WO2015002074A1 - 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品 - Google Patents

成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品 Download PDF

Info

Publication number
WO2015002074A1
WO2015002074A1 PCT/JP2014/067097 JP2014067097W WO2015002074A1 WO 2015002074 A1 WO2015002074 A1 WO 2015002074A1 JP 2014067097 W JP2014067097 W JP 2014067097W WO 2015002074 A1 WO2015002074 A1 WO 2015002074A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
fiber
molding
plant fiber
resin material
Prior art date
Application number
PCT/JP2014/067097
Other languages
English (en)
French (fr)
Inventor
信一 柴田
秀雄 荒木
Original Assignee
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油株式会社 filed Critical 不二製油株式会社
Publication of WO2015002074A1 publication Critical patent/WO2015002074A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a plant fiber reinforced thermoplastic resin material and a method for producing the same.
  • Plant fibers such as bagasse, kenaf, bamboo, and hemp have high tensile strength and rigidity, and are tougher and more rigid than general-purpose resins, so they are used as the fiber content of fiber-reinforced plastics. be able to.
  • Glass fibers and carbon fibers are known as fibers of fiber reinforced plastics. Although carbon fiber has low specific gravity, it is expensive, and glass fiber is relatively inexpensive but has high specific gravity.
  • Patent Document 1 discloses a method for producing a lightweight high-rigidity board by making a non-woven fabric from kenaf fiber and polypropylene fiber and hot pressing.
  • dedicated large-scale equipment such as a fiber opening device is required, and since the board is produced by press molding, the shape is limited, and the production of a three-dimensional shape board Requires two pressing steps.
  • kenaf fibers are disadvantageous in terms of cost because they need to be planted and harvested on a dedicated farm only for fiber extraction purposes. Moreover, since only the high strength bast portion is used, waste is generated.
  • Patent Document 2 discloses a bagasse-based durable board, but does not specify fiber treatment. In addition, since the molding temperature is as low as 80 to 150 ° C., thermal decomposition of plant fibers is not a problem.
  • Patent Document 3 discloses a method for modifying natural fibers by treating with high-temperature steam at 110 ° C. or higher as a natural fiber treatment method. This method produces a composite material having a low coefficient of expansion due to moisture absorption and excellent strength. It is an object.
  • Patent Document 4 discloses a bagasse fiber treatment method, which is a dry distillation process for carbonization of bagasse.
  • Patent Document 5 discloses a method in which a bagasse fiber is brought into contact with an alum aqueous solution, and sugar and pitch components are separated and used as a reinforcing material for a plastic material.
  • the resin is a thermosetting resin
  • polypropylene is used. No mention is made of adhesion of a spear component to a mold caused by thermal decomposition of plant fibers that occurs when kneading and molding at 180 ° C. or higher, such as injection molding by JIS.
  • Patent Document 6 discloses that a fiber reinforced plastic is manufactured by kneading a general-purpose resin such as polypropylene and bagasse, and a cheap and light bagasse fiber reinforced plastic is produced. According to the disclosed information, in order to blend polypropylene that is coarsely water-soluble with plant fibers that are hydrophilic, the polypropylene grafted with maleic anhydride is kneaded with the plant fibers and polypropylene, so that Rigidity and strength have been developed, and the impact value has been improved.
  • a general-purpose resin such as polypropylene and bagasse
  • the viscosity becomes high, so that the formability into a three-dimensional thin plate is lowered, and partial filling is pointed out as a problem.
  • the kneading temperature or the injection temperature needs to be 200 ° C. or more, but at 200 ° C. or more, the bagasse fiber is thermally decomposed and pyrolyzed and carbonized.
  • the polypropylene to be kneaded has been devised so as to be molded at a temperature of 200 ° C. or less as a high-fluidity polypropylene to improve the moldability.
  • the bagasse fiber reinforced polypropylene resin material and injection-molded product of this patent have the following problems. a. At a temperature at which bagasse fibers are thermally decomposed, brownish brown deposits are formed on the surface of the molding die and do not dissolve in organic solvents such as ethanol and acetone. b. High flow polypropylene for improving moldability has a low molecular weight, so the impact of the molded product is low.
  • Plant fiber is composed mainly of hemicellulose, cellulose and lignin.
  • heating is performed to near the limit temperature for thermal decomposition.
  • a melt kneading temperature exceeding 170 ° C. the progress of coloring due to “burning” of plant cellulose fibers and the occurrence of off-flavor are recognized, and the occurrence of color and off-flavor when forming a molded product is inevitable. Things are described.
  • a letting process is performed, and the heatable temperature of kenaf is increased to 210 ° C.
  • the plant fiber was scorched and had a strange odor.
  • Patent Document 8 discloses a process for producing pellets for injection molding by mixing kenaf and polypropylene. However, it is reported that the temperature of the mixing wall of the mixing apparatus is set to 200 ° C. or lower. In the examples, after the pellets are manufactured, the pellets are oven-dried at 100 ° C. for 24 hours, and injection molded at 190 ° C. is disclosed.
  • Patent Document 10 a board using a non-woven fabric of kenaf fibers is manufactured, and the press heating temperature is set so that the internal temperature of the board is 200 ° C.
  • Patent Document 11 discloses a flame retardant composite material board made of kenaf fiber, and the board fiber is made by reducing the moisture content to 30-40% by drying treatment at 60 ° C. for 30-120 minutes.
  • the upper limit is a molding temperature of 200 ° C. in the examples.
  • JP 2004-314538 A JP-A-6-287321 Japanese Unexamined Patent Publication No. 2009-132094 Japanese Patent Laid-Open No. 2002-18416 JP 49-2907 Japanese Patent No. 4370416 JP-A-2005-259601 JP 2010-23356 JP 2010-202797 A JP 2010-280187 A JP 2011-000709 A
  • the problem to be solved by the present invention is to prevent the coloring and odor of the resin material and the molded product, and the mold surface when producing a highly rigid fiber reinforced thermoplastic resin material and the molded product using plant fibers. It is to provide a plant fiber reinforced thermoplastic resin material and a molded product thereof with higher productivity, lower cost and higher quality by reducing the amount of spear-like components adhering to the surface.
  • the water content containing a palm fruit extract residue and / or a plant fiber derived from palm empty fruit bunch and a thermoplastic resin as a raw material is 0.3% by weight or less. It has been found that a certain plant fiber reinforced thermoplastic resin material for molding can greatly reduce the component of adhesion to the mold surface by preventing thermal decomposition, and can greatly improve the moldability.
  • the invention has been completed.
  • the present invention (1) A plant fiber reinforced thermoplastic resin material for molding, containing a palm fruit extract residue and / or a plant fiber derived from palm empty fruit bunches, and a thermoplastic resin, wherein the water content is 0.3% by weight or less, (2) The plant fiber reinforced thermoplastic resin material for molding according to (1), wherein the aspect ratio of the palm fruit extract residue and / or the plant fiber derived from palm empty fruit bunch is 20 or more, (3) The molding plant according to (1) or (2), comprising 5 to 50% by weight of palm fruit extract residue and / or plant fiber derived from palm empty fruit bunch and 50 to 95% by weight of thermoplastic resin Fiber reinforced thermoplastic resin, (4) The plant fiber reinforced thermoplastic resin material for molding according to any one of (1) to (3), wherein the thermoplastic resin is a polyolefin resin, (5) Palm fruit extract residue and / or plant fiber derived from palm empty fruit bunches are washed with water or an organic solvent, and the plant fiber and thermoplastic resin are kneaded at 180 ° C.
  • a method for producing a plant fiber-reinforced thermoplastic resin material for molding characterized by drying to the following: (6) The method for producing a plant fiber-reinforced thermoplastic resin material for molding according to (5), wherein the plant fiber is washed with 10 parts by weight or more of water or an organic solvent with respect to 1 part by weight of the plant fiber. (7) A molded product obtained by molding the plant fiber-reinforced thermoplastic resin material according to any one of (1) to (4) at 160 ° C. to 270 ° C., It is.
  • thermoforming By using the plant fiber reinforced thermoplastic resin material for molding having a moisture content of 0.3% by weight or less containing the palm fruit extract residue and / or the plant fiber derived from the palm empty fruit bunch and the thermoplastic resin, thermoforming The possible temperature rises from 200 ° C. to 260 ° C., which is the upper limit of conventional plant fiber composite materials, and the moldability is greatly increased, and various thermoplastic resins can be used. Prevention of thermal decomposition not only raises the moldable temperature, but also prevents the thermal decomposition of the plant fiber, thereby greatly reducing the component of the resin adhering to the molding die surface. In addition, the off-flavor and unpleasant odor of the molded product due to the thermal decomposition of the plant fiber can be greatly reduced. By such an effect, the application range of a vegetable fiber / thermoplastic resin composite material is greatly expanded.
  • FIG. 1 It is a figure which shows the preparation methods of the vegetable fiber and a polypropylene pellet by a uniaxial kneader. It is a graph which shows the relationship between the absorption rate (weight ratio) of the EFB fiber moisture after drying of palm empty fruit bunches (EFB) fibers and EFB / polypropylene pellets, and exposure time in the atmosphere.
  • ⁇ short fibers represents EFB fiber (fiber length 0.93mm)
  • ⁇ Long fibers represents EFB fiber (fiber length 3.41mm)
  • ⁇ pellets represents EFB / polypropylene pellets.
  • the plant fiber reinforced thermoplastic resin material for molding of the present invention contains a palm fruit extract residue and / or plant fiber derived from palm empty fruit bunch as a raw material and a thermoplastic resin.
  • the kneaded product is also pelletized with a pelletizer or the like.
  • the weight ratio of the palm fruit extract residue and / or the plant fiber derived from palm empty fruit bunches is preferably 5 to 50% by weight, more preferably 30 to 40% by weight. is there. When using a palm fruit extraction residue and palm empty fruit bunch together, the mixture ratio of both can be set arbitrarily.
  • the weight ratio of the thermoplastic resin is preferably 50 to 95% by weight, more preferably 60 to 70% by weight.
  • thermoplastic resin examples include polyolefin resins, polyester resins, polyamide resins, ABS resins, polycarbonate resins, and polyacetal resins, and one or more of these can be used in combination. .
  • polyolefin resin is preferable and polypropylene is more preferable.
  • modified polypropylene or the like obtained by graft polymerization of maleic anhydride is added in the range of 0.1 to 20% by weight to the molding fiber reinforced thermoplastic resin material of the present invention. It is preferable.
  • other fiber reinforcements and fillers can be added to the plant fiber reinforced thermoplastic resin material of the present invention as long as it does not hinder molding.
  • Palm empty fruit bunch, palm fruit extract residue Palm empty fruit bunches (hereinafter sometimes referred to as EFB (Empty Fruit Bunch)) and palm fruit extract residue (hereinafter sometimes referred to as MF (Mesocarp Fiber)) are used in the process of producing palm oil. It is discharged as a by-product. Palm empty fruit bunches are remaining fruit bunches after the fruits contained in the harvested fruit bunches (Fresh Fruit Bunch) are removed, and are mainly composed of plant fibers. Moreover, a palm fruit extraction residue is a residue after extracting oil from a palm fruit, and has a vegetable fiber as a main component.
  • the average fiber length of the EFB fiber or MF fiber is preferably 2 mm to 10 mm, more preferably 3 mm to 5 mm. If the average fiber length is too short, the aspect ratio (the ratio of the length of the plant fiber to the diameter of the cross section of the plant fiber) is lowered, and the mechanical strength of the composite may be lowered. If the average fiber length is too long, the viscosity becomes high when the polymer is melted and molded, and the moldability may be significantly reduced. Accordingly, the aspect ratio is preferably 20 or more, more preferably 25 to 50. Thus, when the fiber diameter is small and the aspect ratio is large, it is easy to knead with the resin and the moldability can be improved. In order to adjust to a desired average fiber length, EFB fibers and MF fibers can be pulverized as necessary.
  • the pellets are blackened due to organic matter contained as impurities in the plant fibers, it is preferable to wash the plant fibers in advance.
  • a solvent to be washed water or an organic solvent can be used, whereby various organic substances contained in the plant fiber are removed. By removing the organic matter in the plant fiber, it is possible to greatly suppress the spear component adhering to the mold due to the thermal decomposition of the plant fiber, eliminating the need to frequently wash the mold and greatly improving molding productivity. Can be made.
  • washing method washing with 10 parts by weight or more, more preferably 15 parts by weight or more of water or an organic solvent is performed with respect to 1 part by weight of plant fiber.
  • the temperature is preferably 40 ° C to 100 ° C, more preferably 60 ° C to 80 ° C.
  • drying After washing the plant fiber with water or an organic solvent, heat drying. Thereby, various organic substances adhering to or contained in the plant fiber are removed.
  • drying method include hot air drying, oven drying, and vacuum heating drying.
  • Dried plant fiber is mixed with thermoplastic resin without exposure to atmospheric moisture.
  • the mixing temperature is kneaded at 180 ° C to 270 ° C.
  • the temperature is preferably 200 ° C to 230 ° C.
  • the kneading method is not limited. For example, a uniaxial or biaxial kneader or an open kneader may be used. After kneading, pelletize with a pelletizer or the like.
  • the vegetable fiber reinforced thermoplastic resin can be formed into pellets and then molded with an injection molding machine or a press molding machine. However, since the pellet absorbs moisture immediately when exposed to the atmosphere, it is preferably dried by a method such as reduced pressure drying.
  • the timing of drying is not limited, and may be performed before molding or simultaneously with molding.
  • the molding temperature is preferably 160 ° C. to 270 ° C., which does not cause thermal decomposition of the plant fiber and can ensure fluidity, more preferably 180 ° C. to 260 ° C., and still more preferably 180 ° C. to 230 ° C.
  • the water content of the mixture of vegetable fiber and thermoplastic resin is 0.3% by weight or less, preferably 0.25% by weight or less. If the amount of water is too large, the plant fibers blended at the time of molding may be thermally decomposed and the coloring may increase.
  • the plant fiber reinforced thermoplastic resin material of the present invention thus prepared is particularly advantageous in the following points as compared with the case of using bagasse fiber.
  • ⁇ MFR melt flow rate; an indicator of resin fluidity
  • EFB fiber or MF fiber melt flow rate
  • MFR fluidity of the resin
  • smoothness of the surface of the molded body
  • the Rz value (10-point average, unit ⁇ m) becomes smaller, and the surface of the molded body becomes smoother than when bagasse fibers are used. Quality is improved.
  • the fiber diameter of EFB fiber and MF fiber (about 0.1 mm) is thinner than bagasse fiber (about 0.3 mm), so the surface roughness can be reduced, so fiber reinforcement is possible even if the fiber length is shorter than conventional bagasse. The effect of can be demonstrated.
  • EFB fibers having a fiber length of 10 mm to 50 mm were pulverized to have a fiber length distribution of 1 mm to 5 mm.
  • the average fiber length was 3.41 mm and the aspect ratio was 28.4.
  • EFB fiber was washed with warm water (80 ° C) while heating and stirring with a heater, adding 800 ml of distilled water to a 1000 ml beaker for 40 g of EFB fiber to remove the remaining water-soluble components. . After washing, the EFB fiber was filtered and dried. The weight of impurities in EFB fiber after washing treatment decreased by 8%. Furthermore, the EFB fiber was heat-dried in an oven for 24 hours at 80 ° C.
  • EFB fibers and polypropylene resin were mixed at a weight ratio of 40:60 in a single-screw kneader as shown in FIG. 1 and heated and extruded at 200 ° C. to produce pellets.
  • the moisture content of the pellets at this time was 0.8%.
  • 2 g of this pellet was weighed and subjected to hot press molding.
  • the hot press conditions were as follows: pressure 100 kgf / cm2, holding time 10 minutes, temperature 200 ° C, 240 ° C, 260 ° C.
  • the color tone of the molded body was evaluated.
  • the color tone evaluation was visually confirmed by 10 panelists, and based on the criteria in Table 1, the color tone of the EFB fiber before heating was set to 5 points, and the average value was calculated by assigning 1 to 5 points according to the degree of coloring. . Those with an average value of 3.5 or more were judged as acceptable as the color tone.
  • Examples 1 and 2 Comparative Examples 3 and 4
  • Comparative Example 1 EFB fibers from which water-soluble components in the EFB fibers were removed were prepared, and the EFB fibers were dried to a moisture content of 1% or less at 100 ° C., 5 hours, 5 torr using a vacuum heating dryer.
  • EFB fibers and polypropylene were mixed and extruded at a weight ratio of 40:60 to produce pellets.
  • the pellets were prepared, the pellets were dried at 100 ° C., 5 hours, 5 torr using a vacuum heat drying apparatus. After drying, the pellets were left indoors (25 ° C., humidity 55%) for 0 minutes, 20 minutes, 40 minutes, and 60 minutes, followed by hot press molding.
  • the hot press conditions were a pressure of 100 kgf / cm 2 , a holding time of 10 minutes, and a temperature of 260 ° C.
  • the moisture values of the pellets after being left for 0 minutes, 20 minutes, 40 minutes, and 60 minutes were 0%, 0.25%, 0.35%, and 0.42%, respectively.
  • the results of color tone evaluation are shown in Table 3.
  • the pellets after drying were allowed to stand in the room for 0 and 20 minutes and then molded, and the color tone evaluation was 3.5 points or more, which was good.
  • the color tone evaluation was the same as that molded at 200 ° C., and when the panelists evaluated the presence or absence of unpleasant odors due to scoring, no unpleasant odors were found. Became. However, if the indoor exposure time is longer than 40 minutes, the discoloration due to scoring progresses, and the color tone evaluation becomes 2.4 points in 40 minutes, 1.4 points in 60 minutes, and unpleasant odor due to scoring by 10 panelists. When the presence or absence was evaluated, the result showed that unpleasant odor was recognized in all cases.
  • Example 1 The weight change of 1 g of EFB fiber and 1 g of EFB fiber / polypropylene pellets (40% by weight of plant fiber) was measured when left in the room after drying under reduced pressure.
  • the temperature change under reduced pressure was 100 ° C, 5hr, 5torr, and the weight was measured with an electronic balance placed in a room kept at 25 ° C and 55% humidity.
  • FIG. 2 is a graph showing the relationship between the indoor standing time and the change in weight of EFB fibers and EFB fibers / polypropylene pellets. As can be seen from FIG. 2, the EFB fiber was 7% by weight after drying, the EFB fiber / polypropylene pellet was 0.75% by weight, and an increase in weight due to moisture absorption was observed.
  • EFB fibers, EFB fibers and polypropylene pellets absorbed moisture immediately after exposure to the atmosphere. In particular, the moisture absorption after 20 minutes to 60 minutes was large. Judging from FIG. 2, it was found that the EFB fiber / polypropylene pellets start to thermally decompose when moisture of 0.3 wt% or more is absorbed. This corresponds to adsorption of 0.75% by weight of water in the EFB fiber alone because the weight of the EFB fiber in the pellet is 40%. Since 0.75% by weight of moisture is absorbed within 5 minutes in EFB fibers after drying, it is necessary to strictly control the amount of moisture adsorbed in order to avoid thermal decomposition of EFB fibers and polypropylene when molding at 200 ° C or higher. It is judged that there is.
  • Examples 3 to 6, Comparative Examples 5 to 8 The relationship between the washing treatment of the plant fiber and the mold adhesion component (soil component) was investigated. After EFB fiber or MF fiber was not washed or washed, it was dried in an oven at 60 ° C. for 2 hours, and then allowed to stand at room temperature for 1 day. The water content of the EFB fiber or MF fiber after standing was 7%. The average fiber length was 3.41 mm and the aspect ratio was 28.4.
  • the washing conditions for plant fibers were 80 ° C. when washing with water, and the weight ratio of plant fibers to water was 1:20. When washing with acetone, it was performed at 25 ° C., and the weight ratio of plant fiber to acetone was 1:20.
  • Example 2 washed or unwashed EFB fiber or MF fiber and polypropylene were kneaded to produce 40% plant fiber / polypropylene pellets.
  • the pellets were dried, they were dried at 100 ° C., 5 hours, 5 torr with a vacuum heat drying apparatus.
  • Hot press molding was performed on the produced pellets.
  • the hot press conditions were a pressure of 100 kgf / cm 2 , a holding time of 10 minutes, and a temperature of 260 ° C.
  • cleaning method of each plant fiber, the presence or absence of the drying process, and the moisture value of the pellet were shown in Table 4.
  • an aluminum foil sheet was placed between the mold and the pellet.
  • both EFB fiber and MF fiber Under both molding conditions of 200 ° C and 260 ° C, the mass change value of both EFB fiber and MF fiber was 1.5 ⁇ 10 -4 or less, and the spear component was greatly reduced. As a result, in both MF fiber and EFB fiber, it was found that the washing treatment of plant fiber with hot water or acetone and the vacuum drying treatment of the pellet greatly affect the decrease in the component of the spider.
  • the compounded with MF fiber had a higher MFR value than the compounded with bagasse fiber, indicating that the resin moldability is superior to that of bagasse fiber.
  • Example 8 to 9, Comparative Example 10 The surface roughness (Rz value) of the molded body prepared in the same manner as in Example 1 was measured using EFB fibers, MF fibers and bagasse fibers having different fiber lengths as raw materials.
  • the surface roughness Rz value (10-point average, unit ⁇ m) was measured in a measuring section of 7.2 mm using a small surface roughness measuring instrument SJ-301 (manufactured by Mitutoyo Corporation) as a measuring instrument. The results are shown in Table 6.
  • the molding processable temperature is significantly increased from the conventional 200 ° C. to 260 ° C., and the molding processability is increased. Can be used. Not only the molding processable temperature rises but also the amount of the spear component adhering to the mold surface due to the thermal decomposition of the plant fiber is greatly reduced, so that the maintenance of the mold becomes extremely easy. Moreover, the bad smell and unpleasant odor of a molded object are suppressed by the thermal decomposition of a vegetable fiber being suppressed. Due to the above effects, a high-quality plant fiber reinforced plastic using inexpensive plant fibers can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 【課題】植物繊維を使って、高剛性な繊維強化プラスチック樹脂材および成形品を製造する際に、樹脂材および成形品の着色および臭気を防ぎ、金型表面に付着するヤニ状成分を少なくすることで、より生産性の高く、安価で高品質な植物繊維強化熱可塑性樹脂材およびその成形品を提供することである。 【解決手段】原料としてパーム果実抽出残渣及び/又はパーム空果房由来の植物繊維と熱可塑性樹脂を含有する水分量が0.3重量%以下である成形用植物繊維強化熱可塑性樹脂材が、熱分解を防ぐことで成形金型表面へのヤニ付着成分を大きく減らすことができ、また、成形性を大幅に向上させることができる。

Description

成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品
 本発明は植物繊維強化熱可塑性樹脂材とその製造方法に関する。
 バガス,ケナフ,竹,麻等の植物繊維は高い引張強度,剛性を有しており、汎用樹脂と比較しても強靭であり、高い剛性であるために、繊維強化プラスチックの繊維分として使用することができる。繊維強化プラスチックの繊維としてはガラス繊維,カーボン繊維が知られている。カーボン繊維は低比重であるものの高価であり、ガラス繊維は比較的安価であるが比重が大きい。
 植物繊維の繊維強化プラスチックの例として、特許文献1ではケナフ繊維とポリプロピレン繊維で不織布を作り、熱プレスすることで軽量高剛性ボードの作製方法を開示している。しかしながら、この軽量高剛性ボードを得るためには、繊維開繊装置等の専用の大型設備が必要であり、ボードをプレス成形で作製するために、形状が限定され、三次元的形状ボードの作製には2度プレス工程が必要である。さらに、ケナフ繊維の場合、繊維抽出目的のみの為に専用農場で植栽・収穫する必要があるためコスト的に不利である。また強度の高い靭皮部のみ利用するため廃棄物を生じる。
 特許文献2ではバガス基材耐久性ボードが開示されているが、繊維処理については明記されていない。また、成形温度は80-150℃と低いため植物繊維の熱分解が問題となっていない。
 特許文献3では天然繊維処理方法として110℃以上の高温水蒸気で処理し、天然繊維を改質する方法が開示されているが、これは吸湿による厚さ膨張率が少ない、強度に優れる複合材料作製を目的としている。
 特許文献4ではバガス繊維処理方法が発明されているが、これはバガスの炭化のための乾留処理である。
 特許文献5ではバガス繊維をミョウバン水溶液と接触させ、糖分,ピッチ分を分離し、プラスチック材料の強化材料として使用する方法が開示されているが、この発明では樹脂を熱硬化樹脂としているため、ポリプロピレンによる射出成形のような180℃以上で混練・成形した際に生じる植物繊維の熱分解による金型へのヤニ成分付着ついては言及されていない。 
 特許文献6ではポリプロピレンなどの汎用樹脂とバガスを混練して繊維強化プラスチックを製作し、低廉で軽量なバガス繊維強化プラスチックの生産が行われることが開示されている。
 開示されている情報によれば、粗水性であるポリプロピレンを親水性である植物繊維と馴染ませるために、無水マレイン酸によりグラフト重合されたポリプロピレンを植物繊維とポリプロピレンに混練することで、植物繊維の剛性および強度が発現し、かつ、衝撃値を向上させることに成功している。
 同特許においては植物繊維をポリプロピレンと混練すると,粘性が高くなるため,3次元形状の薄板への成形性が低下し,部分的に充填不足が生じることが問題点として指摘している。このため混練温度あるいは射出温度を200℃以上にする必要があるが、200℃以上ではバガス繊維は熱分解を生じ熱分解・炭化する。これを解決するため、混練するポリプロピレンを高流動型のポリプロピレンとして、200℃以下で成形できるように工夫し、成形性を向上させている。
 しかし、同特許のバガス繊維強化ポリプロピレン樹脂材および射出成形品には次の問題がある。
 
a. バガス繊維が熱分解を生じる温度では成形金型表面に茶褐色ヤニ状の付着物が生じ,エタノール,アセトン等の有機溶剤に溶解しないために、除去するのに極めて手間がかかる。 
b. 成形性向上の為の高流動ポリプレンは分子量が低いため、成形体の衝撃性は低くなる。 
 植物繊維はヘミセルロース,セルロース,リグニンを主成分として構成されている。一方,熱可塑性樹脂と混合・成形に必要な流動性を確保するためには、熱分解する限界温度近くまで加熱して行う。例えば特許文献7では170℃ を超える溶融混練温度では植物セルロース繊維等の「焦げ」に起因する着色の進行および異臭の発生が認められ、成形品としたときの着色および異臭の発生が避けられない事が記載されている。これを解決するためにレッティング処理を行って、ケナフの加熱可能温度を210℃まで上げている。しかしながら240℃では植物繊維は焦げ,異臭が生じたことが報告されている。
 特許文献8にはケナフとポリプロピレンを混合し射出成形用ペレット製造するプロセスが開示されているが、混合する装置の混合壁の温度を200℃以下に設定することが報告されている。また実施例ではペレット製造後にペレットを100℃,24時間の条件でオーブン乾燥し、190℃において射出成形した例が開示されている。
 植物繊維複合材料を利用する場合には,植物繊維を乾燥するのは一般的である。例えば、特許文献9にはバナナ繊維,パームヤシ繊維,サイザル麻繊維を解繊し、天日で乾燥させている。成形温度は210℃である。
 特許文献10においてはケナフ繊維の不織布を使用したボードを作製しており、ボード内部温度は200℃になるようにプレス加熱温度が設定されている。
 特許文献11においてはケナフ繊維による難燃性複合材料ボードが開示されており,植物繊維を60℃,30-120分の乾燥処理で含水率30-40%に低下させボードを作成している。この場合に実施例においては成形温度200℃が上限である。 
 以上のように植物繊維とプラスチックの複合材料を作製するためには乾燥することは一般的であり、発明者らも行ってきた。しかしながら乾燥を行っても、前述したように植物繊維・ポリプロピレン複合材料は200℃前後で熱分解を生じるために、流動性を確保するために高流動の比較的低分子量ポリプロピレングレードを使わざるを得ず、熱分解を伴わない200℃以上での成形は困難であった。
特開2004‐314538号公報 特開平6‐287321号公報 特開2009-132094号公報 特開2002-18416号公報 特開昭49-2907号公報 特許4370416号公報 特開2005-259601号公報 特開2010-23356号公報 特開2010-202797号公報 特開2010‐280187号公報 特開2011‐000709号公報
 本発明が解決しようとする課題は植物繊維を使って、高剛性な繊維強化熱可塑性樹脂材およびその成形品を製造する際に、樹脂材およびその成形品の着色および臭気を防ぎ、金型表面に付着するヤニ状成分を少なくすることで、より生産性が高く、安価で高品質な植物繊維強化熱可塑性樹脂材およびその成形品を提供することである。
 本発明者らは上記課題を解決するため鋭意研究を行ったところ、原料としてパーム果実抽出残渣及び/又はパーム空果房由来の植物繊維と熱可塑性樹脂を含有する水分量が0.3重量%以下である成形用植物繊維強化熱可塑性樹脂材が、熱分解を防ぐことで成形金型表面へのヤニ付着成分を大きく減らすことができ、また、成形性を大幅に向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維、及び熱可塑性樹脂を含有する、水分量が0.3重量%以下である成形用植物繊維強化熱可塑性樹脂材、
(2)パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維のアスペクト比が20以上である、(1)に記載の成形用植物繊維強化熱可塑性樹脂材、
(3)パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維を5~50重量%、熱可塑性樹脂を50~95重量%含有する、(1)または(2)に記載の成形用植物繊維強化熱可塑性樹脂材、
(4)熱可塑性樹脂がポリオレフィン系樹脂である、(1)~(3)の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材、
(5)パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維を水または有機溶媒で洗浄し、該植物繊維及び熱可塑性樹脂を180℃乃至270℃で混練した後水分量を0.3重量%以下に乾燥することを特徴とする、成形用植物繊維強化熱可塑性樹脂材の製造方法、
(6)植物繊維1重量部に対し、10重量部以上の水あるいは有機溶媒で洗浄する、(5)記載の成形用植物繊維強化熱可塑性樹脂材の製造方法、
(7)(1)~(4)何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材を160℃乃至270℃で成形して得られる成形品、
である。
 本発明のパーム果実抽出残渣及び/又はパーム空果房由来の植物繊維と熱可塑性樹脂を含有する水分量が0.3重量%以下である成形用植物繊維強化熱可塑性樹脂材を用いることにより、加熱成形可能温度は従来の植物繊維複合材料の上限である200℃から260℃までに上昇し、成形性が大幅に上昇し、種々の熱可塑性樹脂が使用可能となる。加熱分解防止は成形可能温度が上昇するだけでなく、植物繊維の加熱分解を防止することで、成形金型表面に付着するヤニ成分を大幅に低減することができる。また、植物繊維の加熱分解が原因である成形体の異臭・不快臭も大幅に低減することができる。このような効果により、植物繊維・熱可塑性樹脂複合材の応用範囲が大幅に拡がる。
一軸混練機による植物繊維・ポリプロピレンペレットの作製方法を示す図である。 パーム空果房(EFB)繊維及びEFB・ポリプロピレンペレットの乾燥後のEFB繊維水分の吸収率(重量率)と大気中露出時間との関係を示すグラフである。図中、△short fibersはEFB繊維(繊維長 0.93mm)、◆Long fibersはEFB繊維(繊維長 3.41mm)、●pelletsはEFB・ポリプロピレンペレットを表す。 パーム空果房(EFB)繊維・ポリプロピレンペレットによる熱プレス成形後の金型表面へのヤニ成分の付着量を示すグラフである。 パーム果実抽出残渣(MF)繊維・ポリプロピレンペレットによる熱プレス成形後の金型表面へのヤニ成分の付着量を示すグラフである。
(成形用植物繊維強化熱可塑性樹脂材)
 本発明の成形用植物繊維強化熱可塑性樹脂材は、原料としてパーム果実抽出残渣及び/又はパーム空果房由来の植物繊維と、熱可塑性樹脂を含有するものであるが、これらを混練したものや混練したものをペレタイザー等でペレット化したものも含むものである。
 本発明の成形用植物繊維強化熱可塑性樹脂材は、パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維の重量比率が5~50重量%が好ましく、より好ましくは30~40重量%である。パーム果実抽出残渣とパーム空果房を併用する場合、両者の配合比率は任意に設定することができる。また、熱可塑性樹脂の重量比率は50~95重量%が好ましく、より好ましくは60~70重量%である。
 植物繊維量が多すぎると粘性が高くなりすぎ、成形性が低下する場合がある。また、植物繊維量が少なすぎると熱可塑性樹脂の割合が多くなるために材料原価が高くなり、植物繊維を利用する効果が低下する場合がある。
 植物繊維強化熱可塑性樹脂材の水分量は0.3重量%以下、好ましくは0.25重量%以下である。水分量が多すぎると、成形時に配合した植物繊維の熱分解が生じ着色が大きくなる場合がある。
 本発明に用いることができる熱可塑性樹脂として、ポリオレフィン系樹脂,ポリエステル樹脂,ポリアミド樹脂,ABS樹脂,ポリカーボネート樹脂,ポリアセタール樹脂が挙げられ、これらの1種または2種以上を併用して用いることができる。この中でも、ポリオレフィン系樹脂が好ましく、ポリプロピレンがより好ましい。
 また、衝撃性あるいは曲げ強度を改善する目的の場合、無水マレイン酸をグラフト重合した変性ポリプロピレン等を本発明の成形用植物繊維強化熱可塑性樹脂材に対して、0.1~20重量%の範囲で加えることが好ましい。
 なお、本発明の植物繊維強化熱可塑性樹脂材には、成形の妨げにならない範囲で、他の繊維強化材や充填剤を添加することができる。
(パーム空果房、パーム果実抽出残渣)
 パーム空果房(以下、EFB(Empty Fruit Bunch)と表記することがある。)及びパーム果実抽出残渣(以下、MF(Mesocarp Fiber)と表記することがある。)はパームオイルを製造する過程で副産物として排出されるものである。
 パーム空果房は、収穫された果房(Fresh Fruit Bunch)の中に含まれる果実が除去された後の残りの果房であり、植物繊維を主成分とするものである。また、パーム果実抽出残渣は、パーム果実から油分を抽出した後の残渣であり、植物繊維を主成分とするものである。
 EFB繊維またはMF繊維の平均繊維長は、好ましくは2mm~10mmであり、より好ましくは3mm~5mmである。平均繊維長が短すぎるとアスペクト比(植物繊維の長さと植物繊維の断面の直径の比)が低くなり、コンポジットの機械的強度が低下する場合がある。平均繊維長が長すぎるとポリマーを融解させて成形する際に、粘性が高くなり、成形性が著しく低下する場合がある。従って、アスペクト比は好ましくは20以上、より好ましくは25~50である。このように、繊維径が小さく、アスペクト比が大きいと樹脂と混練しやすく成形性をより良好にすることができる。
 所望の平均繊維長に調整するため、必要に応じEFB繊維やMF繊維を粉砕することができる。
 植物繊維に不純物として含まれている有機物が原因でペレットが黒色化するため、植物繊維をあらかじめ洗浄することが好ましい。洗浄する溶媒としては水あるいは有機溶媒を使用することができ、これにより植物繊維に含まれる種々の有機物が除去される。植物繊維中の有機物を除去することで、植物繊維の加熱分解による金型に付着するヤニ成分を大幅に抑制できるために、金型を頻繁に洗浄する必要が無くなり、成形生産性を大幅に向上させることができる。
 洗浄方法として、植物繊維1重量部に対して、水または有機溶媒を好ましくは10重量部以上、より好ましくは15重量部以上で洗浄する。洗浄する水または有機溶媒は多すぎても効果に差が出ない場合があるため、好ましくは40重量部以下、より好ましくは20重量部以下である。
 水を使用する場合、温度として40℃~100℃で使用するのが好ましく、より好ましくは60℃~80℃である。
 植物繊維を水あるいは有機溶媒で洗浄した後に加熱乾燥する。これにより植物繊維に付着している、あるいは含まれる種々の有機物が除去される。 乾燥方法として熱風乾燥,オーブン乾燥,真空加熱乾燥等が挙げられる。
 乾燥した植物繊維は水分を含む大気に暴露せずに熱可塑性樹脂と混合する。混合温度は180℃~270℃で混練する。好ましくは200℃~230℃である。混練方法は限定されず、例えば一軸あるいは二軸混練機あるいはオープン式ニーダーでも良い。混練した後にペレタイザー等によりペレット化する。
 植物繊維強化熱可塑性樹脂はペレット化した後に、射出成形機あるいはプレス成形機等で成形できる。ただし、ペレットは大気中に暴露すると直ちに吸湿するため、減圧乾燥等の方法で乾燥することが好ましい。乾燥するタイミングは限定されず、成形前でも成形と同時に行っても良い。例えば、ペレットを乾燥後成形する方法、ペレットを減圧乾燥装置を備えた成形装置で乾燥しながら成形する方法等が挙げられる。
 成形温度は植物繊維の熱分解を生じず、流動性を確保できる160℃~270℃での成形が好ましく、より好ましくは180~260℃、さらにより好ましくは180~230℃である。
 また、植物繊維と熱可塑性樹脂の混合物の水分量は0.3重量%以下、好ましくは0.25重量%以下である。水分量が多すぎると、成形時に配合した植物繊維の熱分解が生じ着色が大きくなる場合がある。
 このようにして調製された本発明の植物繊維強化熱可塑性樹脂材は、バガス繊維を用いた場合よりも、特に以下の点で有利である。
○MFR(メルトフローレート;樹脂の流動性を表す指標)
 EFB繊維やMF繊維を用いると、MFRが高くなり、樹脂の流動性が良好になるため、樹脂の成形性がバガス繊維を用いた場合よりも良くなる。EFB繊維やMF繊維を用いることで、より低温での成形を実現できるため、植物繊維の熱分解を防止できる点においても有利である。
○成形体の表面の滑らかさ
 表面の粗さの指標として、Rz値(10点平均、単位μm)が小さくなり、成形体の表面がバガス繊維を用いた場合よりも滑らかになり、成形体の品質が良好になる。
 EFB繊維やMF繊維の繊維径(0.1mm程度)がバガス繊維(0.3mm程度)よりも細いことにより、表面粗さを低下させることができるため、従来のバガスより繊維長が短くても繊維強化の効果を発揮することができる。
 以下に本発明の実施例を記載する。なお、例中の%は特に断りのない限り、重量基準を意味するものとする。
(比較例1~2)
 10mmから50mmの繊維長のEFB繊維を1mmから5mmの繊維長分布になるように粉砕した。平均繊維長は3.41mm,アスペクト比は28.4であった。EFB繊維は残留している水可溶成分を除去するため、40gのEFB繊維に対して1000mlのビーカーに蒸留水800mlを加え、ヒータで加熱・攪拌しながら温水(80℃)による洗浄を行った。洗浄を行った後、EFB繊維を濾別・乾燥した。洗浄処理後のEFB繊維中の不純物の重量は8%減少した。さらにEFB繊維をオーブンにて24時間,80℃で加熱乾燥した。
 次に図1に示すような1軸混練機にEFB繊維およびポリプロピレン樹脂を重量比で40:60として混合しながら200℃に加熱・押出し、ペレットを作製した。このときのペレットの水分は0.8%であった。
 このペレットを2g秤量し、熱プレス成形を行った。熱プレス条件は圧力100kgf/cm2,保持時間10分,温度200℃,240℃,260℃で行った。
 各条件で調製した成形体の加熱分解性をみるため、成形体の色調評価を行った。
 色調評価はパネラー10名が目視で確認し、表1の基準に基づき、加熱前のEFB繊維の色調を5点とし、着色度合に応じて1~5点の点数をつけその平均値を算出した。平均値が3.5点以上のものを色調として合格と判断した。
(表1)色調評価基準
Figure JPOXMLDOC01-appb-I000001
(表2)色調評価結果
Figure JPOXMLDOC01-appb-I000002
 表2の結果より、比較例1や2は色調評価が3.5点未満となり、ペレットの水分が0.8%であると熱プレス成形温度を200℃から240℃や260℃に上げた場合、加熱分解が生じる結果となった。
(実施例1~2、比較例3~4)
 比較例1と同様にEFB繊維中の水可溶成分を除去したEFB繊維を用意し,EFB繊維を真空加熱乾燥装置により100℃,5hr,5torrにて、水分量1%以下に乾燥した。乾燥直後のEFB繊維とポリプロピレンを40:60の重量比で混合・押出し、ペレットを作製した。ペレット作製後、ペレットは真空加熱乾燥装置により100℃,5hr,5torrにて乾燥を行った。ペレットは乾燥後、室内(25℃,湿度55%)で、0分,20分,40分,60分に放置し、続いて熱プレス成形を行った。熱プレス条件は圧力100kgf/cm2,保持時間10分,温度260℃とした。なお、0分,20分,40分,60分放置後のペレットの水分値は、それぞれ、0%、0.25%、0.35%、0.42%であった。色調評価した結果を表3に示した。
(表3)色調評価結果
Figure JPOXMLDOC01-appb-I000003
 表3より、乾燥後のペレットを室内で0分及び20分放置した後成形したものが、色調評価が3.5点以上であり良好であった。0分のものは、200℃で成形したものと同様の色調評価であり、また、パネラー10名による焦げに伴う不快な臭気の有無を評価したところ、いずれも不快な臭気が認められないという結果になった。
 しかしながら、室内の暴露時間が40分以上と長くなると、焦げによる変色が進み色調評価が40分で2.4点、60分で1.4点と悪くなり、また、パネラー10名による焦げに伴う不快な臭気の有無を評価したところ、いずれも不快な臭気が認められるという結果になった。以上の結果より、ペレットに吸着している水分が植物繊維の熱分解温度を低下させていることが認められ、ペレットの水分を少なくとも0.3%以下に除去することで成形温度を200℃から260℃に上昇できることが明らかになった。
(試験例1)
 減圧加熱乾燥後に室内に放置した際のEFB繊維1gおよびEFB繊維・ポリプロピレンのペレット1g(植物繊維重量比率40%)の重量変化を測定した。減圧加熱乾燥条件は100℃,5hr, 5torrの条件とし、重量測定は25℃,湿度55%に保った室内に置いた電子天秤で重量変化を測定した。
 図2は室内放置時間とEFB繊維およびEFB繊維・ポリプロピレンペレットの重量変化の関係を示した図である。
 図2からわかるように、EFB繊維は乾燥後7重量%、EFB繊維・ポリプロピレンのペレットは0.75重量%、吸湿による重量増加が認められた。また、EFB繊維、EFB繊維・ポリプロピレンペレット共に大気暴露直後に急速に吸湿していることが判明した。特に20分後から60分後の吸湿量が大きかった。
 図2から判断すると、EFB繊維・ポリプロピレンペレットは重量比で0.3重量%以上の水分を吸湿すると、熱分解が生じ始めることが判明した。これはペレットのEFB繊維重量が40%であることから、EFB繊維単体において0.75重量%の水分が吸着することに相当する。0.75重量%の水分は乾燥後EFB繊維においては、5分以内に吸収されるため、200℃以上の成形でEFB繊維・ポリプロピレンが熱分解を避けるためには厳密な水分吸着量の管理が必要であると判断される。
(実施例3~6、比較例5~8)
 植物繊維の洗浄処理と金型付着成分(ヤニ成分)との関係を調べた。
 EFB繊維あるいはMF繊維を未洗浄あるいは洗浄した後、60℃、2時間オーブンで乾燥し、その後室温で1日放置した。放置後のEFB繊維あるいはMF繊維の水分量は7%であった。平均繊維長は3.41mm,アスペクト比は28.4であった。
 なお、植物繊維の洗浄条件は水で洗浄する場合は、80℃で行い、植物繊維と水の重量比は1:20とした。アセトンで洗浄する場合は25℃で行い、植物繊維とアセトンの重量比は1:20とした。
 次に実施例1の方法に従い、洗浄あるいは未洗浄のEFB繊維あるいはMF繊維と、ポリプロピレンを混錬し、40%の植物繊維・ポリプロピレンペレットを作製した。ペレットを乾燥する場合、真空加熱乾燥装置により100℃,5hr,5torrにて乾燥を行った。作製したペレットに対して熱プレス成形を行った。熱プレス条件は圧力100kgf/cm2,保持時間10分,温度260℃とした。
 なお、各植物繊維の洗浄方法、乾燥処理の有無及びペレットの水分値を表4に示した。
 成形時には金型とペレットの間にアルミ箔シートを置いた。成形後に、成形体からアルミ箔シートを剥がし、その重量を測定した。ヤニ成分が付着すると、アルミ箔シートの重量は増加する。そこで、成形前後のアルミ箔シートの重量差を測定し、ヤニ成分(mass change:重量変化率)とした。Mass changeの値が、1.5×10-4以下である場合、目視でヤニ成分の付着量が認められず、ヤニ成分の付着量が少なく良好であると判断される。
 EFB繊維の結果(実施例3~4、比較例5~6)を図3に、MF繊維の結果(実施例5~6、比較例7~8)を図4に示した。
(表4)植物繊維処理一覧
Figure JPOXMLDOC01-appb-I000004
 200℃,260℃の両方の成形条件において、EFB繊維,MF繊維いずれも、Mass changeの値が1.5×10-4以下となり、ヤニ成分は大きく減少した。これにより、 MF繊維およびEFB繊維の両方において、温水またはアセトンによる植物繊維の洗浄処理,ペレットの真空乾燥処理がヤニ成分の減少に大きく影響することが判明した。
(実施例7、比較例9)MF繊維、バガス繊維を配合したポリプロピレン樹脂のMFRの比較
 本発明のMF繊維:ポリプロピレンを40:60で配合した樹脂材とバガス繊維:ポリプロピレンを40:60で配合した樹脂材についてMFR(メルトフローレート)を測定した。MFRは樹脂の流動性を表し、JISK7210:1999に定めた方法に従い、シリンダー中で樹脂により決められた温度、例えば一般的なポリエチレンなどでは190℃、ポリプロピレンでは230℃に加熱した樹脂に2160gf/cm2の荷重をかけたとき、決められた細孔(オリフィス)から10分間に流れ出る流量(g/10min)で表す。
 MFR値は高くなるほど流動性が良いことを示し、樹脂の成形性が良好となる。
 MFRを測定した結果を表5に示した。
(表5)MFR測定結果
Figure JPOXMLDOC01-appb-I000005
 表5の結果のように、MF繊維を配合したものは、バガス繊維を配合したものよりもMFR値が高くなり、バガス繊維よりも樹脂の成形性が優位に高いことが示された。
(実施例8~9、比較例10)
 繊維長の異なるEFB繊維、MF繊維とバガス繊維を原料として、実施例1と同様にして調製した成形体の表面の粗さ(Rz値)を測定した。
 表面の粗さRz値(10点平均、単位μm)は、測定機器として小型表面粗さ測定器 SJ-301型(株式会社ミツトヨ製)を用い、測定区間7.2mmで測定した。結果を表6に示した。
(表6)表面粗さ(Rz値)の比較
Figure JPOXMLDOC01-appb-I000006
*平均繊維長3mm
 表6のように、EFB繊維やMF繊維を配合したものは、バガス繊維よりもRz値が低くなり、表面がより滑らかになり、成形体の品質として良好になることが示された。
 本発明による植物繊維・熱可塑性樹脂の複合材料の加熱分解防止の効果により、成形加工可能温度が従来の200℃から260℃に大幅に上昇し、成形加工性が増し、種々の熱可塑性樹脂の使用が可能になる。成形加工可能温度が上昇するだけでなく、植物繊維の加熱分解に伴うヤニ成分が金型表面に付着する量が大幅に減少することで、金型のメンテナンスが極めて容易になる。また、植物繊維の加熱分解が抑制されることで、成形体の異臭・不快臭が抑制される。以上の効果により、安価な植物繊維を使用した高品質な植物繊維強化プラスチックを提供することができる。

Claims (15)

  1. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維、及び熱可塑性樹脂を含有する、水分量が0.3重量%以下である成形用植物繊維強化熱可塑性樹脂材。
  2. 水分量が0.25重量%以下である、請求項1に記載の成形用植物繊維強化熱可塑性樹脂材。
  3. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維のアスペクト比が20以上である、請求項1または2に記載の成形用植物繊維強化熱可塑性樹脂材。
  4. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維のアスペクト比が20~25である、請求項1または2に記載の成形用植物繊維強化熱可塑性樹脂材。
  5. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維の平均繊維長が2mm~10mmである、請求項3または4に記載の成形用植物繊維強化熱可塑性樹脂材。
  6. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維の平均繊維長が3mm~5mmである、請求項3または4に記載の成形用植物繊維強化熱可塑性樹脂材。
  7. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維を5~50重量%、熱可塑性樹脂を50~95重量%含有する、請求項1~6の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材。
  8. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維を30~40重量%、熱可塑性樹脂を60~70重量%含有する、請求項1~6の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材。
  9. 熱可塑性樹脂がポリオレフィン系樹脂である、請求項1~8の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材。
  10. ポリオレフィン系樹脂がポリプロピレンである、請求項9に記載の成形用植物繊維強化熱可塑性樹脂材。
  11. パーム果実抽出残渣及び/又はパーム空果房由来の植物繊維を水または有機溶媒で洗浄し、該植物繊維及び熱可塑性樹脂を180℃乃至270℃で混練した後水分量を0.3重量%以下に乾燥することを特徴とする、成形用植物繊維強化熱可塑性樹脂材の製造方法。
  12. 水分量を0.25重量%以下に乾燥する、請求項11に記載の成形用植物繊維強化熱可塑性樹脂材の製造方法。
  13. 植物繊維1重量部に対し、10重量部以上の水あるいは有機溶媒で洗浄する、請求項11または12に記載の成形用植物繊維強化熱可塑性樹脂材の製造方法。
  14. 請求項1~10の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材を160℃乃至270℃で成形して得られる成形品。
  15. 請求項1~10の何れか1項に記載の成形用植物繊維強化熱可塑性樹脂材を180℃乃至260℃で成形して得られる成形品。
PCT/JP2014/067097 2013-07-03 2014-06-27 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品 WO2015002074A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-139821 2013-07-03
JP2013139821A JP6286898B6 (ja) 2013-07-03 2013-07-03 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品

Publications (1)

Publication Number Publication Date
WO2015002074A1 true WO2015002074A1 (ja) 2015-01-08

Family

ID=52143652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067097 WO2015002074A1 (ja) 2013-07-03 2014-06-27 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品

Country Status (2)

Country Link
JP (1) JP6286898B6 (ja)
WO (1) WO2015002074A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982207A (zh) * 2019-12-13 2020-04-10 东莞市莎米特箱包有限公司 一种行李箱壳体用材及其制备方法
JP2023029911A (ja) * 2019-05-21 2023-03-07 旭化成株式会社 セルロース樹脂組成物を収容するため容器及びこれとセルロース樹脂組成物とを有する包装体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106136A1 (en) * 2004-11-17 2006-05-18 Abu-Sharkh Basel F Weatherable, mechanically stable polypropylene based date palm reinforced composites
JP2010241986A (ja) * 2009-04-07 2010-10-28 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
WO2013094343A1 (ja) * 2011-12-21 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂成形体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106136A1 (en) * 2004-11-17 2006-05-18 Abu-Sharkh Basel F Weatherable, mechanically stable polypropylene based date palm reinforced composites
JP2010241986A (ja) * 2009-04-07 2010-10-28 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
WO2013094343A1 (ja) * 2011-12-21 2013-06-27 トヨタ紡織株式会社 熱可塑性樹脂成形体及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023029911A (ja) * 2019-05-21 2023-03-07 旭化成株式会社 セルロース樹脂組成物を収容するため容器及びこれとセルロース樹脂組成物とを有する包装体
JP7481416B2 (ja) 2019-05-21 2024-05-10 旭化成株式会社 セルロース樹脂組成物を収容するため容器及びこれとセルロース樹脂組成物とを有する包装体
CN110982207A (zh) * 2019-12-13 2020-04-10 东莞市莎米特箱包有限公司 一种行李箱壳体用材及其制备方法

Also Published As

Publication number Publication date
JP6286898B2 (ja) 2018-03-07
JP6286898B6 (ja) 2023-08-07
JP2015013916A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
CN101602884B (zh) 一种耐热聚乳酸复合材料及其制备方法
Ramesh Wood flour filled thermoset composites
US20070259584A1 (en) Biodegradable polymer composites and related methods
JP4971449B2 (ja) 高温粉砕技術を用いたバイオ複合材料の製造方法
US20120190775A1 (en) Composite resin composition
KR20110035215A (ko) 셀룰로오스 유도체 및 표면 처리된 천연섬유를 포함하는 생분해성 수지 조성물
CN110724346A (zh) 一种植物纤维填充改性聚丙烯复合材料及其制备方法
Puglia et al. Revalorisation of Posidonia oceanica as reinforcement in polyethylene/maleic anhydride grafted polyethylene composites
JP6286898B2 (ja) 成形用植物繊維強化熱可塑性樹脂材及びその製造方法及び成形品
Rasidi et al. Chemical modification of Nypa fruticans filled polylactic acid/recycled low-density polyethylene biocomposites
Srebrenkoska et al. Biocomposites based on polylactic acid and their thermal behavior after recycing
JP2010284300A (ja) 植物繊維強化ポリ乳酸箸の製造方法
KR20100035032A (ko) 커피추출물 찌꺼기를 이용하여 피엘에이 섬유를 제조하는 방법
CN106133032A (zh) 将湿天然纤维和淀粉结合到热塑性塑料中的方法
CN109233226A (zh) 一种木质素改性pla为基料的降解育秧盘及其制备方法
KR101755892B1 (ko) 목분을 이용한 바이오플라스틱 복합재 제조방법 및 이에 의해 제조된 바이오플라스틱 복합재
CN108659490A (zh) 一种提高聚乳酸薄膜撕裂强度的方法
CN103937183A (zh) 一种天然植物纤维/立构聚乳酸复合材料的制备方法
CN103910909A (zh) 一种耐高温塑料复合材料
CN103146162A (zh) 一种Lyocell纤维/聚乳酸复合材料及其制备方法
KR101208107B1 (ko) 바이오매스 펠렛을 이용한 자동차 내장재용 플라스틱의 제조방법
CN102226006B (zh) 一种适用于塑料填充的木粉的预处理方法
CN113939560B (zh) 含有纤维素纳米晶的树脂组合物
KR101013446B1 (ko) 셀룰로오스 유도체 및 화학섬유를 포함하는 생분해성 수지 조성물
Li Properties of agave fiber reinforced thermoplastic composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819511

Country of ref document: EP

Kind code of ref document: A1