WO2013091125A1 - Procedimiento para la formulación de un alimento en formato de gel para ser usado como alimento nutricional, enriquecidos en peptidos y mal todextrinas obtenidos desde harina de quinoa - Google Patents

Procedimiento para la formulación de un alimento en formato de gel para ser usado como alimento nutricional, enriquecidos en peptidos y mal todextrinas obtenidos desde harina de quinoa Download PDF

Info

Publication number
WO2013091125A1
WO2013091125A1 PCT/CL2012/000073 CL2012000073W WO2013091125A1 WO 2013091125 A1 WO2013091125 A1 WO 2013091125A1 CL 2012000073 W CL2012000073 W CL 2012000073W WO 2013091125 A1 WO2013091125 A1 WO 2013091125A1
Authority
WO
WIPO (PCT)
Prior art keywords
quinoa
peptides
protein
flour
maltodextrin
Prior art date
Application number
PCT/CL2012/000073
Other languages
English (en)
French (fr)
Inventor
CÁCERES Javier Ignacio ENRIONE
Paulo DÍAZ CALDERON
Fernando OSORIO LIRA
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Priority to EP12815988.6A priority Critical patent/EP2796054B1/en
Priority to CA2860041A priority patent/CA2860041C/en
Priority to BR112014015232-2A priority patent/BR112014015232A2/pt
Publication of WO2013091125A1 publication Critical patent/WO2013091125A1/es
Priority to US14/312,465 priority patent/US9763463B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/12Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from cereals, wheat, bran, or molasses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • Supplements for athletes base their composition mainly on carbohydrates and protein sources obtained from cereals such as corn and wheat, legumes such as soybeans, animal products such as milk and eggs, in addition to adding different active compounds according to the offered properties of the product (Ex: caffeine , carnitine, taurine).
  • carbohydrates and protein sources obtained from cereals such as corn and wheat, legumes such as soybeans, animal products such as milk and eggs, in addition to adding different active compounds according to the offered properties of the product (Ex: caffeine , carnitine, taurine).
  • beverages and energy bars are examples of the products that exist in the market for athletes.
  • the kinetics of absorption of these compounds by the organism will depend on several factors in each of the stages of digestion, among which are: i) lubrication of the food by secretions of the organism, ii) mechanical reduction of carbohydrates, lipids and proteins , iii) absorption of nutrients. The latter occurs mainly in the small intestine. Once the proteins have been reduced by proteases, they are absorbed in the form of tripeptides, dipeptides and individual amino acids.
  • the carbohydrates in the case of the carbohydrates (sugars and starch), these are hydrolyzed by enzymes endogenous in the intestine to disaccharides such as sucrose, lactose and maltose and then to monosaccharides such as glucose, fructose and galactose, which are subsequently absorbed.
  • disaccharides such as sucrose, lactose and maltose
  • monosaccharides such as glucose, fructose and galactose
  • lipids these are broken down by lipases to fatty acids and monoglycerides.
  • the mechanisms of absorption of nutrients involved are: i) active transport, ii) passive diffusion, iii) endocytosis and iv) facilitated diffusion.
  • active transport is used mainly for the absorption of constituent units of carbohydrates and proteins, requiring energy for its operation.
  • Quinoa is an Andean pseudocereal with a high nutritional value, non-allergenic (Yotaro, K, Nutritional Characteristics of Pseudocereal Amaranth and Quinoa: Alternative Foodstuff for Patients with Food Allergy, Journal of Japanese Society of Nutrition and Food Science 55: 299-302 ( 2002)), which possesses all the essential amino acids for human consumption in larger quantities compared to other cereals (R ⁇ ales, J and Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds.
  • muscle protein breakdown occurs, the degree of rupture being greater when the level of physical demand is greater (Crittenden, R, Buckley, J, Cameron-Smith, D, Brown, A, Thomas, K, Davey, S, and Hobman, P, Functional Dairy Protein Supplements for Elithe Athletes, Australian Journal of Dairy Technology 64: 133-137 (2009) and DS, FS PeptoPro: Power your performance, reach beyond your limits 2010 [cited 05-01-2011]; Available from: http://www.dsm.com/le/en_US/peptopro/html/howdoesitwork_proven.htm). Recent literature points out the important role of proteins in performance and muscle recovery.
  • Morishita et al (Morishita, M, Kamei, N, Ehara, J, Isowa, K, and Takayama, K, A novel approach using functional peptides for efficient intestinal absorption of insulin Journal of Controlled Relay 118: 177-184 (2007) ) demonstrated that the inclusion of functional peptides of commercial origin increases the level of intestinal insulin absorption in rats.
  • Quinoa is a seed that is characterized by having a high content of proteins, which in turn provide a large part of the essential amino acids for humans, that is, those that must be consumed through the diet .
  • the content of essential amino acids such as tyrosine, phenylalanine, threonine, lysine, methionine and cysteine is high compared to other vegetable food sources.
  • these seeds have a high content of starch and fiber (> 75%), hence their name of pseudocereal (R ⁇ ales, J and Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds.
  • the quinoa has a protein content that is in a range of 12 to 14 grams per 100 grams of dry seed, although it must be considered that this value depends on the variety of seed to be used. On the other hand within the Total protein content there is a percentage that is insoluble and resistant to enzymatic hydrolysis (eg scleroproteins).
  • Tang et al (Tang, H, Watanabe, K, and Mitsunaga, T, Characterization of storage starches from quinoa, barley and adzuki seeds, Carbohydrate Polymers 49: 13-22 (2002)) characterize the granule of quinoa starch, noting that its size distribution is ⁇ 1 ⁇ and the isothermal sorption curve is sigmoidal. The water sorption properties are similar to those observed in barley starch.
  • Aluko and Monu (Aluko, RE and Monu, E, Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates, Journal of Food Science 68: 1254-1258 (2003)) evaluated the functional properties of quinoa hydrolysates as a food ingredient through the action of an alcalase enzyme. The authors concluded that the protein hydrolyzate obtained had greater solubility, lower emulsification capacity and greater foaming capacity than a protein concentrate based on quinoa. In addition, they conclude that those peptides of lower molecular weight have greater potential as an anti-hypertension agent or as compounds with anti-radical activity. However, this work does not evaluate or indicate possible specific industrial applications.
  • quinoa flour as raw material for the production of products for special regimes has also been studied.
  • Abugoch et al (Abugoch, L, Castro, E, Tapia, C, Anón, MC, Gajardo, P, and Villarroel, A, Stability of quinoa flour proteins ⁇ Chenopodium quinoa Willd.) During storage. International Journal of Food Science & Technology 44: 2013-2020 (2009)) establish that quinoa flour (-75% carbohydrates, ⁇ 16% proteins, both on a dry basis) maintains its functional properties of water retention capacity and solubility after storage for two months at 20-30 ° C in double kraft paper containers.
  • Caperuto y col (Caperuto, LC, Amaya-Farfan, J, and Camargo, CRO, Performance of quinoa (Chenopodium quinoa Willd) flour in the manufacture of gluten-free spaghetti Journal of the Science of Food and Agriculture 81: 95-101 (2001)) formulated a mixture of quinoa flour and corn to develop gluten-free spaghetti-type pasta, obtaining that the weight loss, the volume increase and the adhesiveness of the cooked pasta were within the parameters considered acceptable. In addition, the product had a pleasant sensory profile for the consumer.
  • Sinha et al (Sinha, R, Radha, C, Prakash, J, and Kaul, P, Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation, Food Chemistry 101: 1484-1491 (2007)) studied the application of a whey protein hydrolyzate, obtained through the action of microbial proteases, in the formulation of a drinkable product. From a sensory point of view, no significant differences were found between the formulated product and a commercial sample.
  • Hartmann and Meisel (Hartmann, R and Meisel, H, Food-derived peptides with biological activity: from research to food applications Current Opinion in Biotechnology 18: 163-169 (2007)) have described the antimicrobial, immunoregulatory characteristics , antithrombotics, blood pressure regulators, antioxidants, hypocholesterolemic, among others, of peptides of different origin (mainly of milk proteins, as well as fish proteins, whey, soy, rice) and their potential use in the food industry. foods.
  • Reyes Ruiz Organic composition that acts as an insect repellent inhibitor and direct contact on pests and insects, plant growth regulator, fungicide, nematicide and natural antioxidant comprising Chenopodium Quinoa, essence of eucalyptus and from Azadirachita indica, REICBLMERR (60%), Editor, 2008: Chile
  • Reyes Ruiz Organic composition that acts as an insect repellent inhibitor and direct contact on pests and insects, plant growth regulator, fungicide, nematicide and natural antioxidant comprising Chenopodium Quinoa, essence of eucalyptus and from Azadirachita indica, REICBLMERR (60%), Editor, 2008: Chile
  • Reyes Ruiz Organic composition that acts as an insect repellent inhibitor and direct contact on pests and insects, plant growth regulator, fungicide, nematicide and natural antioxidant comprising Chenopodium Quinoa, essence of eucalyptus and from Azadirachita indica, REICBLMERR (60%), Editor, 2008: Chile
  • Ram ⁇ rez Rad ⁇ rez Reid, R, Procedure for the production of wet peptide solutions at 50% concentration or dry peptides for human and animal feed from secondary products for the production of protein foods for human consumption.
  • Unilever NV which seeks to include peptides in the formulation of a food bar
  • Gautam, A, Garcia, A, and Hander, R, Food Bar which comprises at least 10% based on the total weight of the bar peptides, of peptides with a high water activity, UNV, Editor, 2005: Chile.
  • USPTO United States Patent and Trademark Office
  • EPO European Patent Office
  • Garc ⁇ a and Stoitz (Garc ⁇ a, C and Stoitz, C, Use Of Quinoa Extract As Cosmetic And Pharmaceutic Slimming Agent And / Or As An Agent Preventing The Formation Of New Fats In The Human Body, 2010, Societe D'Exploitation Des Produits Pour Les Indus tries Chimiques Seppic: France) describe how to use a commercial dry extract of quinoa for pharmaceutical and cosmetic purposes, noting that this dry extract is sold solubilized in solvents such as glycol, propylene glycol, butylene or ethanol in maximum concentration of 2% by weight.
  • solvents such as glycol, propylene glycol, butylene or ethanol in maximum concentration of 2% by weight.
  • Scarlin and Burnett (Scanlin, LA and Burnett, C, Quinoa grain processing and produc ⁇ s, 2010, Keen Ingredients, INC: USA) describe how from quinoa grains, by means of a pre-treatment of humidification and subsequent drying, they obtain a product for use as an additive in foods.
  • the authors detail a mechanism of "malting" the grain of quinoa with the objective of obtaining a sweeter grain, by means of which the grain is germinated for 72 hours at 5 ° C, reaching a humidity of the grain -45%, and thus to be able to obtain a sweeter grain thanks to the action of endogenous enzymes.
  • This application corresponds to the publication WO2009048938, available for example in the EPO database.
  • Remi (Remi, T, Quinoa seed treatment process and product obtained, 1996, Societe des Produits NESTLE SA: Switzerland) describes a procedure to obtain an expanded product based on quinoa which is also requested in the EPO under the code EP05 5706.
  • the claims indicate the conditions under which the quinoa grain is humidified at a moisture content of up to 85% by weight, after which takes to certain conditions (not indicated) of temperature and humidity that cause their expansion.
  • Yaez and Muoz (Yaez Soler, AJ and Muoz Cerda, A, Composition based on cocoa and spirulina, 2010, Yaez Soler, Armando Jose Muoz Cerda, Antonio: Spain) were granted the patent in 2010 for an invention that describes a composition based on cocoa and spirulina, which together with other ingredients, incorporates quinoa and whose final product can be presented as a bar, caramel, chocolate or drink.
  • the quinoa content may represent up to 55% by weight of the final product, but it is not specified whether the grain is used whole, ground or only grain fractions.
  • the claims do not provide more information since they only refer to inform that one of the cereals used is quinoa.
  • Figure 4 Mass balance for products obtained at the end of the protein extraction process from quinoa flour.
  • A Not considering lipid extraction stage,
  • B considering lipid extraction.
  • the percentages correspond to the amount of the constituent in each fraction, considering the total of the constituent as 100%.
  • Basis of calculation 100 grams of commercial quinoa flour.
  • Figure 5 Contents of protein, ash, fat and carbohydrates in whole flour (A) and its comparison with flours without lipids (B), without protein or lipids (C) and without proteins (D).
  • Figure 6 Graph of relative abundance of the peptides released during the enzymatic digestion of quinoa protein extract (MW: molecular weight, Da).
  • Figure 7 Spectrophotometric measurement of the reducing sugars released during the hydrolysis of quinoa starch.
  • Figure 8 Obtaining Peptides and Maltodextrins from Quinoa Flour (Flowchart)
  • the invention describes the formulation of a food product in gel format made from quinoa starch, enriched with peptides and maltodextrins obtained from the partial hydrolysis of proteins and starch of the same quinoa grain, respectively, intended for consumption by athletes during and after of a physical activity.
  • the first step is to fix the granulometry of the quinoa flour.
  • Commercial quinoa flour has a size distribution ranging from ⁇ 100 pm to 700 pm. It is proposed to work with granulometry between 100 and 300 pm, which represents 30% of the total weight of commercial quinoa flour. With larger granulometries, the extraction of protein is inefficient due to the decrease in the extraction surface, while with granulometries less than 100 ⁇ m, the amount of protein present was very low.
  • the flour in this size range is mainly composed of starch granules with low protein content.
  • proximal analyzes were done on flour samples in different stages of the process, that is, in quinoa without lipids, quinoa without proteins and quinoa without lipids or proteins.
  • USDA United States Department of Agriculture
  • the moisture content was determined (oven drying at 105 ° C for 24 hours), proteins (Kjeldhal method * 5.7), ash (calcination in muffle at 550 ° C) and fat (Soxhlet extraction) of the different samples .
  • the proximal analysis of the different samples of quinoa flour shows that the values obtained for each of the analyzes are within the ranges reported in the literature , taking as a standard the proximal composition of an Ecuadorian raw grain and the information described in the USDA row in Table I. In the case of flour without proteins and without lipids or proteins, the increase in moisture content is due to the extraction of these components.
  • the experimental design used corresponded to a factorial design at 2 levels, considering three replicas at the central point. Therefore, the design corresponded to a 2 (R ⁇ ales, J and Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds, Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 42: 1-11 ( 1992)), which generated a total of 19 experimental runs through which it was sought to optimize lipid and / or protein extraction conditions.
  • the Design Expert 6.0 software (Stat-Ease Inc, Minneapolis, USA) was used.
  • the extraction process was therefore carried out using 30 mL of a 40 mM NaOH solution (pH 12.0) for every 1 gram of quinoa meal. This suspension is incubated with constant stirring at room temperature for 2 hours. Once the extraction is complete, the suspension is centrifuged at 3,000g for 5 min at 4 ° C, recovering the supernatant which contains the soluble quinoa proteins at a concentration of 0.4% to 0.3% w / v depending on whether flour was used with or without lipids, respectively. This procedure manages to obtain up to 82% of the proteins present in the flour.
  • An optional step is to repeat the step of protein extraction to the precipitate of the centrifugation, which allows recovering an additional ⁇ 8%, thus reaching to obtain 90% of the proteins at the end of the process.
  • the incorporation of ionic or non-ionic detergents does not significantly affect the extraction efficiency.
  • Proximal analyzes performed on the isoelectric precipitate revealed that it is composed of 75% w / w of proteins, 2.3% w / w of ashes, 9.1% w / w of lipids (in the case of using flour with lipids) and % p / p of other constituents (starch, sugars, fibers, etc.).
  • the objective of the concentration stage is to reach a protein content in solution of -8% w / v.
  • the lipids present in the quinoa flour used during the development of this investigation corresponded to 8.2% of the dry weight of this (Table I).
  • An optional previous operation before the extraction of proteins is to remove these lipids present, in order that these do not interfere in the final analyzes and / or obtain a more efficient protein extraction.
  • the use of a 95% ethanol solution in a ratio of 2: 1 volume / weight (mlJg) to the amount of quinoa meal was determined (p ⁇ 0.05). At lower volumes of ethanol, the suspension becomes very viscous, making it difficult to keep it homogeneous during extraction. Once the volume of ethanol is added, the suspension is kept hermetically closed in order to avoid the evaporation of the solvent.
  • the suspension is incubated with agitation at a temperature of 30 ° C for about 2 hours. Agitation is an important factor to optimize the extraction, this should be enough to keep the flour suspended and avoid decanting during the process.
  • the lipid-free flour is recovered by filtration, washing it with 95% ethanol. The lipid-free flour is kept at 60 ° C overnight (> 12 hours), a procedure that allows to extract approximately 80% of the lipids present in the quinoa meal.
  • the protein suspension ( ⁇ 8% w / v) is heated at 80 ° C for 5 min and then cooled to 55 ° C keeping it at 1 ° C. min before adjusting the pH to 8.0-8.5 with NaOH or HCl, as appropriate.
  • 0.05 Anson Unit (AU) of Alcalase per 1 g of total proteins To the solution is added 0.05 Anson Unit (AU) of Alcalase per 1 g of total proteins. The solution is left incubating at 50-60 ° C continuously controlling the pH. When the pH falls below 7.0, 0.03 AU units per gram of protein from a second commercial enzyme (Protamex, Neutrase or Flavourzyme) are added to the solution and the solution is left to incubate at 50 ° C for 15 to 60 min. . To stop the reaction, heat the solution again to 85 ° C for 5 min.
  • quinoa starch From quinoa starch it is also possible to obtain maltodextrins by enzymatic treatment. To do this, weigh 20 g of quinoa flour with a granulometry of 100 ⁇ and add water at room temperature until 100 mL is added. The solution is adjusted to 6.0 and CaCl 2 is added at a concentration of 0, 05%. Then 0.4 U / mL of alpha-amylase enzyme is added. The solution initially is very viscous, but after adding the enzyme it begins to liquefy gradually, evidencing a decrease in the molecular weight of the starch. The temperature is raised to 55 ° C and left to incubate for 1 h under constant agitation.
  • the reaction is stopped by heating the solution at 85 ° C for 15 min. This step is important to be able to subsequently carry out the gelation with the starch.
  • the amount of Reductive sugars released during the process were quantified by the Somogyi-Nelson method (Somogyi, M. 1952. Notes on Sugar Determination, Journal of Biological Chemistry 195: 19-23.). The results obtained are presented in Figure 7.
  • the necessary amount of quinoa flour (10%) with a granulometry of 100 m is weighed, which, as already indicated, consists mainly of starch.
  • the required amount of peptides is added to a final concentration of 10% and maltodextrins to a final concentration of 20%.
  • the dyes and flavorings necessary to make the product attractive should also be added.
  • As preservative 1g / Kg of sorbic acid is added and the necessary volume of distilled water is added.
  • the resulting solution is heated at 80 ° C for 20 min, under constant agitation, in order to gelatinize the starch. Once the desired consistency is obtained, the product is allowed to cool to room temperature. When the mixture gels it can be sized into smaller pieces to finally seal the product in a suitable container.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Pediatric Medicine (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

Proceso de extracción de péptidos y maltodextrinas a partir de harina de quinoa destinados a la elaboración de un producto alimenticio que corresponde a un gel destinado al consumo por deportistas durante y después de un ejercicio físico.

Description

PROCEDIMIENTO PARA LA FORMULACIÓN DE UN ALIMENTO EN FORMATO DE GEL PARA SER USADO COMO ALIMENTO NUTRICIONAL, ENRIQUECIDOS EN PEPTIDOS Y MALTODEXTRINAS OBTENIDOS DESDE HARINA DE QUINOA.
Objeto de la Invención
Proceso de extracción de péptidos y maltodextrinas a partir de harina de quinoa destinados a la elaboración de un producto alimenticio que corresponde a un gel destinado al consumo por deportistas durante y después de un ejercicio físico.
Problema Técnico Actual
Actualmente en el mercado existen diversos productos desarrollados para deportistas aficionados y/o profesionales que cumplen diversas funciones relacionadas con aumento de rendimiento, hidratación, tonificación, recuperación, aumento de masa muscular, disminución del nivel de ácido láctico en los músculos, entre otros. Estos productos se basan principalmente en carbohidratos y proteínas junto con suplementos nutricionales (Kreider, R, Wilborn, C, Taylor, L, Campbell, B, Almada, A, Collins, R, Cooke, M, Earnest, C, Greenwood, M, Kalman, D, Kerksick, C, Kleiner, S, Leutholtz, B, López, H, Lowery, L, Mendel, R, Smith, A, Spano, M, Wildman, R, Willoughby, D, Ziegenfuss, T, and Antonio, J, ISSN exercise & sport nutrition review: research & recommendations. Journal of the International Society of Sports Nutrition 7:7 (2010)).
Los suplementos para deportistas basan su composición principalmente en carbohidratos y fuentes proteicas obtenidas de cereales como maíz y trigo, leguminosas como soya, productos derivados de animales como leche y huevos, además de agregar diferentes compuestos activos según las propiedades ofrecidas del producto (Ej: cafeína, carnitina, taurina). Entre los productos que existen en el mercado destinados a deportistas se cuentan bebidas y barras energéticas.
En el mundo durante el último tiempo, se ha incrementado la demanda por este tipo de productos debido a un aumento en la cultura deportiva. Sin embargo, los productos de ayuda ergogénica que se venden actualmente en Chile son de un costo elevado y principalmente importados, lo que revela poca competencia en este rubro, abriendo un nicho interesante para el desarrollo y comercialización de productos similares.
La cinética de absorción de estos compuestos por el organismo dependerá de varios factores en cada una de las etapas de la digestión, entre las que se destacan: i) lubricación del alimento mediante secreciones del organismo, ii) reducción mecánica de carbohidratos, lípidos y proteínas, iii) absorción de nutrientes. Lo último ocurre principalmente en el intestino delgado. Una vez que las proteínas han sido reducidas por proteasas, estas son absorbidas en la forma de tripéptidos, dipéptidos y aminoácidos individuales. En el caso de los carbo-hidratos (azúcares y almidón), estos son hidrolizados por enzimas endógenas en el intestino a disacáridos tales como sacarosa, lactosa y maltosa y luego a monosacáridos como glucosa, fructosa y galactosa, los que son posteriormente absorbidos. En el caso de los lípidos estos son descompuestos por lipasas a ácidos grasos y monoglicéridos. En términos generales, los mecanismos de absorción de nutrientes involucrados son: i) transporte activo, ii) difusión pasiva, iii) endocitosis y iv) difusión facilitada. De estos, el transporte activo es utilizado principalmente para la absorción de unidades constitutivas de carbohidratos y proteínas, requiriendo energía para su funcionamiento.
Por lo tanto, lo anterior sugiere que cualquier estrategia que tenga como objetivo reducir estructuras complejas en tamaño y provocar cambios en la configuración de este tipo de biocompuestos, previos a la ingesta, facilitará la cinética de absorción de estos nutrientes a nivel intestinal lo cual, en el contexto de un producto destinado a deportistas, se traducirá en una recuperación más rápida del individuo a un costo energético inferior.
Campo de Aplicación de la Invención
Se propone formular un producto alimenticio tipo gel que contenga péptidos, maltodextrinas y almidón extraídos directamente desde el grano de quínoa, como materia prima, orientado a personas que desarrollen intensa actividad física, ya sea en el trabajo o en actividades deportivas. La quínoa es un pseudocereal andino con un alto valor nutricional, no alergénico (Yotaro, K, Nutricional Characteristics of Pseudocereal Amaranth and Quinoa: Alternative Foodstuff for Patients with Food Allergy. Journal of Japanese Society of Nutrition and Food Science 55:299-302 (2002)), que posee todos los aminoácidos esenciales de consumo humano en cantidades mayores en comparación a otros cereales (Rúales, J y Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 42:1-11 (1992)). La formulación de un producto que contenga péptidos y maltodextrinas hidrolizados enzimáticamente desde harina de quínoa, constituye entonces una ventaja cualitativa respecto de productos similares disponibles actualmente en el mercado, desde un punto de vista nutricional y funcional. Cabe destacar que productos alimenticios enriquecidos con hidrolizados proteicos de quínoa no existen actualmente en el mercado como tampoco han sido descritos en la literatura. Por otra parte la formulación bajo formato gel favorece un fácil transporte y consumo por parte de deportistas y/o consumidores en general, lo cual abre interesantes expectativas de consumo. Además el uso de quínoa para la producción de alimentos y/o suplementos es un importante avance en el uso de materias primas alternativas que buscan promover la explotación de recursos naturales que actualmente no son considerados industrialmente a gran escala. Estado del Arte
Durante la realización de un ejercicio físico se produce la ruptura de proteínas musculares (proteínas miofibrilares), siendo mayor el grado de ruptura cuando mayor es el nivel de exigencia física (Crittenden, R, Buckley, J, Cameron-Smith, D, Brown, A, Thomas, K, Davey, S, y Hobman, P, Functional Dairy Protein Supplements for Elithe Athletes. Australian Journal of Dairy Technology 64:133-137 (2009) y DS , FS. PeptoPro: Power your performance, reach beyond your limits. 2010 [cited 05-01-2011]; Available from: http://www.dsm.com/le/en_US/peptopro/html/howdoesitwork_proven.htm). Literatura reciente señala el rol importante que tienen las proteínas en el rendimiento y en la recuperación muscular. Se ha descrito que el rendimiento aumenta significativamente si se consume un suplemento a base de carbohidratos y proteínas en ciclismo de alta intensidad (Harmon, JH, Burckhard, JR, y Seifert, JG, Ingestión of a Carbohydrate-Protein Supplement Improves Performance During Repeated Bouts of High Intensity Cycling. Medicine & Science in Sports & Exercise 39:S362 10.1249/01. mss.0000274422.60488.dd (2007)), los niveles de lactato en la sangre y frecuencia cardíaca son menores en deportistas que consumen un suplemento a base de carbohidratos y proteínas respecto de aquellos que sólo consumen uno a base de carbohidratos (Saunders, MJ, Todd, MK, Valentine, RJ, St. Laurent, TG, Kane, MD, Luden, ND, y Herrick, JE, Inter-Study Examination of Physiological Variables Associated with Improved Endurance Performance with Carbohydrate/Protein Administration. Medicine & Science in Sports & Exercise 38:S113-S114 (2006), y Valentine, RJ, St. Laurent, TG, Saunders, MJ, Todd, MK, y Flohr, JA, Comparison of Responses to Exercise When Consuming Carbohydrate and Carbohydrate/Protein Beverages. Medicine & Science in Sports & Exercise 38.S341 (2006), mientras que el daño muscular y el dolor muscular posterior al ejercicio son menores en corredores que consumieron proteínas durante el ejercicio (Luden, ND, Saunders, MJ, Pratt, CA, Bickford, ASA, Todd, MK, y Flohr, JA, Effects of a Six-Day Carbohyydrate/Protein Intervention on Muscle Damage, Soreness, and Performance In Runners. Medicine & Science in Sports & Exercise 38:S341 (2006)).
Por otra parte se ha descrito el efecto beneficioso que presentan los péptidos o hidrolizados proteicos en la recuperación muscular, principalmente aquellos de origen lácteo. Crittenden y col (Crittenden, R, Buckley, J, Cameron-Smith, D, Brown, A, Thomas, K, Davey, S, and Hobman, P, Functional Dairy Protein Supplements for Elithe Athletes. Australian Journal of Dairy Technology 64:133-137 (2009)) han mostrado cómo un hidrolizado obtenido a partir de proteínas de la leche son capaces de acelerar el proceso de recuperación en deportistas de élite, sin embargo los mecanismos de acción o la identificación de los péptidos activos son aún materia de estudio. También se ha mostrado como péptidos obtenidos a partir de caseína son efectivos en reducir el daño y el dolor muscular, aumentando la resistencia, el rendimiento y la recuperación durante y después de una actividad física intensa (DSM, FS. PeptoPro: Power your performance, reach beyond your limits. 2010 [cited 05-01-2011]; Disponible de: http://www.dsm.com/le/en US/peptopro/html/howdoesitwork proven.htm). Además se ha propuesto que las proteínas y péptidos estimulan la producción de insulina, la que a su vez estimula la formación de glicógeno (DSM, FS. PeptoPro: Power your performance, reach beyond your limits. 2010 [cited 05-01-2011]; disponible de: http://www.dsm.com/le/en US/peptopro/html/howdoesitwork proven.htm). Morishita y col (Morishita, M, Kamei, N, Ehara, J, Isowa, K, y Takayama, K, A novel approach using functional peptides for efficient intestinal absorption of insulin. Journal of Controlled Reléase 118:177-184 (2007)) demostraron que la inclusión de péptidos funcionales de origen comercial, aumentan el nivel de absorción intestinal de insulina en ratas.
Estudios han demostrado el incremento de las propiedades nutricionales al hidrolizar enzimáticamente fuentes proteicas, aumentando la solubilidad, absorción y disminuyendo características alergénicas asociadas (Mannheim, A y Cheryan, M, Enzyme-Modified Proteins From Corn Gluten Meal: Preparation And Functional Properties. J Am OH Chem Soc. 69:1163-1169 (1992)). Por otro lado y dependiendo del origen de las proteínas, también se pueden potenciar ciertas propiedades nutracéuticas, emulsificantes y bioactivas. Estas propiedades pueden variar en función de la composición y tamaño de los hidrolizados proteicos (Aluko, R E y Monu, E, Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. Journal of Food Science 68:1254-1258 (2003), y Qi, M, Hettiarachchy, NS, y Kalapathy, U, Solubility and Emulsifying Properties of Soy Protein Isolates Modified by Pancreatin. Journal of Food Science 62:1110- 15 (1997)).
La quínoa (Chenopodium quinoa) es una semilla que se caracteriza por poseer un alto contenido de proteínas, las cuales a su vez aportan gran parte de los aminoácidos esenciales para el ser humano, es decir, aquellos que deben ser consumidos a través de la dieta. El contenido de aminoácidos esenciales tales como tirosina, fenilalanina, treonina, lisina, metionina y císteina es alto en comparación con otras fuentes alimenticias vegetales. Además estas semillas presentan un alto contenido de almidón y fibra (>75%), de ahí su denominación de pseudocereal (Rúales, J y Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 42:1-11 (1992)). La quínoa posee un contenido de proteínas que está en un rango de 12 a 14 gramos por 100 gramos de semilla seca, aunque hay que considerar que este valor depende de la variedad de semilla a utilizar. Por otro lado dentro del contenido total de proteínas existe un porcentaje que es insoluble y resistente a la hidrólisis enzimática (Ej. Escleroproteínas).
En la literatura científica es posible encontrar algunos trabajos relacionados directa o indirectamente con el área de esta invención. Tang y col (Tang, H, Watanabe, K, y Mitsunaga, T, Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers 49:13-22 (2002)) caracterizan el gránulo de almidón de quinoa, señalando que su distribución de tamaño es de ~1 μηη y que la curva de sorción isotérmica es de tipo sigmoidal. Las propiedades de sorción de agua son similares a las observadas en almidón de cebada. Aluko y Monu (Aluko, R E y Monu, E, Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. Journal of Food Science 68:1254-1258 (2003)) evaluaron las propiedades funcionales de hidrolizados de quinoa como ingrediente alimentario mediante la acción de una enzima alcalasa. Los autores concluyeron que el hidrolizado proteico obtenido presentaba mayor solubilidad, menor capacidad de emulsificacion y mayor capacidad de espumacion que un concentrado proteico a base de quinoa. Además concluyen que aquellos péptidos de menor peso molecular presentan mayor potencial como agente anti-hipertensión o como compuestos con actividad anti- radicalaria. Sin embargo este trabajo no evalúa ni señala posibles aplicaciones industriales específicas.
Se ha estudiado también el uso de harina de quinoa como materia prima para la elaboración de productos para regímenes especiales. Abugoch y col (Abugoch, L, Castro, E, Tapia, C, Anón, MC, Gajardo, P, y Villarroel, A, Stability of quinoa flour proteins {Chenopodium quinoa Willd.) during storage. International Journal of Food Science & Technology 44:2013-2020 (2009)) establecen que la harina de quinoa (-75% carbohidratos, ~16% proteínas, ambas en base seca) mantiene sus propiedades funcionales de capacidad de retención de agua y solubilidad luego de un almacenamiento de dos meses a 20-30°C en envases de doble papel kraft. Caperuto y col (Caperuto, LC, Amaya-Farfan, J, y Camargo, CRO, Performance of quinoa (Chenopodium quinoa Willd) flour in the manufacture of gluten-free spaghetti. Journal of the Science of Food and Agriculture 81:95-101 (2001)) formularon una mezcla de harina de quinoa y maíz para desarrollar pastas tipo spaghetti libre de gluten, obteniendo que la pérdida de peso, el aumento de volumen y la adhesividad de la pasta cocida estaban dentro de los parámetros considerados aceptables. Además el producto tenía un perfil sensorial agradable para el consumidor. Por otro lado se han reportado los beneficios que tiene el consumo de quinoa desde el punto vista nutricional y funcional, como también algunos aspectos negativos relacionados con su alto contenido de saponinas, ácido fítico y oxalato (Jacobsen, SE, Mujica, A, y Ortiz, R, The Global Potential for Quinoa and Other Andean Crops. . Food Reviews International 19:139 - 148 (2003), y Jancurová, M, Minarovicová, L, y Dandár, A, Quinoa - A Review. Czech Journal of Food Science 27:71-79 (2009)), los cuales imparten sabores amargos y tienen asociado un cierto nivel de toxicidad. Sin embargo en estas publicaciones no se hace referencia al potencial uso de proteínas, péptidos, almidón o maltodextrinas obtenidas desde el grano de quínoa.
También se pueden encontrar una serie de trabajos relacionados con la utilización de péptidos de otros orígenes. Sinha y col (Sinha, R, Radha, C, Prakash, J, y Kaul, P, Whey protein hydrolysate: Functional properties, nutritional quality and utilization ¡n beverage formulation. Food Chemistry 101 :1484-1491 (2007)) estudiaron la aplicación de un hidrolizado de proteína de suero lácteo, obtenida mediante la acción de proteasas microbianas, en la formulación de un producto bebestible. Desde un punto de vista sensorial no se encontraron diferencias significativas entre el producto formulado y una muestra comercial. Barbosa y col (Barbosa, CMS, Moráis, HA, Delvivo, FM, Mansur, HS, De Oliveira, MC, y Silvestre, MPC, Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres. Journal of the Science of Food and Agrículture 84:1891-1900
(2004) ) obtuvieron hidrolizados de caseína mediante acción de papaína, los cuales al ser encapsulados reducen el grado de amargor y son estables durante 60 días de almacenamiento refrigerado.
Por su parte, Hartmann y Meisel (Hartmann, R y Meisel, H, Food-derived peptides with biological activity: from research to food applications. Current Opinión in Biotechnology 18:163-169 (2007)) han descrito las características antimicrobianas, inmunoreguladores, antitrombóticos, reguladores de presión arterial, antioxidantes, hipocolesterolémicos, entre otros, de péptidos de distinto origen (principalmente de proteínas de la leche, como también de proteínas de pescado, suero lácteo, soya, arroz) y su potencial uso en la industria de alimentos. Takao y col (Takao, T, Watanabe, N, Yuhara, K, Itoh, S, Suda, S, Tsuruoka, Y, Nakatsugawa, K, y Konishi, Y, Hypocholesterolemic effect of protein isolated from Quinoa (Chenopodium quinoa Willd.) seeds. Foocf Science and Technology Research 11:161-167
(2005) ) describieron el efecto hipocolesterolémico observado en ratas alimentadas con dietas que incluían distintos porcentajes de proteína aislada de quínoa.
A nivel de bases de datos de oficinas de patentes, nacionales e internacionales, es posible encontrar solicitudes de patentamiento o patentes adjudicadas en áreas similares, pero que no afectan la novedad o el nivel inventivo de la presente invención.
En Chile (Instituto Nacional de Propiedad Intelectual, INAPI) no existen solicitudes de patentamiento relacionadas de forma directa con el área de aplicación de esta invención. Con respecto a quínoa San Martín (San Martin Gamboa, R, Métodos para producir una composición líquida y en polvo e base a saponinas obtenidas de cascarilla de quinoa; composiciones obtenidas de este método; y método para controlar caracoles de agua dulce con dicha composición, R. San Martin Gamboa, Editor. 2005: Chile, y San Martin Gamboa, R, Composición en base a saponinas obtenidas de extracto acuoso de quinoa, útil como repelente de caracoles terrestres y molusquicida, R. San Martin Gamboa, Editor. 2005: Chile) y Reyes (Reyes Ruiz, ME, Composición orgánica que actúa como repelente inhibidor de la alimentación y contacto directo sobre plagas e insectos, regulador del crecimiento vegetal, fungicida, nematicida y antioxidante natural que comprende Chenopodium Quinoa, esencia de eucaliptus y de Azadirachita indica, R.E.I.C.B.L.M.E.R.R. (60%), Editor. 2008: Chile) han registrado solicitudes para la obtención de saponinas desde el extracto acuoso de semillas para uso como repelente de insectos. Con respecto a hidrolizados de proteína Reid y col (Reid, J, Scghollum, L, Schlothauer, R, y Singh A, Procedimiento de preparación de un hidrolizado de proteínas del suero de la leche que consiste en tratar el suero con proteasas lábiles al calor y detener la hidrólisis al alcanzar no mas de un 15% de hidrólisis; separar los repetidos hidrolizados, los peptidos y su uso para preparar un medicamento que reduce la presión sistólica, N.Z.D. Board, Editor. 1999: Chile) describen un método mediante el cual a partir de suero lácteo se obtiene un hidrolizado proteico que se utiliza para elaborar un medicamento que reduzca la presión sistólica. Existen además solicitudes relacionadas con la utilización de péptidos: Ramírez (Ramírez Reid, R, Procedimiento de producción de soluciones húmedas de peptidos al 50% de concentración o peptidos secos para alimentación humana y animal desde productos secundarios de producción de alimentos proteicos para consumo humano que comprende extraer grasa a baja temperatura previo a acción enzimática, combinando acción enzimatica con hidrólisis acida I.R. Ltda., Editor. 2009: Chile) busca utilizar péptidos obtenidos a partir de productos secundarios de producción de alimentos, para alimentación humana y animal, mientras que Millán y col (Millan Alvarado, MT, Lecaros Ursua, I, Neira Laso, M, y Valderrama Campos G, Peptidos bioactivos a partir de proteínas de origen marino; proceso de fabricación de dichos peptidos bioactivos; y su uso para elaborar dietas de animales, S.A. Profish, Editor. 2008: Chile) buscan utilizar péptidos de proteínas de origen marino para alimentación de animales. Ambas solicitudes se encuentran a la fecha en etapa de evaluación. Por último existe una solicitud abandonada, presentada por Unilever N.V., la cual busca incluir péptidos en la formulación de una barra alimenticia (Gautam, A, García, A, y Hander, R, Barra alimenticia, que comprende al menos un 10% basado en el peso total de los peptidos de la barra, de peptidos con una alta actividad de agua , U.N.V., Editor. 2005: Chile). En bases de datos en la Oficina de Patentes y Marcas de Estados Unidos de Norteamérica (US Patent & Trademark Office, USPTO) y la Oficina Europea de patentes (European Patent Office, EPO), es posible encontrar solicitudes de patentes, muchas de las cuales están otorgadas para ambos mercados. Revisando en la base de datos de USPTO es posible encontrar solicitudes relativas a quínoa, pero no relacionadas directamente con la utilización de péptidos proteicos como ingrediente alimentario. En 2007 Edwards (Edwards, M, Quinoa- containing beverages and methods of manufacture. 2007: USA) ingresó una solicitud que describe la molienda de granos enteros de quínoa y su utilización en la fabricación de bebidas, la cual también se encuentra solicitada ante EPO. Las reivindicaciones asociadas informan las condiciones bajo las cuales se desarrolla la molienda del grano y su mezcla con una fracción líquida base. En 2010 se encuentran tres solicitudes asociadas a quínoa. Msika (Msika, P, Composition containing a quinoa extract for dermatológica! use. 2010, Laboratories Expanscience: USA.) describe la utilización de péptidos de proteína de quínoa obtenidos enzimáticamente por acción de proteasas alcalinas, los que luego son aislados mediante técnicas de ultra y nanofiltración. Estos péptidos son utilizados con fines dermatológicos. García y Stoitz (García, C y Stoitz, C, Use Of Quinoa Extract As Cosmetic And Pharmaceutic Slimming Agent And/Or As An Agent Preventing The Formation Of New Fats In The Human Body. 2010, Societe D'Exploitation Des Produits Pour Les Indus tries Chimiques Seppic: Francia) describen cómo utilizar un extracto seco comercial de quínoa con fines farmacéuticos y cosméticos, señalando que este extracto seco se comercializa solubilizado en solventes como glicol, propilenglicol, butileno o etanol en concentración máxima de 2% en peso. Por otra parte Scalin, Stone y Burnett (Scanlin, LA, Stone, MB, and Burnett, C, Qunioa Protein Concéntrate, Production and Functionality. 2010, Keen Ingredients, INC: USA.) describen la obtención de un concentrado de proteína de quínoa y su funcionalidad como ingrediente de alimentos, fórmulas infantiles, alimentos para mascotas y suplementos alimenticios para animales. Esta última solicitud describe como a partir del grano de quínoa se obtiene almidón, aceite y fibra. El uso del concentrado de quínoa se basa, de acuerdo a los autores, en el alto contenido de los aminoácidos lisina, histidina, cistina y metionina, lo cual junto con el bajo nivel alergénico del grano de quínoa, lo hace ideal para su uso en los productos ya señalados. Las reivindicaciones señalan que las proteínas de quínoa se obtienen mediante precipitación isoeléctrica seguido de ultrafiltración, las cuales luego son separadas de la fibra existente mediante centrifugación. El almidón por su parte se obtiene mediante acción enzimática de amilasas seguida por una etapa de filtración a vacío. Estas tres solicitudes también se encuentran solicitadas en México, China y la Oficina Internacional de Patentes (PCT) bajo los códigos MX2009007088, CN101516450 y WO2005058249, respectivamente.
Recientemente, Scarlin y Burnett (Scanlin, LA y Burnett, C, Quinoa grain processing and producís. 2010, Keen ingredients, INC: USA) describen cómo a partir de granos de quínoa, mediante un pre-tratamiento de humidificación y posterior secado, obtienen un producto para uso como aditivo en alimentos. Los autores detallan un mecanismo de "malteo" del grano de quínoa con el objetivo de obtener un grano más dulce, mediante el cual se hace germinar el grano durante 72 horas a 5°C, alcanzando una humedad del grano -45%, y así poder obtener un grano más dulce gracias a la acción de enzimas endógenas. Esta solicitud corresponde a la publicación WO2009048938, disponible por ejemplo en la base de datos de EPO.
En ambos motores de búsqueda se observa que para las solicitudes anteriormente citadas, se encuentran solicitudes previas, realizadas por los mismos autores, pero que se caracterizan por poseer reivindicaciones limitadas.
En lo que respecta a solicitudes de patentes solicitadas en la Oficina Española de Patentes y Marcas, Remi (Remi, T, Proceso de tratamiento de semillas de quinoa y producto obtenido. 1996, Societe des Produits NESTLE S.A.: Suiza) describe un procedimiento para obtener un producto expandido a base de quínoa el cual se encuentra solicitado también en la EPO bajo el código EP05 5706. Las reivindicaciones señalan las condiciones bajo las cuales el grano de quínoa es humidificado a un contenido de humedad de hasta 85% en peso, luego de lo cual se lleva a ciertas condiciones (no señaladas) de temperatura y humedad que provocan su expansión. Existe, por otro lado, una patente concedida en 2003 que describe a un producto líquido que contiene un extracto de quínoa, específicamente harina libre de saponinas y maltodextrinas, que junto a otras materias primas tiene como objetivo servir de sustituto de la leche (Guamis López, B, Quevedo Terri, JM, Trujillo Mesa, AJ, y Felipe Cuyas, X, Producto líquido de origen vegetal como sustitutivo de la lecha 2003, Universitat Autónoma de Barcelona. España). Ésta posee una reivindicación donde se señala que las maltodextrinas se obtienen por acción de una mezcla de alfa amilasas de distinta temperatura óptima de hidrólisis de almidón. También se han concedido en 2010 solicitudes que describen la elaboración de un producto panificable que posee, entre otros, 30 a 85% de derivados de quínoa, principalmente proteínas (Carballo Macia, L y López Agreda, HJV, Producto alimenticio panifícable rico en proteína vegetal. 2010, Health's Larder S.L.N.E.: España) como también una que describe la utilización de harina de quínoa para la formulación de pastas, la cual posee entre 50 y 90% de derivados de quínoa (Carballo Macia, L y López Agreda, HJV, Pasta alimenticia o similar rica en proteína vegetal, sin gluten ni aditivos. 2010, Health'S Larder S.L.N.E.: España). Finalmente, a Yaez y Muoz (Yaez Soler, AJ y Muoz Cerda, A, Composición a base de cacao y espirulina. 2010, Yaez Soler, Armando José Muoz Cerda, Antonio: España) se les concedió en 2010 la patente por una invención que describe una composición a base de cacao y espirulina, que junto a otros ingredientes, incorpora quínoa y cuyo producto final puede presentarse como barrita, caramelo, bombón o bebida. En esta última invención el contenido de quínoa puede representar hasta un 55% en peso del producto final, pero no se especifica si el grano se utiliza entero, molido o sólo fracciones de grano. Las reivindicaciones no aportan mayor información ya que sólo se remiten a informar que uno de los cereales utilizados es quínoa. Adicionalmente se describe una solicitud de patentamiento relacionada con la composición de una fórmula infantil (Mower, TE, Infant Formula Composition. 2006, Starweather & Associates: USA.). Esta formulación incluye un polisacárido sulfatado (fucoidano) parcialmente hidrolizado, un lípido y proteína de quínoa. La solicitud se encuentra solicitada en la US Patent & Trademark Office del año 2006. Esta invención (descripción y reivindicaciones) no se hace mayor especificación acerca de las características de la proteína, ya que sólo se alude a que su origen es quínoa.
Breve descripción de las Figuras
Figura 1. Gráfico de Probabilidad Normal para el diseño experimental utilizado en el desarrollo del presente proyecto, el cual permite observar la significancia de los factores estudiados.
Figura 2. Polinomio de optimización para extracción de proteína.
Figura 3. Valores óptimos para cada uno de los factores estudiados para extracción de proteína de quínoa.
Figura 4: Balance de masa para productos obtenidos al final del proceso de extracción de proteína desde harina de quínoa. (A) No considerando etapa de extracción de lípidos, (B) considerando extracción lipídica. Los porcentajes corresponden a la cantidad del constituyente en cada fracción, considerando el total del constituyente como 100%. Base de cálculo: 100 gramos de harina de quínoa comercial.
Figura 5: Contenidos de proteína, ceniza, materia grasa y carbohidratos en harina entera (A) y su comparación con harinas sin lípidos (B), sin proteína ni lípidos (C) y sin proteínas (D).
Figura 6: Gráfico de abundancia relativa de los péptidos liberados durante la digestión enzimática del extracto de proteínas de quínoa (PM: peso molecular, Da).
Figura 7. Medición espectro-fotométrica de los azúcares reductores liberados durante la hidrólisis de almidón de quínoa. Figura 8 Obtención de Péptidos y Maltodextrinas desde Harina de Quínoa (Diagrama de Flujo)
Figura 9 Formulación de Producto
Descripción detallada de la invención
La invención describe la formulación de un producto alimenticio en formato gel elaborado a partir de almidón de quínoa, enriquecido con péptidos y maltodextrinas obtenidas de la hidrólisis parcial de proteínas y almidón del mismo grano de quínoa, respectivamente, destinado al consumo por deportistas durante y después de una actividad física.
La utilización de proteínas de Chenopodium quinoa para el desarrollo de fuentes alimenticias y nutricionales tiene enormes expectativas de crecimiento, razón por la cual se han descrito metodologías para la obtención de proteínas a partir del grano de quínoa. Aluko y Monu (Aluko, RE and Monu, E, Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. Journal of Food Science 68:1254-1258 (2003)) detallan una de las metodologías más usadas para la extracción de proteínas: extracción mediante solución alcalina, la cual para los fines de la presente invención fue modificada y optimizada mediante diseño experimental, como se describirá a continuación. Esta metodología de extracción resulta ser industrializable, económica y de fácil implementación. Como producto secundario de la extracción de proteínas se obtiene almidón el cual puede ser hidrolizado enzimáticamente para obtener maltodextrinas y monosacáridos útiles en el desarrollo de nuevos productos alimenticios.
El primer paso es fijar la granulometría de la harina de quínoa. La harina de quínoa comercial tienen una distribución de tamaños que van desde < 100 pm hasta 700 pm. Se propone trabajar con granulometría entre 100 y 300 pm, que representa el 30% del peso total de la harina de quínoa comercial. Con granulometrías mayores, la extracción de proteína es ineficiente debido a la disminución de la superficie de extracción, mientras que con granulometrías menores a 100 pm la cantidad de proteína presente era muy baja. La harina en este rango de tamaño está compuesta principalmente por gránulos de almidón con bajo contenido proteico.
Para determinar la concentración de proteína en diferentes etapas del proceso de extracción, se realizaron análisis proximales a muestras de harina en diferentes etapas del proceso, es decir, en quínoa sin lípidos, quínoa sin proteínas y quínoa sin lípidos ni proteínas. Además se realizó el mismo análisis a granos de quínoa de origen ecuatoriano y se tomó como referencia la información entregada por la United States Departament of Agriculture (USDA). Dichos análisis se realizaron siguiendo las metodologías propuestas por la Association of Official Analytical Chemist (AOAC, Official Methods of Analysis of AOAC International. 16th ed. Washington, DC. (1995)). Se determinó el contenido de humedad (desecación en estufa a 105°C por 24 horas), proteínas (método Kjeldhal *5,7), cenizas (calcinación en mufla a 550°C) y materia grasa (extracción Soxhlet) de las distintas muestras. Los Extractivos No Nitrogenados (E.N.N.), que corresponden a los carbohidratos totales, se determinaron por diferencia. Los resultados, expresados en g/100g de muestra, se presentan en la Tabla I. El análisis proximal de las distintas muestras de harina de quínoa muestra que los valores obtenidos para cada uno de los análisis se encuentran dentro de los rangos reportados en la literatura, tomando como patrón la composición proximal de un grano crudo ecuatoriano y la información descrita en la Fila USDA en la Tabla I. En el caso de la harina sin proteínas y sin lípidos ni proteínas, el aumento del contenido de humedad se debe a la extracción de estos componentes.
El diseño experimental utilizado correspondió a un diseño factorial a 2 niveles, considerando tres réplicas en el punto central. Por lo tanto, el diseño correspondió a un 2 (Rúales, J and Nair, B, Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods for Human Nutrítion (Formerly Qualitas Plantarum) 42:1-11 (1992)), lo cual generó un total de 19 corridas experimentales mediante las cuales se buscó optimizar las condiciones de extracción lípidica y/o proteica. Para el análisis de los datos, generación de modelos matemáticos y optimización de respuesta se utilizó el software Design Expert 6.0 (Stat-Ease Inc, Minneapolis, USA).
Para el caso específico de la extracción proteica, se evaluaron tres factores (volumen de extracción, concentración de NaOH y tiempo de extracción), los cuales se replicaron en harina de granulometría entre 100 μm y 300 μm, con o sin lípidos.
Para optimizar la respuesta se evaluó la significancia estadística de estos efectos, individuales o combinados, dando como resultado que el efecto combinado entre volumen de extracción y concentración de NaOH, como también el de concentración de NaOH y tiempo, fueron estadíticamente significativos tal como se señala en la figura 1.
Figure imgf000014_0001
Figure imgf000015_0001
Se generó un modelo matemático representativo del efecto de los factores significativos con el objetivo de optimizar la respuesta, que en este caso es la cantidad de proteína extraída desde harina de quínoa, a través de los valores óptimos que debieran tomar cada uno de los factores analizados. El polinomio estadísticamente significativo (p < 0,0001) que entregó el resultado óptimo, obtenido desde el software Design Expert, se presenta en la Figura 2. A partir de este modelo fue posible determinar los valores óptimos de cada uno de los factores evaluados, los cuales para el caso específico de extracción proteica fueron: 30 mL de NaOH 40mM por gramo de harina, en un proceso de extracción de dos horas (Figura 3). El modelo resultó ser significativo configurado al un 95% de confianza (p valué < 0,0001). con una "deseabilidad" (parámetro de ajuste del modelo) el cual resultó ser de 0,978, en escala de 0 a 1 (1 = ajuste máximo).
El proceso de extracción se realizó por lo tanto utilizando 30 mL de una solución de NaOH 40 mM (pH 12,0) por cada 1 gramo de harina de quínoa. Esta suspensión se incuba con agitación constante a temperatura ambiente durante 2 horas. Una vez completada la extracción, la suspensión se centrifuga a 3.000g por 5 min a 4°C, recuperando el sobrenadante el cual contiene las proteínas solubles de quínoa a una concentración de 0,4% a 0,3% p/v dependiendo si se usó harina con o sin lípidos, respectivamente. Este procedimiento logra obtener hasta un 82% de las proteínas presentes en la harina. Una etapa opcional es repetir el paso de extracción proteica al precipitado de la centrifugación, lo cual permite recuperar un ~8% adicional, llegando así a obtener un 90% de las proteínas al final del proceso. La incorporación de detergentes iónicos o no-iónicos no afecta de forma significativa la eficiencia de la extracción.
Completada la operación de centrifugación es necesario concentrar la solución sobrenadante que contiene a las proteínas de quínoa, como paso previo a la hidrólisis enzimática. Para ello existen diversas alternativas: i) llevar a cabo una concentración a vacío de manera de evitar la pérdida de funcionalidad de las proteínas por efecto de la desnaturalización asociada a tratamientos térmicos severos, lo cual podría afectar las propiedades de los péptidos, ii) aplicar una técnica de nanofiltración con membranas de tamaño de poro < 5kDa, que permita separar y concentrar las proteínas presentes en la solución o ¡ii) precipitar isoeléctricamente el contenido proteico ajusfando el pH a 3,0-4,0 con HCI. Sin embargo cabe mencionar que mediante precipitación isoeléctrica se recupera solamente el ~60% de las proteínas, quedando el 40% restante en solución. Análisis proximales realizados al precipitado isoeléctrico revelaron que está compuesto por 75% p/p de proteínas, 2,3% p/p de cenizas, 9,1% p/p de lípidos (en el caso de usar harina con lípidos) y 14% p/p de otros constituyentes (almidón, azúcares, fibras, etc.). Con todo, el objetivo de la etapa de concentración es alcanzar una contenido de proteína en solución de -8% p/v.
Los lípidos presentes en la harina de quínoa utilizada durante el desarrollo de esta investigación correspondieron al 8,2% del peso seco de ésta (Tabla I). Una operación previa opcional antes de la extracción de proteínas es remover estos lípidos presentes, con el fin de que estos no interfieran en los análisis finales y/o obtener una extracción proteica más eficiente. Mediante diseño experimental se determinó la utilización de una solución de etanol al 95% en proporción 2:1 volumen/peso (mlJg) respecto a la cantidad de harina de quínoa (p < 0,05). A volúmenes menores de etanol la suspensión se vuelve muy viscosa siendo dificultoso mantenerla homogénea durante la extracción. Una vez agregado el volumen de etanol se mantiene la suspensión herméticamente cerrada con el fin de evitar la evaporación del solvente. Finalmente, la suspensión se incuba con agitación a una temperatura de 30°C durante aproximadamente 2 horas. La agitación es un factor importante para optimizar la extracción, esta debe ser suficiente como para mantener la harina suspendida y evitar su decantación durante el proceso. Una vez completada la extracción, se recupera la harina libre de lípidos mediante filtración lavando ésta con etanol al 95%. La harina libre de lípidos se mantiene a 60°C durante toda la noche (>12 horas), procedimiento que permite extraer aproximadamente el 80% de los lípidos presentes en la harina de quínoa.
La literatura desataca la necesidad de extraer el contenido lipídico como etapa previa a la extracción proteica, sin embargo nuestro estudio ha demostrado que el rendimiento de extracción proteica aumenta de forma significativa si esta operación no es considerada (Figura 4). El proceso de extracción de lípidos arrastra consigo proteínas hidrofóbicas y lipoproteínas que pueden representar hasta 15% de las proteínas totales de la semilla de quínoa. Como consecuencia en la fracción remanente posterior a la extracción con NaOH sólo se recupera -63% del contenido proteico presente en la harina sin lípidos. Esto representa un -20% menos de proteína en comparación con el rendimiento obtenido en harinas sin previa extracción del contenido lipídico (Figuras 4 y 5). Este resultado es muy importante en el contexto de esta invención, por cuanto representa una diferencia fundamental con las metodologías de extracción proteicas descritas previamente en la literatura. Por otro lado tiene una importancia fundamental sobre el objetivo último de la extracción proteica, el cual es la obtención de hidrolizados proteicos y su posterior uso en alimentos. La ausencia de extracción lipídica nos permite maximizar la obtención de péptidos de quínoa, los cuales al ser incorporados en un gel para deportistas nos permite formular un producto con características nutricionales y funcionales único en el mercado, innovador y con un evidente nivel inventivo.
Un perfil de aminoácidos realizado al concentrado de proteína de quínoa (Tabla II), mediante cromatografía líquida de alta resolución (HPLC) acoplada a detección UV, permite observar claramente el aporte nutricional de la semilla de quínoa, por cuanto constituye una buena fuente de aminoácidos esenciales como Arginina (15,3 mg/100 g), Valina (7,4 mg/100 g), Leucina (7,1 mg/100 g), Usina (6,6 mg/100 g) y de aminoácidos azufrados como Cisteína (5,5 mg/100 g) y Metionina (5,1 mg/100 g). También se destaca la presencia de otros aminoácidos, los cuales sin ser esenciales, su aporte no deja de ser significativo, como es el caso del ácido glutámico (24,3 mg/100 g), acido aspártico (11 ,6 mg/100 g) y glicina (10,5 mg/100 g).
Figure imgf000017_0001
Figure imgf000018_0001
Para la obtenci n de p pti os desde las prote nas extra das desde harina de quínoa la suspensión de proteínas (~8% p/v) se calienta a 80°C por 5 min y luego se enfría a 55°C manteniéndola por 1 min antes de ajustar el pH a 8,0-8,5 con NaOH o HCI, según corresponda. A la solución se le agrega 0,05 Anson Unit (AU) de Alcalasa por 1 g de proteínas totales. La solución se deja incubando a 50-60°C controlando continuamente el pH. Cuando el pH cae bajo 7,0 se le agrega a la solución 0,03 unidades AU por gramo de proteína de una segunda enzima comercial (Protamex, Neutrasa o Flavourzyme) y se deja incubando la solución a 50°C de 15 a 60 min. Para detener la reacción se calienta la solución nuevamente hasta 85°C por 5 min.
El grado de hidrólisis de la proteína extraída e hidrolizada mediante el proceso anteriormente descrito y el perfil de pesos moleculares de los péptidos obtenidos fue analizado mediante Cromatografía de Permeación de Gel (GPC) (Figura 6). Los resultados mostraron que el mayor porcentaje de péptidos está dentro del rango de peso molecular que está entre 1000 y 500 Da.
Desde el almidón de quínoa es posible también obtener maltodextrinas mediante tratamiento enzimático. Para ello se pesan 20 g de harina de quínoa de granulometría «100 μπι y se agrega agua a temperatura ambiente hasta completar 100 mL A la solución se le ajusta el pH a 6,0 y se le agrega CaCI2 a una concentración de 0,05%. Luego se añade 0,4 U/mL de enzima alfa-amilasa. La solución inicialmente es muy viscosa, pero luego de agregar la enzima se empieza a licuar gradualmente, evidenciando una disminución del peso molecular del almidón. Se sube la temperatura hasta 55°C y se deja incubando por 1 h bajo agitación constante. La reacción se detiene calentando la solución a 85°C por 15 min. Este paso es importante para poder realizar posteriormente la gelificación con el almidón. La cantidad de azúcares reductores liberados durante el proceso se cuantificó mediante el método de Somogyi-Nelson (Somogyi, M. 1952. Notes on sugar determination. Journal of Biological Chemistry 195: 19-23.). Los resultados obtenidos se presentan en la Figura 7.
Se observa que el contenido de azúcares reductores aumenta sistemáticamente a medida que transcurre el tiempo de reacción, sin embargo este comportamiento varia después de 15 minutos de reacción, dismuniyendo la cinética de hidrolización. De esta forma extender la hidrólisis del almidón por tiempos mayores a 20 minutos no tiene un efecto significativo sobre el contenido de azucares reductores.
Preparación del ge! de almidón y formulación final del producto.
La formulación base del gel de almidón de quínoa conteniendo péptidos y maltodextrinas del mismo origen se detalla en la Tabla III.
Se pesa la cantidad necesaria de harina de quínoa (10%) de granulometría «100 m, la cual como ya se indicó está constituida principalmente por almidón. Se agrega la cantidad requerida de péptidos a una concentración final de 10% y maltodextrinas a una concentración final de 20%. En esta etapa, se debieran adicionan además los colorantes y saborizantes necesarios para hacer al producto atractivo. Como preservante se agrega 1g/Kg de acido sórbico y se adiciona el volumen necesario de agua destilada. La solución resultante se calienta a 80°C durante 20 min, bajo agitación constante, con el objetivo de gelatinizar el almidón. Una vez obtenida la consistencia deseada el producto se deja enfriar a temperatura ambiente. Cuando la mezcla gelifica se puede dimensionar en piezas más pequeñas para finalmente sellar el producto en un envase adecuado.
Figure imgf000019_0001

Claims

REIVINDICACIONES
1.- Procedimiento para preparar producto alimenticio en formato gel de almidón de quinoa enriquecido en péptidos y maltodextrina, que comprende gelatinizar almidón de quínoa enriquecido en peptidos y maltodextrina a 80°C y agitación constante, el que luego se deja enfriar a temperatura ambiente, se gelifica, y posteriormente, dimensionan y posteriormente se envasan, y a las que previamente se le ha adicionado opcionalmente uno o más de colorantes, saborizantes y preservantes o mezclas de los mismos,
donde el almidón de quínoa está enriquecido con peptidos, hasta una concentración hasta 10%, y enriquecido en maltodextrina, hasta una concentración final de hasta 20% en base al peso total, y
donde los peptidos se obtienen por dos o más hidrólisis enzimáticas de un concentrado obtenido a su vez de un sobrenadante que contiene proteína soluble de quínoa,
donde el sobrenadante se obtiene al centrifugar la solución resultante de una extracción mediante solución alcalina bajo agitación constante y a temperatura ambiente, de harina de quínoa con una granulometrís entre 100-300 μηη, sin extraer previamente, la fracción lipídica presente en la harina de quínoa; y
la maltodextrina se obtiene de la hidrólisis enzimática de harina de quínoa con una granulometría « 100 μm y precipitado obtenido de la centrifugación de la solución resultante de la extracción antes descrita.
2 - Procedimiento según reivindicación 1, en donde la solución alcalina es hidróxido de sodio.
3.- Procedimiento según reivindicación 1, en donde la primera hidrólisis enzimática para la obtención del peptido, comprende el uso alcalasa e incubar a 50-60°C hasta alcanzar pH 7.
4 - Procedimiento según reivindicación 1 , en donde la segunda hidrólisis enzimática para la obtención del peptido, comprende una hidrólisis enzimática con proteasa a 50°C y pH neutro.
5. - Procedimiento según reivindicación 1 , en donde la hidrólisis enzimática para la obtención de maltodextrina, comprende el uso de alfa amilasa a 55°C bajo agitación constante.
6. - Producto alimenticio en formato gel de almidón de quinoa enriquecido en péptidos y maltodextrina, que se obtiene por el procedimiento de cualquiera de las reivindicaciones anteriores.
PCT/CL2012/000073 2011-12-21 2012-12-13 Procedimiento para la formulación de un alimento en formato de gel para ser usado como alimento nutricional, enriquecidos en peptidos y mal todextrinas obtenidos desde harina de quinoa WO2013091125A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12815988.6A EP2796054B1 (en) 2011-12-21 2012-12-13 Method for the formulation of a gel-format foodstuff for use as a nutritional foodstuff enriched with peptides and maltodextrins obtained from quinoa flour
CA2860041A CA2860041C (en) 2011-12-21 2012-12-13 Method for the formulation of a gel-format foodstuff for use as a nutritional foodstuff enriched with peptides and maltodextrins obtained from quinoa flour
BR112014015232-2A BR112014015232A2 (pt) 2011-12-21 2012-12-13 procedimento para preparar produto alimentício, e, produto alimentício
US14/312,465 US9763463B2 (en) 2011-12-21 2014-06-23 Method for the formulation of a gel-format foodstuff for use as a nutritional foodstuff enriched with peptides and maltodextrins obtained from quinoa flour

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3236-2011 2011-12-21
CL2011003236A CL2011003236A1 (es) 2011-12-21 2011-12-21 Metodo para preparar producto alimenticio en formato gel de almidon de quinoa enriquecido en peptidos y maltodextrinas que comprende: extraccion proteica de la harina de quinoa, centrifugación, hidrolisis del sobrenadante con dos o mas enzimas proteoliticas, hidrolisis del precipitado y harina de quinoa para obtener maltodextrina.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/312,465 Continuation US9763463B2 (en) 2011-12-21 2014-06-23 Method for the formulation of a gel-format foodstuff for use as a nutritional foodstuff enriched with peptides and maltodextrins obtained from quinoa flour

Publications (1)

Publication Number Publication Date
WO2013091125A1 true WO2013091125A1 (es) 2013-06-27

Family

ID=51422246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000073 WO2013091125A1 (es) 2011-12-21 2012-12-13 Procedimiento para la formulación de un alimento en formato de gel para ser usado como alimento nutricional, enriquecidos en peptidos y mal todextrinas obtenidos desde harina de quinoa

Country Status (6)

Country Link
US (1) US9763463B2 (es)
EP (1) EP2796054B1 (es)
BR (1) BR112014015232A2 (es)
CA (1) CA2860041C (es)
CL (1) CL2011003236A1 (es)
WO (1) WO2013091125A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668575C1 (ru) * 2014-12-29 2018-10-02 Хиллс Пет Нутришн, Инк. Пищевая композиция и способ её применения
CN106819356A (zh) * 2016-12-23 2017-06-13 钱斌 一种高原藜麦肽及其制备方法和药食两用制品
US20180333429A1 (en) * 2017-05-16 2018-11-22 Medical Symbiosis Pty Ltd Fasting formulation
IL258463A (en) * 2018-03-29 2018-06-03 Strauss Group Ltd Freeze-dried food products and process of preparing same
CN111197066B (zh) * 2020-01-10 2023-05-16 成都大学 具有胆酸盐吸附作用的藜麦活性肽的酶解方法
CN111961235A (zh) * 2020-08-26 2020-11-20 吉林农业大学 一种藜麦淀粉微球的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515706A1 (fr) 1991-05-16 1992-12-02 Societe Des Produits Nestle S.A. Procédé de traitement de graines de quinoa et produit obtenu
WO2005058249A2 (en) 2003-12-16 2005-06-30 Colorado State University Research Foundation Quinoa protein concentrate, production and functionality
WO2007084754A2 (en) * 2006-01-19 2007-07-26 Sakura Properties, Llc Baby food and infant formula compositions
WO2009048938A1 (en) 2007-10-08 2009-04-16 Keen Ingredients, Inc. Quinoa grain processing and products
MX2009007088A (es) 2006-12-28 2009-07-08 Expanscience Lab Composicion que contiene un extracto de grano de quinoa para uso dermatologico.
CN101516450A (zh) 2006-09-18 2009-08-26 化工产品开发公司Seppic 昆诺阿藜提取物作为化妆品与药物减肥剂和/或作为预防在人体中新脂肪的形成的药物的用途
EP2098124A1 (en) * 2008-03-03 2009-09-09 Nestec S.A. Carbohydrate gel
US20100184963A1 (en) * 2007-09-27 2010-07-22 Keen Ingredients, Inc, Quinoa protein concentrate, production and functionality

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180669A (en) * 1991-03-27 1993-01-19 Genencor International, Inc. Liquefaction of granular-starch slurries using alpha-amylase in the presence of carbonate ion
US20030099722A1 (en) * 2001-10-09 2003-05-29 Baxter Jeffrey H. Methods and compositions for providing glutamine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515706A1 (fr) 1991-05-16 1992-12-02 Societe Des Produits Nestle S.A. Procédé de traitement de graines de quinoa et produit obtenu
WO2005058249A2 (en) 2003-12-16 2005-06-30 Colorado State University Research Foundation Quinoa protein concentrate, production and functionality
US20070092629A1 (en) * 2003-12-16 2007-04-26 Colorado State University Research Foundation Quinoa protein concentrate, production and functionality
WO2007084754A2 (en) * 2006-01-19 2007-07-26 Sakura Properties, Llc Baby food and infant formula compositions
CN101516450A (zh) 2006-09-18 2009-08-26 化工产品开发公司Seppic 昆诺阿藜提取物作为化妆品与药物减肥剂和/或作为预防在人体中新脂肪的形成的药物的用途
MX2009007088A (es) 2006-12-28 2009-07-08 Expanscience Lab Composicion que contiene un extracto de grano de quinoa para uso dermatologico.
US20100136144A1 (en) * 2006-12-28 2010-06-03 Laboratoires Expanscience Composition containing a quinoa extract for dermatological use
US20100184963A1 (en) * 2007-09-27 2010-07-22 Keen Ingredients, Inc, Quinoa protein concentrate, production and functionality
WO2009048938A1 (en) 2007-10-08 2009-04-16 Keen Ingredients, Inc. Quinoa grain processing and products
EP2098124A1 (en) * 2008-03-03 2009-09-09 Nestec S.A. Carbohydrate gel

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
"Chenopodium quinoa, Willd) seeds", PLANT FOODS FOR HUMAN NUTRITION (FORMERLY QUALITAS PLANTARUM, vol. 42, 1992, pages 1 - 11
"Official Methods of Analysis of AOAC International. 16th ed.", 1995, AOAC
ABUGOCH, L; CASTRO, E; TAPIA, C; ANON, MC; GAJARDO, P; VILLARROEL, A: "Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage", INTERNATIONAL JOUMAL OF FOOD SCIENCE & TECHNOLOGY, vol. 44, 2009, pages 2013 - 2020
ALUKO R E ET AL: "Functional and bioactive properties of Quinoa Seed protein hydrolysates", JOURNAL OF FOOD SCIENCE, WILEY-BLACKWELL PUBLISHING, INC, US, vol. 68, no. 4, 1 January 2003 (2003-01-01), pages 1254 - 1258, XP003014579, ISSN: 0022-1147, DOI: 10.1111/J.1365-2621.2003.TB09635.X *
ALUKO, R E; MONU, E: "Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates", JOUMAL OF FOOD SCIENCE, vol. 68, 2003, pages 1254 - 1258, XP003014579, DOI: doi:10.1111/j.1365-2621.2003.tb09635.x
ALUKO, R E; MONU, E: "Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates", JOURNAL OF FOOD SCIENCE, vol. 68, 2003, pages 1254 - 1258, XP003014579, DOI: doi:10.1111/j.1365-2621.2003.tb09635.x
ALUKO, RE; MONU, E: "Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates", JOURNAL OF FOOD SCIENCE, vol. 68, 2003, pages 1254 - 1258, XP003014579, DOI: doi:10.1111/j.1365-2621.2003.tb09635.x
ANCUROVA, M; MINAROVICOVÁ, L; DANDÁR, A: "Quinoa - A Review", CZECH JOURNAL OF FOOD SCIENCE, vol. 27, 2009, pages 71 - 79
BARBOSA, CMS; MORAIS, HA; DELVIVO, FM; MANSUR, HS; DE OLIVEIRA, MC; SILVESTRE, MPC: "Papain hydrolysates of casein: molecular weight profile and encapsulation in lipospheres", JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol. 84, 2004, pages 1891 - 1900
CAPERUTO, LC; AMAYA-FARFAN, J; CAMARGO, CRO: "Performance of quinoa (Chenopodium quinoa Willd) flour in the manufacture of gluten-free spaghetti", JOUMAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol. 81, 2001, pages 95 - 101, XP000976915, DOI: doi:10.1002/1097-0010(20010101)81:1<95::AID-JSFA786>3.0.CO;2-T
CARBALLO MACIA, L; LOPEZ AGREDA, HJV, ALIMENTICIO PANIFICABLE RICO EN PROTEINA VEGETAL, 2010
CARBALLO MACIA, L; LOPEZ AGREDA, HJV: "Pasta alimenticia o similar rica en proteina vegetal", SIN GLUTEN NI ADITIVOS, 2010
CRITTENDEN, R; BUCKLEY, J; CAMERON-SMITH, D; BROWN, A; THOMAS, K, DAVEY, S; HOBMAN, P: "Functional Dairy Protein Supplements for Elithe Athletes", AUSTRALIAN JOUMAL OF DAIRY TECHNOLOGY, vol. 64, 2009, pages 133 - 137
CRITTENDEN, R; BUCKLEY, J; CAMERON-SMITH, D; BROWN, A; THOMAS, K; DAVEY, S; HOBMAN, P: "Functional Dairy Protein Supplements for Elithe Athletes", AUSTRALIAN JOURNAL OF DAIRY TECHNOLOGY, vol. 64, 2009, pages 133 - 137
GARCIA, C; STOLTZ, C: "The Formation Of New Fats In The Human Body", 2010, SOCIETE D'EXPLOITATION DES PRODUITS POUR LES INDUS TRIES CHIMIQUES SEPPIC, article "Use Of Quinoa Extract As Cosmetic And Pharmaceutic Slimming Agent And/Or As An Agent Preventing"
GUAMIS LOPEZ, B; QUEVEDO TERRI, JM; TRUJILLO MESA, AJ; FELIPE CUYAS, X, PRODUCTO LIQUIDO DE ORIGEN VEGETAL COMO SUSTITUTIVO DE LA LECHA, 2003
HARMON, JH; BURCKHARD, JR; SEIFERT, JG: "Ingestion of a Carbohydrate-Protein Supplement Improves Performance During Repeated Bouts of High Intensity Cycling", MEDICINE & SCIENCE IN SPORTS & EXERCISE, vol. 39, 2007, pages S362
HARTMANN, R; MEISEL, H: "Food-derived peptides with biological activity: from research to food applications", CURRENT OPINION IN BIOTECHNOLOGY, vol. 18, 2007, pages 163 - 169, XP022032097, DOI: doi:10.1016/j.copbio.2007.01.013
JACOBSEN, SE; MUJICA, A; ORTIZ, R: "The Global Potential for Quinoa and Other Andean Crops", FOOD REVIEWS INTERNATIONAL, vol. 19, 2003, pages 139 - 148, XP009087743
KREIDER, R; WILBORN, C; TAYLOR, L; CAMPBELL, B; ALMADA, A; COLLINS, R; COOKE, M; EARNEST, C; GREENWOOD, M; KALMAN, D: "ISSN exercise & sport nutrition review: research & recommendations", JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION, vol. 7-7, 2010
LUDEN, ND; SAUNDERS, MJ; PRATT, CA; BICKFORD, ASA; TODD, MK; FLOHR, JA: "Effects of a Six-Day Carbohyydrate/Protein Intervention on Muscle Damage, Soreness, and Performance In Runners", MEDICINE & SCIENCE IN SPORTS & EXERCISE, vol. 38, 2006, pages S341
MANNHEIM, A; CHERYAN, M: "Enzyme-Modified Proteins From Corn Gluten Meal: Preparation And Functional Properties", J AM OIL CHEM SOC., vol. 69, 1992, pages 1163 - 1169, XP002172913, DOI: doi:10.1007/BF02637674
MORISHITA, M; KAMEI, N; EHARA, J; ISOWA, K; TAKAYAMA, K: "A novel approach using functional peptides for efficient intestinal absorption of insulin", JOURNAL OF CONTROLLED RELEASE, vol. 118, 2007, pages 177 - 184, XP005912145, DOI: doi:10.1016/j.jconrel.2006.12.022
MOWER, TE: "Infant Formula Composition", 2006, STARWEATHER & ASSOCIATES
QI, M; HETTIARACHCHY, NS; KALAPATHY, U: "Solubility and Emulsifying Properties of Soy Protein Isolates Modified by Pancreatin", JOURNAL OF FOOD SCIENCE, vol. 62, 1997, pages 1110 - 1115
REMI, T, PROCESO DE TRATAMIENTO DE SEMILLAS DE QUINOA Y PRODUCTO OBTENIDO, 1996
RUALES, J; NAIR, B: "Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds", PLANT FOODS FOR HUMAN NUTRITION (FORMERLY QUALITAS PLANTARUM, vol. 42, 1992, pages 1 - 11
SAUNDERS, MJ; TODD, MK; VALENTINE, RJ; ST. LAURENT; TG, KANE; MD, LUDEN, ND; HERRICK, JE: "Inter-Study Examination of Physiological Variables Associated with Improved Endurance Performance with Carbohydrate/Protein Administration", MEDICINE & SCIENCE IN SPORTS & EXERCISE, vol. 38, 2006, pages S113 - S114
SCANLIN, LA; BUMETT, C: "Quinoa grain processing and products", 2010, KEEN INGREDIENTS, INC
SCANLIN, LA; STONE, MB; BUMETT, C: "Qunioa Protein Concentrate, Production and Functionality", 2010, KEEN INGREDIENTS, INC
SINHA, R; RADHA, C; PRAKASH, J; KAUL, P: "Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation", FOOD CHEMISTRY, vol. 101, 2007, pages 1484 - 1491, XP005710458, DOI: doi:10.1016/j.foodchem.2006.04.021
SOMOGYI, M.: "Notes on sugar determination", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 195, 1952, pages 19 - 23
TAKAO TETSUYA ET AL: "Hypocholesterolemic effect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds", FOOD SCIENCE AND TECHNOLOGY RESEARCH, KARGER, BASEL, CH, vol. 11, no. 2, 1 May 2005 (2005-05-01), pages 161 - 167, XP009090450, ISSN: 1344-6606, DOI: 10.3136/FSTR.11.161 *
TAKAO, T; WATANABE, N; YUHARA, K; ITOH, S; SUDA, S; TSURUOKA, Y; NAKATSUGAWA, K; KONISHI, Y: "Hypocholesterolemic effect of protein isolated from Quinoa (Chenopodium quinoa Willd.) seeds", FOOD SCIENCE AND TECHNOLOGY RESEARCH, vol. 11, 2005, pages 161 - 167, XP009090450, DOI: doi:10.3136/fstr.11.161
TANG, H; WATANABE, K; MITSUNAGA, T: "Characterization of storage starches from quinoa, barley and adzuki seeds", CARBOHYDRATE POLYMERS, vol. 49, 2002, pages 13 - 22, XP004341984, DOI: doi:10.1016/S0144-8617(01)00292-2
VALENTINE, RJ; ST. LAURENT, TG; SAUNDERS, MJ; TODD, MK; FLOHR, JA: "Comparison of Responses to Exercise When Consuming Carbohydrate and Carbohydrate/Protein Beverages", MEDICINE & SCIENCE IN SPORTS & EXERCISE, vol. 38, 2006, pages S341
YAEZ SOLER, AJ; MUOZ CERDA, A; YAEZ SOLER; ARMANDO JOSE MUOZ CERDA, COMPOSICION A BASE DE CACAO Y ESPIRULINA, 2010
YOTARO, K: "Nutricional Characteristics of Pseudocereal Amaranth and Quinoa: Alternative Foodstuff for Patients with Food Allergy", JOURNAL OF JAPANESE SOCIETY OF NUTRITION AND FOOD SCIENCE, vol. 55, 2002, pages 299 - 302

Also Published As

Publication number Publication date
EP2796054A1 (en) 2014-10-29
US20140302198A1 (en) 2014-10-09
CL2011003236A1 (es) 2012-07-20
CA2860041A1 (en) 2013-06-27
EP2796054B1 (en) 2015-11-25
CA2860041C (en) 2019-10-01
BR112014015232A2 (pt) 2017-06-13
US9763463B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
US9763463B2 (en) Method for the formulation of a gel-format foodstuff for use as a nutritional foodstuff enriched with peptides and maltodextrins obtained from quinoa flour
ES2367621T3 (es) Fibra dietética soluble de granos de avena y cebada, método para producir una fracción rica en beta-glucano y uso de la fracción en alimentos, productos farmacéuticos y cosméticos.
ES2628193T3 (es) Polvo granulado que contiene proteínas vegetales y fibras, su procedimiento de obtención y sus utilizaciones
CN104287049A (zh) 一种体重管理的代餐蛋白质粉固体饮料
CN103876037B (zh) 多功能发酵玉米粉及其生产工艺
WO2010103342A2 (es) Proteína vegetal híbrida y método para obtener la misma
CN104757250A (zh) 一种滋阴润肺的营养蛋糕
CN105211202A (zh) 一种干果燕麦饼干
ES2377605T3 (es) Composición de pasta para matrices alimenticias deshidratadas
ES2820574T3 (es) Preparación prebiótica a base de inulina
CN102919648A (zh) 一种营养保健型青稞果冻及其制备方法
Cao et al. Moringa oleifera leaf protein: Extraction, characteristics and applications
ES2743277T3 (es) Producto compuesto que contiene una composición de relleno con cereales integrales
Shi et al. Almond (Amygdalus communis L.) Kernel Protein: A Review on the Extraction, Functional Propertiesand Nutritional Value
ES2252037T3 (es) Procedimiento para la produccion de alimentos, alimentos dieteticos y aditivos para alimentos a base de lias de la destilacion de cereales.
CN105285959A (zh) 一种含醋的胶冻型食品
Sandoval-Peraza et al. Lima Bean
CN103652271A (zh) 一种添加苜蓿的冷冻饮品及其制备方法
CN102599398B (zh) 一种补肾清肺果蔬营养粥
KR20100131052A (ko) 고추장의 제조방법 및 이에 따라 제조된 고추장
RO133075A0 (ro) Metodă de obţinere şi caracterizare a pulberii orodispersabile de ou
BRPI1001585A2 (pt) processo de fabricação de um produto assado nutricionalmente enriquecido contendo farinha de quinoa e produto assado isento de glúten
CN102550930A (zh) 一种糜子豆奶粉
CN106262817A (zh) 一种利于脱敏及黏膜修复与维护的营养食品
CN106562253A (zh) 一种利用鸡蛋进行孵化的降三高养生制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2860041

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012815988

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015232

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014015232

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140620

ENP Entry into the national phase

Ref document number: 112014015232

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140620