.
  • the metal include copper, aluminum, SUS, iron, magnesium, nickel, and alumina.
  • the resin include urethane resin, epoxy resin, acrylic resin, polyimide resin, PET resin, polyamide resin, polyamideimide resin, and the like.
  • the heat dissipating device is, for example, a power device for power control used for automobile control.
  • the heat dissipation devices referred to in this specification are mounted on electronic circuit board members, semiconductor devices, lithium ion battery members, solar battery members, light source devices for flat panel displays such as liquid crystal displays, TFT substrates, and mobile phones. It includes electronic components such as large-scale integrated circuits (LSIs), heat generating electronic components such as lighting fixtures using LEDs, fluorescent lamps, etc., and heat generating devices in general.
  • LSIs large-scale integrated circuits
  • heat generating electronic components such as lighting fixtures using LEDs, fluorescent lamps, etc.
  • the heat dissipating member having the multilayer molded body 1 can be fixed to the heat dissipating device by any method directly or via a base material.
  • An adhesive layer may be provided on the heat dissipating member side, or an adhesive layer may be provided on the mating side to be fixed to the heat dissipating member.
  • the example mentioned above can be given as an example of the substrate.
  • the multilayer molded body may be obtained by further laminating an adhesive layer. That is, it may be a multilayer molded body in which an adhesive layer is laminated on the outermost surface of at least one main surface. Examples of the bonded portion of the adhesive layer include a device requiring heat dissipation, a base material, or another layer or base material constituting a heat dissipation member.
  • the surface on which the adhesive layer is provided may be on the adhesion reinforcing resin layer 11 side, the binder resin / filler composite 21 side, or both. That is, as shown in FIG. 2A, a multilayer molded body 1a in which an adhesive layer 31 is provided on the outermost layer side of the adhesive reinforcing resin layer 11, or as shown in FIG.
  • the multilayer molded object 1b which provided the adhesive bond layer 31 in the surface layer side.
  • a multilayer molded body 1c in which adhesive layers 31 and 32 are provided on the outermost layer side of the adhesive reinforcing resin layer 11 and the outermost layer side of the binder resin / filler composite 21 may be used.
  • the adhesive material layer may be provided in a part of the contact surface between the heat radiating device and the multilayer molded body 11 without being provided over the entire contact surface.
  • the adhesion reinforcing resin layer 11 is made of a polyimide composition whose main component is a polyimide resin having a glass transition temperature of 120 ° C. or higher and lower than 260 ° C. and having an aliphatic unit having 3 or more carbon atoms in the main chain.
  • the resin candidate for the adhesion reinforcing resin layer 11 include epoxy-based, phenol-based, acrylic-based, polyamide-based, and polyamide-imide-based resins.
  • polyamide-based and polyamide-imide-based resins containing an amide group have a high hydrophilicity due to high hydrophilicity, and there is a concern about performance deterioration over time.
  • the adhesion reinforcing resin layer 11 uses a polyimide composition mainly composed of a polyimide resin having an aliphatic unit having 3 or more carbon atoms in the main chain, and has a glass transition temperature of 120 ° C. or higher. Since it is less than 260 ° C., a layer having excellent heat resistance and flexibility can be provided.
  • the film thickness of the adhesion reinforcing resin layer 11 is 50 nm or more and 9 ⁇ m or less.
  • the thickness of the adhesion reinforcing resin layer 11 is 50 nm or more and 9 ⁇ m or less.
  • the function of the inorganic filler of the binder resin / filler composite can be effectively extracted. That is, the heat dissipation function of the inorganic filler can be effectively extracted.
  • the thickness of the adhesive reinforcing resin layer 11 is 50 nm or more, it can serve as a support and can have good reinforcing properties and adhesiveness.
  • a more preferable range of the thickness of the adhesive reinforcing resin layer 11 is 100 nm to 9 ⁇ m, a further preferable range is 500 nm to 8 ⁇ m, and a particularly preferable range is 3 ⁇ m to 7 ⁇ m.
  • a polyimide resin which is the main component of the polyimide composition constituting the adhesion reinforcing resin layer 11 will be described.
  • a polyimide resin is obtained by reacting a diamine and a tetracarboxylic dianhydride component to obtain a polyamic acid that is a polyimide precursor, and then polyimidizing it by a dehydration / cyclization reaction.
  • the polyimide resin preferably has an imidization ratio of 80% or more with respect to the polyamic acid which is a polyimide precursor. More preferably, it is 85% or more.
  • the polyimide resin has a benzophenone skeleton in addition to the aliphatic unit having 3 or more carbon atoms, and the end of the polyimide resin is an amino group.
  • the total of the aromatic tetracarboxylic dianhydride having a benzophenone skeleton and the aromatic diamine having a benzophenone skeleton is 5 to 49 mol% with respect to the total of the tetracarboxylic dianhydride and diamine constituting the polyimide. It is preferably 9 to 30 mol%.
  • the total of the aromatic tetracarboxylic dianhydride having a benzophenone skeleton and the aromatic diamine having a benzophenone skeleton 5 mol% or more a carbonyl group derived from the benzophenone skeleton contained in one molecule,
  • the terminal amino group can be sufficiently hydrogen bonded.
  • the carbonyl group derived from the benzophenone skeleton and the terminal amino group contained in the same molecule can be sufficiently hydrogen bonded. For this reason, heat resistance can be improved more and the elasticity at high temperature can be maintained.
  • the aliphatic unit having 3 or more carbon atoms and the benzophenone skeleton may be introduced into one diamine or one tetracarboxylic dianhydride.
  • the diamine component (b mole) to be reacted may be more than the tetracarboxylic dianhydride component (a mole).
  • the molecular terminal can be an amino group.
  • the carbonyl group derived from the benzophenone skeleton and the terminal amino group contained in the same molecule can be sufficiently hydrogen bonded. Therefore, heat resistance can be obtained more effectively.
  • the introduction of the benzophenone skeleton can be introduced into either or both of diamine and tetracarboxylic dianhydride. It is preferable to include an aromatic tetracarboxylic dianhydride having a benzophenone skeleton.
  • An aromatic tetracarboxylic dianhydride having a benzophenone skeleton is the following general formula (1).
  • the following general formula (2) can be mentioned as a preferable example of aromatic diamine which has a benzophenone skeleton.
  • the total content of the aromatic tetracarboxylic dianhydride having a benzophenone skeleton represented by the general formula (1) and the aromatic diamine having a benzophenone skeleton represented by the general formula (2) constitutes a polyimide for the reasons described above. It is preferable to set it as 5 mol% or more and 49 mol% or less with respect to the sum total of the tetracarboxylic dianhydride and diamine to do. More preferably, it is 9 to 30 mol%. Moreover, it is preferable to contain the polyimide whose amine equivalent is 4,000 or more and 20,000 or less. By setting the amine equivalent in the above range, viscoelastic properties at high temperatures can be improved.
  • Preferred examples of the aromatic tetracarboxylic dianhydride having a benzophenone skeleton represented by the general formula (1) include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride and 2,3 ′, 3. 4,4'-benzophenone tetracarboxylic dianhydride. These may be used alone or in combination of two or more.
  • the aromatic diamine having a benzophenone skeleton represented by the general formula (2) is selected from the group consisting of 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, and 4,4′-diaminobenzophenone. One or more can be mentioned. These may be used alone or in combination of two or more.
  • Examples of preferred diamines having a benzophenone skeleton other than the above general formula (2) include compounds represented by the following general formula (7) such as 3,4-diaminobenzophenone. Moreover, the compound represented by following General formula (8) can also be illustrated as a suitable example.
  • the aliphatic unit having 3 or more carbon atoms in the main chain contained in the polyimide resin is introduced into the polyimide resin by using one of diamine, tetracarboxylic dianhydride, or both.
  • an aliphatic unit having 3 or more carbon atoms in the main chain means that an aliphatic unit having 3 or more carbon atoms is contained in the main chain constituting the skeleton of the polyimide resin.
  • the aliphatic unit is either an alicyclic compound or an aliphatic chain.
  • an N atom or an O atom may be included in any position of the aliphatic unit.
  • a side chain may be bonded to the main chain of the aliphatic unit having 3 or more carbon atoms.
  • the diamine / tetracarboxylic dianhydride may be used alone or in combination of two or more.
  • an aromatic diamine and an aliphatic diamine may be used independently or as a diamine.
  • An aromatic unit and an aliphatic unit may be introduced into one diamine.
  • Tetracarboxylic dianhydride is the same as diamine.
  • the diamine having an aliphatic unit having 3 or more carbon atoms is preferably 10 mol% or more.
  • the proportion of the diamine having an aliphatic unit having 3 or more carbon atoms may be 100 mol%, but is preferably 45 mol% or less from the viewpoint of maintaining good heat resistance of the polyimide.
  • the diamine having an aliphatic unit having 3 or more carbon atoms include aliphatic diamines represented by the following general formula (3) or / and (4).
  • R 1 is an aliphatic unit having 3 or more carbon atoms, which may contain N and O atoms in the main chain.
  • the total number of atoms constituting the main chain is preferably 3 to 500, more preferably 7 to 300.
  • the main chain in R ⁇ 1 > of General formula (3) is a chain
  • the aliphatic unit may further have a side chain composed of one or more atoms of C, N, H, and O.
  • the side chain in R 1 is a monovalent group linked to the atoms constituting the main chain.
  • the total number of atoms per side chain is preferably 10 or less. Examples of the side chain include not only an alkyl group such as a methyl group but also a hydrogen atom.
  • R 2 is an aliphatic unit having 3 or more carbon atoms, which may contain an N atom or an O atom in the main chain.
  • the total number of atoms constituting the main chain is preferably 3 to 500, more preferably 7 to 300.
  • the main chain of the R 2 of the general formula (4) among the aliphatic unit for connecting the two amino groups of the molecular end, a chain of atoms other than the atoms constituting the side chains.
  • the aliphatic unit may further have a side chain composed of one or more atoms of C, N, H, and O.
  • the side chain in R 1 is a monovalent group linked to the atoms constituting the main chain.
  • the total number of atoms per side chain is preferably 10 or less. Examples of the side chain include not only an alkyl group such as a methyl group but also a hydrogen atom.
  • R 1 of the general formula (3) or R 2 of the general formula (4) having an aliphatic unit having 3 or more carbon atoms are derived from polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, and tetraethylenepentamine.
  • a main chain containing an alkyleneoxy group or a polyalkyleneoxy group is preferable.
  • the polyalkyleneoxy group is a divalent linking group containing alkyleneoxy as a repeating unit, and “— (CH 2 CH 2 O) u —” having an ethyleneoxy unit as a repeating unit or a repeating unit of a propyleneoxy unit. “— (CH 2 —CH (—CH 3 ) O) v —” (u and v are the number of repetitions) can be exemplified.
  • the number of repeating alkyleneoxy units in the polyalkyleneoxy group is preferably 2 to 50, and more preferably 2 to 20.
  • the polyalkyleneoxy group may contain a plurality of types of alkyleneoxy units.
  • the alkylene moiety of the alkyleneoxy group and the alkylene moiety of the alkyleneoxy unit constituting the polyalkyleneoxy group preferably have 1 to 10 carbon atoms, more preferably 2 to 10 carbon atoms, and 4 to 10 carbon atoms. Is more preferable. From the viewpoint of flexibility, a butylene group is preferred.
  • Examples of the alkylene group constituting the alkyleneoxy group include a methylene group, an ethylene group, a propylene group and a butylene group.
  • the group connecting the alkyleneoxy group or polyalkyleneoxy group and the terminal amino group is not particularly limited, and is an alkylene group, an arylene group, an alkylenecarbonyloxy group, an arylenecarbonyloxy group. From the viewpoint of increasing the reactivity of the terminal amino group, an alkylene group is preferable.
  • R 3 and R 4 are each independently at least one selected from the group consisting of a carbonyl group, an oxycarbonyl group, an aromatic group having 6 or more carbon atoms, and an aliphatic group having 1 or more carbon atoms.
  • l represents an integer of 1 to 50, preferably an integer of 1 to 20.
  • m represents an integer of 1 or more, preferably 2 to 10, more preferably 4 to 10. From the viewpoint of flexibility, a butylene group is preferred.
  • Examples of the organic group containing an aliphatic group having 1 or more carbon atoms in R 3 and R 4 include an alkylene group having 1 to 10 carbon atoms such as a methylene group, an ethylene group, and a propylene group.
  • Examples of the organic group containing an aromatic group include a phenylene group. From the viewpoint of obtaining heat resistance, an organic group containing an aromatic group is preferred, and from the viewpoint of obtaining flexibility and flexibility, an organic group containing an aliphatic group is preferred.
  • a further preferred example of the general formula (9) is the general formula (10). Since the aliphatic diamine represented by the general formula (10) contains a long-chain alkyleneoxy group, the resulting polyimide has high flexibility. R 3 and R 4 , m, and l are the same as those in the general formula (9).
  • More preferable examples of the aliphatic diamine represented by the general formula (10) include diamines represented by the general formula (5) or the general formula (6).
  • n represents an integer of 1 to 50, preferably an integer of 10 to 20.
  • the repeating unit in the general formula (5) may be introduced as a block or may be introduced randomly.
  • p, q and r each independently represents an integer of 0 to 10. However, p + q + r is 1 or more.
  • Each repeating unit in General formula (6) may be introduce
  • Preferred examples of the alicyclic diamine include cyclobutanediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, di (aminomethyl) cyclohexane [1,4-bis (aminomethyl) Bis (aminomethyl) cyclohexane excluding cyclohexane], diaminobicycloheptane, diaminomethylbicycloheptane (including norbornanediamines such as norbornanediamine), diaminooxybicycloheptane, diaminomethyloxybicycloheptane (including oxanorbornanediamine), isophorone Diamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (aminocyclohexyl) methane [or methylenebis (cyclohexylamine)], bis (a Roh cyclohexyl) are included,
  • Preferred examples of the aliphatic tetracarboxylic dianhydride having an aliphatic unit having 3 or more carbon atoms in the main chain include the following. That is, cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.1 ] Heptane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2 2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, bicyclo [2.2.1] heptane-2,3 5-tricarboxylic acid-6-acetic acid dianhydride, 1-
  • the diamine component for obtaining the polyimide may contain other diamines other than the structure described above.
  • examples of other diamines include m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, bis (3-aminophenyl) sulfide, (3-aminophenyl) (4-aminophenyl) sulfide, bis (4-aminophenyl) sulfide, bis (3-aminophenyl) sulfoxide, (3-aminophenyl) (4-aminophenyl) sulfoxide, bis (3-aminophenyl) sulfone, ( 3-aminophenyl) (4-aminophenyl) sulfone, bis (4-aminophenyl) sulfone, 3,3′-diaminodiphenylmethan
  • the tetracarboxylic dianhydride constituting the polyimide includes tetracarboxylic dianhydrides having an aliphatic unit having 3 or more carbon atoms and other tetracarboxylic dianhydrides other than aromatic tetracarboxylic dianhydrides having a benzophenone skeleton. It may further include an object.
  • Other tetracarboxylic dianhydrides are not particularly limited.
  • Preferred examples of the aromatic tetracarboxylic dianhydride include biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,1 ′, 2,2 ′ -Biphenyltetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3', 3,4'-biphenyltetracarboxylic dianhydride and the like.
  • pyromellitic dianhydride bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone Dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxy) Phenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4 -Dicarboxyphenoxy) benzene dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, 2,2-bis [(3,4-dicarboxyphenoxy) pheny
  • the tetracarboxylic dianhydride includes an aromatic ring such as a benzene ring, some or all of the hydrogen atoms on the aromatic ring are fluoro group, methyl group, methoxy group, trifluoromethyl group, and trifluoromethoxy group. It may be substituted with a group selected from groups and the like.
  • the tetracarboxylic dianhydride contains an aromatic ring such as a benzene ring, the ethynyl group, benzocyclobuten-4′-yl group, vinyl group, allyl group, cyano group, isocyanate group is used depending on the purpose.
  • a nitrilo group, an isopropenyl group, and the like may be present as a crosslinking point. These may be used alone or in combination of two or more.
  • an aromatic tetracarboxylic dianhydride as another tetracarboxylic dianhydride.
  • Preferred examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 2,3′- Biphenyltetracarboxylic dianhydride etc. are mentioned. Of these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable.
  • biphenyltetracarboxylic dianhydride is preferably contained in 40 mol% or more and 90 mol% or less in the total acid dianhydride. 55 mol% or more and 85 mol% or less is more preferable.
  • the polyimide resin contains an aliphatic unit having 3 or more carbon atoms in the main chain, an aromatic tetracarboxylic dianhydride or an aromatic diamine-derived benzophenone skeleton, and a molecular terminal containing an amino group. Further, by using a material in which biphenyltetracarboxylic dianhydride is contained in the total acid dianhydride in an amount of 40 mol% or more and 90 mol% or less, in addition to excellent flexibility, the heat resistance is more effectively improved. Can be increased.
  • the glass transition temperature of the adhesion reinforcing resin layer 11 is 120 ° C. or more and less than 260 ° C. A more preferable range is 130 to 210 ° C.
  • the viscoelasticity of the sample film at (glass transition temperature + 30 ° C.) is preferably 1.0 ⁇ 10 5 Pa or more, and more preferably 1.0 ⁇ 10 6 Pa or more.
  • the extensional viscoelasticity is determined as the storage elastic modulus E ′ at (glass transition temperature + 30 ° C.) in the solid viscoelastic profile obtained by the above-described measurement of the glass transition temperature.
  • the elongation rate at 23 ° C. of the sample film is preferably 50% or more, and more preferably 80% or more.
  • a polyimide resin composition is suitable for applications that require flexibility.
  • the film made of a polyimide resin composition cut to a width of 10 mm and a length of 140 mm was pulled with a tensilon in the length direction at 23 ° C. at a speed of 50 mm / min, It is expressed as (length of sample film) / (original length of sample film).
  • the number average molecular weight of the polyimide resin is preferably 6.0 ⁇ 10 3 to 1.0 ⁇ 10 6 , and more preferably 8.0 ⁇ 10 3 to 4.0 ⁇ 10 4 .
  • the number average molecular weight of the polyimide resin can be measured by gel permeation chromatography (GPC).
  • the polyimide resin contains a benzophenone skeleton derived from an aromatic tetracarboxylic dianhydride or an aromatic diamine, and a carbonyl group derived from a benzophenone skeleton contained in one polyimide molecule when the molecular terminal is an amino group.
  • the group and the terminal amino group of another polyimide molecule are hydrogen-bonded to obtain high heat resistance.
  • the polyimide further contains a long-chain alkyleneoxy group derived from an aliphatic diamine because the solubility in a solvent is high and the resulting polyimide film has high flexibility.
  • the polyimide resin composition according to the first embodiment can contain various additives without departing from the spirit of the present invention.
  • an ultraviolet absorber, a storage stabilizer, an adhesion aid, a surface modifier, and the like can be added as appropriate.
  • other resin may be contained in the range which does not affect heat resistance and a softness
  • the binder resin / filler composite 21 is a layer containing a binder resin and 30% by volume or more of an inorganic filler. By making content of an inorganic filler 30 volume% or more, heat dissipation can be kept more favorable.
  • the upper limit of the content of the inorganic filler is not limited as long as the molded body can be formed in combination with the binder resin, but is usually 95% by volume or less in view of moldability.
  • a more preferable range is 30% by volume or more and 70% by volume or less, and particularly preferably 30% by volume or more and 65% by volume or less.
  • One or two or more inorganic fillers may be combined.
  • the binder resin of the binder resin / filler composite 21 is not particularly limited as long as it has heat resistance and can disperse the inorganic filler.
  • Preferred examples include urethane resins, epoxy resins, acrylic resins, and polyimides.
  • Epoxy compounds such as resin, PET resin, polyamide resin, polyamideimide resin, bisphenol A type epoxy compound, bisphenol F type epoxy compound; acrylate compounds such as carboxyethyl acrylate, propylene glycol acrylate, ethoxylated phenyl acrylate and aliphatic epoxy acrylate;
  • acrylate compounds such as carboxyethyl acrylate, propylene glycol acrylate, ethoxylated phenyl acrylate and aliphatic epoxy acrylate;
  • a polyimide resin composition containing a photocurable resin such as an acrylate compound or a photocuring agent can be used. It is also possible to use a polyimide resin used for the adhesive reinforcing resin layer as a binder resin.
  • the inorganic filler is not particularly limited as long as it has heat dissipation properties.
  • Preferred examples include boron nitride, aluminum nitride, alumina, alumina hydrate, silicon oxide, silicon nitride, silicon carbide, diamond, hydroxyapatite, titanic acid.
  • a material having thermal conductivity such as barium, copper, aluminum, silica, magnesia, titania, silicon nitride, silicon carbide is used.
  • alumina, boron nitride, and the like are particularly preferable because they are excellent in thermal conductivity and electrical insulation and are chemically stable.
  • the average particle size of the inorganic filler is not particularly limited, but is, for example, 0.5 to 100 ⁇ m.
  • an additive can be arbitrarily added within a range that does not affect physical properties such as heat dissipation and heat resistance.
  • a dispersant for increasing the compatibility of the inorganic filler in the binder resin may be added, or an adhesion aid / adhesive may be added to enhance the adhesion with the adhesive reinforcing resin layer to be laminated.
  • a surface modifier such as a silane coupling agent may be added.
  • a method for manufacturing the multilayer molded body 1 according to the first embodiment will be described.
  • a diamine and tetracarboxylic dianhydride are reacted to obtain a polyamic acid, and then the polyamic acid is dehydrated and cyclized to obtain a polyimide.
  • the total number of moles of tetracarboxylic dianhydride can be easily obtained by setting it to 0.95 to 0.999 with respect to the total number of moles of diamine.
  • the polyimide resin may be a random polymer or a block polymer, but is preferably a block polymer because the characteristics of the diamine component are easily obtained.
  • the polyimide resin composition of the present invention may be in the form of a varnish or a sheet (including a film).
  • the polyimide resin composition may further contain a polar solvent as necessary.
  • polar solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, hexamethyl phosphor
  • a mixed solvent of two or more of these, or these solvents and benzene, toluene, xylene, benzonitrile, dioxane, A mixed solvent with cyclohexane or the like is included.
  • the concentration of the solid content of the resin in the polyimide varnish is preferably 5 to 50% by mass, more preferably 10 to 30% by mass from the viewpoint of improving the coatability.
  • a polyimide varnish obtained by dispersing 23% by mass of polyimide in a mixed solvent of NMP (N-methylpyrrolidone) and trimethylbenzene has a viscosity measured at 25 ° C. with an E-type viscometer of 5.0 ⁇ 10 2. It is preferably ⁇ 1.0 ⁇ 10 6 mPa ⁇ s, more preferably 1.0 ⁇ 10 3 to 5.0 ⁇ 10 4 mPa ⁇ s. Thereby, the mechanical strength etc. of the polyimide film obtained improve.
  • the amine equivalent of the polyimide resin is preferably 4,000 to 20,000, and more preferably 4,500 to 18,000.
  • the amine equivalent of polyimide is defined as “number average molecular weight of polyimide / number of amino groups contained in one molecule”.
  • the amino group contained in one molecule includes not only the terminal amino group but also other amino groups.
  • Polyimides with amine equivalents in the above range have a high proportion of terminal amino groups in the entire polyimide, so when a benzophenone skeleton is introduced, many hydrogen bonds with carbonyl groups contained in the benzophenone skeleton can be generated. In addition, the heat resistance of polyimide can be increased more effectively.
  • the polyimide resin composition of the present invention contains a polyimide soluble in a solvent, it can be used as a polyimide varnish. Therefore, after apply
  • the polyimide resin composition of the present invention is applied onto a release substrate (for example, a release film, a release sheet) 41 that has been subjected to a release treatment, and then dried.
  • a coating film of the adhesion reinforcing resin layer 11 made of the polyimide resin composition is obtained.
  • the adhesive reinforcing resin layer has a thickness of 50 nm or more and 9 ⁇ m or less.
  • the drying temperature of the coating film is preferably 250 ° C. or lower. Thereafter, as shown in FIG.
  • a binder resin / filler composite composition prepared in advance is applied onto the adhesion reinforcing resin layer 11 and then dried to obtain a binder resin / filler composite 21.
  • the adhesive reinforcing resin layer 11 of the present invention expresses excellent adhesiveness by directly forming a film with the binder resin / filler composite 21, but the binder resin / filler composite 21 and the adhesive reinforcing resin layer It is not excluded to apply and bond an easy-adhesive or the like between 11. Then, by releasing the release substrate 41, the multilayer molded body 1 as shown in FIG. 1 is obtained.
  • the manufacturing method of the multilayer molded object 1 is not limited to the said method, A various deformation
  • the multilayer resin may be obtained by thermocompression bonding the binder resin / filler composite 21 and the adhesion reinforcing resin layer 11.
  • the polyimide is not formed but converted to polyimide before the coating. For this reason, when laminating
  • since no thermosetting resin is used there is an advantage that a curing process is unnecessary.
  • heat resistance is realizable without using a thermal crosslinking agent, thermoplasticity can be maintained. For this reason, the adhesion reinforcing resin layer 11 can be recycled.
  • this invention can implement
  • the thickness of the adhesive reinforcing resin layer is 50 nm or more and 9 ⁇ m or less, the function of the inorganic filler of the binder resin / filler composite can be effectively brought out, and both the reinforcing property and the adhesive property can be obtained.
  • the multilayer molded body can be formed into a sheet (including a film), it can be cut into a desired size and pasted at an arbitrary position, so that it is excellent in handleability. Further, since it can be formed into a sheet shape, it is particularly suitable for applications that require a reduction in thickness and thickness. Furthermore, by providing a highly flexible adhesion reinforcing resin layer, it is possible to improve impact resistance and ensure reliability. Furthermore, if the binder resin / filler composite 21 is a thin film, the thickness of the multilayer molded body can be reduced, and it can be used as a heat radiating member of a flexible member.
  • the polyimide resin of the present invention in addition to the aliphatic unit having 3 or more carbon atoms, it contains a benzophenone skeleton derived from aromatic tetracarboxylic dianhydride or aromatic diamine, and the molecular terminal contains an amino group.
  • the carbonyl group derived from the benzophenone skeleton contained in one molecule and the terminal amino group of another molecule are sufficiently hydrogen bonded to achieve better heat resistance and maintain the elastic modulus at high temperature. it can.
  • the total acid dianhydride constituting the polyimide resin contains 40 mol% or more and 90 mol% or less of biphenyltetracarboxylic dianhydride, thereby improving flexibility.
  • the heat resistance can be increased more effectively without significantly degrading the temperature.
  • the multilayer molded body according to the second embodiment has the same basic configuration as that of the first embodiment except for the following points. That is, the multilayer molded body according to the first embodiment has only one adhesion reinforcing resin layer, but the multilayer molded body according to the second embodiment is different in that there are two adhesion reinforcing resin layers. To do.
  • FIG. 4 shows a schematic cross-sectional view of an example of a multilayer molded body according to the second embodiment.
  • the multilayer molded body 2 has a configuration in which a binder resin / filler composite 21 is sandwiched between adhesion reinforcing resin layers 11 and 12.
  • the binder resin / filler composite 21 is sandwiched between the adhesive reinforcing resin layers 11 and 12, the amount of inorganic filler added can be increased more effectively. As a result, the function of the inorganic filler can be more effectively extracted.
  • the adhesion reinforcing resin layers 11 and 12 and the binder resin / filler composite 21 are the same as those in the first embodiment, the first embodiment described above. The same effect as the form can be obtained.
  • the multilayer molded body according to the third embodiment has the same basic configuration as that of the first embodiment except for the following points. That is, the multilayer molded body according to the first embodiment is applied to a heat radiating member, but the multilayer molded body according to the third embodiment is different in that it is used for an electromagnetic wave shielding member.
  • the inorganic filler constituting the binder resin / filler composite of the multilayer molded body according to the third embodiment is a filler having electromagnetic wave shielding properties.
  • metals, metal oxides, amorphous carbon powder, graphite, and metal-plated fillers can be used.
  • the metal include copper, aluminum, nickel, iron, gold, silver, platinum, tungsten, chromium, titanium, tin, lead, and palladium. These may be used alone or in combination of two or more.
  • a soft magnetic filler may be used as the filler.
  • soft magnetic fillers include magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), silicon copper (Fe—Cu—Si alloy), Fe-Si alloy, Fe-Si-B (-Cu-Nb) alloy, Fe-Ni-Cr-Si alloy, Fe-Si-Cr alloy, Fe-Si-Al-Ni-Cr alloy and the like can be mentioned. Further, ferrite or pure iron particles may be used.
  • the ferrite examples include soft ferrite such as Mn—Zn ferrite, Ni—Zn ferrite, Mn—Mg ferrite, Mn ferrite, Cu—Zn ferrite, Cu—Mg—Zn ferrite, and hard ferrite that is a permanent magnet material. It is done.
  • the multilayer molded body according to the third embodiment can be particularly suitably applied to electromagnetic wave shielding member applications. Moreover, since the adhesive reinforcement resin layer and the binder resin / filler composite are the same as those in the first embodiment, the same effects as in the first embodiment can be obtained.
  • the multilayer molded body according to the fourth embodiment has the same basic configuration as the first embodiment except for the following points. That is, the multilayer molded body according to the first embodiment is applied to a heat radiating member, but the multilayer molded body according to the fourth embodiment is a heat radiating electromagnetic shielding member having both an electromagnetic shielding function and a heat radiating function. It is different in that it is suitable for the above.
  • FIG. 5 shows a schematic cross-sectional view of a multilayer molded body according to the fourth embodiment.
  • the multilayer molded body 3 according to the fourth embodiment includes an adhesion reinforcing resin layer 11, a binder resin / filler composite 21 having heat dissipation, and a binder resin / filler composite 22 having electromagnetic wave shielding properties.
  • heat dissipation can be imparted by the binder resin / filler composite 21 having heat dissipation
  • electromagnetic wave shielding can be imparted by the binder resin / filler composite 22 having electromagnetic shielding properties. it can. For this reason, it can be made to have heat dissipation and electromagnetic wave shielding property by one multilayer molded object.
  • An adhesive reinforcing resin layer may be laminated between the binder resin / filler composites 21 and 22 to increase the strength.
  • the multilayer molded body according to the fourth embodiment can be particularly suitably applied to electromagnetic wave shielding member applications. Moreover, since the adhesive reinforcement resin layer and the binder resin / filler composite are the same as those in the first embodiment, the same effects as in the first embodiment can be obtained.
  • the above embodiments can be used in a suitable combination.
  • complex in a sheet form was described, it is not limited to a sheet form, It can be set as the molded object according to a use. Further, the multilayer molded body may have a curved shape as well as a planar shape.
  • the example applied to a heat radiating member and an electromagnetic wave shielding member was described, it is not limited to this, It can apply suitably for various uses.
  • Example 1 Preparation of polyimide varnish
  • NMP N-methylpyrrolidone
  • mesitylene mesitylene
  • APB 14EL: XTJ-542
  • s-BPDA acid dianhydrides
  • APB 1,3-bis (3-aminophenoxy) benzene (Mitsui Chemicals) 14EL; polytetramethylene oxide di-p-aminobenzoate (Elastomer 1000) (Ihara Chemical Co., Ltd.)
  • XTJ-542 polyetheramine represented by the following formula (11) (Product name: Jeffamine, manufactured by HUNTSMAN) s-BPDA; 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (manufactured by JFE Chemical) BTDA; 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride
  • the obtained mixture was stirred for 4 hours or more in a flask into which dry nitrogen gas could be introduced to obtain a polyamic acid solution having a resin solid content of 20 to 25% by mass.
  • the reaction system is heated to about 180 ° C. while stirring in a flask equipped with a Dean-Stark tube, and water generated by the dehydration reaction is taken out of the system and polyimide varnish.
  • the polyimide varnish was coated at a speed of 10 mm / sec on a PET film that had been subjected to a release treatment.
  • the coating method is not particularly limited, and for example, a roll coater, a die coater, a bar coater, a lip coater, a comma coater, or the like can be used.
  • the pre-curing liquid compound of the binder resin / filler composite obtained by the above method was applied to the polyimide film surface and dried.
  • the obtained coating film was heat-cured at 80 ° C. for 1 hour to form a binder resin / filler composite having a thickness of about 50 ⁇ m.
  • the PET film was peeled from the polyimide layer to obtain a sheet-like multilayer molded body.
  • the obtained polyimide varnish was coated on a release-treated PET film at a speed of 10 mm / second, and then dried at 200 ° C. for 10 minutes to remove the solvent.
  • the film obtained after drying was peeled off from the PET film with tweezers to obtain a polyimide film having a thickness of 50 ⁇ m.
  • the storage elastic modulus E ′ and the loss elastic modulus E ′′ of the prepared polyimide film were measured by using RSA-II manufactured by TA instruments, and measuring the temperature dispersion of solid viscoelasticity in a tensile mode and a measurement frequency of 1 Hz.
  • the heat resistance of the produced sheet-like multilayer molded body was evaluated.
  • the target sample was cut into a strip shape having a width of 10 mm and a length of 100 mm to obtain a sample film.
  • the sample film was floated on a solder bath heated to a predetermined temperature, and the heat resistance of the sample film was evaluated.
  • the results are shown in Table 1A.
  • The shape can be maintained without melting even after 30 seconds at 280 ° C., and the sample film can be pulled up further.
  • The shape can be maintained without melting even after 60 seconds at 260 ° C.
  • Folding resistance was evaluated as an index for evaluating the flexibility (flexibility) of the sample.
  • the target sample was cut into a strip shape having a width of 10 mm and a length of 50 mm to obtain a sample film.
  • the obtained results are shown in Table 1A and Table 1B.
  • Sample having folding resistance of 100 times or more
  • Sample that breaks less than 100 times
  • the thermal diffusivity was measured by a laser flash method.
  • the measuring device was a laser flash method thermal constant measuring device (TC-9000, manufactured by ULVAC-RIKO). Specific heat was measured by DSC method.
  • the measuring apparatus was a Diamond DSC apparatus (manufactured by Perkin Elmer). The weight was measured with an electronic balance, the volume was calculated from the sample area and the sample thickness, and the density was calculated.
  • Thermal conductivity of 1.0 W / m ⁇ K or more
  • Thermal conductivity of less than 1.0 W / m ⁇ K
  • the imidization rate was determined by the IR method. Specifically, the peak based on the benzene ring in the vicinity of 1480 to 1500 cm ⁇ 1 is used as a reference, and the absorbance is A, and the absorbance of the peak based on the imide ring in the vicinity of 1720 cm ⁇ 1 is B. Let B / A of the film produced by baking an object sample at 250 degreeC x 1 hour be the reference value C (imidation rate 100%). On the other hand, the B / A of the film produced by firing the target sample at 150 ° C. for 30 minutes was divided by the reference value C, and the value multiplied by 100 was taken as the imidization ratio (%).
  • Example 2 A multilayer molded body was prepared and evaluated in the same manner as in Example 1 except that the blending amount of the filler DAW07 in the binder resin / filler composite was 65% by volume.
  • Example 3 A multilayer molded body was prepared and evaluated in the same manner as in Example 1 except that the thickness of the polyimide layer as the adhesive reinforcing resin layer after drying was 3 ⁇ m.
  • Example 4 A multilayer molded body was prepared and evaluated in the same manner as in Example 1 except that the thickness after drying of the polyimide layer as the adhesive reinforcing resin layer was 7 ⁇ m.
  • Example 5 A multilayer molded body was prepared in the same manner as in Example 1 except that boron nitride filler UHP-1 (manufactured by Showa Denko KK) was used as the binder resin / filler composite filler and the blending amount was 31% by volume. evaluated.
  • boron nitride filler UHP-1 manufactured by Showa Denko KK
  • Example 6 A multilayer molded body was prepared in the same manner as in Example 1 except that boron nitride filler UHP-1 (manufactured by Showa Denko KK) was used as the filler of the binder resin / filler composite, and the blending amount was 40% by volume. evaluated.
  • boron nitride filler UHP-1 manufactured by Showa Denko KK
  • the binder resin / filler was the same as in Example 1 except that boron nitride filler UHP-1 (manufactured by Showa Denko) was used as the filler of the binder resin / filler composite and the blending amount was 31% by volume.
  • a composite was prepared.
  • pBAPP 2,2-bis (4- (4-aminophenoxy) phenyl) propane (Wakayama Seika)
  • Example 9 In order to prepare a polyimide varnish, two types of APB and 14EL are used as diamines, and two types of s-BPDA and BTDA are used as acid dianhydrides.
  • APB: 14EL: s-BPDA: BTDA 0.7: 0.3 :
  • a polyimide varnish was prepared and evaluated in the same manner as in Example 1 except that the polyimide varnish F was obtained by blending at a molar ratio of 0.79: 0.2.
  • Example 1 A sample was prepared in the same manner as in Example 1 except that the binder resin / filler composite was directly formed on the PET film that had been subjected to the release treatment without forming the polyimide layer as the adhesive reinforcing resin layer. ,evaluated. That is, a sample of a binder resin / filler composite alone that does not form an adhesion reinforcing resin layer was prepared and evaluated.
  • Comparative Example 2 A sample was prepared and evaluated in the same manner as in Comparative Example 1 except that the amount of filler DAW07 was 10% by volume as the filler of the binder resin / filler composite.
  • the filler of the binder resin / filler composite As the filler of the binder resin / filler composite, the blending amount of filler DAW07 is 65% by volume, and the thickness after drying of the polyimide layer, which is an adhesive reinforcing resin layer, is 15 ⁇ m in order to produce a multilayer molded body. A multilayer molded body was prepared and evaluated in the same manner as in Example 1.
  • Example 1A The results of Examples 1 to 10 are shown in Table 1A, and the results of Comparative Examples 1 to 6 are shown in Table 1B. Moreover, when the imidation ratio of each Example was measured, it confirmed that all were 80% or more. Moreover, it confirmed that the imidation ratio of the coating film after drying and the polyimide varnish before a coating film was substantially the same.
  • the main chain contains a polyimide resin containing an aliphatic unit having 3 or more carbon atoms, the thickness of the adhesive reinforcing resin layer is 9 ⁇ m or less, and the inorganic filler content of the binder resin / filler composite is 30% by volume or more. It can be seen that the heat resistance and heat dissipation are good in all the examples. Moreover, in the Example, it turns out that all are excellent in bending resistance. On the other hand, from Table 1B, in Comparative Examples 1 and 2 in which the adhesive reinforcing resin layer was not provided, bending resistance was poor.
  • the multilayer molded body of the present invention can achieve high reliability while realizing high performance by increasing the filling of the inorganic filler. Therefore, by selecting a material having excellent heat dissipation as the inorganic filler, a heat dissipation member Can be used as Moreover, it can utilize as an electromagnetic wave shielding member by selecting the material excellent in electromagnetic wave shielding property as an inorganic filler. Further, by selecting a conductive filler, it can be used as a conductive member.
  • Specific targets include electronic circuit board members, semiconductor devices, lithium ion battery members, solar cell members, flat panel displays such as liquid crystal displays, electronic components such as large-scale integrated circuits (LSIs) mounted on mobile phones, It can be used as a heat radiating member such as a lighting fixture using an LED, a fluorescent lamp, or the like, or an electromagnetic wave shielding member.
  • the adhesion reinforcing resin layer used in the multilayer molded article of the present invention is excellent in heat resistance and flexibility, and therefore can be easily applied to applications that require flexibility. Further, it can be used as an insulating member using a protective member, an insulating inorganic filler, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 本発明に係る多層成形体1は、バインダー樹脂、および30体積%以上、95体積%以下の無機フィラーが含有されたバインダー樹脂/フィラー複合体21と、バインダー樹脂/フィラー複合体21の少なくとも一主面上に積層された密着性補強樹脂層11とを備える。密着性補強樹脂層11は、厚みが50nm以上、9μm以下、ガラス転移温度が120℃以上、260℃未満であり、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を主成分とする。

Description

多層成形体およびその製造方法、並びに、電磁波シールド部材および放熱性部材
 本発明は、多層成形体およびその製造方法に関する。また、前記多層成形体を具備する電磁波シールド部材および放熱性部材に関する。
 従来より、電子部材に用いられる放熱性部材や電磁波シールド部材には、エポキシ樹脂やシリコーン樹脂、アクリルゴムなどのバインダー樹脂に熱伝導性フィラー、電気伝導性フィラー、磁性フィラーなどの無機フィラーを高密度に複合化したシート状のバインダー樹脂/フィラー複合体が用いられている。例えば、特許文献1には、アルミナ等の金属粒子をポリエステル系樹脂、エチレン-酢酸ビニル共重合体等のバインダー樹脂に結着させた放熱シートが開示されている。
 特許文献2においては、無機フィラーの高充填化に対し、シート状成形体が硬く脆くなってしまう問題を改善するために、可塑剤や柔軟化剤としてゴム成分やオイルなどをバインダー樹脂に添加する方法が提案されている。しかしながら、特許文献2の方法においては、可塑剤や柔軟化剤としてゴム成分やオイルなどを添加することにより、耐熱性悪化を招来するという問題があった。このため、半田リフロー工程などを必要とする高温処理プロセスを有する製品には不向きであった。耐熱性を向上させる方法として熱架橋剤を加える方法があるが、熱架橋剤の架橋により熱可塑性が失われて、シートの柔軟性や凹凸部への折り曲げ部への適用が困難となるおそれがある。
 特許文献3においては、カーボン繊維補強ポリイミドベンゾオキサゾール複合体が提案されている。具体的には、ポリアミド酸溶液の中にカーボン繊維布帛を浸漬して含浸せしめ、ポリアミド酸溶液を含浸したカーボン繊維を引き上げて余分なポリアミド酸溶液を搾り取り、得られたポリイミド前駆体複合体を加熱してカーボン繊維補強ポリイミド複合体を得る方法が提案されている。特許文献3の方法においては、成形物の強度を改善し得るものの、弾性率が高くなってしまい、電子機器内の凹凸部や折り曲げ部などへの適用が困難であるという問題があった。また、特許文献4においては、比表面積が20~110m/gのカーボン粉末を5~60mol%充填したバインダー樹脂からなる電磁波吸収体をPETやポリイミドなどの高強度基材上に塗布成形して補強する方法が提案されている。また、特許文献5においては、シロキサン残基含有ポリイミドを含むバインダー樹脂に導電性フィラーが分散してなる導電性接着層と保護層の積層体からなるシールドフィルムが開示されている。
 近年においては、自動車制御のための各種用途にパワーデバイスが搭載されている。このパワーデバイスの高機能化・高性能化、電子部品の軽薄短小化に伴って、発熱量や発生する電磁波が増大している。このため、熱や電磁波による誤動作を防止するための技術が極めて重要となっている。このような状況下、放熱性部材や電磁波シールド部材においては、特許文献4、5等の従来技術よりも高性能化・高信頼性化を実現する技術が強く求められていた。
特開2007-048809号公報 特開2008-163145号公報 特開2010-168562号公報 特開2006-19399号公報 特開2010-161324号公報
 本発明は、上記背景に鑑みてなされたものであり、その目的とするところは、無機フィラーの機能を効果的に引き出しつつ、柔軟性に優れ、かつ信頼性の高い多層成形体およびその製造方法、並びに、前記多層成形体を具備する放熱性部材、電磁波シールド部材を提供することである。
 本発明に係る多層成形体は、バインダー樹脂、および30体積%以上、95体積%以下の無機フィラーが含有されたバインダー樹脂/フィラー複合体と、前記バインダー樹脂/フィラー複合体の少なくとも一主面上に積層された密着性補強樹脂層とを備える。前記密着性補強樹脂層は、厚みが50nm以上、9μm以下、ガラス転移温度が120℃以上、260℃未満であり、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を主成分とするポリイミド組成物からなるものである。
 本発明に係る多層成形体によれば、密着性補強樹脂層として、炭素数3以上の脂肪族ユニットを有するポリイミド樹脂を用いることにより、また、ガラス転移温度が120℃以上、260℃未満のものを用いることにより、高い耐熱性を実現しつつ優れた柔軟性を提供することができる。しかも、密着性補強樹脂層の厚みを50nm以上、9μm以下としているのでバインダー樹脂/フィラー複合体の無機フィラーの機能を効果的に引き出しつつ補強性・密着性を兼ね備えることができる。
 本発明に係る多層成形体の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物および前記ジアミンの少なくとも一方にベンゾフェノン骨格を含み、かつ、分子末端にアミノ基を含むものがある。
 本発明に係る多層成形体の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物が、下記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物、または/および前記ポリイミドを構成するジアミンが、下記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンを含み、
 前記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物と前記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンの合計含有量が、前記ポリイミド樹脂を構成するテトラカルボン酸二無水物とジアミンの合計に対して5モル%以上、49モル%以下であり、かつアミン当量が4,000以上、20,000以下であるポリイミド樹脂を含むものがある。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明に係る多層成形体の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記炭素数3以上の脂肪族ユニットは、前記ジアミンの少なくとも一部に含まれ、その割合は、全ジアミンユニットの5モル%以上であるものがある。
 本発明に係る多層成形体の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、全テトラカルボン酸二無水物ユニット中にビフェニルテトラカルボン酸二無水物が40mol%以上、90mol%以下含まれているものがある。
 本発明に係る多層成形体の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記ジアミンが、下記一般式(3)または/および(4)で表される脂肪族ジアミンを含む、ポリイミド樹脂組成物であるものがある。
Figure JPOXMLDOC01-appb-C000003
 (式(3)中、Rは主鎖にN原子、O原子を含んでいてもよい前記炭素数3以上の脂肪族ユニットであり、前記主鎖を構成する原子数の合計が3~500であり;前記炭素数3以上の脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよく、前記側鎖1つあたりの原子数の合計は10以下である)
Figure JPOXMLDOC01-appb-C000004
(式(4)中、Rは、主鎖にN原子、O原子を含んでいてもよい炭素数3以上の脂肪族ユニットであり、前記主鎖を構成する原子数の合計が3~500であり;前記脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよく、前記側鎖1つあたりの原子数の合計は10以下である)
 本発明に係る多層成形体の好ましい一態様には、前記一般式(3)のR又は前記一般式(4)のRが、アルキレンオキシ基またはポリアルキレンオキシ基を含む主鎖を有する脂肪族ユニットであって、前記アルキレンオキシ基のアルキレン部分、および前記ポリアルキレンオキシ基を構成するアルキレンオキシユニットのアルキレン成分の炭素数が1~10であるものがある。
 本発明に係る多層成形体の好ましい一態様には、前記一般式(3)で表される脂肪族ジアミンが下記一般式(5)で表される化合物であり、前記一般式(4)で表される脂肪族ジアミンが、下記一般式(6)で表される化合物であるものがある。
Figure JPOXMLDOC01-appb-C000005
(式(5)中、nは、1~50の整数を表す)
Figure JPOXMLDOC01-appb-C000006
(式(6)中、p,qおよびrは、それぞれ独立に0~10の整数を表す;但し、p+q+rは1以上である)
 本発明に係る多層成形体の好ましい一態様には、前記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物は、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物および2,3',3,4'-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる一以上であり、前記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンは、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン及び4,4'-ジアミノベンゾフェノンからなる群より選ばれる一以上であるものがある。
 本発明に係る多層成形体の好ましい一態様には、少なくとも一の主面の最表面に、さらに、接着材層が形成されているものがある。
 本発明に係る多層成形体の製造方法は、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を主成分とするポリイミド組成物からなる、厚みが50nm以上、9μm以下の密着性補強樹脂層を形成し、前記密着性補強樹脂層上に、バインダー樹脂、および30体積%以上、95体積%以下の無機フィラーが含有されたバインダー樹脂/フィラー複合体の積層体を形成する工程を備える。前記密着性補強樹脂層のガラス転移温度は、120℃以上、260℃未満である。
 本発明に係る多層成形体の製造方法の好ましい一態様には、前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物および前記ジアミンの少なくとも一方にベンゾフェノン骨格を含み、かつ、分子末端にアミノ基を含むものがある。
 本発明に係る多層成形体の製造方法の好ましい一態様には、前記密着性補強樹脂層が、ポリイミド前駆体に対してイミド化率が80%以上となるようにし、有機溶媒に溶かしたポリイミド組成物を塗布・乾燥することにより得たものがある。
 本発明に係る多層成形体の製造方法の好ましい一態様には、前記密着性補強樹脂層を離型基材上に積層し、前記バインダー樹脂/フィラー複合体を積層後に、前記離型基材を前記密着性補強樹脂層から剥離する工程により製造するものがある。
 本発明に係る電磁波シールド部材は、上記態様の多層成形体を具備するものである。
 本発明に係る放熱部材は、上記態様の多層成形体を具備するものである。
 本発明によれば、無機フィラーの機能を効果的に引き出しつつ、柔軟性に優れ、かつ信頼性の高い多層成形体およびその製造方法、並びに、前記多層成形体を具備する放熱性部材、電磁波シールド部材を提供することができるという優れた効果がある。
第1実施形態に係る多層成形体の一例を示す模式的断面図。 変形例に係る多層成形体の一例を示す模式的断面図。 変形例に係る多層成形体の一例を示す模式的断面図。 変形例に係る多層成形体の一例を示す模式的断面図。 第1実施形態に係る多層成形体の製造方法の一例を示す模式的断面図。 第1実施形態に係る多層成形体の製造方法の一例を示す模式的断面図。 第2実施形態に係る多層成形体の一例を示す模式的断面図。 第4実施形態に係る多層成形体の一例を示す模式的断面図。
 以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれることは言うまでもない。また、以降の図における各部材のサイズや比率は、説明の便宜上のものであり、実際のものとは必ずしも一致しない。また、本明細書において「任意の数A~任意の数B」なる記載は、数Aおよび数Aより大きい範囲であって、かつ、数Bおよび数Bより小さい範囲を意味する。
[第1実施形態]
 図1に、第1実施形態に係る多層成形体の一例の模式的断面図を示す。図1の多層成形体1は、密着性補強樹脂層11とバインダー樹脂/フィラー複合体21の積層体からなる。密着性補強樹脂層11の一主面上にバインダー樹脂/フィラー複合体21が積層されている。密着性補強樹脂層11は、バインダー樹脂/フィラー複合体21の支持体としての役割を担う。バインダー樹脂/フィラー複合体21は、放熱性機能を有する。
 多層成形体1は、放熱性部材として好適に利用できる。放熱性部材は、多層成形体1そのものであってもよいし、多層成形体1と他の部材からなるものであってもよい。他の部材は、例えば、金属箔、基材等である。基材は、シリコン、セラミックス、樹脂または金属などで構成され得る。金属の例には、銅、アルミ、SUS、鉄、マグネシウム、ニッケル、およびアルミナなどが含まれる。樹脂の例には、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、PET樹脂、ポリアミド樹脂、ポリアミドイミド樹脂などが含まれる。
 多層成形体1を有する放熱性部材を要放熱デバイスに貼着又は固定せしめることにより、要放熱デバイスから発生する熱を多層成形体1により効率的に放熱させることができる。要放熱デバイスは、例えば、自動車制御のために用いられる電力制御用パワーデバイスである。また、本明細書にいう要放熱デバイスには、電子回路基板部材、半導体デバイス、リチウムイオン電池部材、太陽電池部材、液晶ディスプレイ等のフラットパネルディスプレイの光源装置やTFT基板、携帯電話に搭載される大規模集積回路(LSI)等の電子部品、LED,蛍光灯等を用いた照明器具等をはじめとする熱発生電子部品、熱発生機器全般を含むものとする。
 多層成形体1を有する放熱性部材は、直接、若しくは基材等を介して要放熱デバイスと任意の方法により固設することができる。放熱性部材側に接着材層を設けてもよいし、放熱性部材と固設する相手側に接着材層を設けてもよい。また、接着材層を設けずに、物理的に抑えつけて固定せしめてもよい。また、基材と密着性補強樹脂層とを熱圧着等により接合してもよい。基材の例としては、前述した例を挙げることができる。
 多層成形体は、さらに接着材層を積層したものであってもよい。すなわち、少なくとも一の主面の最表面に接着材層を積層した多層成形体であってもよい。この接着剤層の被接合部は、要放熱デバイス、基材、若しくは放熱性部材を構成する他の層や基材等が挙げられる。接着剤層を設ける面は、密着性補強樹脂層11側であっても、バインダー樹脂/フィラー複合体21側であっても、両者であってもよい。すなわち、図2Aに示すように、密着性補強樹脂層11の最表層側に接着剤層31を設けた多層成形体1aとしたり、図2Bに示すように、バインダー樹脂/フィラー複合体21の最表層側に接着剤層31を設けた多層成形体1bとしたりすることができる。また、図2Cに示すように、密着性補強樹脂層11の最表層側と、バインダー樹脂/フィラー複合体21の最表層側に接着剤層31、32を設けた多層成形体1cとしてもよい。また、接着材層は、要放熱デバイス等と多層成形体11との接触面の全面に設けずに一部に設ける態様としてもよい。
 密着性補強樹脂層11は、ガラス転移温度が120℃以上、260℃未満であり、主鎖に炭素数3以上の脂肪族ユニットを有するポリイミド樹脂を主成分とするポリイミド組成物からなる。密着性補強樹脂層11の樹脂候補としては、エポキシ系、フェノール系、アクリル系、ポリアミド系、ポリアミドイミド系の樹脂等も考えられる。しかしながら、アミド基を含むポリアミド系、ポリアミドイミド系の樹脂は、親水性が高いことに起因して吸水率が高くなり経時的な性能劣化が懸念される。また、エポキシ系、フェノール系、アクリル系樹脂については耐熱性が十分とは言えない。また、芳香族ジアミンと芳香族テトラカルボン酸とにより得られる芳香族ポリイミドは、耐熱性に優れるものの剛直であり柔軟性が高いとは言えなかった。第1実施形態に係る密着性補強樹脂層11は、主鎖に炭素数3以上の脂肪族ユニットを有するポリイミド樹脂を主成分とするポリイミド組成物を用い、かつ、ガラス転移温度を120℃以上、260℃未満としているので、耐熱性・柔軟性の優れた層を提供することができる。
 密着性補強樹脂層11の膜厚は、厚みを50nm以上、9μm以下とする。密着性補強樹脂層11の厚みを9μm以下とすることにより、バインダー樹脂/フィラー複合体の無機フィラーの機能を効果的に引き出すことができる。すなわち、無機フィラーの放熱機能を効果的に引き出すことができる。また、密着性補強樹脂層11の厚みを50nm以上とすることにより、支持体としての役割を担い、良好な補強性・密着性を兼ね備えることができる。密着性補強樹脂層11の厚みのより好ましい範囲は、100nm~9μm、さらに好ましい範囲は500nm~8μmであり、特に好ましい範囲は3μm~7μmである。
 以下、密着性補強樹脂層11を構成するポリイミド組成物の主成分であるポリイミド樹脂について説明する。ポリイミド樹脂は、ジアミンとテトラカルボン酸二無水物成分とを反応させてポリイミド前駆体であるポリアミド酸を得、その後、脱水・環化反応によりポリイミド化したものである。ポリイミド樹脂は、ポリイミド前駆体であるポリアミド酸に対してイミド化率を80%以上とすることが好ましい。より好ましくは85%以上である。イミド化率が80%以上のポリイミドを有機溶媒に溶かしたポリイミド組成物を塗布・乾燥して得ることにより、密着性補強樹脂層11を薄膜とした場合であっても強度を効果的に高めることができる。
 ポリイミド樹脂中には、炭素数3以上の脂肪族ユニットの他、ベンゾフェノン骨格を有し、かつ、ポリイミド樹脂の末端をアミノ基とすることが好ましい。ベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物と、ベンゾフェノン骨格を有する芳香族ジアミンとの合計は、ポリイミドを構成するテトラカルボン酸二無水物とジアミンの合計に対して5~49モル%であることが好ましく、9~30モル%であることがより好ましい。ベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物とベンゾフェノン骨格を有する芳香族ジアミンの合計を5モル%以上とすることにより、一の分子に含まれるベンゾフェノン骨格由来のカルボニル基と、他の分子の末端アミノ基とを十分に水素結合させることができる。あるいは、同一分子内に含まれるベンゾフェノン骨格由来のカルボニル基と末端アミノ基とを十分に水素結合させることができる。このため、耐熱性をより向上させ、高温での弾性を維持することができる。なお、炭素数3以上の脂肪族ユニットと、ベンゾフェノン骨格は、一のジアミンや一のテトラカルボン酸二無水物中に導入されているものであってもよい。
 なお、ポリイミドの分子末端をアミノ基とするためには、反応させるジアミン成分(bモル)を、テトラカルボン酸二無水物成分(aモル)よりも多くすればよい。具体的には、ポリイミドを構成するテトラカルボン酸二無水物(aモル)とジアミン(bモル)のモル比は、a/b=0.8以上、1.0未満であることが好ましく、0.95~0.999であることがより好ましい。a/bを1.0未満とすることにより、分子末端をアミノ基とすることができる。または同一分子内に含まれるベンゾフェノン骨格由来のカルボニル基と末端アミノ基とを十分に水素結合させることができる。従って、より効果的に耐熱性を得ることができる。
 ベンゾフェノン骨格の導入は、ジアミン、テトラカルボン酸二無水物のいずれか若しくは両者に導入できる。ベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物を含むようにすることが好ましい。ベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物の好ましい例として、下記一般式(1)を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
 また、ベンゾフェノン骨格を有する芳香族ジアミンの好ましい例として、下記一般式(2)を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)で表わされるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物、及び一般式(2)で表わされるベンゾフェノン骨格を有する芳香族ジアミンの合計含有量は、上述した理由からポリイミドを構成するテトラカルボン酸二無水物とジアミンの合計に対して5モル%以上、49モル%以下とすることが好ましい。より好ましくは、9~30モル%である。また、アミン当量が4,000以上、20,000以下であるポリイミドを含むようにすることが好ましい。アミン当量を上記範囲とすることにより、高温での粘弾性特性をより良好にすることができる。
 一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物の好ましい例として、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物および2,3',3,4'-ベンゾフェノンテトラカルボン酸二無水物を挙げることができる。これらは、一種又は二種以上を組み合わせてもよい。
 また、一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンは、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、および4,4'-ジアミノベンゾフェノンからなる群より選ばれる一以上を挙げることができる。これらは、一種又は二種以上を組み合わせてもよい。
 上記一般式(2)以外のベンゾフェノン骨格を有する好ましいジアミンとしては、3,4-ジアミノベンゾフェノン等の下記一般式(7)で表される化合物を例示できる。また、下記一般式(8)で表される化合物も好適な例として例示できる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 ポリイミド樹脂中に含まれる主鎖に炭素数3以上の脂肪族ユニットは、ジアミン、テトラカルボン酸二無水物のいずれか、若しくは両者に含まれたものを用いることにより、ポリイミド樹脂中に導入する。ここで「主鎖に炭素数3以上の脂肪族ユニット」とは、ポリイミド樹脂の骨格を成す主鎖に炭素数3以上の脂肪族ユニットが含まれていることを意味する。脂肪族ユニットは、脂環式化合物、脂肪族鎖のいずれかである。炭素数3以上の脂肪族ユニットには、N原子やO原子が脂肪族ユニットのいずれかの位置に含まれていてもよい。また、炭素数3以上の脂肪族ユニットの主鎖には側鎖が結合されていてもよい。
 ジアミン・テトラカルボン酸二無水物は、それぞれ独立に一種又は二種以上を組み合わせてもよい。例えば、ジアミンとして芳香族ジアミン、脂肪族ジアミンをそれぞれ独立に単一若しくは複数種類用いてもよい。また、一のジアミン中に芳香族ユニットと脂肪族ユニットが導入されてもよい。テトラカルボン酸二無水物についてもジアミンと同様である。
 炭素数3以上の脂肪族ユニットをジアミンに導入する場合、全ジアミンユニットに対して5モル%以上を炭素数3以上の脂肪族ユニットを有するジアミンとすることが好ましい。5モル%以上とすることにより、密着性補強樹脂層に柔軟性をより効果的に付与することができる。より高い柔軟性を付与するためには、炭素数3以上の脂肪族ユニットを有するジアミンを10モル%以上とすることが好ましい。炭素数3以上の脂肪族ユニットを有するジアミンの割合は、100モル%であってもよいが、ポリイミドの耐熱性を良好に保つ観点から45モル%以下とすることが好ましい。
 炭素数3以上の脂肪族ユニットを有するジアミンの好ましい例として、下記一般式(3)又は/および(4)で表される脂肪族ジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 一般式(3)中、Rは主鎖にN原子、O原子を含んでいてもよい炭素数3以上の脂肪族ユニットである。主鎖を構成する原子数の合計は、3~500であることが好ましく、7~300であることがより好ましい。なお、一般式(3)のRにおける主鎖とは、分子末端の2つのフェニル基を連結する脂肪族ユニットのうち、側鎖を構成する原子以外の原子からなる鎖である。脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよい。Rにおける側鎖とは、主鎖を構成する原子に連結する1価の基である。前記側鎖1つあたりの原子数の合計は、10以下であることが好ましい。側鎖の例には、メチル基などのアルキル基だけでなく、水素原子なども含まれる。
Figure JPOXMLDOC01-appb-C000012
 一般式(4)中、Rは主鎖にN原子、O原子を含んでいてもよい炭素数3以上の脂肪族ユニットである。主鎖を構成する原子数の合計は、3~500であることが好ましく、7~300であることがより好ましい。なお、一般式(4)のRにおける主鎖とは、分子末端の2つのアミノ基を連結する脂肪族ユニットのうち、側鎖を構成する原子以外の原子からなる鎖である。脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよい。Rにおける側鎖とは、主鎖を構成する原子に連結する1価の基である。前記側鎖1つあたりの原子数の合計は、10以下であることが好ましい。側鎖の例には、メチル基などのアルキル基だけでなく、水素原子なども含まれる。
 炭素数3以上の脂肪族ユニットを有する一般式(3)のR又は一般式(4)のRの好ましい例として、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンなどのポリアルキレンポリアミンに由来する構造を有する主鎖;アルキレン基を含む主鎖;ポリアルキレングリコール構造を有する主鎖;アルキルエーテル構造を有する主鎖;ポリアルキレンカーボネート構造を有する主鎖;アルキレンオキシ基またはポリアルキレンオキシ基を含む主鎖などが含まれ、好ましくはアルキレンオキシ基またはポリアルキレンオキシ基を含む主鎖が挙げられる。
 ポリアルキレンオキシ基とは、アルキレンオキシを繰り返し単位として含む2価の連結基であり、エチレンオキシユニットを繰り返し単位とする「-(CHCHO)u-」や、プロピレンオキシユニットを繰り返し単位とする「-(CH-CH(-CH)O)-」(uとvは繰り返し数)などが例示できる。ポリアルキレンオキシ基におけるアルキレンオキシユニットの繰り返し数は、2~50であることが好ましく、2~20であることがより好ましい。ポリアルキレンオキシ基には、複数種のアルキレンオキシユニットが含まれていてもよい。
 アルキレンオキシ基のアルキレン部分およびポリアルキレンオキシ基を構成するアルキレンオキシユニットのアルキレン部分の炭素数は、1~10であることが好ましく、2~10であることがより好ましく、4~10であることがさらに好ましい。柔軟性の観点からは、ブチレン基が好ましい。アルキレンオキシ基を構成するアルキレン基の例には、メチレン基、エチレン基、プロピレン基およびブチレン基などが含まれる。
 R又はRの主鎖において、アルキレンオキシ基またはポリアルキレンオキシ基と、末端アミノ基とを連結する基は、特に制限されず、アルキレン基、アリーレン基、アルキレンカルボニルオキシ基、アリーレンカルボニルオキシ基などであってよく、末端アミノ基の反応性を高める観点からは、アルキレン基が好ましい。
 脂肪族ジアミンのより好ましい例として、下記一般式(9)を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 式(9)において、RおよびRは、それぞれ独立に、カルボニル基、オキシカルボニル基、炭素数6以上の芳香族基および炭素数1以上の脂肪族基からなる群から選ばれる少なくとも1つを含む有機基を表す。Xは-O-、-S-、-NH-、-ONH-、または-OS-を表す。式(9)中のlは、1~50の整数を、好ましくは1~20の整数を表す。mは、1以上の整数を表し、好ましくは2~10、より好ましくは4~10の整数を表す。柔軟性の観点からは、ブチレン基が好ましい。
 RおよびRにおける炭素数1以上の脂肪族基を含む有機基の例には、メチレン基、エチレン基、プロピレン基等の炭素数1~10のアルキレン基等が含まれ、炭素数6以上の芳香族基を含む有機基の例には、フェニレン基等が含まれる。耐熱性を得る点では、芳香族基を含む有機基であることが好ましく、柔軟性・可撓性を得る点では、脂肪族基を含む有機基であることが好ましい。
 一般式(9)のさらに好ましい例として、一般式(10)が挙げられる。一般式(10)で表される脂肪族ジアミンは、長鎖アルキレンオキシ基を含むため、得られるポリイミドは高い柔軟性を有する。
Figure JPOXMLDOC01-appb-C000014
 RおよびR、m、lは、一般式(9)と同様である。
 一般式(10)で表される脂肪族ジアミンのさらに好ましい例として、一般式(5)、又は一般式(6)のジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 一般式(5)中、nは1~50の整数を、好ましくは10~20の整数を表す。一般式(5)における繰り返し単位は、ブロックとして導入されても、ランダムに導入されてもよい。
Figure JPOXMLDOC01-appb-C000016
 一般式(6)中、p,qおよびrは、それぞれ独立に0~10の整数を表す。但し、p+q+rは1以上である。一般式(6)における各繰り返し単位は、ブロックとして導入されても、ランダムに導入されてもよい。一般式(6)で示される脂肪族ジアミンを用いることにより、密着性補強樹脂層11に高い柔軟性を付与することができる。
 脂環族ジアミンの好ましい例としては、シクロブタンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、ジ(アミノメチル)シクロヘキサン〔1,4-ビス(アミノメチル)シクロヘキサンを除くビス(アミノメチル)シクロヘキサン〕、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン(ノルボルナンジアミンなどのノルボルナンジアミン類を含む)、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン(オキサノルボルナンジアミンを含む)、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン〔またはメチレンビス(シクロヘキシルアミン)〕、ビス(アミノシクロヘキシル)イソプロピリデンなどが含まれる。なかでも、ノルボルナンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミンが挙げられる。
 主鎖に炭素数3以上の脂肪族ユニットを有する脂肪族テトラカルボン酸二無水物の好ましい例としては、以下のものが挙げられる。すなわち、シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸-6-酢酸二無水物、1-メチル-3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸二無水物、3,3',4,4'-ジシクロヘキシルテトラカルボン酸二無水物などが挙げられる。
 ポリイミドを得るためのジアミン成分は、上述した構造以外の他のジアミンが含まれていてもよいことは言うまでもない。他のジアミンの例としては、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルホキシド、(3-アミノフェニル)(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、(3-アミノフェニル)(4-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、3,3'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(3-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(4-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(3-(3-アミノフェノキシ)フェノキシ)-2-メチルベンゼン、1,3-ビス(3-(4-アミノフェノキシ)フェノキシ)-4-メチルベンゼン、1,3-ビス(4-(3-アミノフェノキシ)フェノキシ)-2-エチルベンゼン、1,3-ビス(3-(2-アミノフェノキシ)フェノキシ)-5-sec-ブチルベンゼン、1,3-ビス(4-(3-アミノフェノキシ)フェノキシ)-2,5-ジメチルベンゼン、1,3-ビス(4-(2-アミノ-6-メチルフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(2-アミノ-6-エチルフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(3-アミノフェノキシ)-4-メチルフェノキシ)ベンゼン、1,3-ビス(2-(4-アミノフェノキシ)-4-tert-ブチルフェノキシ)ベンゼン、1,4-ビス(3-(3-アミノフェノキシ)フェノキシ)-2,5-ジ-tert-ブチルベンゼン、1,4-ビス(3-(4-アミノフェノキシ)フェノキシ)-2,3-ジメチルベンゼン、1,4-ビス(3-(2-アミノ-3-プロピルフェノキシ)フェノキシ)ベンゼン、1,2-ビス(3-(3-アミノフェノキシ)フェノキシ)-4-メチルベンゼン、1,2-ビス(3-(4-アミノフェノキシ)フェノキシ)-3-n-ブチルベンゼン、1,2-ビス(3-(2-アミノ-3-プロピルフェノキシ)フェノキシ)ベンゼン、4,4'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、3,4'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、3,3'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェニキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ブタン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4'-ビス(3-アミノフェノキシ)ビフェニル、4,4'-ビス(4-アミノフェノキシ)ビフェニル、3,3'-ビス(4-アミノフェノキシ)ビフェニルビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(アミノフェノキシ)フェニル]スルホキシド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4'-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼンなどが挙げられる。なかでも、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(3-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、4,4'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、3,4'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、3,3'-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、3,3'-ビス(4-アミノフェノキシ)ビフェニル、2,2'-ビス(トリフルオロメチル)-1,1'-ビフェニル-4,4'-ジアミン、3,3'-ジメチルベンジジン、3,4'-ジメチルベンジジン、4,4'-ジメチルベンジジン等が好ましい例として挙げられる。
 ポリイミドを構成するテトラカルボン酸二無水物は、炭素数3以上の脂肪族ユニットを有するテトラカルボン酸二無水物、ベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物をさらに含んでよい。他のテトラカルボン酸二無水物は、特に限定されない。芳香族テトラカルボン酸二無水物の好ましい例としては、ビフェニルテトラカルボン酸二無水物である3,3',4,4'-ビフェニルテトラカルボン酸二無水物、1,1',2,2'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物等が挙げられる。また、ピロメリット酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、4,4'-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)スルフィド二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、4,4'-イソフタロイルジフタリックアンハイドライドジアゾジフェニルメタン-3,3',4,4'-テトラカルボン酸二無水物、ジアゾジフェニルメタン-2,2',3,3'-テトラカルボン酸二無水物、2,3,6,7-チオキサントンテトラカルボン酸二無水物、2,3,6,7-アントラキノンテトラカルボン酸二無水物、2,3,6,7-キサントンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物などが挙げられる。
 テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、芳香環上の水素原子の一部もしくは全ては、フルオロ基、メチル基、メトキシ基、トリフルオロメチル基、およびトリフルオロメトキシ基などから選ばれる基で置換されていてもよい。また、テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、目的に応じて、エチニル基、ベンゾシクロブテン-4'-イル基、ビニル基、アリル基、シアノ基、イソシアネート基、ニトリロ基、およびイソプロペニル基などから選ばれる架橋点となる基を有していてもよい。これらは、一種又は二種以上を組み合わせてもよい。
 柔軟性を大幅に損なうことなく、高い耐熱性を得るために、他のテトラカルボン酸二無水物として、芳香族テトラカルボン酸二無水物を加えることが好ましい。好ましい例として、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、2,3',2,3'-ビフェニルテトラカルボン酸二無水物等が挙げられる。これらのうち特に3,3',4,4'-ビフェニルテトラカルボン酸二無水物が好ましい。柔軟性を大幅に損なうことなく、効果的に高い耐熱性を得る観点から、ビフェニルテトラカルボン酸二無水物は、全酸二無水物中において40mol%以上、90mol%以下含まれていることが好ましく、55mol%以上、85mol%以下とすることがより好ましい。
 ポリイミド樹脂として、主鎖に炭素数3以上の脂肪族ユニットを含み、かつ、芳香族テトラカルボン酸二無水物または芳香族ジアミン由来のベンゾフェノン骨格を含み、かつ分子末端がアミノ基を含むものであって、さらに、全酸二無水物中にビフェニルテトラカルボン酸二無水物が40mol%以上、90mol%以下含まれているものを用いることにより、優れた柔軟性に加えて、より効果的に耐熱性を高めることができる。
 密着性補強樹脂層11のガラス転移温度は、120℃以上、260℃未満とする。より好ましい範囲は、130~210℃である。密着性補強樹脂層11のガラス転移温度を260℃未満とすることにより、多層化したときの他の層との密着性を向上したり、可塑化効果の高い分子構造が導入されるために低弾性率化が実現され、しいては柔軟性の向上に繋がる。また、ガラス転移温度を120℃以上とすることにより、ポリイミド樹脂の耐熱性をより効果的に発揮させることができる。また、密着性補強樹脂層11を薄膜化しても支持層としての強度を十分に発揮させることができる。
 なお、本明細書でいう密着性補強樹脂層11のガラス転移温度は、以下の方法により測定した値をいう。即ち、厚さ50μmの密着性補強樹脂層すなわちポリイミド樹脂層からなるサンプルフィルムを準備する。このサンプルフィルムの固体粘弾性の温度分散測定を、TA instruments社製のRSA-IIを用いて引張モードで測定周波数1Hzの条件で行い、貯蔵弾性率E'と損失弾性率E"を測定する。そして、得られた損失正接tanδ=E"/E'のピーク値から「ガラス転移温度」を導出した値とする。
 上記サンプルフィルムの(ガラス転移温度+30℃)での伸張粘弾性は、1.0×10Pa以上であることが好ましく、1.0×10Pa以上であることがより好ましい。伸張粘弾性は、前述のガラス転移温度の測定で得られた固体粘弾性のプロファイルにおいて、(ガラス転移温度+30℃)における貯蔵弾性率E'として求められる。
 上記サンプルフィルムフィルムの23℃における伸び率は、50%以上であることが好ましく、80%以上であることがより好ましい。このようなポリイミド樹脂組成物は、フレキシビリティが要求される用途に適している。フィルムの伸び率は、幅10mm、長さ140mmにカットしたポリイミド樹脂組成物からなるフィルムを、テンシロンにて長さ方向に、23℃において、速度50mm/分で引っ張ったときの、(破断時のサンプルフィルムの長さ)/(サンプルフィルムの元の長さ)として表される。
 ポリイミド樹脂の数平均分子量は、6.0×10~1.0×10であることが好ましく、8.0×10~4.0×10であることがより好ましい。ポリイミド樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
 前述の通り、ポリイミド樹脂は、芳香族テトラカルボン酸二無水物または芳香族ジアミン由来のベンゾフェノン骨格を含み、かつ分子末端がアミノ基とすることにより、一のポリイミド分子に含まれるベンゾフェノン骨格由来のカルボニル基と、他のポリイミド分子の末端アミノ基とが水素結合し、高い耐熱性が得られる。また、ポリイミドが、脂肪族ジアミン由来の長鎖アルキレンオキシ基をさらに含むようにすると、溶剤に対する溶解性が高く、得られるポリイミドフィルムは高い柔軟性を有するので好ましい。
 第1実施形態に係るポリイミド樹脂組成物は、本発明の趣旨を逸脱しない範囲において種々の添加剤を含有させることができる。例えば、紫外線吸収剤、保存安定剤、接着助剤、および表面改質剤等を適宜加えることができる。また、耐熱性・柔軟性に影響を与えず、本発明の趣旨を逸脱しない範囲において他の樹脂を含有していてもよい。
 バインダー樹脂/フィラー複合体21は、バインダー樹脂、および30体積%以上の無機フィラーが含有された層である。無機フィラーの含有量を30体積%以上とすることにより、放熱性をより良好に保つことができる。無機フィラーの含有量は、バインダー樹脂との組み合わせにおいて成形体を形成できればその上限を問わないが、通常は、成形性を考慮すると95体積%以下である。より好ましい範囲は、30体積%以上、70体積%以下であり、特に好ましくは30体積%以上、65体積%以下である。無機フィラーは、一種又は二種以上を組み合わせてもよい。
 バインダー樹脂/フィラー複合体21のバインダー樹脂は、耐熱性を備え、かつ無機フィラーを分散させることが可能であれば特に限定されないが、好適な例としては、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、PET樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物等のエポキシ化合物;カルボキシエチルアクリレート、プロピレングリコールアクリレート、エトキシ化フェニルアクリレートおよび脂肪族エポキシアクリレート等のアクリレート化合物;メチレンビスフェニルジイソシアネート(MDI)、トルエンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)およびキシレンジイソシアネート(XDI)等のイソシアネート化合物;4,4'-ジフェニルメタンビスマレイミド、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、m-フェニレンビスマレイミドおよびアミノフェノキシベンゼン-ビスマレイミド(APB-BMI)等のマレイミド化合物;およびアルケニル置換ナジイミド等のナジイミド化合物、ポリイミド樹脂等が挙げられる。ポリイミド樹脂組成物に感光性を付与したい場合は、ポリイミド樹脂組成物に、アクリレート化合物等の光硬化性樹脂や光硬化剤などを含有させたものが挙げられる。密着性補強樹脂層に用いるポリイミド樹脂をバインダー樹脂としても利用することも可能である。
 無機フィラーは、放熱性を有するものであれば特に限定されないが、好ましい例として、窒化ホウ素、窒化アルミニウム、アルミナ、アルミナ水和物、酸化ケイ素、窒化ケイ素、シリコンカーバイド、ダイヤモンド、ハイドロキシアパタイト、チタン酸バリウム、銅、アルミニウム、シリカ、マグネシア、チタニア、窒化ケイ素、炭化ケイ素などの熱伝導性を有する材料が用いられる。これらのうち、特に、熱伝導性、電気絶縁性に優れ、化学的に安定であることから、アルミナ、窒化ホウ素などが好ましい。無機フィラーの平均粒径は、特に限定されないが、例えば、0.5~100μmである。
 バインダー樹脂/フィラー複合体21は、放熱性・耐熱性等の物性に影響を与えない範囲において任意に添加剤を加えることができる。例えば、バインダー樹脂における無機フィラーの相溶性を高めるための分散剤を加えたり、積層する密着性補強樹脂層との接着性を高めるために、接着助剤・接着剤等を加えたりしてもよい。例えば、シランカップリング剤等の表面改質剤などを添加してもよい。
 次に、第1実施形態に係る多層成形体1の製造方法について説明する。まず、ジアミンとテトラカルボン酸二無水物を反応させてポリアミド酸を得、次いで、ポリアミド酸を脱水・環化してポリイミドを得る。末端アミンにする場合には、テトラカルボン酸二無水物の合計モル数が、ジアミンの合計モル数に対して0.95~0.999とすることにより容易に得ることができる。
 ポリイミド樹脂は、ランダム重合体であっても、ブロック重合体であってもよいが、ジアミン成分の特性が得られやすいことから、好ましくはブロック重合体である。
 本発明のポリイミド樹脂組成物は、ワニス状であっても、シート状(フィルム状も含む)であってもよい。ポリイミド樹脂組成物がワニス状である場合、ポリイミド樹脂組成物は、必要に応じて極性溶媒をさらに含んでもよい。極性溶媒の例には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N-メチル-2-ピロリドン、ジメチルスルホン、1,3,5-トリメチルベンゼンなどの他、これらの2種以上の混合溶媒、あるいはこれらの溶媒とベンゼン、トルエン、キシレン、ベンゾニトリル、ジオキサン、シクロヘキサンなどとの混合溶媒などが含まれる。
 ポリイミドワニスにおける樹脂固形分の濃度は、塗工性を高める観点などから、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。23質量%のポリイミドを、NMP(N-メチルピロリドン)とトリメチルベンゼンの混合溶媒に分散させて得られるポリイミドワニスの、E型粘度計により25℃で測定される粘度が、5.0×10~1.0×10mPa・sであることが好ましく、1.0×10~5.0×10mPa・sであることがより好ましい。これにより、得られるポリイミド膜の機械的強度等が向上する。
 ポリイミド樹脂のアミン当量は、4,000~20,000であることが好ましく、4,500~18,000であることがより好ましい。ポリイミドのアミン当量は、「ポリイミドの数平均分子量/1分子中に含まれるアミノ基の数」として定義される。1分子中に含まれるアミノ基には、末端アミノ基はもちろん、それ以外のアミノ基なども含まれる。アミン当量が上記範囲にあるポリイミドは、ポリイミド全体における末端アミノ基の存在割合が高いため、ベンゾフェノン骨格を導入した場合には、ベンゾフェノン骨格に含まれるカルボニル基との水素結合を多く生じさせることができ、ポリイミドの耐熱性をより効果的に高められる。
 本発明のポリイミド樹脂組成物は、溶剤に可溶なポリイミドを含むため、ポリイミドワニスとして用いることができる。そのため、本発明のポリイミド樹脂組成物を、基材上に塗布した後、乾燥してポリイミド層を形成することができる。このように、本発明のポリイミド樹脂組成物の塗膜を高温でイミド化するステップが不要となるため、耐熱性の低い基材上にもポリイミド層を塗布形成することができる。
 離型処理が施された離型基材(例えば、離型フィルム、離型シート)41上に、図3Aに示すように、本発明のポリイミド樹脂組成物を塗布し、その後、乾燥させて、ポリイミド樹脂組成物からなる密着性補強樹脂層11の塗膜を得る。この際、密着性補強樹脂層は、厚みが50nm以上、9μm以下となるようにする。密着性補強樹脂層を塗布および乾燥する場合、塗膜の乾燥温度は250℃以下であることが好ましい。その後、図3Bに示すように、予め調製しておいたバインダー樹脂/フィラー複合体組成物を密着性補強樹脂層11上に塗布し、その後乾燥させてバインダー樹脂/フィラー複合体21を得る。本発明の密着性補強樹脂層11は、バインダー樹脂/フィラー複合体21と直接成膜することにより優れた接着性を発現するものであるが、バインダー樹脂/フィラー複合体21と密着性補強樹脂層11の間に易接着剤などを塗布して接合することを排除するものではない。そして、離型基材41を剥離することにより、図1に示すような多層成形体1を得る。
 なお、多層成形体1の製造方法は上記方法に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。例えば、バインダー樹脂/フィラー複合体21と、密着性補強樹脂層11とを熱圧着させて多層成形体を得てもよい。
 第1実施形態によれば、ポリアミド酸を塗膜してからポリイミドを形成せずに、塗膜前にポリイミドに変換している。このため、密着性補強樹脂層を積層する際にイミド化するための加熱工程が不要であるという優れたメリットがある。従って、高温加熱処理が不要となり、より信頼性の高い多層成形体が得られる。また、熱硬化型の樹脂を用いないので硬化処理が不要であるというメリットもある。また、熱架橋剤を用いずに耐熱性を実現できるので、熱可塑を維持することができる。このため、密着性補強樹脂層11をリサイクルすることも可能となる。なお、本願発明は、熱架橋剤を用いずに耐熱性を実現できるものであるが、本発明の趣旨を逸脱しない範囲において熱架橋剤を用いることを排除するものではない。
 また、密着性補強樹脂層11のポリイミド樹脂の主鎖に炭素数が3以上の脂肪族ユニットを導入し、また、ガラス転移温度が120℃以上、260℃未満のものを用いることにより、高い耐熱性を実現しつつ、優れた柔軟性を付与することができる。その結果、バインダー樹脂/フィラー複合体21との密着性を高めることが可能となる。従って、信頼性の高い多層成形体を提供することができる。しかも、密着性補強樹脂層の厚みを50nm以上、9μm以下としているのでバインダー樹脂/フィラー複合体の無機フィラーの機能を効果的に引き出しつつ補強性・密着性を兼ね備えることができる。
 また、密着性補強樹脂層11上にバインダー樹脂/フィラー複合体21を塗膜して両者を接合する方法によれば、製造工程が簡便であるという優れた効果を有する。
 また、多層成形体は、シート状(フィルム状も含む)に形成することができるので、所望の大きさにカットして任意の位置に貼り付けることができるので取扱性に優れる。また、シート状に形成できるので軽薄短小化が要求される用途に特に好適である。さらに、柔軟性の高い密着性補強樹脂層を設けることにより、耐衝撃性を高めて信頼性を確保することができる。さらに、バインダー樹脂/フィラー複合体21を薄膜とすれば、多層成形体の厚みを薄くすることが可能となり、フレキシブル部材の放熱性部材として利用することもできる。
 また、本発明のポリイミド樹脂において、炭素数3以上の脂肪族ユニットに加えて、芳香族テトラカルボン酸二無水物または芳香族ジアミン由来のベンゾフェノン骨格を含み、かつ分子末端がアミノ基を含むようにすれば、一の分子に含まれるベンゾフェノン骨格由来のカルボニル基と、他の分子の末端アミノ基とを十分に水素結合させることにより、より優れた耐熱性を実現し、高温での弾性率を維持できる。さらに、本発明のポリイミド樹脂によれば、ポリイミド樹脂を構成する全酸二無水物中にビフェニルテトラカルボン酸二無水物が40mol%以上、90mol%以下含まれているようにすることにより、柔軟性を大幅に損なうことなく、より効果的に耐熱性を高めることができる。
[第2実施形態]
 次に、上記実施形態とは異なる多層成形体の一例について説明する。第2実施形態に係る多層成形体は、以下の点を除く基本的な構成は、上記第1実施形態と同様である。すなわち、第1実施形態に係る多層成形体は、密着性補強樹脂層が1層のみであったが、第2実施形態に係る多層成形体は、密着性補強樹脂層が2層ある点において相違する。
 図4に、第2実施形態に係る多層成形体の一例の模式的断面図を示す。多層成形体2は、密着性補強樹脂層11、12によりバインダー樹脂/フィラー複合体21が挟持された構成となっている。
 多層成形体2によれば、バインダー樹脂/フィラー複合体21が密着性補強樹脂層11、12により挟持されているので、より効果的に無機フィラーの添加量を増加させることが可能となる。その結果、無機フィラーの機能をより効果的に引き出すことができる。
 第2実施形態に係る多層成形体によれば、密着性補強樹脂層11、12、およびバインダー樹脂/フィラー複合体21を上記第1実施形態と同様のものを用いているので、上記第1実施形態と同様の効果を得ることができる。
[第3実施形態]
 第3実施形態に係る多層成形体は、以下の点を除く基本的な構成は、上記第1実施形態と同様である。すなわち、第1実施形態に係る多層成形体は、放熱性部材に適用するものであったが、第3実施形態に係る多層成形体は、電磁波シールド部材に用いるものである点において相違する。
 第3実施形態に係る多層成形体のバインダー樹脂/フィラー複合体を構成する無機フィラーは、電磁波シールド性を有するフィラーとする。このような例として、金属、金属酸化物、無定形カーボン粉、グラファイト、金属めっきしたフィラーを使用することができる。金属としては、銅、アルミニウム、ニッケル、鉄、金、銀、白金、タングステン、クロム、チタン、スズ、鉛、パラジウムなどが挙げられる。これらは、一種又は二種以上を組み合わせて用いてもよい。また、フィラーとして軟磁性フィラーを用いてもよい。軟磁性フィラーとしては、例えば、磁性ステンレス(Fe-Cr-Al-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金、Fe-Ni-Cr-Si合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金等が挙げられる。また、フェライトや純鉄粒子を用いてもよい。フェライトとしては、例えば、Mn-Znフェライト、Ni-Znフェライト、Mn-Mgフェライト、Mnフェライト、Cu-Znフェライト、Cu-Mg-Znフェライトなどのソフトフェライト、あるいは永久磁石材料であるハードフェライトが挙げられる。
 第3実施形態に係る多層成形体によれば、電磁波シールド部材用途に特に好適に適用できる。また、密着性補強樹脂層およびバインダー樹脂/フィラー複合体を上記第1実施形態と同様のものを用いているので、上記第1実施形態と同様の効果を得ることができる。
[第4実施形態]
 第4実施形態に係る多層成形体は、以下の点を除く基本的な構成は、上記第1実施形態と同様である。すなわち、第1実施形態に係る多層成形体は、放熱性部材に適用するものであったが、第4実施形態に係る多層成形体は、電磁波シールド機能と放熱性機能を兼ね備える放熱性電磁波シールド部材に好適なものである点において相違する。
 図5に、第4実施形態に係る多層成形体の模式的断面図を示す。第4実施形態に係る多層成形体3は、密着性補強樹脂層11、放熱性を有するバインダー樹脂/フィラー複合体21、及び電磁波シールド性を有するバインダー樹脂/フィラー複合体22を具備する。
 第4実施形態に係る多層成形体によれば、放熱性を有するバインダー樹脂/フィラー複合体21により放熱性を、電磁波シールド性を有するバインダー樹脂/フィラー複合体22により電磁波シールド性を付与することができる。このため、一の多層成形体により、放熱性と電磁波シールド性を兼ね備えるようにすることができる。バインダー樹脂/フィラー複合体21、22の間に密着性補強樹脂層を積層して強度を高めてもよい。また、第2実施形態のように、バインダー樹脂/フィラー複合体21、22を挟持するように密着性補強樹脂層を配置してもよい。
 第4実施形態に係る多層成形体によれば、電磁波シールド部材用途に特に好適に適用できる。また、密着性補強樹脂層およびバインダー樹脂/フィラー複合体を上記第1実施形態と同様のものを用いているので、上記第1実施形態と同様の効果を得ることができる。
 なお、上記実施形態は好適に組み合わせて利用することができる。また、上記実施形態においては、バインダー樹脂/フィラー複合体をシート状に形成する例を述べたが、シート状に限定されるものではなく、用途に応じた成形体とすることができる。また、多層成形体は、平面形状のみならず曲面形状となるようにしてもよい。さらに、上記においては、放熱性部材と電磁波シールド性部材に適用する例を述べたが、これに限定されず、各種用途に好適に適用できる。
≪実施例≫ 
 以下、本発明を実施例によってより詳細に説明するが、本発明は以下の実施例によって何ら限定されるものではない。
[実施例1]
(ポリイミドワニスの調製)
 Nメチルピロリドン(以下「NMP」)とメシチレンを7:3の比率で調製した溶媒中に、3種類のジアミン(APB,14EL,XTJ-542)と、2種類の酸二無水物(s-BPDA、BTDA)とを、APB:14EL:XTJ-542:s-BPDA:BTDA=0.8:0.1:0.1:0.79:0.2のモル比で配合した。
  APB;1,3-ビス(3-アミノフェノキシ)ベンゼン(三井化学社製)
  14EL;ポリテトラメチレンオキシド ジ-p-アミノベンゾエート(エラスマー1000)(伊原ケミカル社製)
  XTJ-542;下記式(11)で表されるポリエーテルアミン(製品名:ジェファーミン、HUNTSMAN社製)
Figure JPOXMLDOC01-appb-C000017
  s-BPDA; 3,3',4,4'-ビフェニルテトラカルボン酸二無水物(JFEケミカル社製)
  BTDA; 3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物
 得られた混合物を、乾燥窒素ガスを導入することができるフラスコ内で4時間以上攪拌し、樹脂固形分重量が20~25質量%であるポリアミック酸溶液を得た。得られたポリアミック酸溶液を十分に攪拌した後、ディーンスターク管が付属したフラスコ内で攪拌しながら、反応系を180℃程度まで加熱し、脱水反応により発生した水を系外に取り出してポリイミドワニスAを得た
(バインダー樹脂/フィラー複合体の作製)
 バインダー樹脂として、主剤にエピフォーム(登録商標)R-2100(ソマール社製)を、硬化剤にエピフォーム(登録商標)H30(ソマール社製)を用いた。主剤、硬化剤それぞれにフィラーとしてアルミナフィラーDAW07(デンカ社製)を樹脂に対して48体積%相当配合し、自転公転式攪拌機「泡取り錬太郎AR-250」(シンキー社製)を用いて20分程度攪拌した。冷却後、主剤とフィラーのコンパウンドと硬化剤とフィラーのコンパウンドを、R2100:H-30=5:1の比率となるように配合し、泡取り錬太郎を用いて1分程度攪拌することで、バインダー樹脂/フィラー複合体の硬化前液状コンパウンドを作製した。
(多層成形体の作製)
 上記ポリイミドワニスを、離型処理が施されたPETフィルム上に10mm/secの速度で塗工した。塗工方法は特に限定されないが、例えば、ロールコーター、ダイコーター、バーコーター、リップコーター、コンマコーターなどを使用することが可能である。得られた塗膜を180℃で10分間乾燥させて溶媒を除去し、ポリイミド層(膜厚=約5μm)を得た。次に、前記手法で得られたバインダー樹脂/フィラー複合体の硬化前液状コンパウンドをポリイミド膜表面に塗布・乾燥した。得られた塗膜を80℃×1時間で加熱硬化し、約50μm厚みのバインダー樹脂/フィラー複合体を形成した。その後、前記ポリイミド層からPETフィルムを剥離し、シート状の多層成形体を得た。
(ガラス転移温度)
 得られたポリイミドワニスを、離型処理されたPETフィルム上に10mm/秒の速度で塗工した後、200℃で10分間乾燥させて溶媒を除去した。乾燥後に得られたフィルムを、ピンセットでPETフィルムから剥離して、膜厚50μmのポリイミドフィルムを得た。作製したポリイミドフィルムの貯蔵弾性率E'と損失弾性率E''を、TA instruments社製のRSA-IIを用いて、固体粘弾性の温度分散測定を引張モード、測定周波数1Hzで測定した。そして、損失正接tanδ=E''/E'のピーク値からガラス転移温度を導出した。
(耐熱性評価)
 作製したシート状多層成形体(サンプル)の耐熱性を評価した。対象サンプルを幅10mm×長さ100mmの短冊状に切り出し、サンプルフィルムとした。このサンプルフィルムを所定の温度に加熱した半田浴槽上に浮かべサンプルフィルムの耐熱性を評価した。その結果を表1Aに示す。
 ◎: 280℃、30秒後においても溶融せずに形状を維持し、さらにサンプルフィルムを引き上げられるもの
 ○: 260℃、60秒後においても溶融せずに形状を維持するもの
 ×: 260℃×60秒以内で溶融するもの
(耐折性評価)
 サンプルの柔軟性(可撓性)を評価する指標として耐折性評価を行った。対象サンプルを幅10mm×長さ50mmの短冊状に切り出しサンプルフィルムとした。サンプルフィルムの片側を折り曲げ試験機の治具に固定し、R=3mmの折り曲げ部を介したサンプルの反対側に100gの錘をぶらさげて、サンプルの耐折性を評価した。得られた結果を表1A、表1Bに示す。
 ○:100回以上の耐折性を有するサンプル
 ×:100回未満で破断するサンプル
(放熱性評価)
 作製したサンプルの熱伝導率を評価した。具体的には、サンプルの「熱拡散率α」、「比熱Cp」および「密度ρ」を測定し、それらの測定値を以下の数式1にあてはめて算出した。
(数式1)  熱伝導率λ=熱拡散率α×比熱Cp×密度ρ
 熱拡散率はレーザーフラッシュ法にて測定した。測定装置はレーザーフラッシュ法熱定数測定装置(TC-9000、アルバック理工社製)とした。比熱はDSC法によって測定した。測定装置はDiamond DSC装置(パーキンエルマー社製)とした。電子天秤にて重量を測定し、サンプル面積とサンプル厚みから体積を算出して、密度を算出した。
 ○:1.0W/m・K以上の熱伝導率
 ×:1.0W/m・K未満の熱伝導率
(イミド化率)
 IR法によりイミド化率を求めた。具体的には、1480~1500cm-1近傍のベンゼン環に基づくピークを基準とし、その吸光度をA、1720cm-1近傍のイミド環に基づくピークの吸光度をBとする。対象サンプルを250℃×1時間で焼成して作製したフィルムのB/Aを基準値C(イミド化率100%)とする。一方で、対象サンプルを150℃×30分で焼成して作製したフィルムのB/Aを基準値Cで割り、100をかけた値をイミド化率(%)とした。
(実施例2)
 バインダー樹脂/フィラー複合体のフィラーDAW07の配合量を65体積%とした以外は、実施例1と同様の方法により多層成形体を作製し、評価した。
(実施例3)
 密着性補強樹脂層であるポリイミド層の乾燥後厚みを3μmとした以外は、実施例1と同様に多層成形体を作製し、評価した。
(実施例4)
 密着性補強樹脂層であるポリイミド層の乾燥後厚みを7μmとしたこと以外は、実施例1と同様に多層成形体を作製し、評価した。
(実施例5)
 バインダー樹脂/フィラー複合体のフィラーとして窒化ホウ素フィラーUHP-1(昭和電工社製)を用い、且つ配合量を31体積%としたこと以外は、実施例1と同様に多層成形体を作製し、評価した。
(実施例6)
 バインダー樹脂/フィラー複合体のフィラーとして窒化ホウ素フィラーUHP-1(昭和電工社製)を用い、且つ配合量を40体積%としたこと以外は、実施例1と同様に多層成形体を作製し、評価した。
(実施例7)
 以下の点以外は、実施例1と同様に多層成形体を作製し、評価した。即ち、ポリイミドワニスを作製するのに、ジアミンとしてpBAPP、14ELの2種類、酸二無水物としてs-BPDA、BTDAの2種類を用い、pBAPP:14EL:s-BPDA:BTDA=0.8:0.2:0.79:0.2のモル比で配合することでポリイミドワニスBを得た以外は実施例1と同様にポリイミドワニスを調製した。また、バインダー樹脂/フィラー複合体のフィラーとして、窒化ホウ素フィラーUHP-1(昭和電工社製)を用い、且つ配合量を31体積%としたこと以外は、実施例1と同様にバインダー樹脂/フィラー複合体を作製した。
  pBAPP:2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン(和歌山セイカ社製)
(実施例8)
 ポリイミドワニスを作製するのに、ジアミンとしてAPB、14EL、XTJ-542の3種類、酸二無水物としてs-BPDAを用い、APB:14EL:XTJ-542:s-BPDA=0.8:0.1:0.1:0.99のモル比で配合することでポリイミドワニスCを得たこと以外は実施例1と同様にポリイミドワニスを調製し、評価した。
(実施例9)
 ポリイミドワニスを作製するのに、ジアミンとしてAPB、14ELの2種類、酸二無水物としてs-BPDAとBTDAの2種類を用い、APB:14EL:s-BPDA:BTDA=0.7:0.3:0.79:0.2のモル比で配合することでポリイミドワニスFを得たこと以外は実施例1と同様にポリイミドワニスを調製し、評価した。
(実施例10)
 ポリイミドワニスを作製するのに、ジアミンとしてpBAPP、14ELの2種類、酸二無水物としてs-BPDAとBTDAの2種類を用い、pBAPP:14EL:s-BPDA:BTDA=0.9:0.1:0.69:0.3のモル比で配合することでポリイミドワニスGを得たこと以外は実施例1と同様にポリイミドワニスを調製し、評価した。
(比較例1)
 密着性補強樹脂層であるポリイミド層を形成せずに、直接バインダー樹脂/フィラー複合体を離型処理がされたPETフィルム上に形成した以外は、実施例1と同様の方法でサンプルを作製し、評価した。即ち、密着性補強樹脂層を形成しないバインダー樹脂/フィラー複合体単独のサンプルを作製し、評価した。
(比較例2)
 バインダー樹脂/フィラー複合体のフィラーとして、フィラーDAW07の配合量を10体積%とした以外は、比較例1と同様の方法でサンプルを作製し、評価した。
(比較例3)
 バインダー樹脂/フィラー複合体のフィラーとして、フィラーDAW07の配合量を65体積%とし、且つ多層成形体を作製するのに、密着性補強樹脂層であるポリイミド層の乾燥後厚みを15μmとした以外は、実施例1と同様に多層成形体を作製し、評価した。
(比較例4)
 バインダー樹脂/フィラー複合体を作製するのに、フィラーとして窒化ホウ素フィラーUHP-1(昭和電工社製)を用い且つ配合量を40体積%とし、密着性補強樹脂層であるポリイミド層の乾燥後厚みを15μmとしたこと以外は、実施例1と同様に多層成形体を作製し、評価した。
(比較例5)
 バインダー樹脂/フィラー複合体を作製するのに、ジアミンとして14EL、酸二無水物としてs-BPDAを用い、14EL:s-BPDA=1.0:0.99のモル比で配合することで得たポリイミドワニスDをバインダー樹脂として用いたコンパウンドを作製し、且つ密着性補強樹脂層であるポリイミド層を形成せずに、直接前記コンパンドを離型処理がされたPETフィルム上に塗布し130℃で乾燥して得たこと以外は、実施例1と同様に多層成形体を作製し、評価した。
(比較例6)
 ポリイミドワニスを作製するのに、ジアミンとしてAPB、pBAPPの2種類、酸二無水物としてs-BPDAを用い、APB:pBAPP:s-BPDA=0.5:0.5:0.98のモル比で配合することでポリイミドワニスEを得たこと以外は実施例1と同様にポリイミドワニスを調製し、評価した。
 実施例1~10の結果を表1Aに、比較例1~6の結果を表1Bに示す。また、各実施例のイミド化率を測定したところ、いずれも80%以上であることを確認した。また、乾燥後の塗膜と、塗膜前のポリイミドワニスのイミド化率が、実質的に同じであることを確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1Aより、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を含み、密着性補強樹脂層の厚みを9μm以下とし、バインダー樹脂/フィラー複合体の無機フィラー含有量を30体積%以上とした実施例においては、いずれも耐熱性・放熱性が良好であることがわかる。また、実施例においては、いずれも、耐折性に優れていることがわかる。一方、表1Bより、密着性補強樹脂層を設けない比較例1、2においては、耐折性不良がみられた。また、比較例3、4の結果より、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を含むものであっても、密着性補強樹脂層の厚みが15μmの例においては、放熱性が劣ることがわかる。また、比較例6のように、密着性補強樹脂層の厚みが9μm以下であっても主鎖に炭素数3以上の脂肪族ユニットを含まないポリイミド樹脂を用いると、耐折性不良の結果が得られている。主鎖に炭素数3以上の脂肪族ユニットを導入したポリイミドを用いることにより、効果的に耐折性を引き出すことができることがわかる。
 本発明の多層成形体は、無機フィラーの高充填化による高性能化を実現しつつ、高信頼性化を実現できるので、無機フィラーとして放熱性に優れている材料を選定することにより放熱性部材として利用することができる。また、無機フィラーとして電磁波シールド性に優れている材料を選定することにより電磁波シールド部材として利用することができる。また、電導性フィラーを選定することにより、導電性部材としての利用も可能である。具体的な対象としては、電子回路基板部材、半導体デバイス、リチウムイオン電池部材、太陽電池部材、液晶ディスプレイ等のフラットパネルディスプレイ、携帯電話に搭載される大規模集積回路(LSI)等の電子部品、LED,蛍光灯等を用いた照明器具等などの放熱性部材、電磁波シールド部材などとして利用可能である。本発明の多層成形体に用いる密着性補強樹脂層によれば、耐熱性・柔軟性に優れるので、フレキシビリティ性が要求される用途などにも容易に適用できる。また、保護部材、絶縁性無機フィラー等を用いて絶縁部材等として利用することも可能である。
 この出願は、2011年12月26日に出願された日本出願特願2011-283611を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2、3 多層成形体
11、12 密着性補強樹脂層
21    バインダー樹脂/フィラー複合体
31、32 接着材層
41    離型基材

Claims (16)

  1.  バインダー樹脂、および30体積%以上、95体積%以下の無機フィラーが含有されたバインダー樹脂/フィラー複合体と、
     前記バインダー樹脂/フィラー複合体の少なくとも一主面上に積層された密着性補強樹脂層とを備え、
     前記密着性補強樹脂層は、厚みが50nm以上、9μm以下、ガラス転移温度が120℃以上、260℃未満であり、主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を主成分とするポリイミド組成物からなる多層成形体。
  2.  前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物および前記ジアミンの少なくとも一方にベンゾフェノン骨格を含み、かつ、分子末端にアミノ基を含む請求項1に記載の多層成形体。
  3.  前記ポリイミド樹脂は、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物が、下記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物、または/および前記ポリイミドを構成するジアミンが、下記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンを含み、
     前記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物と前記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンの合計含有量が、前記ポリイミド樹脂を構成するテトラカルボン酸二無水物とジアミンの合計に対して5モル%以上、49モル%以下であり、かつアミン当量が4,000以上、20,000以下であるポリイミド樹脂を含むことを特徴とする請求項1又は2に記載の多層成形体。
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
  4.  前記ポリイミド樹脂は、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記炭素数3以上の脂肪族ユニットは、前記ジアミンの少なくとも一部に含まれ、その割合は、全ジアミンユニットの5モル%以上であることを特徴とする請求項1~3のいずれか1項に記載の多層成形体。
  5.  前記ポリイミド樹脂は、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、全テトラカルボン酸二無水物ユニット中にビフェニルテトラカルボン酸二無水物が40mol%以上、90mol%以下含まれていることを特徴とする請求項1~4のいずれか1項に記載の多層成形体。
  6.  前記ポリイミド樹脂は、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記ジアミンが、下記一般式(3)または/および(4)で表される脂肪族ジアミンを含む、ポリイミド樹脂組成物であることを特徴とする請求項1~5のいずれか1項に記載の多層成形体。
    Figure JPOXMLDOC01-appb-C000020
     (式(3)中、Rは主鎖にN原子、O原子を含んでいてもよい前記炭素数3以上の脂肪族ユニットであり、前記主鎖を構成する原子数の合計が3~500であり;前記炭素数3以上の脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよく、前記側鎖1つあたりの原子数の合計は10以下である)
    Figure JPOXMLDOC01-appb-C000021
    (式(4)中、Rは、主鎖にN原子、O原子を含んでいてもよい炭素数3以上の脂肪族ユニットであり、前記主鎖を構成する原子数の合計が3~500であり;前記脂肪族ユニットは、C、N、H、Oのいずれか一以上の原子からなる側鎖をさらに有してもよく、前記側鎖1つあたりの原子数の合計は10以下である)
  7.  前記一般式(3)のR又は前記一般式(4)のRは、アルキレンオキシ基またはポリアルキレンオキシ基を含む主鎖を有する脂肪族ユニットであって、前記アルキレンオキシ基のアルキレン部分、および前記ポリアルキレンオキシ基を構成するアルキレンオキシユニットのアルキレン成分の炭素数が1~10であることを特徴とする請求項6に記載の多層成形体。
  8.  前記一般式(3)で表される脂肪族ジアミンが下記一般式(5)で表される化合物であり、前記一般式(4)で表される脂肪族ジアミンが、下記一般式(6)で表される化合物であることを特徴とする請求項6又は7に記載の多層成形体。
    Figure JPOXMLDOC01-appb-C000022
    (式(5)中、nは、1~50の整数を表す)
    Figure JPOXMLDOC01-appb-C000023
    (式(6)中、p,qおよびrは、それぞれ独立に0~10の整数を表す;但し、p+q+rは1以上である)
  9.  前記一般式(1)で表されるベンゾフェノン骨格を有する芳香族テトラカルボン酸二無水物は、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物および2,3',3,4'-ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる一以上であり、前記一般式(2)で表されるベンゾフェノン骨格を有する芳香族ジアミンは、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン及び4,4'-ジアミノベンゾフェノンからなる群より選ばれる一以上であることを特徴とする請求項3に記載の多層成形体。
  10.  少なくとも一の主面の最表面に、さらに、接着材層が形成されていることを特徴とする請求項1~9のいずれか1項に記載の多層成形体。
  11.  主鎖に炭素数3以上の脂肪族ユニットを含むポリイミド樹脂を主成分とするポリイミド組成物からなる、厚みが50nm以上、9μm以下の密着性補強樹脂層を形成し、
     前記密着性補強樹脂層上に、バインダー樹脂、および30体積%以上、95体積%以下の無機フィラーが含有されたバインダー樹脂/フィラー複合体の積層体を形成する工程を備え、
     前記密着性補強樹脂層のガラス転移温度が120℃以上、260℃未満である多層成形体の製造方法。
  12.  前記ポリイミド樹脂が、テトラカルボン酸二無水物とジアミンの重縮合ユニットを含むポリイミドであって、前記テトラカルボン酸二無水物および前記ジアミンの少なくとも一方にベンゾフェノン骨格を含み、かつ、分子末端にアミノ基を含む請求項11に記載の多層成形体の製造方法。
  13.  前記密着性補強樹脂層は、ポリイミド前駆体に対してイミド化率が80%以上となるようにし、有機溶媒に溶かしたポリイミド組成物を塗布・乾燥して得ることを特徴とする請求項11又は12に記載の多層成形体の製造方法。
  14.  前記密着性補強樹脂層は、離型基材上に積層し、前記バインダー樹脂/フィラー複合体を積層後に、前記離型基材を前記密着性補強樹脂層から剥離することを特徴とする請求項11~13のいずれか一項に記載の多層成形体の製造方法。
  15.  請求項1~10のいずれか一項に記載の多層成形体を具備する電磁波シールド部材。
  16.  請求項1~10のいずれか一項に記載の多層成形体を具備する放熱性部材。
PCT/JP2012/008167 2011-12-26 2012-12-20 多層成形体およびその製造方法、並びに、電磁波シールド部材および放熱性部材 WO2013099173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013519900A JP5330626B1 (ja) 2011-12-26 2012-12-20 電磁波シールド部材
CN201280036895.3A CN103732403B (zh) 2011-12-26 2012-12-20 电磁波屏蔽构件
KR1020137032169A KR101545430B1 (ko) 2011-12-26 2012-12-20 다층 성형체 및 그 제조 방법, 및 전자파 실드 부재 및 방열성 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011283611 2011-12-26
JP2011-283611 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099173A1 true WO2013099173A1 (ja) 2013-07-04

Family

ID=48696719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008167 WO2013099173A1 (ja) 2011-12-26 2012-12-20 多層成形体およびその製造方法、並びに、電磁波シールド部材および放熱性部材

Country Status (5)

Country Link
JP (2) JP5330626B1 (ja)
KR (1) KR101545430B1 (ja)
CN (1) CN103732403B (ja)
TW (1) TWI546196B (ja)
WO (1) WO2013099173A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130306A1 (en) * 2015-02-13 2016-08-18 Laird Technologies, Inc. Mid-plates and electromagnetic interference (emi) board level shields with embedded and/or internal heat spreaders
JP2018010889A (ja) * 2016-07-11 2018-01-18 藤森工業株式会社 電磁波シールド材
WO2018194133A1 (ja) * 2017-04-21 2018-10-25 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010888A (ja) * 2016-07-11 2018-01-18 藤森工業株式会社 電磁波シールド材
KR102064920B1 (ko) 2017-06-09 2020-01-10 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
KR102673198B1 (ko) * 2017-11-15 2024-06-07 주식회사 아모그린텍 그라파이트-고분자 복합재 제조용 조성물 및 이를 통해 구현된 그라파이트-고분자 복합재
JP7048277B2 (ja) * 2017-11-28 2022-04-05 藤森工業株式会社 カバーレイフィルムおよびそれを用いた電子機器
JP7045173B2 (ja) * 2017-11-28 2022-03-31 藤森工業株式会社 カバーレイフィルムおよびそれを用いた電子機器
KR102068315B1 (ko) * 2018-07-27 2020-01-20 주식회사 이엠따블유 열 확산 모듈 및 이의 제조 방법
KR102119752B1 (ko) * 2018-10-02 2020-06-05 주식회사 이엠따블유 연성회로기판 모듈 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110387A1 (ja) * 2008-03-06 2009-09-11 新日鐵化学株式会社 フレキシブル基板用積層体及び熱伝導性ポリイミドフィルム
JP2010084072A (ja) * 2008-10-01 2010-04-15 Mitsui Chemicals Inc 接着樹脂組成物、およびそれを含む積層体
WO2011089922A1 (ja) * 2010-01-25 2011-07-28 三井化学株式会社 ポリイミド樹脂組成物、それを含む接着剤、積層体およびデバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632564B1 (ko) * 2005-02-25 2006-10-11 삼성전기주식회사 경연성 인쇄회로기판 및 그 제조방법
JP4577526B2 (ja) * 2007-07-17 2010-11-10 ソニーケミカル&インフォメーションデバイス株式会社 フレキシブル配線回路基板の製造方法
JP2010202729A (ja) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd フレキシブルデバイス基板用ポリイミド前駆体樹脂組成物及びそれを用いたフレキシブルデバイスの製造方法、フレキシブルデバイス
JP5417144B2 (ja) * 2009-12-10 2014-02-12 旭化成イーマテリアルズ株式会社 ポリイミド
JP5442491B2 (ja) * 2010-02-26 2014-03-12 新日鉄住金化学株式会社 熱伝導性金属−絶縁樹脂基板及びその製造方法
JP5643536B2 (ja) * 2010-04-16 2014-12-17 三井化学株式会社 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110387A1 (ja) * 2008-03-06 2009-09-11 新日鐵化学株式会社 フレキシブル基板用積層体及び熱伝導性ポリイミドフィルム
JP2010084072A (ja) * 2008-10-01 2010-04-15 Mitsui Chemicals Inc 接着樹脂組成物、およびそれを含む積層体
WO2011089922A1 (ja) * 2010-01-25 2011-07-28 三井化学株式会社 ポリイミド樹脂組成物、それを含む接着剤、積層体およびデバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130306A1 (en) * 2015-02-13 2016-08-18 Laird Technologies, Inc. Mid-plates and electromagnetic interference (emi) board level shields with embedded and/or internal heat spreaders
JP2018010889A (ja) * 2016-07-11 2018-01-18 藤森工業株式会社 電磁波シールド材
WO2018194133A1 (ja) * 2017-04-21 2018-10-25 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法
JPWO2018194133A1 (ja) * 2017-04-21 2020-02-27 三井化学株式会社 半導体基板の製造方法、半導体装置およびその製造方法

Also Published As

Publication number Publication date
JPWO2013099173A1 (ja) 2015-04-30
KR101545430B1 (ko) 2015-08-18
CN103732403A (zh) 2014-04-16
JP5996491B2 (ja) 2016-09-21
TWI546196B (zh) 2016-08-21
CN103732403B (zh) 2015-12-02
JP2013256125A (ja) 2013-12-26
JP5330626B1 (ja) 2013-10-30
KR20140014270A (ko) 2014-02-05
TW201325911A (zh) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5996491B2 (ja) 多層成形体およびその製造方法、並びに放熱性部材
JP5735989B2 (ja) ポリイミド樹脂組成物およびそれを含む積層体
TWI690578B (zh) 黏著劑組成物、薄膜狀黏著材料、黏著層、黏著薄片、附有樹脂的銅箔、覆銅積層板、可撓性覆銅積層板、印刷線路板、可撓性印刷線路板、多層線路板、印刷電路板及可撓性印刷電路板
JP5232386B2 (ja) 熱硬化性樹脂組成物およびその利用
JP2017121807A (ja) 銅張積層体及びプリント配線板
JP5019874B2 (ja) 熱硬化性樹脂組成物、及びそれを用いてなる積層体、回路基板
JP5297740B2 (ja) 熱伝導性フレキシブル基板用積層体
TW200813128A (en) Thermosetting polyimide resin composition
JP2007535179A (ja) 多層プリント配線板
TWI546322B (zh) 交聯聚醯亞胺樹脂、其製造方法、接著劑樹脂組成物、其硬化物、覆層膜、電路基板、熱傳導性基板及熱傳導性聚醯亞胺膜
JP5650084B2 (ja) 熱伝導性基板及び熱伝導性ポリイミドフィルム
JP2009246121A (ja) 電磁波シールド材及びその製造方法
JP2012255107A (ja) 熱可塑性ポリイミド組成物、それを含む接着剤、積層体、及びデバイス
JP5643536B2 (ja) 熱伝導性接着樹脂組成物、それを含む積層体および半導体装置
WO2013183293A1 (ja) ポリイミド樹脂組成物、フィルム、接着剤、及び部品
JP2012213900A (ja) 熱伝導性ポリイミド−金属基板
JP2012213899A (ja) 熱伝導性ポリイミド−金属基板
JP4426774B2 (ja) 熱硬化性樹脂組成物、及びそれを用いてなる積層体、回路基板
JP4709503B2 (ja) フィラー含有樹脂組成物およびその利用
JP2005314562A (ja) 熱硬化性樹脂組成物およびその利用
JP5665449B2 (ja) 金属張積層体及び熱伝導性ポリイミドフィルム
JP2006117848A (ja) 熱硬化性樹脂組成物およびその利用
JP4976380B2 (ja) 金属積層体
JP2006348086A (ja) 熱硬化性樹脂組成物およびその利用
JP2007043023A (ja) カバーレイ用樹脂組成物およびその利用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013519900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137032169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862899

Country of ref document: EP

Kind code of ref document: A1