WO2013094343A1 - 熱可塑性樹脂成形体及びその製造方法 - Google Patents

熱可塑性樹脂成形体及びその製造方法 Download PDF

Info

Publication number
WO2013094343A1
WO2013094343A1 PCT/JP2012/079305 JP2012079305W WO2013094343A1 WO 2013094343 A1 WO2013094343 A1 WO 2013094343A1 JP 2012079305 W JP2012079305 W JP 2012079305W WO 2013094343 A1 WO2013094343 A1 WO 2013094343A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
fiber
injection molding
molding
plant
Prior art date
Application number
PCT/JP2012/079305
Other languages
English (en)
French (fr)
Inventor
羽柴 正典
玉樹 幸祐
和重 丸山
薫 藤井
智大 白崎
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Priority to CN201280061419.7A priority Critical patent/CN103987508B/zh
Priority to EP12860610.0A priority patent/EP2796266B1/en
Priority to US14/356,000 priority patent/US20140302284A1/en
Publication of WO2013094343A1 publication Critical patent/WO2013094343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2911/00Use of natural products or their composites, not provided for in groups B29K2801/00 - B29K2809/00, as mould material
    • B29K2911/10Natural fibres, e.g. wool or cotton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a thermoplastic resin molded body and a method for producing the same. More specifically, the thermoplastic resin molded body that is lightweight and has a reduced environmental load, and the thermoplastic resin molded body can be efficiently produced, and the occurrence of rust in the injection mold is sufficiently suppressed.
  • the present invention relates to a method for producing a thermoplastic resin molded product.
  • a molded product by injection molding using a thermoplastic resin as a raw material has been used (see, for example, Patent Documents 1 and 2).
  • a resin-reinforced material such as glass fiber or talc having a large specific gravity is generally used as a raw material as a thermoplastic resin. It is used together.
  • a conventional thermoplastic resin molded article using a resin-reinforced material such as glass fiber or talc has a large specific gravity and is heavy, and therefore further weight reduction is required.
  • thermoplastic resin molded body having a reduced load.
  • thermoplastic resin composition that can contain a large amount of plant fibers and has sufficient fluidity when used for injection molding or the like, and filed a patent application.
  • a thermoplastic resin composition to which plant fibers have been added is injection molded, the plant material may be thermally decomposed by the heat during molding, and corrosive gas may be generated. confirmed. Specifically, it is considered that the acetyl group of hemicellulose contained in the plant is separated by thermal decomposition, and that acetic acid and formic acid are generated, and these generation amounts are considered to increase as the temperature rises.
  • components such as acetic acid generated by heat during molding, oxygen and water present in the surrounding area may cause corrosion and discoloration on molds used for injection molding, which may place a burden on the mold. I understand. Furthermore, due to corrosion occurring in the mold, appearance defects on the molded product surface such as transfer of rust from the mold to the molded product and occurrence of silver (lighting of the molded product surface) occur, and the molded product. It has been found that there is a risk of deteriorating the design properties of.
  • the present invention has been made in view of the above circumstances, and is a lightweight and environmentally-friendly thermoplastic resin molded body, and can efficiently produce the thermoplastic resin molded body, and injection It aims at providing the manufacturing method of the thermoplastic resin molding which can fully suppress generation
  • the invention according to claim 1 includes a thermoplastic resin and plant fibers as main components, and a content ratio of the thermoplastic resin to the plant fibers (thermoplastic resin: plant fibers) is 7: 3 to 4: 6 thermoplastic resin molding,
  • the gist is obtained by injection-molding a thermoplastic resin composition containing a thermoplastic resin and plant fibers and having a moisture content of 0.4% or less.
  • a second aspect of the present invention is the method according to the first aspect, wherein a plate-like portion having a thickness of 0.5 to 10 mm is provided, and a protrusion having a protrusion amount of 0.5 to 50 mm is formed on one surface of the plate-like portion.
  • the gist is that the depth of the dent in the corresponding portion of the protrusion on the other surface of the plate-like portion is 0.1 mm or less.
  • the invention according to claim 3 includes a thermoplastic resin and a vegetable fiber as main components, and a content ratio of the thermoplastic resin to the vegetable fiber (thermoplastic resin: plant fiber) is 7: 3 to 4: 6.
  • a method for producing a thermoplastic resin molding, The gist is to injection-mold a thermoplastic resin composition containing a thermoplastic resin and plant fibers and having a water content of 0.4% or less.
  • thermoplastic resin molded article of the present invention contains a specific proportion of plant fiber, it is lightweight and has a low environmental impact from the viewpoint of carbon neutral (that is, it emits less carbon dioxide based on carbon neutral). Few). Furthermore, since it is obtained by injection molding a thermoplastic resin composition controlled to a specific moisture content, the appearance due to transfer of rust from the mold to the surface of the molded product, generation of silver, etc. Defects are sufficiently suppressed, and the appearance quality is excellent. Further, when the thermoplastic resin molded body of the present invention has a plate-like portion having a protrusion, the depth of the dent at the corresponding portion of the protrusion is 0.1 mm or less, and ribs, bosses, etc.
  • thermoplastic resin molded article of the present invention since the moisture content of the thermoplastic resin composition as a raw material is controlled, the amount of water vapor during molding is reduced, and rust is generated in the injection mold. It can be sufficiently suppressed. Therefore, appearance defects on the surface of the molded product such as transfer of rust from the mold to the surface of the molded product and generation of silver can be suppressed, and the design of the resulting thermoplastic resin molded product can be improved.
  • thermoplastic resin composition containing plant fibers is used as a raw material, carbon dioxide emission based on carbon neutral can be reduced, and lightweight thermoplastic resin molded articles can be efficiently produced. can do. Furthermore, since the load on the mold can be reduced, the maintainability of the mold can be improved without affecting the productivity and the quality of the molded body (product).
  • FIG. 3 is a schematic diagram for explaining a cross section taken along a line II of a main part A in FIG. 2. It is a graph showing the correlation between the molding temperature and the amount of acetic acid generated when a thermoplastic resin composition comprising kenaf fibers and PP is used. It is a schematic diagram for demonstrating a bar flow metal mold
  • thermoplastic resin molded product of the present invention contains a thermoplastic resin and vegetable fibers as main components, and the content ratio of the thermoplastic resin to the vegetable fibers (thermoplastic resin: vegetable fiber) is 7 :
  • thermoplastic resin contained in the thermoplastic resin molded article of the present invention is not particularly limited.
  • polyolefin polyolefin, polyester resin, polystyrene, acrylic resin, polyamide, polycarbonate, polyacetal, ABS resin, polylactic acid, polycaprolactone , And polybutylene succinate.
  • polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer are preferable, and polypropylene and ethylene-propylene copolymer are more preferable.
  • the thermoplastic resin may be contained only 1 type and may be contained 2 or more types.
  • the thermoplastic resin when a polyolefin (particularly polypropylene or ethylene-propylene copolymer) is contained as the thermoplastic resin, it is preferable that an acid-modified polyolefin is further contained.
  • the acid-modified polyolefin when the acid-modified polyolefin is further contained, it is preferable because the mechanical properties of the molded body are further improved.
  • the content of the acid-modified polyolefin is preferably 0.5 to 20% by mass, more preferably 0.6 to 20% when the total thermoplastic resin is 100% by mass. It is 15% by mass, more preferably 0.7 to 10% by mass. When the content is 1 to 30% by mass, the mechanical properties of the molded body can be improved.
  • the “plant fiber” contained in the thermoplastic resin molded article of the present invention is a fiber derived from a plant.
  • This plant fiber includes kenaf, jute hemp, manila hemp, sisal hemp, husk, cocoon, cocoon, banana, pineapple, coconut, corn, sugar cane, bagasse, palm, papyrus, cocoon, esparto, sabugrass, wheat, rice, bamboo, Examples thereof include fibers of various plants such as conifers (cedar, oak, etc.), hardwoods, and cotton.
  • only 1 type of plant fiber may be contained, and 2 or more types may be contained.
  • part of the plant used is not specifically limited, Any site
  • Kenaf fiber is an annual plant that grows very fast, has excellent carbon dioxide absorption, can contribute to reducing the amount of carbon dioxide in the atmosphere, effective use of forest resources, etc. Is preferred.
  • Kenaf is a fast-growing annual plant with a woody stem and is a plant classified as a mallow.
  • Examples of the kenaf include hibiscus cannabinus and hibiscus sabdariffa in scientific names, as well as red hemp, cuban kenaf, western hemp, taikenaf, mesta, bimli, ambari and bombay hemp, etc. under common names.
  • the thermoplastic resin molded article of the present invention contains the thermoplastic resin and plant fiber as main components, and may contain other components.
  • the total content of the thermoplastic resin and the plant fiber as the main components is preferably 90 to 100% by mass, more preferably 95 to 100% by mass when the entire thermoplastic resin molded article is 100% by mass. %, More preferably 97 to 100% by mass.
  • the content ratio of the thermoplastic resin to the plant fiber is 7: 3 to 4: 6, preferably 7: 3 to 4.5: 5.5, more preferably 4: 6-5: 5.
  • the content ratio is 7: 3 to 4: 6, the weight can be sufficiently reduced while maintaining the mechanical properties equivalent to those of a thermoplastic resin molded body made of a conventional composition containing talc and a thermoplastic resin. it can.
  • the other components are not particularly limited, and examples thereof include various additives such as antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, antibacterial agents, and coloring agents. These additives may be contained alone or in combination of two or more.
  • thermoplastic resin molded article of the present invention is obtained by injection-molding a thermoplastic resin composition containing a thermoplastic resin and plant fibers and having a moisture content of 0.4% or less.
  • shape and dimensions of the molded body are not particularly limited.
  • the “thermoplastic resin composition” and “injection molding” which are raw materials will be described in detail in the method for producing a thermoplastic resin molded body at a later stage.
  • the thermoplastic resin molded article of the present invention can be provided with protrusions (reinforcing parts) such as ribs and bosses in order to improve the strength partially or entirely depending on the application.
  • protrusions reinforcing parts
  • the formation number of a reinforcement part, a formation position, a shape, a dimension, etc. are not specifically limited.
  • the thermoplastic resin molded body in the present invention is manufactured by a specific method, when a protrusion such as a rib or boss is formed on one surface by injection molding, it corresponds to the protrusion on the other surface. The degree of dents due to molding shrinkage occurring in the part is low, and it has excellent appearance quality.
  • a plate-like portion having a thickness of 0.5 to 10 mm (see the top plate portion 11 in FIGS. 1 to 3) is provided, and a protrusion with a protrusion amount of 0.5 to 50 mm is provided on one surface of the plate-like portion. Portion (see rib 12 in FIGS. 1 to 3) is formed, and the depth of the dent (see dent 15 in FIG. 3) in the corresponding portion of the protrusion on the other surface of the plate-like portion is 0.1 mm or less. It can be set as a certain thermoplastic resin molding.
  • the thickness of the plate-like portion [see (t) in FIG. 3] is 0.5 to 10 mm, particularly 1.0 to 5.0 mm, and more preferably 1.5 to 3.0 mm.
  • the protrusion amount of the protrusion [see (h) in FIG. 3] is 0.5 to 50 mm, particularly 1.0 to 40 mm, and more preferably 2.0 to 30 mm. Furthermore, the depth of the dent [see (x) in FIG. 3] is 0.1 mm or less, particularly 0.08 mm or less, and further 0.06 mm or less.
  • the plate Projections can be provided at corresponding portions on both sides of the shape portion. That is, protrusions can be formed on both one side and the other side of the plate-like part.
  • the shape of the protrusion on the one surface side and the shape of the corresponding protrusion on the other surface side may be the same or different.
  • thermoplastic resin molded article of the present invention is not particularly limited.
  • examples thereof include interior materials, exterior materials, and structural materials such as automobiles, railway vehicles, ships, and airplanes.
  • automotive applications include interior materials, exterior materials, engine-related parts, instrument panels, etc., specifically door base materials, package trays, pillar garnishes, switch bases, quarter panels, armrests. Core material, door trim, seat structure material, seat back board, ceiling material, console box, dashboard, instrument panel, deck trim, bumper, spoiler, cowling, air cleaner case cap and air cleaner container.
  • interior materials such as buildings and furniture, exterior materials, and structural materials can be cited.
  • a door cover material for a building a door structure material
  • a cover material for various furniture such as a desk, a chair, a shelf, and a bag
  • a structural material a structural material
  • packaging bodies such as trays, protective members, partition members, and housings for home appliances.
  • thermoplastic resin molded body includes a thermoplastic resin and a vegetable fiber as main components, and the content ratio of the thermoplastic resin and the vegetable fiber (thermoplastic resin: A method for producing a thermoplastic resin molded product having a plant fiber) of 7: 3 to 4: 6, comprising a thermoplastic resin and a plant fiber, and a moisture content of 0.4% or less It is characterized by injection molding an object.
  • thermoplastic resin composition contains a thermoplastic resin and plant fibers.
  • This thermoplastic resin composition is usually prepared by kneading and mixing a thermoplastic resin, a vegetable fiber, and, if necessary, other components (additives) with a mixing device. (Note that the form of plant fiber may differ between the raw material stage and the product stage.)
  • thermoplastic resins polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers are preferably used, and polypropylene and ethylene-propylene copolymers are more preferably used.
  • the melt flow rate (MFR) indicating the flow performance of the polyolefin is preferably 1.0 to 200 g / 10 min, more preferably 5.0 to 100 g / 10 min, and still more preferably 10 to 60 g / 10 min.
  • the MFR is measured based on JIS K7210 under the conditions of a load of 2.16 kg and a temperature of 230 ° C.
  • thermoplastic resin when a polyolefin resin (particularly, polypropylene or ethylene-propylene copolymer) is used as the thermoplastic resin, it is preferable to use an acid-modified polyolefin in combination. In this case, the mechanical characteristics of the obtained molded body can be further improved.
  • the base resin of this acid-modified polyolefin the above-mentioned various polyolefins can be used.
  • the non-modified polyolefin contained in the thermoplastic resin composition and the base resin used for acid modification are preferably the same type of resin. Further, when the resins are the same type, it is more preferable that the difference in average molecular weight, density, etc. of each resin is small, and when it is a copolymer, the difference in the proportion of each monomer unit is more small. preferable.
  • the method for introducing an acid group into the acid-modified polyolefin is not particularly limited, but it can be introduced by so-called graft polymerization, which is usually carried out by reacting a polyolefin-containing compound with an acid group.
  • the compound having an acid group is not particularly limited, and examples thereof include maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, maleic acid, itaconic acid, fumaric acid, acrylic acid and methacrylic acid. These may be used alone or in combination of two or more. Of these, acid anhydrides are often used, and maleic anhydride and itaconic anhydride are often used.
  • the amount of acid groups introduced into the acid-modified polyolefin is not particularly limited, but is preferably an amount introduced so that the acid value is 5 or more. If the introduction amount is such that the acid value of the acid-modified polyolefin is 5 or more, the mechanical properties of the molded article can be sufficiently improved without adding a large amount of the acid-modified polyolefin.
  • the acid value is more preferably 10 to 80, particularly 15 to 70, and further preferably 20 to 60.
  • the acid value can be measured according to JIS K0070.
  • the melt flow rate (MFR) indicating the flow performance of the acid-modified polyolefin is preferably 0.5 to 100 g / 10 min, more preferably 5 to 80 g / 10 min, still more preferably 10 to 60 g / 10 min. .
  • the MFR is measured under the conditions of a load of 2.16 kg and a temperature of 180 ° C. based on JIS K7210.
  • the blending ratio of the acid-modified polyolefin is preferably 1 to 30% by mass, more preferably 0.6 to 10% when the total thermoplastic resin is 100% by mass. It is 15% by mass, more preferably 0.7 to 10% by mass.
  • the blending ratio of the acid-modified polyolefin is 1 to 30% by mass, the fluidity of the thermoplastic resin composition at the time of molding such as injection molding can be remarkably improved, and the mechanical properties of the resulting molded product Can be improved.
  • thermoplastic resin composition examples include “plant fiber” in the above-mentioned [1] thermoplastic resin molded article.
  • plant fiber in the above-mentioned [1] thermoplastic resin molded article.
  • bast having tough fibers
  • the fiber length and fiber diameter of the plant fiber are not particularly limited, but the ratio (L / t) of the fiber length (L) to the fiber diameter (t) is preferably 5 to 20000.
  • the fiber length of the plant fiber is usually 10 to 300 mm, and the fiber diameter is usually 10 to 150 ⁇ m.
  • This fiber length is a value measured on a measuring scale by stretching one plant fiber straight without stretching in the same manner as in the direct method in JIS L1015.
  • a fiber diameter is the value which measured the fiber diameter in the center part of the length direction of a fiber using the optical microscope about the vegetable fiber which measured fiber length.
  • the average fiber length and the average fiber diameter of the plant fiber are not particularly limited, but the average fiber length is preferably 100 mm or less (usually 10 mm or more). By using a plant fiber having an average fiber length of 100 mm or less, it can be easily mixed with a thermoplastic resin. This average fiber length was measured for a total of 200 fibers by taking out single fibers at random and stretching them straight without stretching by a direct method in accordance with JIS L1015. Average value. The average fiber diameter is preferably 100 ⁇ m or less (usually 15 ⁇ m or more). This average fiber diameter is an average value measured for a total of 200 fibers by taking out single fibers at random and measuring the fiber diameter at the center in the length direction of the fibers using an optical microscope.
  • the plant fiber used for mixing may be mixed with the thermoplastic resin without any processing, or may be cut or pulverized and mixed with the thermoplastic resin as a predetermined length of plant fiber. Further, fiber pellets having a predetermined shape and size may be formed by a pelletizing apparatus, and the fiber pellets may be mixed with a thermoplastic resin.
  • the thermoplastic resin composition preferably contains the thermoplastic resin and vegetable fibers as main components.
  • the total content of the thermoplastic resin and the vegetable fiber is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably, when the entire thermoplastic resin composition is 100% by mass. Is 97 to 100% by mass.
  • This content ratio is usually the same as the total blending ratio of the thermoplastic resin and the vegetable fiber in the entire raw material at the time of producing the thermoplastic resin composition.
  • the content ratio of the thermoplastic resin to the plant fiber is 7: 3 to 4: 6, preferably 7: 3 to 4.5: 5.5, more preferably 4: 6-5: 5.
  • This content ratio is usually the same as the blending ratio of the thermoplastic resin and the vegetable fiber at the time of producing the thermoplastic resin composition.
  • the plastic has a mechanical property equivalent to that of a thermoplastic resin molded body made of a conventional composition containing talc and a thermoplastic resin, and is sufficiently lightened. A resin molded body can be obtained.
  • thermoplastic resin composition examples thereof include an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, an antibacterial agent, and a colorant.
  • additives are mentioned.
  • these additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the form of the thermoplastic resin composition is not particularly limited, and may be a mixture itself obtained by mixing raw materials, a pulverized mixture obtained by rolling the mixture, or a pulverized mixture. It may be pelletized. In particular, from the viewpoint of operability during injection molding, a pulverized mixture or pelletized material is preferable.
  • the shape and particle size of the pulverized mixture particles are not particularly limited. The particle size (maximum dimension) can be, for example, 1 to 10 mm (particularly 3 to 8 mm).
  • the shape and dimension of the pelletized thermoplastic resin composition are not particularly limited, but a columnar shape such as a columnar shape is preferable.
  • the maximum dimension is preferably 1 mm or more (usually 20 mm or less), more preferably 1 to 10 mm, and particularly preferably 2 to 7 mm.
  • a pulverized thermoplastic resin composition pulverized mixture
  • a pelletized thermoplastic resin composition refer to JP 2011-5742 A. be able to.
  • thermoplastic resin composition having a moisture content controlled within a specific range is used when performing injection molding.
  • the water content of the thermoplastic resin composition at the time of injection molding is 0.4% or less, preferably 0.3% or less, more preferably 0.2% or less. If this moisture content is 0.4% or less, the amount of water vapor at the time of injection molding decreases, and the occurrence of rust in the injection mold can be sufficiently suppressed. Therefore, appearance defects on the surface of the molded product such as transfer of rust from the mold and generation of silver can be suppressed, and the design of the resulting thermoplastic resin molded product can be improved. Furthermore, since the load on the mold can be reduced, the maintainability of the mold can be improved without affecting the productivity and the quality of the molded body (product).
  • the method for controlling the water content of the thermoplastic resin composition to 0.4% or less is not particularly limited. Specifically, it can be controlled by, for example, heat drying, dehumidification drying, reduced pressure drying, or a combination of these methods.
  • the control conditions are not particularly limited and can be set as appropriate. Specifically, in a temperature range of 100 to 130 ° C. (especially 100 to 120 ° C.), the moisture content can be controlled to 0.4% or less by drying for 0.5 hours or more (particularly 1 hour or more). it can. Further, the moisture content is obtained by heating 5 g of a material to 130 ° C. with a heating moisture meter and measuring it until it becomes 0.05% / min or less due to a change in weight loss over time. As the heating moisture meter, for example, model “MX-50” manufactured by A & D Co., Ltd. can be used.
  • the apparatus and molding conditions used for injection molding are not particularly limited, and may be appropriately selected and set depending on the type of thermoplastic resin, the shape of the molded body, the use, and the like.
  • the molding temperature during injection molding is preferably in the temperature range of 180 to 230 ° C. (particularly 190 to 210 ° C.).
  • injection molding can be performed in a state where the amount of acetic acid generated (see FIG. 4) that causes rust generation during molding is suppressed.
  • the operation was stopped, and the kenaf PP mixed molten resin was discharged.
  • the discharged bulk kenaf PP mixed molten resin was rolled into a 5 mm thick plate with a Yasuda Koki Kikai Roller.
  • the kenaf PP mixed rolling melt mixed resin is cooled and transported by “MMX224” manufactured by Maruyasu Machinery, and pulverized by a pulverizer “42-20JM” (mesh ⁇ 5 mm) manufactured by TRIA.
  • 5 mm flake-shaped kenaf PP pellets (thermoplastic resin composition) for injection molding were prepared.
  • the density of the kenaf PP pellets was 1.04 g / cm 3 .
  • Examples 2 to 5 Except that the blending ratio of kenaf (plant fiber) and PP (thermoplastic resin) was changed as shown in Table 1, the test pieces of Examples 2 to 5 (110 ⁇ 10 ⁇ 4 mm) were used in the same manner as in Example 1. ) was produced.
  • Example 6 The kenaf PP pellets produced in the same manner as in Example 1 were dried at 110 ° C. for 4 hours using a resin dryer, the material moisture content was controlled to 0.4%, and an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd. “ In SE100DU "), injection molding was performed under conditions of a molding temperature of 190 ° C and a mold temperature of 40 ° C, and a test piece (110 ⁇ 10 ⁇ 2 mm) of Example 6 having a thickness different from that of Example 1 was produced.
  • an injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. “ In SE100DU "
  • Example 7 The kenaf PP pellets produced in the same manner as in Example 1 were dried at 110 ° C. for 4 hours using a resin dryer, the material moisture content was controlled to 0.2%, and an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd. “ In SE100DU "), injection molding was performed under conditions of a molding temperature of 210 ° C and a mold temperature of 40 ° C.
  • the test piece of Example 7 (110x) having a thickness different from that of Example 1 and having a different material moisture content before injection molding 10 ⁇ 2 mm).
  • ⁇ Comparative example 1 (conventional product)>
  • the talc PP pellets produced by mixing talc using polypropylene (PP) [manufactured by Nippon Polypro Co., Ltd., product name “CNX0228”] were dried at 110 ° C. for 4 hours using a resin dryer, and then an injection molding machine.
  • a test piece (110 ⁇ 10 ⁇ 4 mm) of Comparative Example 1 was manufactured by injection molding under the conditions of a molding temperature of 220 ° C. and a mold temperature of 40 ° C. (manufactured by Sumitomo Heavy Industries, Ltd., model “SE100DU”).
  • the density of this talc PP pellet was 1.14 g / cm 3 .
  • ⁇ Comparative example 2 (conventional product)>
  • the talc PP pellets produced by mixing talc using polypropylene (PP) [manufactured by Nippon Polypro Co., Ltd., product name “CNX0228”] were dried at 110 ° C. for 4 hours using a resin dryer, and then an injection molding machine.
  • PP polypropylene
  • a resin dryer By using injection molding under the conditions of a molding temperature of 220 ° C. and a mold temperature of 40 ° C. (manufactured by Sumitomo Heavy Industries, Ltd., model “SE100DU”), a test piece of Comparative Example 2 having a thickness different from that of Comparative Example 1 (110 ⁇ 10 ⁇ 2 mm).
  • ⁇ Comparative Example 3> The kenaf PP pellets produced in the same manner as in Example 1 were dried at 110 ° C. for 4 hours using a resin dryer, the material moisture content was controlled to 1.0%, and an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd. “ In SE100DU "), injection molding was performed under conditions of a molding temperature of 210 ° C and a mold temperature of 40 ° C.
  • the test piece of Comparative Example 3 having a thickness different from that of Example 1 and a material moisture content before injection molding (110 ⁇ 10 ⁇ 2 mm).
  • Table 1 shows details of the blending ratio of raw materials, the moisture content during injection molding, and the thickness of the test piece in Examples 1 to 7 and Comparative Examples 1 to 3.
  • Example 1 and Comparative Example 1 6 and Comparative Example 2 were used to calculate the degree of weight reduction and the degree of carbon dioxide emission as described below. Each result is shown in Table 3.
  • ⁇ Degree of weight reduction> The weight ratio of Example 6 was calculated by setting the weight of Comparative Example 2 as a conventional product to 1.
  • ⁇ Degree of carbon dioxide emissions> The carbon dioxide emission ratio of Example 6 was calculated with the carbon dioxide emission amount of Comparative Example 2 being a conventional product as 1. Details of carbon dioxide emissions for each item used in this calculation are shown in Table 4.
  • Example 6 a low density kenaf fiber (1.4 g / cm 3) used as a raw material than are identical in thickness of the test piece It was confirmed that the weight was reduced by 10% compared to 2. Moreover, according to Table 3 and Table 4, it has confirmed that the carbon dioxide emission amount of Example 6 was reduced about 20% compared with the comparative example 2 with the same thickness of a test piece.
  • Example 6 in which the amount of rust generated in the mold and the presence or absence of silver generation differed in the moisture content of the kenaf PP pellets (thermoplastic resin composition) obtained in the above [1] during injection molding.
  • Example 7 water content 0.2%)
  • Comparative Example 3 water content 1.0%) was produced by injection molding at a molding temperature of 210 ° C. 100 times.
  • the amount of rust generated in the mold was evaluated.
  • the presence or absence of the occurrence of silver (light) on the surface of the molded product was evaluated.
  • the amount of rust generated in the mold is 10 when the rust is generated when injection molding is performed 100 times at a moisture content of 1.0% (Comparative Example 3), and 0 when no rust is generated.
  • the degree of rust was visually evaluated in 11 stages (0 to 10).
  • the presence or absence of silver generation was evaluated visually. The results are shown in Table 5.
  • the moisture content of the material before injection molding is 0. 0 as compared with Comparative Example 3 in which the moisture content of the material before injection molding is 1.0%. It was confirmed that the corrosive action on the mold can be reduced by setting it to 4% or less (as close to 0% as possible).
  • the amount of rust generated was calculated by evaluating the amount of rust generated visually by 11 steps of 0 to 10, in Example 7, the amount of rust generated was about 60% or more compared to Comparative Example 3. It was confirmed that it was reduced. Furthermore, it was confirmed that the generation of silver on the surface of the molded product can be reduced by controlling the moisture content.
  • Air cleaner case cap Embodiment 1 In this Embodiment 1, the air cleaner case cap in the air cleaner case which is a motor vehicle part is illustrated as a thermoplastic resin molding in this invention.
  • (3-1) Configuration of Air Cleaner Case As shown in FIG. 1, the air cleaner case 10 includes an air cleaner case body 2 and an air cleaner case cap 1 (Embodiment 1).
  • the air cleaner case body 2 is formed by injection molding a thermoplastic resin composition containing talc as a reinforcing resin material.
  • the air cleaner case cap 1 was prepared by drying kenaf PP pellets produced in the same manner as in Example 1 in [1] above at 110 ° C. for 4 hours using a resin dryer, so that the moisture content of the material was 0.4% or less.
  • the air cleaner case cap 1 has a plate-like top with ribs 12 (projection amount 1.0 to 30 mm) and bosses 13 (projection amount 5.0 to 40 mm) formed on one side (inner side of the lid). It has a plate part 11 (thickness 1.5 to 2.5 mm) and has sufficient strength.
  • the air cleaner case cap 1 is formed with a hinge portion 14 and can be opened and closed as a lid of the air cleaner case via the hinge portion 14 as shown in FIG.
  • the hinge portion 14 is formed with four sets of protrusions (ribs) 141 at corresponding portions on both sides of the plate-like portion [base portion (not shown)] (that is, one surface side of the base portion). Four sets of protrusions 141 are formed on both sides of the other surface). Therefore, the hinge portion 14 that may be subjected to a large load has a sufficiently reinforced configuration.
  • thermoplastic resin molded article of the present invention contains a specific proportion of plant fibers, so is lightweight and has a low environmental impact from the viewpoint of carbon neutrality ( That is, it was confirmed that the amount of carbon dioxide emission based on carbon neutral is small. Furthermore, since it is obtained by injection molding a thermoplastic resin composition controlled to a specific moisture content, the appearance due to transfer of rust from the mold to the surface of the molded product, generation of silver, etc. It was confirmed that the defects were sufficiently suppressed and the appearance quality was excellent.
  • thermoplastic resin molded body of the present invention since the moisture content of the thermoplastic resin composition as a raw material is controlled, the amount of water vapor at the time of molding is reduced, and the rust in the injection mold is reduced. It was confirmed that generation can be sufficiently suppressed. Furthermore, it can be confirmed that the appearance defects on the surface of the molded product such as the transfer of rust from the mold to the surface of the molded product and the occurrence of silver can be suppressed, and the design of the resulting thermoplastic resin molded product can be improved. It was. In addition, since a thermoplastic resin composition containing plant fibers is used as a raw material, carbon dioxide emissions based on carbon neutral can be reduced, and lightweight thermoplastic resin moldings can be produced efficiently. I was able to confirm. Furthermore, since the load on the mold can be reduced, it has been confirmed that the maintainability of the mold can be improved without affecting the productivity and the quality of the molded body (product).
  • thermoplastic resin molded body and the manufacturing method thereof of the present invention can be used in a wide range of applications such as automobile-related fields, architectural-related fields, and household appliance-related fields, and interior materials such as automobiles, railway vehicles, ships and airplanes, It is more useful in the technical field of exterior materials and structural materials, and is particularly suitable for use in automotive-related product fields such as automotive interior materials, automotive exterior materials, automotive engine-related parts (for example, air cleaner cases). can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の目的は、軽量であり且つ環境負荷が低減された熱可塑性樹脂成形体、及び、その熱可塑性樹脂成形体を効率良く製造することができるとともに、射出成形型における錆の発生を十分に抑制することができる熱可塑性樹脂成形体の製造方法を提供することである。本発明の熱可塑性樹脂成形体1は、熱可塑性樹脂及び植物繊維を主成分として含み、熱可塑性樹脂と植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6であるものであって、熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することにより得られる。

Description

熱可塑性樹脂成形体及びその製造方法
 本発明は、熱可塑性樹脂成形体及びその製造方法に関する。更に詳しくは、軽量であり且つ環境負荷が低減された熱可塑性樹脂成形体、及び、その熱可塑性樹脂成形体を効率良く製造することができるとともに、射出成形型における錆の発生を十分に抑制することができる熱可塑性樹脂成形体の製造方法に関する。
 従来より、自動車分野等における構造材料(例えば、エアクリーナーケース等)には、熱可塑性樹脂を原料とする射出成形による成形品が用いられている(例えば、特許文献1及び2を参照)。このような構造材料には十分な機械的強度が求められており、成形品の強度を向上させるために、一般的に原料として比重の大きなガラス繊維やタルク等の樹脂強化材料が、熱可塑性樹脂とともに併用されている。
 しかしながら、ガラス繊維やタルク等の樹脂強化材料を併用した従来の熱可塑性樹脂成形品は、比重が大きく重量があるため、更なる軽量化が求められている。
 また、昨今の地球温暖化の問題に鑑み、植物由来材料を使用し、所謂、カーボンニュートラルの概念に基づいて二酸化炭素の発生量を低減させる必要性が高まっており、自動車分野等においても構造材料等の製造に植物由来材料の使用が必要となってきている。そのため、熱可塑性樹脂と植物材料とを混合した複合材料が各種の用途で検討されている。
特開2006-138203号公報 特開2006-117006号公報
 ガラス繊維やタルク等の樹脂強化材料を用いた従来の成形品においては、二酸化炭素排出量等の環境負荷に対する提案や、植物由来材料の使用に関する提案は全くされておらず、軽量であり且つ環境負荷が低減された熱可塑性樹脂成形体が求められているのが現状である。
 一方、本願における出願人は、多量の植物繊維を含有させることができ、且つ射出成形等に用いたときに、十分な流動性を有する熱可塑性樹脂組成物の製造方法を見いだし、特許出願している(特開2011-5742号公報を参照)。
 その後、更なる検討を重ねた結果、植物繊維が添加された熱可塑性樹脂組成物を射出成形した際に、成形時の熱によって植物材料の熱分解が起こり、腐食性ガスが生成されることが確認された。具体的には、植物に含まれるヘミセルロースのアセチル基が熱分解によって分離するなどし、酢酸やギ酸が発生することが原因と考えられ、これらの発生量は温度上昇とともに増加すると考えられる。そして、成形時の熱によって生じる酢酸等の成分や、周囲に存在する酸素や水によって、射出成形に用いられる金型等に腐食や変色の負荷が生じ、成形型に負担のかかるおそれがあることが分かってきた。更には、金型に発生した腐食等により、金型からの成形品への錆の転写や、シルバー(成形品表面の照かり)の発生等の成形品表面における外観不良が発生し、成形品の意匠性を損なうおそれがあることが分かってきた。
 本発明は、上記実情に鑑みてなされたものであり、軽量であり且つ環境負荷が低減された熱可塑性樹脂成形体、及び、その熱可塑性樹脂成形体を効率良く製造することができるとともに、射出成形型における錆の発生を十分に抑制することができる熱可塑性樹脂成形体の製造方法を提供することを目的とする。
 上記問題点を解決するために、請求項1に記載の発明は、熱可塑性樹脂及び植物繊維を主成分として含み、前記熱可塑性樹脂と前記植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体であって、
 熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することにより得られることを要旨とする。
 請求項2に記載の発明は、請求項1において、厚み0.5~10mmの板状部を備えており、前記板状部の一面には突出量が0.5~50mmの突部が形成されており、前記板状部の他面の前記突部の対応部位における、へこみの深さが0.1mm以下であることを要旨とする。
 請求項3に記載の発明は、熱可塑性樹脂及び植物繊維を主成分として含み、前記熱可塑性樹脂と前記植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体の製造方法であって、
 熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することを要旨とする。
 本発明の熱可塑性樹脂成形体は、特定の割合の植物繊維を含有しているため、軽量であり、且つカーボンニュートラルの観点から環境負荷が少ない(即ち、カーボンニュートラルに基づく二酸化炭素の排出量が少ない)。更には、特定の含水率に制御された熱可塑性樹脂組成物を射出成形することにより得られているため、成形品表面への金型からの錆の転写や、シルバーの発生等に起因する外観不良が十分に抑制されており、外観品質に優れる。
 また、本発明の熱可塑性樹脂成形体が突部を有する板状部を備えている場合、突部の対応部位における、へこみの深さが0.1mm以下であり、射出成形においてリブやボス等の突部を形成する際に、成形収縮によって生じるへこみ(所謂、ヒケ)の度合いが低減されており、外観品質に優れる。
 本発明の熱可塑性樹脂成形体の製造方法によれば、原料である熱可塑性樹脂組成物の含水率を制御しているため、成形時の水蒸気量が減少し、射出成形型における錆の発生を十分に抑制することができる。そのため、金型からの成形品表面への錆の転写や、シルバーの発生等の成形品表面における外観不良を抑制でき、得られる熱可塑性樹脂成形体の意匠性を向上させることができる。また、原料として、植物繊維を含有する熱可塑性樹脂組成物を用いているため、カーボンニュートラルに基づく二酸化炭素の排出量を低減化することができるとともに、軽量な熱可塑性樹脂成形体を効率良く製造することができる。更には、成形型への負荷を減らすことができるため、生産性、成形体(製品)品質に影響を及ぼすことなく、成形型のメンテナンス性を向上することができる。
 本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
エアクリーナーケースキャップを備えるエアクリーナーケースの構成を説明するための模式図である。 エアクリーナーケースキャップを備えるエアクリーナーケースの構成を説明するための模式図である。 図2における要部AのI-I線断面を説明するための模式図である。 ケナフ繊維とPPとからなる熱可塑性樹脂組成物を用いた場合における、成形温度と酢酸発生量との相関を表すグラフである。 バーフロー金型を説明するための模式図である。
 ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
 以下、本発明を詳しく説明する。
[1]熱可塑性樹脂成形体
 本発明の熱可塑性樹脂成形体は、熱可塑性樹脂及び植物繊維を主成分として含み、熱可塑性樹脂と植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体であって、熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することにより得られることを特徴とする。
 本発明の熱可塑性樹脂成形体に含まれる上記「熱可塑性樹脂」は、特に限定されないが、例えば、ポリオレフィン、ポリエステル樹脂、ポリスチレン、アクリル樹脂、ポリアミド、ポリカーボネート、ポリアセタール、ABS樹脂、ポリ乳酸、ポリカプロラクトン、及びポリブチレンサクシネート等を挙げることができる。これらのなかでも、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィンが好ましく、ポリプロピレン、エチレン-プロピレン共重合体がより好ましい。尚、熱可塑性樹脂は1種のみ含有されていてもよいし、2種以上含有されていてもよい。
 また、熱可塑性樹脂としてポリオレフィン(特に、ポリプロピレンやエチレン-プロピレン共重合体)が含まれている場合には、酸変性ポリオレフィンが更に含まれていることが好ましい。酸変性ポリオレフィンが更に含まれている場合、成形体の機械的特性がより向上するため好ましい。
 酸変性ポリオレフィンが含まれる場合、この酸変性ポリオレフィンの含有割合は、熱可塑性樹脂全体を100質量%とした場合に、0.5~20質量%であることが好ましく、より好ましくは0.6~15質量%、更に好ましくは0.7~10質量%である。この含有割合が1~30質量%である場合、成形体の機械的特性を向上させることができる。
 本発明の熱可塑性樹脂成形体に含まれる上記「植物繊維」は、植物に由来する繊維である。この植物繊維としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、針葉樹(杉、檜等)、広葉樹、及び綿花等の各種の植物が有する繊維が挙げられる。
 尚、植物繊維は1種のみ含有されていてもよいし、2種以上含有されていてもよい。また、用いられる植物の部位は特に限定されず、非木質部、木質部、葉部、茎部及び根部等の植物を構成するいずれの部位であってもよい。更に、特定部位のみを用いてもよいし、2箇所以上の異なる部位を併用してもよい。
 上記植物繊維のなかでも、成長が極めて早い一年草であり、優れた二酸化炭素吸収性を有し、大気中の二酸化炭素量の削減、森林資源の有効利用等に貢献することができるケナフ繊維が好ましい。ケナフは木質茎を有する早育性の一年草であり、アオイ科に分類される植物である。このケナフとしては、学名におけるhibiscus cannabinus及びhibiscus sabdariffa等、並びに通称名における紅麻、キューバケナフ、洋麻、タイケナフ、メスタ、ビムリ、アンバリ麻及びボンベイ麻等が挙げられる。
 本発明の熱可塑性樹脂成形体は、上記熱可塑性樹脂及び植物繊維を主成分として含有するものであり、他の成分を含有していてもよい。
 主成分である熱可塑性樹脂及び植物繊維の含有割合の合計は、熱可塑性樹脂成形体全体を100質量%とした場合に、90~100質量%であることが好ましく、より好ましくは95~100質量%、更に好ましくは97~100質量%である。
 更に、熱可塑性樹脂と植物繊維の含有比(熱可塑性樹脂:植物繊維)は、7:3~4:6であり、好ましくは7:3~4.5:5.5、更に好ましくは4:6~5:5である。この含有比が7:3~4:6である場合、タルク及び熱可塑性樹脂を含む従来の組成物からなる熱可塑性樹脂成形体と同等の機械特性を維持したまま、十分に軽量化することができる。
 上記他の成分は特に限定されないが、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、抗菌剤、着色剤等の各種の添加剤が挙げられる。これらの添加剤は、1種のみ含有されていてもよいし、2種以上含有されていてもよい。
 また、本発明の熱可塑性樹脂成形体は、上述のように、熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することにより得られるものであり、成形体の形状及び寸法等は特に限定されない。尚、原料である「熱可塑性樹脂組成物」及び「射出成形」に関しては、後段の熱可塑性樹脂成形体の製造方法において詳細を説明する。
 本発明の熱可塑性樹脂成形体は、用途に応じて、部分的に又は全体的に強度を向上させるために、リブやボス等の突部(補強部)を備えるものとすることができる。尚、補強部の形成数、形成位置、形状及び寸法等は特に限定されない。
 また、本発明における熱可塑性樹脂成形体は、特定の方法により製造されているため、一方の面にリブやボス等の突部を射出成形により形成した場合、他面のその突部に対応する部位に生じる、成形収縮によるへこみ(ヒケ)の度合いが低く、優れた外観品質を備えている。
 具体的には、厚み0.5~10mmの板状部(図1~図3における天板部11参照)を備えており、板状部の一面には突出量が0.5~50mmの突部(図1~図3におけるリブ12参照]が形成されており、板状部の他面の突部の対応部位における、へこみ(図3におけるへこみ15参照]の深さが0.1mm以下である熱可塑性樹脂成形体とすることができる。
 上記板状部の厚み[図3における(t)参照]は、0.5~10mmであり、特に1.0~5.0mm、更には1.5~3.0mmとすることができる。
 また、上記突部の突出量[図3における(h)参照]は、0.5~50mmであり、特に1.0~40mm、更には2.0~30mmとすることができる。
 更に、上記へこみの深さ[図3における(x)参照]は、0.1mm以下であり、特に0.08mm以下、更には0.06mm以下とすることができる。
 尚、本発明の熱可塑性樹脂成形体では、用途に応じて、大きな負荷のかかる部位(例えば、図1及び図2におけるエアクリーナーケース10におけるエアクリーナーケースキャップ1のヒンジ部14)においては、板状部の両面側の対応する部位に突部を備えるものとすることができる。即ち、板状部の一面側と他面側の両方に突部を形成することができる。尚、この際、一面側における突部の形状と、それに対応する他面側における突部の形状は同一であってもよいし、異なっていてもよい。
 また、本発明の熱可塑性樹脂成形体の用途は特に限定されない。例えば、自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等が挙げられる。これらのうち、自動車用途としては、内装材、外装材、エンジン関係部品、インストルメントパネル、等が挙げられ、具体的には、ドア基材、パッケージトレー、ピラーガーニッシュ、スイッチベース、クオーターパネル、アームレストの芯材、ドアトリム、シート構造材、シートバックボード、天井材、コンソールボックス、ダッシュボード、インストルメントパネル、デッキトリム、バンパ、スポイラ、カウリング、エアクリーナーケースキャップ及びエアクリーナー容器等が挙げられる。更に、上記自動車等を除く他の用途としては、例えば、建築物及び家具等の内装材、外装材及び構造材等が挙げられる。具体的には、建築物のドア表装材、ドア構造材、机、椅子、棚、箪笥等の各種家具の表装材、構造材等が挙げられる。更に他の例として、包装体、トレイ等の収容体、保護用部材、パーティション部材及び家電製品の筐体等が挙げられる。
[2]熱可塑性樹脂成形体の製造方法
 本発明の熱可塑性樹脂成形体の製造方法は、熱可塑性樹脂及び植物繊維を主成分として含み、熱可塑性樹脂と植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体の製造方法であって、熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することを特徴とする。
 上記「熱可塑性樹脂組成物」は、熱可塑性樹脂及び植物繊維を含有するものである。
 この熱可塑性樹脂組成物は、通常、混合装置により、熱可塑性樹脂と、植物繊維と、必要に応じて他の成分(添加剤)とを混練し、混合することにより調製されたものが用いられる(尚、植物繊維の形態は、原料段階と製品段階とで異なることがある。)。
 この熱可塑性樹脂組成物に含まれる上記「熱可塑性樹脂」としては、前述の[1]熱可塑性樹脂成形体における「熱可塑性樹脂」を挙げることができる。
 熱可塑性樹脂のなかでも、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィンを用いることが好ましく、ポリプロピレン、エチレン-プロピレン共重合体を用いることがより好ましい。
 上記ポリオレフィンの流動性能を示すメルトフローレート(MFR)は、1.0~200g/10minであることが好ましく、より好ましくは5.0~100g/10min、更に好ましくは10~60g/10minである。尚、MFRの測定はJIS K7210に基づき、荷重2.16kg、温度230℃の条件で行う。
 また、上記熱可塑性樹脂としてポリオレフィン樹脂(特に、ポリプロピレンやエチレン-プロピレン共重合体)を用いる場合には、酸変性ポリオレフィンを併用することが好ましい。この場合、得られる成形体の機械的特性をより向上させることができる。
 この酸変性ポリオレフィンのベース樹脂としては、上述の各種のポリオレフィンを用いることができる。更に、熱可塑性樹脂組成物に含有される非変性ポリオレフィンと、酸変性に用いるベース樹脂とは同種の樹脂であることが好ましい。また、同種の樹脂である場合、各々の樹脂の平均分子量、密度等の差が小さいことがより好ましく、共重合体であるときは、各々の単量体単位の割合の差が小さいことがより好ましい。
 酸変性ポリオレフィンに酸基を導入する方法も特に限定されないが、通常、ポリオレフィンに酸基を有する化合物を反応させて導入する、所謂、グラフト重合により導入することができる。酸基を有する化合物も特に限定されず、無水マレイン酸、無水イタコン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、マレイン酸、イタコン酸、フマル酸、アクリル酸及びメタクリル酸等が挙げられる。これらは1種のみ用いてもよく、2種以上を併用してもよい。これらのうちでは、酸無水物が用いられることが多く、特に無水マレイン酸及び無水イタコン酸が多用される。
 酸変性ポリオレフィンにおける酸基の導入量は特に限定されないが、酸価が5以上となる導入量であることが好ましい。酸変性ポリオレフィンの酸価が5以上となる導入量であれば、酸変性ポリオレフィンを多量に配合することなく、成形体の機械的特性を十分に向上させることができる。この酸価は、10~80、特に15~70、更に20~60であることがより好ましい。尚、酸価はJIS K0070により測定することができる。
 また、酸変性ポリオレフィンの流動性能を示すメルトフローレート(MFR)は、0.5~100g/10minであることが好ましく、より好ましくは5~80g/10min、更に好ましくは10~60g/10minである。尚、MFRの測定はJIS K7210に基づき、荷重2.16kg、温度180℃の条件で行う。
 また、酸変性ポリオレフィンを併用する場合、この酸変性ポリオレフィンの配合割合は、熱可塑性樹脂全体を100質量%とした場合に、1~30質量%であることが好ましく、より好ましくは0.6~15質量%、更に好ましくは0.7~10質量%である。酸変性ポリオレフィンの配合割合が1~30質量%である場合、射出成形等の成形時の熱可塑性樹脂組成物の流動性を飛躍的に向上させることができるとともに、得られる成形体の機械的特性を向上させることができる。
 また、この熱可塑性樹脂組成物に含まれる上記「植物繊維」としては、前述の[1]熱可塑性樹脂成形体における「植物繊維」を挙げることができる。
 特に、植物繊維としてケナフ繊維を用いる場合、強靱な繊維を有する靭皮と称される外層部分を用いることができる。
 植物繊維の繊維長及び繊維径は特に限定されないが、繊維長(L)と繊維径(t)との比(L/t)が5~20000であることが好ましい。また、植物繊維の繊維長は、通常、10~300mmであり、繊維径は、通常、10~150μmである。この繊維長は、JIS L1015における直接法と同様にして1本の植物繊維を伸張させずに真っ直ぐに延ばし、置尺上で測定した値である。一方、繊維径は、繊維長を測定した植物繊維について、繊維の長さ方向の中央部における繊維径を光学顕微鏡を用いて測定した値である。
 更に、植物繊維の平均繊維長及び平均繊維径も特に限定されないが、平均繊維長は100mm以下(通常、10mm以上)であることが好ましい。平均繊維長が100mm以下の植物繊維を用いることにより、容易に熱可塑性樹脂と混合することができる。この平均繊維長は、JIS L1015に準拠する直接法により、単繊維を無作為に1本ずつ取り出し、伸張させずに真っ直ぐに延ばし、置尺上で繊維長を測定し、合計200本について測定した平均値である。また、平均繊維径は100μm以下(通常、15μm以上)であることが好ましい。この平均繊維径は、無作為に単繊維を1本ずつ取り出し、繊維の長さ方向の中央部における繊維径を光学顕微鏡を用いて実測し、合計200本について測定した平均値である。
 尚、混合の際に用いる植物繊維は、何ら加工することなく熱可塑性樹脂と混合してもよく、裁断し、又は粉砕して所定長の植物繊維として熱可塑性樹脂と混合してもよい。更には、ペレット化装置により所定の形状及び寸法を有する繊維ペレットとし、この繊維ペレットを熱可塑性樹脂と混合してもよい。
 上記熱可塑性樹脂組成物は、上記熱可塑性樹脂及び植物繊維を主成分として含有することが好ましい。熱可塑性樹脂及び植物繊維の含有割合の合計は、熱可塑性樹脂組成物全体を100質量%とした場合に、90~100質量%であることが好ましく、より好ましくは95~100質量%、更に好ましくは97~100質量%である。尚、この含有割合は、通常、熱可塑性樹脂組成物の製造時における原料全体における熱可塑性樹脂と植物繊維の配合割合の合計と同一となる。
 更に、熱可塑性樹脂と植物繊維の含有比(熱可塑性樹脂:植物繊維)は、7:3~4:6であり、好ましくは7:3~4.5:5.5、更に好ましくは4:6~5:5である。尚、この含有比は、通常、熱可塑性樹脂組成物の製造時における熱可塑性樹脂と植物繊維の配合比と同一となる。
 この含有比が7:3~4:6である場合、タルク及び熱可塑性樹脂を含む従来の組成物からなる熱可塑性樹脂成形体と同等の機械特性を有し、且つ十分に軽量化された可塑性樹脂成形体を得ることができる。
 また、熱可塑性樹脂組成物に、必要に応じて配合される上記他の成分は特に限定されないが、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、抗菌剤、着色剤等の各種の添加剤が挙げられる。尚、これらの添加剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記熱可塑性樹脂組成物の形態は特に限定されず、原料を混合して得られた混合物そのものであってもよいし、混合物を圧延した後に粉砕した粉砕混合物であってもよいし、粉砕混合物をペレット化したものであってもよい。特に、射出成形の際における操作性の観点から、粉砕混合物やペレット化されたものであることが好ましい。
 上記粉砕混合物の粒子の形状及び粒径は特に限定されない。その粒径(最大寸法)は、例えば、1~10mm(特に3~8mm)とすることができる。
 また、上記ペレット化された熱可塑性樹脂組成物の形状及び寸法は特に限定されないが、円柱状等の柱状形状であることが好ましい。また、その最大寸法は1mm以上(通常、20mm以下)であることが好ましく、1~10mm、特に2~7mmであることがより好ましい。
 尚、熱可塑性樹脂組成物、粉砕された熱可塑性樹脂組成物(粉砕混合物)、及びペレット化された熱可塑性樹脂組成物の具体的な製造方法については、特開2011-5742号公報を参照することができる。
 本発明の熱可塑性樹脂成形体の製造方法においては、射出成形を行う際に、含水率を特定の範囲に制御した熱可塑性樹脂組成物が用いられる。
 射出成形時における熱可塑性樹脂組成物の含水率は0.4%以下であり、好ましくは0.3%以下、更に好ましくは0.2%以下である。この含水率が0.4%以下であれば、射出成形時の水蒸気量が減少し、射出成形型における錆の発生を十分に抑制することができる。そのため、金型からの錆の転写や、シルバーの発生等の成形品表面における外観不良を抑制でき、得られる熱可塑性樹脂成形体の意匠性を向上させることができる。更には、成形型への負荷を減らすことができるため、生産性、成形体(製品)品質に影響を及ぼすことなく、成形型のメンテナンス性を向上することができる。
 熱可塑性樹脂組成物の含水率を0.4%以下に制御する方法は特に限定されない。具体的には、例えば、加熱乾燥、除湿乾燥、減圧乾燥、又はこれらの方法を組み合わせることによって制御することができる。
 尚、制御条件は特に限定されず、適宜設定することができる。具体的には、100~130℃(特に100~120℃)の温度範囲において、0.5時間以上(特に1時間以上)乾燥することにより、含水率を0.4%以下に制御することができる。
 また、この含水率は、加熱水分計により5gの材料を130℃まで加熱し、重量減量の時間変化によって0.05%/min以下となるまで測定することで求められる。加熱水分計は、例えば、株式会社エーアンドディ製、型式「MX-50」を使用することができる。
 また、射出成形に用いる装置及び成形条件等は特に限定されず、熱可塑性樹脂の種類、及び成形体の形状、用途等により適宜選択し、設定すればよい。
 特に、射出成形の際の成形温度は、180~230℃(特に190~210℃)の温度範囲において行うことが好ましい。この場合、成形時における錆の発生原因となる酢酸の発生量(図4参照)を抑制した状態で射出成形を行うことができる。
 尚、この図4は、ケナフ繊維とPPとからなる熱可塑性樹脂組成物[含水率;3.0%、ケナフ繊維:PP(含有比)=4:6]を用いた場合における、成形温度と酢酸発生量との相関を表すグラフである。
 以下、実施例により本発明を更に具体的に説明する。
[1]熱可塑性樹脂成形体の製造(実施例1~7及び比較例1~3)
<実施例1>
 (1-1)熱可塑性樹脂組成物の調製
 インドネシア産又はベトナム産ケナフ繊維を有限会社吉工製粉砕機「RC250」(メッシュφ2mm)にて切断し、切断されたケナフ粉砕繊維を、菊川鉄工製ペレタイザ「KP280」(ダイ径φ6.2mm、長さ10mm)を用いて、フィーダー周波数40Hzにてケナフ粉砕繊維を投入し、ローラー周波数40Hzにてケナフペレットを作製した。
 その後、得られたケナフペレット(繊維長2mm)、ポリプロピレン(PP)[サンアロマー製「VM970X」]、酸変性PP(三菱化学製「モディック P908」)、黒マスターバッチ(着色剤)[ロンビック社製「RMB920」]を、各々、200g、292.5g、7.5g、10g(質量比で40:58.5:1.5:2)を、混合室の容積が5Lの混合溶融装置(WO2004-076044号に記載された装置)に投入し、混合羽根の回転数を2250rpmにて混合し、羽根にかかる負荷(トルク)が上昇し、トルクピークに到達してから5秒経過後を終点として混合を停止し、ケナフPP混合溶融樹脂を排出させた。次いで、排出された塊状のケナフPP混合溶融樹脂をヤスダ工機製圧延ローラー装置にて5mm厚の板状に圧延した。その後、ケナフPP混合圧延溶融混合樹脂をマルヤス機械製「MMX224」にて冷却、運搬し、TRIA製粉砕機「42-20JM」(メッシュφ5mm)にて粉砕することにより、幅約4mm、且つ長さ約5mmのフレーク状の射出形成用のケナフPPペレット(熱可塑性樹脂組成物)を作製した。尚、このケナフPPペレットの密度は、1.04g/cmであった。
 (1-2)熱可塑性樹脂成形体の製造
 作製したケナフPPペレットを、樹脂乾燥機を用いて110℃にて4時間乾燥させ、材料含水率を0.4%に制御し、射出成型機(住友重機械工業製「SE100DU」)にて、成形温度190℃、型温度40℃の条件で射出成形を行い、実施例1の試験片[110×10×4mm(JIS K7171に準拠)]を作製した。
<実施例2~5>
 ケナフ(植物繊維)とPP(熱可塑性樹脂)の配合割合を、表1に示すように変更した以外は、実施例1と同様にして、実施例2~5の試験片(110×10×4mm)を作製した。
<実施例6>
 実施例1と同様に作製したケナフPPペレットを、樹脂乾燥機を用いて110℃にて4時間乾燥させ、材料含水率を0.4%に制御し、射出成型機(住友重機械工業製「SE100DU」)にて、成形温度190℃、型温度40℃の条件で射出成形を行い、実施例1と厚みの異なる実施例6の試験片(110×10×2mm)を作製した。
<実施例7>
 実施例1と同様に作製したケナフPPペレットを、樹脂乾燥機を用いて110℃にて4時間乾燥させ、材料含水率を0.2%に制御し、射出成型機(住友重機械工業製「SE100DU」)にて、成形温度210℃、型温度40℃の条件で射出成形を行い、実施例1と厚みが異なり、且つ射出成形前の材料含水率の異なる実施例7の試験片(110×10×2mm)を作製した。
<比較例1(従来品)>
 ポリプロピレン(PP)[株式会社日本ポリプロ製、品名「CNX0228」]を使用し、タルクを混合して作製したタルクPPペレットを、樹脂乾燥機を用いて110℃で4時間乾燥させた後に射出成形機(住友重機械工業製、型式「SE100DU」)にて、成形温度220℃、型温度40℃の条件で射出成形することにより、比較例1の試験片(110×10×4mm)を作製した。尚、このタルクPPペレットの密度は、1.14g/cmであった。
<比較例2(従来品)>
 ポリプロピレン(PP)[株式会社日本ポリプロ製、品名「CNX0228」]を使用し、タルクを混合して作製したタルクPPペレットを、樹脂乾燥機を用いて110℃で4時間乾燥させた後に射出成形機(住友重機械工業製、型式「SE100DU」)にて、成形温度220℃、型温度40℃の条件で射出成形することにより、比較例1と厚みの異なる比較例2の試験片(110×10×2mm)を作製した。
<比較例3>
 実施例1と同様に作製したケナフPPペレットを、樹脂乾燥機を用いて110℃にて4時間乾燥させ、材料含水率を1.0%に制御し、射出成型機(住友重機械工業製「SE100DU」)にて、成形温度210℃、型温度40℃の条件で射出成形を行い、実施例1と厚みが異なり、且つ射出成形前の材料含水率の異なる比較例3の試験片(110×10×2mm)を作製した。
 尚、実施例1~7及び比較例1~3における、原料の配合割合、射出成形時の含水率、及び試験片の厚みの詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[2]評価
 (2-1)曲げ特性及び流動性
 上記[1]で得られた、原料の配合割合が異なる実施例1~5及び比較例1の各試験片を用いて、JIS K7171に準拠して曲げ試験を実施し、曲げ強度を算出した。
 また、流動性は射出成形機にバーフロー金型(図5に示す注入口611の口径が10mmであり、且つ、幅20mm、厚さ2mmの角渦巻き形状のキャビティ612を有する金型61)を接続し、シリンダ温度190℃、型温度40℃、射出圧力150MPa、射出速度80mm/秒、計量値60(スクリューを60mm後退させて、シリンダに60mm分の被射出物の貯留域を確保)の条件で射出成形して得られた成形体の長さを流動長として測定した。それぞれの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、原料の配合比(ケナフ:PP)が3:7~7:3の実施例1~5は、曲げ強度が50~78MPa、バーフロー長が190~420mmであり、十分な曲げ特性を有し、且つバーフロー長を指標とする流動性も優れていることが確認できた。また、従来品である比較例1と同等以上の特性を示すこと確認できた。
 (2-2)軽量化の度合い及び二酸化炭素(CO)排出量の度合い
 上記[1]で得られた、実施例1及び比較例1の各試験片(厚み4mm)と厚みの異なる実施例6及び比較例2の各試験片(厚み2mm)を用いて、下記のように軽量化の度合い、及び二酸化炭素排出量の度合いを算出した。それぞれの結果を表3に示す。
 <軽量化の度合い>
 従来品である比較例2の重量を1として、実施例6の重量比を算出した。
 <二酸化炭素排出量の度合い>
 従来品である比較例2の二酸化炭素排出量を1として、実施例6の二酸化炭素排出比を算出した。尚、この算出に用いた各項目の二酸化炭素排出量の詳細を表4に記載した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3によれば、タルク(2.7g/cm)よりも低密度なケナフ繊維(1.4g/cm)を原料として用いた実施例6は、試験片の厚みが同一である比較例2と比べて10%軽量化されていることが確認できた。
 また、表3及び表4によれば、実施例6の二酸化炭素排出量は、試験片の厚みが同一である比較例2と比べて約20%低減されていることが確認できた。
 (2-3)成形型における錆発生量、及びシルバーの発生の有無
 上記[1]で得られた、射出成形時におけるケナフPPペレット(熱可塑性樹脂組成物)の含水率が異なる実施例6(含水率0.4%)、実施例7(含水率0.2%)及び比較例3(含水率1.0%)の各試験片を成形温度210℃にて100回射出成形により作製した際に、成形型において発生する錆の量を評価した。更に、成形品表面におけるシルバー(照かり)の発生の有無を評価した。
 尚、金型における錆の発生量は、含水率1.0%で100回射出成形した場合(比較例3)に発生した錆の面積を10とし、錆の発生がない場合を0として、その間の錆の程度を11段階(0~10)で目視により評価した。また、シルバーの発生の有無は、目視により評価した。それぞれの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5によれば、射出成形前の材料の含水率が1.0%である比較例3と比較し、実施例6及び実施例7のように、射出成形前の材料の含水率を0.4%以下(可能な限り0%に近づける)にすることで、成形型への腐食作用を低減できることが確認できた。尚、目視による錆発生量を0~10の11段階評価することにより、錆の発生量を算出したところ、実施例7においては、比較例3と比較して約60%以上の錆発生量が低減していることが確認できた。
 更に、含水率の制御によって、成形品表面のシルバーの発生も低減できることが確認できた。
 以上のことから、射出成形時における材料の含水率を0.4%以下に制御することによって、成形時の水蒸気量を減少させ、射出成形型における錆の発生を十分に抑制することができ、成形型への負荷を減らすことができることが確認できた。更には、生産性、成形体(製品)品質に影響を及ぼすことなく、成形型のメンテナンス性を向上することが可能となる。また、得られる成形体においては、金型からの錆の転写や、シルバーの発生等の成形品表面における外観不良を抑制でき、意匠性を向上させることができることが分かった。
[3]エアクリーナーケースキャップ
 実施形態1
 この実施形態1では、本発明における熱可塑性樹脂成形体として、自動車部品であるエアクリーナーケースにおけるエアクリーナーケースキャップを例示する。
 (3-1)エアクリーナーケースの構成
 図1に示すように、エアクリーナーケース10は、エアクリーナーケース本体2と、エアクリーナーケースキャップ1(実施形態1)と、を備えている。
 エアクリーナーケース本体2は、補強樹脂材料としてタルクを含む熱可塑性樹脂組成物を射出成形することにより形成されている。
 エアクリーナーケースキャップ1は、上記[1]における実施例1と同様に作製したケナフPPペレットを、樹脂乾燥機を用いて110℃にて4時間乾燥させ、材料含水率を0.4%以下に減らし、射出成形機(東芝機械製「IS 450E-27A」)を用いて成形温度190℃、型温度15℃にて射出成形を行うことにより得られた蓋体である。
 また、エアクリーナーケースキャップ1は、リブ12(突出量1.0~30mm)及びボス13(突出量5.0~40mm)が一面側(蓋体の内面側)に形成された板状の天板部11(厚み1.5~2.5mm)を有しており、十分な強度を備えている。
 更に、エアクリーナーケースキャップ1には、ヒンジ部14が形成されており、図2に示すように、このヒンジ部14を介して、エアクリーナーケースの蓋体として開閉可能な構成となっている。
 また、このヒンジ部14には、板状部[基部(図示せず)]の両面側の対応する部位に4組の突部(リブ)141が形成されている(即ち、基部の一面側と他面側の両方に4組の突部141が形成されている)。そのため、大きな負荷のかかる可能性があるヒンジ部14は十分に補強された構成となっている。
 (3-2)リブ形成箇所におけるヒケ(へこみ)の度合い
 図2における要部AのI-I線断面(図3)を参照にして、エアクリーナーケースキャップ1の他面側[意匠面(蓋体の外表面)]における、一面側に形成されたリブ12に対応する部位に生じる、成形収縮によるへこみ(ヒケ)15の深さ(最大深さx)を、電子顕微鏡を用いて測定した。その結果、へこみの深さは0.05mmであった。
 これに対して、比較成形品として、上記[1]における比較例1と同様に作製したタルクPPペレットを用い、射出成形機(東芝機械製「IS 450E-27A」)により、成形温度220℃、型温度15℃にて、実施形態1のエアクリーナーケースキャップと同様の形状に射出成形を行ったところ、同一箇所のリブに対応する部位に生じる、成形収縮によるへこみ(ヒケ)の深さは0.11mmであった。
 以上のことから、特定の製造方法により得られた本実施形態1のエアクリーナーケースキャップにおいては、射出成形においてリブやボス等の突部を形成する際に、成形収縮によって生じるへこみ(所謂、ヒケ)の度合いが低減されており、外観品質に優れていることが確認できた。
[4]実施例の効果
 以上の結果より、本発明の熱可塑性樹脂成形体は、特定の割合の植物繊維を含有しているため、軽量であり、且つカーボンニュートラルの観点から環境負荷が少ない(即ち、カーボンニュートラルに基づく二酸化炭素の排出量が少ない)ことが確認できた。更には、特定の含水率に制御された熱可塑性樹脂組成物を射出成形することにより得られているため、成形品表面への金型からの錆の転写や、シルバーの発生等に起因する外観不良が十分に抑制されており、外観品質に優れることが確認できた。
 また、本発明の熱可塑性樹脂成形体の製造方法によれば、原料である熱可塑性樹脂組成物の含水率を制御しているため、成形時の水蒸気量が減少し、射出成形型における錆の発生を十分に抑制することができることが確認できた。更に、金型からの成形品表面への錆の転写や、シルバーの発生等の成形品表面における外観不良を抑制でき、得られる熱可塑性樹脂成形体の意匠性を向上させることができることが確認できた。また、原料として、植物繊維を含有する熱可塑性樹脂組成物を用いているため、カーボンニュートラルに基づく二酸化炭素の排出量を低減化することができるとともに、軽量な熱可塑性樹脂成形体を効率良く製造することができること確認できた。更には、成形型への負荷を減らすことができるため、生産性、成形体(製品)品質に影響を及ぼすことなく、成形型のメンテナンス性を向上することができることが確認できた。
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。
 本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。
 本発明の熱可塑性樹脂成形体及びその製造方法は、自動車関連分野、建築関連分野及び家電関連分野等の広範な用途において利用することができ、自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等の技術分野でより有用であり、特に、自動車用内装材、自動車用外装材、自動車用エンジン関係部品(例えば、エアクリーナーケース)等の自動車関連の製品分野で好適に利用することができる。
 10;エアクリーナーケース、1;エアクリーナーケースキャップ、11;天板部、12;リブ、13ボス、14;ヒンジ部、141;突部、15;へこみ、2;エアクリーナーケース本体、61;バーフロー金型。

Claims (3)

  1.  熱可塑性樹脂及び植物繊維を主成分として含み、前記熱可塑性樹脂と前記植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体であって、
     熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することにより得られる熱可塑性樹脂成形体。
  2.  厚み0.5~10mmの板状部を備えており、
     前記板状部の一面には突出量が0.5~50mmの突部が形成されており、
     前記板状部の他面の前記突部の対応部位における、へこみの深さが0.1mm以下である請求項1に記載の熱可塑性樹脂成形体。
  3.  熱可塑性樹脂及び植物繊維を主成分として含み、前記熱可塑性樹脂と前記植物繊維の含有比(熱可塑性樹脂:植物繊維)が、7:3~4:6である熱可塑性樹脂成形体の製造方法であって、
     熱可塑性樹脂及び植物繊維を含有するとともに、含水率が0.4%以下の熱可塑性樹脂組成物を射出成形することを特徴とする熱可塑性樹脂成形体の製造方法。
PCT/JP2012/079305 2011-12-21 2012-11-12 熱可塑性樹脂成形体及びその製造方法 WO2013094343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280061419.7A CN103987508B (zh) 2011-12-21 2012-11-12 热塑性树脂成型体及其制造方法
EP12860610.0A EP2796266B1 (en) 2011-12-21 2012-11-12 Thermoplastic resin molding and manufacturing method therefor
US14/356,000 US20140302284A1 (en) 2011-12-21 2012-11-12 Thermoplastic resin molding and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011280342A JP2013129125A (ja) 2011-12-21 2011-12-21 熱可塑性樹脂成形体及びその製造方法
JP2011-280342 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094343A1 true WO2013094343A1 (ja) 2013-06-27

Family

ID=48668242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079305 WO2013094343A1 (ja) 2011-12-21 2012-11-12 熱可塑性樹脂成形体及びその製造方法

Country Status (5)

Country Link
US (1) US20140302284A1 (ja)
EP (1) EP2796266B1 (ja)
JP (1) JP2013129125A (ja)
CN (1) CN103987508B (ja)
WO (1) WO2013094343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002074A1 (ja) * 2013-07-03 2015-01-08 不二製油株式会社 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102013029084B1 (pt) * 2013-11-12 2021-11-30 Cleber Pereira Gama Processo de obtenção de composto plástico a base de material vegetal fibroso, composto plástico a base de material vegetal fibroso obtido e equipamento para extrusão de composto plástico a base de material vegetal fibroso
US10654202B2 (en) 2017-04-14 2020-05-19 Toyota Boshoku Kabushiki Kaisha Resin molding and method for producing the same
CN110367608A (zh) * 2019-07-26 2019-10-25 际华三五四二纺织有限公司 一种具备高透气性的衬衣面料
CN114907644A (zh) * 2021-02-10 2022-08-16 北京联合金玉商业管理有限公司 环保塑料组合物及其塑料制品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003723A (ja) * 2000-06-19 2002-01-09 Konica Corp 熱可塑性組成物、成形方法及び感光材料用容器
WO2004076044A1 (ja) 2003-02-27 2004-09-10 M & F Technology Co., Ltd. 混合粉砕装置、混合溶融方法およびバインダーが含浸されたセルロース系材料の成形方法
JP2005029601A (ja) * 2003-07-07 2005-02-03 Fuji Photo Film Co Ltd 射出成形材料、その製造方法および射出成形品
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2005105245A (ja) * 2003-01-10 2005-04-21 Nec Corp ケナフ繊維強化樹脂組成物
JP2006117006A (ja) 2004-10-19 2006-05-11 Toyota Boshoku Corp 衝撃吸収構造及び衝撃吸収構造物の成形方法
JP2006138203A (ja) 2004-11-10 2006-06-01 Fuji Heavy Ind Ltd 車両のエアクリーナ構造
JP2008088358A (ja) * 2006-10-04 2008-04-17 Toyota Motor Corp 自動車部品
JP2011005742A (ja) 2009-06-25 2011-01-13 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW210973B (ja) * 1991-12-02 1993-08-11 Mitsubishi Gas Chemical Co
JP3462557B2 (ja) * 1994-02-10 2003-11-05 三菱製紙株式会社 感光材料用遮光容器
JP2000343527A (ja) * 1999-06-02 2000-12-12 Ain Eng Kk 故紙木質合成粉及びその製造方法並びに装置
JP2002138170A (ja) * 2000-10-31 2002-05-14 Ykk Corp セルロース系粉体含有複合樹脂成形体及びその製造方法
JP2004066522A (ja) * 2002-08-02 2004-03-04 Suzuki Motor Corp 天然材料を含有する樹脂成形品の製造方法
CN100363432C (zh) * 2003-01-10 2008-01-23 日本电气株式会社 用南非槿麻纤维增强的树脂组合物
FR2850606B1 (fr) * 2003-02-04 2006-08-11 Agro Fibres Technologies Plast Procede et appareillage pour incorporer une forte proportion de fibres naturelles coupees dans une matiere plastique, produits obtenus et applications
JP2007245517A (ja) * 2006-03-15 2007-09-27 Calp Corp 樹脂塊状物およびその製造方法
US7994241B2 (en) * 2008-01-15 2011-08-09 Innovative Plastics and Molding RNE Tech Wood composite alloy composition having a compatibilizer that improves the ability to process and compress cellulosic fiber
JP5194938B2 (ja) * 2008-03-27 2013-05-08 トヨタ紡織株式会社 植物性繊維複合材の製造方法
JP2010001442A (ja) * 2008-06-23 2010-01-07 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法並びに成形体
JP2010001441A (ja) * 2008-06-23 2010-01-07 Toyota Boshoku Corp 熱可塑性組成物の製造方法及び成形体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003723A (ja) * 2000-06-19 2002-01-09 Konica Corp 熱可塑性組成物、成形方法及び感光材料用容器
JP2005105245A (ja) * 2003-01-10 2005-04-21 Nec Corp ケナフ繊維強化樹脂組成物
WO2004076044A1 (ja) 2003-02-27 2004-09-10 M & F Technology Co., Ltd. 混合粉砕装置、混合溶融方法およびバインダーが含浸されたセルロース系材料の成形方法
JP2005029601A (ja) * 2003-07-07 2005-02-03 Fuji Photo Film Co Ltd 射出成形材料、その製造方法および射出成形品
JP2005035134A (ja) * 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
JP2006117006A (ja) 2004-10-19 2006-05-11 Toyota Boshoku Corp 衝撃吸収構造及び衝撃吸収構造物の成形方法
JP2006138203A (ja) 2004-11-10 2006-06-01 Fuji Heavy Ind Ltd 車両のエアクリーナ構造
JP2008088358A (ja) * 2006-10-04 2008-04-17 Toyota Motor Corp 自動車部品
JP2011005742A (ja) 2009-06-25 2011-01-13 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796266A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002074A1 (ja) * 2013-07-03 2015-01-08 不二製油株式会社 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品
JP2015013916A (ja) * 2013-07-03 2015-01-22 不二製油株式会社 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品
JP6286898B6 (ja) 2013-07-03 2023-08-07 不二製油株式会社 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品

Also Published As

Publication number Publication date
US20140302284A1 (en) 2014-10-09
CN103987508B (zh) 2017-02-22
EP2796266B1 (en) 2017-03-08
EP2796266A1 (en) 2014-10-29
JP2013129125A (ja) 2013-07-04
EP2796266A4 (en) 2014-11-05
CN103987508A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
Huda et al. Natural-fiber composites in the automotive sector
Chauhan et al. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques
Li et al. Recent advancements of plant-based natural fiber–reinforced composites and their applications
US11691317B2 (en) Composition for application in rotomolding processes and use of the composition
WO2013094343A1 (ja) 熱可塑性樹脂成形体及びその製造方法
Kim et al. Recent advances in the processing of wood-plastic composites
US20120190775A1 (en) Composite resin composition
US20060264556A1 (en) Fiber reinforced polypropylene composite body panels
CN109867814B (zh) 纤维复合材料及其生产方法
Chirayil et al. Polyolefins in automotive industry
Zhao et al. Applications of lightweight composites in automotive industries
CN112552601A (zh) 适用于汽车内饰制件用的聚丙烯复合材料及其制备方法
CN107337841B (zh) 具有优异的触感和尺寸稳定性的聚丙烯的组合物
CN113234280A (zh) 纤维素增强聚丙烯树脂复合材料及其制备方法与应用
JP2009138108A (ja) 熱可塑性組成物成形体の製造方法
EP3161042B1 (en) Reinforced thermoplastic polymer composition
Ghasemi et al. Polypropylene/Plant‐Based Fiber Biocomposites and Bionanocomposites
CN113692343A (zh) 聚对苯二甲酸丁二醇酯热成型方法
CN112805327A (zh) 有机纤维增强树脂成型体及其制造方法
KR101322698B1 (ko) 저취성 고성능 프로필렌계 장섬유 강화 조성물, 이를 이용하여 제조된 저취성 자동차용 및 전자/산업용 성형품
WO2023089840A1 (ja) 高強度成形体及びこの製造方法
Çavdar et al. 2 Hybrid thermoplastic composite reinforced natural fiber and inorganic filler
JP2010144056A (ja) 熱可塑性樹脂組成物及びその製造方法並びに成形体及びその製造方法
WO2009116501A1 (ja) 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂成形体の製造方法
US20150361254A1 (en) Composite resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14356000

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012860610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860610

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE