WO2013089117A1 - 固体撮像装置 - Google Patents
固体撮像装置 Download PDFInfo
- Publication number
- WO2013089117A1 WO2013089117A1 PCT/JP2012/082141 JP2012082141W WO2013089117A1 WO 2013089117 A1 WO2013089117 A1 WO 2013089117A1 JP 2012082141 W JP2012082141 W JP 2012082141W WO 2013089117 A1 WO2013089117 A1 WO 2013089117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- voltage
- charge
- reset
- pixel
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 31
- 239000007787 solid Substances 0.000 title abstract 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims description 37
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 230000003321 amplification Effects 0.000 description 12
- 238000003199 nucleic acid amplification method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/65—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/767—Horizontal readout lines, multiplexers or registers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/778—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
Definitions
- the present invention relates to a solid-state imaging device.
- a capacitive load is applied to an amplification type solid-state imaging device that converts a signal charge accumulated in a photodiode into a signal voltage in a pixel and outputs it to a signal line, as represented by a CMOS (complementary metal-oxide semiconductor) image sensor.
- CMOS complementary metal-oxide semiconductor
- a method using a reading method is known (for example, see Patent Document 1).
- the signal voltage output from each pixel is temporarily stored in a load capacitor connected to the signal line and then read out to the horizontal signal line.
- Patent Document 1 is configured to output a voltage corresponding to the signal charge accumulated in the pixel to the vertical signal line as it is, and is not configured to completely transfer the signal charge accumulated in the pixel. In such a configuration, when the signal charge accumulated in the pixel is initialized to the reset voltage, the reset noise remaining in the pixel due to the switch operation cannot be removed.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a solid-state imaging device capable of removing pixel reset noise while having a low power consumption circuit configuration.
- One embodiment of the present invention includes a photoelectric conversion element that photoelectrically converts incident light and accumulates signal charges, a charge-voltage conversion terminal that converts voltage of signal charges accumulated in the photoelectric charge conversion element, and the charge-voltage conversion Voltage signal output means for amplifying a signal voltage-converted at the terminal, transfer means for transferring the signal charge accumulated in the photoelectric charge conversion element to the charge-voltage conversion terminal, and a first reset of the charge-voltage conversion terminal
- a plurality of pixels arranged in a matrix direction, and a plurality of the pixels belonging to each column are connected in common to be in a floating potential state.
- the first reset means is turned on and reset to the first reset voltage, and then the first reset means is turned off to bring it into a floating potential state, and the constant current circuit element is turned on to the first signal wiring.
- the constant current circuit element after being stored in the first signal wiring by reading the voltage of the charge-voltage conversion terminal to the first signal wiring through the voltage signal output means for a predetermined time while supplying a constant current And a noise signal readout operation for outputting a noise signal of pixels for one row by reading out the voltage stored in each of the first signal lines, and the first scanning means.
- the signal charge accumulated in the photoelectric charge conversion means by the transfer means of the plurality of pixels belonging to one row is transferred to the charge voltage conversion terminal, and the constant current circuit element is turned on to turn on the first signal.
- a signal converted at the charge-voltage conversion terminal while supplying a constant current to the wiring is read to the first signal wiring by reading the signal to the first signal wiring for the predetermined time via the voltage signal output means.
- a solid-state imaging device that performs an optical signal readout operation of outputting optical signals of pixels for one row by turning off the constant current circuit element after storage and reading out the voltage stored in each first signal wiring provide.
- the light incident on the photoelectric charge conversion element is converted into signal charge and accumulated, then transferred to the charge / voltage conversion terminal by the transfer means, converted into voltage, and amplified by the voltage signal amplification means. After that, it is temporarily stored in the first signal wiring by being read out to the first signal wiring in the floating potential state. After that, by reading out the signal from the first signal wiring, it is possible to obtain an optical signal of pixels for one row selected by the first scanning unit.
- the charge / voltage conversion terminal is reset to the first reset voltage by the first reset means.
- the signal of the voltage at the charge-voltage conversion terminal after resetting is temporarily held in the first signal wiring by reading out the signal from the constant current circuit element to the first signal wiring supplied with a constant current, Read from the first signal wiring.
- the signal after resetting the charge-voltage conversion terminal is read out for the pixels of one row.
- the aforementioned optical signal is read out.
- the signal of each pixel read in the noise signal readout operation and the signal of each pixel read out in the optical signal readout operation commonly include reset noise associated with the reset of the charge-voltage conversion terminal.
- the first scanning unit selects a noise signal readout operation for outputting the noise signal of the pixels for one row and an optical signal readout operation for outputting the optical signals of the pixels for one row. It is also possible to alternately repeat the pixels to be switched in the column direction.
- the noise signal readout operation and the optical signal readout operation are continuously performed for each pixel, so that the voltage after the reset of the charge-voltage conversion terminal is read out and then the signal after the transfer of the signal charge is read out.
- the time until is the shortest.
- a plurality of second signal wirings each having a plurality of the first signal wirings connected thereto, a plurality of second resetting means for resetting the voltages of the second signal wirings,
- a plurality of signal amplifying means for outputting a signal from the second signal wiring, and one of the plurality of first signal wirings connected to each of the second signal wirings to select the second signal wiring
- a second scanning means for outputting a signal to a plurality of pixels belonging to the plurality of first signal wirings connected to the second signal wirings, and outputting noise signals of pixels for the one row
- the signal readout operation and the optical signal readout operation for outputting the optical signal of the pixels for one row may be alternately repeated while resetting the voltage of the second signal wiring by the second reset unit.
- the pixel comprises two or more photoelectric charge conversion elements and the same number of transfer means as the photoelectric charge conversion elements connected in parallel to a single charge voltage conversion terminal,
- an optical signal of one photoelectric charge conversion element of the pixel belonging to one row selected by the first scanning unit may be read out. In this way, by sharing a part of the configuration between the plurality of photoelectric charge conversion terminals, the area occupied by the pixel can be reduced.
- FIG. 6 is a plan view illustrating a configuration of a two-pixel sharing type pixel, which is a modification of the pixel in FIG. 2. It is a modification of the pixel of FIG. 2, and is a top view which shows the structure of a 4 pixel shared type pixel.
- FIG. 6 is a plan view illustrating a configuration of a two-pixel sharing type pixel, which is a modification of the pixel in FIG. 2. It is a modification of the pixel of FIG. 2, and is a top view which shows the structure of a 4 pixel shared type pixel.
- FIG. 4 is a plan view showing a configuration of an 8-pixel shared pixel, which is a modification of the pixel in FIG. 2. It is a timing chart which shows operation
- the solid-state imaging device 1 includes a pixel array 3 including a plurality of pixels 2, a vertical shift register 4, a horizontal shift register 5, a final output amplifier circuit 6, and a control.
- the circuit 7 is provided as a basic configuration.
- an analog-digital (AD) conversion circuit and a signal processing circuit are provided around these components.
- the pixel array 3 includes a plurality of pixels 2 arranged in a row direction and a column direction. Pixels 2 belonging to the same column are connected to a common vertical signal line 8, and each vertical signal line 8 is connected to a common horizontal signal line 9 via a column selection transistor 10.
- Reference numeral 11 denotes a load transistor (constant current circuit element) that is connected between the vertical signal line 8 and the ground voltage and supplies a constant current to the vertical signal line 8.
- Reference numeral 12 denotes a horizontal signal line reset transistor (second reset transistor) which is connected to the horizontal signal line 9 and resets the horizontal signal line 9 to the second reset voltage Vrst2. These transistors 11 and 12 are driven when pulses ⁇ CS and ⁇ Hclr are inputted to the gates from a pulse circuit (not shown).
- the vertical shift register 4 selects one row from the pixel array 3, and inputs pulses ⁇ Rj, ⁇ Tj, ⁇ Xj, which will be described later, to the pixels 2 belonging to the selected row, so that each pixel 2 supplies a vertical signal line 8. Output a signal.
- the horizontal shift register 5 inputs a column selection pulse ⁇ H [ ⁇ H1, ⁇ H2,..., ⁇ Hn] sequentially from the first column to the gates of the column selection transistors 10 arranged along the horizontal signal line 9, thereby A signal is output from the vertical signal line 8 to the horizontal signal line 9 in order.
- the final output amplifier circuit 6 amplifies and outputs the signal on the horizontal signal line 9.
- the signal output from the final output amplifier circuit 6 is input to an AD converter circuit (not shown) and converted into a digital signal, and then processed for imaging by a signal processing circuit.
- the control circuit 7 controls the signal reading operation from the pixel array 3 by outputting a control signal for outputting the above-described pulses to each of the shift registers 4 and 5 and the pulse circuit in accordance with a preset pulse sequence. .
- the pixel 2 photoelectrically converts a received optical signal to accumulate a signal charge and transfers the signal charge accumulated in the PD 21.
- a transfer transistor (transfer means) 22 a floating diffusion (FD, charge-voltage conversion terminal) 23 for accumulating signal charges transferred by the transfer transistor 22, and an amplifying transistor (voltage) for reading the signal charges accumulated in the FD 23 as a voltage Signal output means) 24, a pixel selection transistor 25 connected between the amplification transistor 24 and the vertical signal line 8, and an FD reset transistor (first reset) for resetting the voltage of the FD 23 to the first reset voltage Vrst1.
- Means) 26 means
- the gates of the transfer transistor 22, the pixel selection transistor 25 and the FD reset transistor 26 are connected to the vertical shift register 4, and each pixel 2 is driven by a pulse input from the vertical shift register 4 to each gate.
- the transfer transistor 22 transfers the signal charge accumulated in the PD 21 from the source-side PD 21 to the drain-side FD 23 when the transfer pulse ⁇ Tj is input to the gate. By this transfer operation, the signal charge amount accumulated in the PD 21 is reset to zero.
- the FD 23 accumulates the signal charges transferred from the PD 21 via the transfer transistor 22 and generates a signal voltage corresponding to the accumulated signal charge amount.
- the amplification transistor 24 amplifies the signal voltage of the FD 23 connected to the gate, and outputs the signal to the pixel selection transistor 25 on the source side.
- the pixel selection transistor 25 outputs the signal input from the amplification transistor 24 to the vertical signal line 8 when the pixel selection pulse ⁇ Xj is input from the vertical shift register 4 to the gate.
- the signal charge accumulated in the FD 23 is discharged to the drain side of the FD reset transistor 26 when the FD reset pulse ⁇ Rj is input from the vertical shift register 4 to the gate of the FD reset transistor 26.
- the voltage of the FD 23 is reset to the first reset voltage Vrst1.
- the driving method of the solid-state imaging device 1 includes an optical signal readout operation that reads out an optical signal received by the pixel 2 and a noise signal readout operation that is executed prior to the optical signal readout operation.
- the noise signal reading operation includes a first step S1 for resetting the FD 23, and a second step S2 for reading the voltage of the FD 23 after the reset to the vertical signal line 8 and storing it in the vertical signal line 8.
- the transistors 10, 11, 12, 22, 25, and 26 are in an off state where no pulse is input to the gate, and the FD 23, the vertical signal line 8, and the horizontal signal line 9 are in a floating potential state.
- the FD reset pulse ⁇ R1 is applied from the vertical shift register 4 to each pixel 2 in the first row, whereby the voltage of the FD 23 of each pixel 2 is reset to the first reset voltage Vrst1.
- reset noise accompanying the on / off operation of the FD reset transistor 26 is also stored in the FD 23 together with the first reset voltage Vrst1.
- the voltage V_VLi of each vertical signal line 8 is reset to the ground voltage by applying the switch pulse ⁇ CS from the pulse circuit to the load transistor 11.
- FIG. 3 shows only the voltage V_VL1 in the first column as a representative of the n vertical signal lines 8.
- the pixel selection pulse ⁇ X1 is applied from the vertical shift register 4 to each pixel 2 in the first row while the load transistor 11 is kept on.
- the voltage signal of the FD 23 of each pixel 2 is read out to the vertical signal line 8 via the amplification transistor 24 and the pixel selection transistor 25.
- the signal read out to the vertical signal line 8 is then transferred to the vertical signal line 8 when the load transistor 11 and the pixel selection transistor 25 are turned off and the vertical signal line 8 is again set to the floating potential state. Saved.
- column selection pulses ⁇ H1, ⁇ H2,..., ⁇ Hn are applied from the horizontal shift register 5 to the column selection transistor 10 in order from the first column.
- the signals N1, N2,..., Nn stored in the vertical signal lines 8 are sequentially read out to the horizontal signal line 9 from the first column vertical signal line 8 to the Nth column vertical signal line 8.
- the signals N1, N2,..., Nn read out to the horizontal signal line 9 are output from the final output amplifier circuit 6 to the outside.
- the signals N1, N2,..., Nn output from the final output amplifier 6 include the first reset voltage Vrst1 and reset noise associated with the reset operation of the FD23.
- an optical signal readout operation is performed.
- a fourth step S4 of transferring the signal charge accumulated in the PD 21 to the FD 23, and a voltage of the FD 23 after the signal charge transfer is read to the vertical signal line 8 and stored in the vertical signal line 8.
- the transfer pulse ⁇ T1 is applied from the vertical shift register 4 to each pixel 2 in the first row, so that the signal charge accumulated in the PD 21 so far is transferred to the FD 23 via the transfer transistor 22. .
- the voltage of the FD 23 changes by the amount of the signal voltage based on the signal charge amount from the voltage after the reset operation in the first step S1.
- the switch pulse ⁇ CS is applied from the pulse circuit to the load transistor 11 in the same manner as in the second step S2, and then the vertical shift register 4 or each pixel 2 in the first row is applied.
- a pixel selection pulse ⁇ X1 is applied.
- the voltage signal of the FD 23 of each pixel 2 is read out to the vertical signal line 8 via the amplification transistor 24 and the pixel selection transistor 25.
- the signal read out to the vertical signal line 8 is stored in the vertical signal line 8 when the load transistor 11 and the pixel selection transistor 25 are turned off and the vertical signal line 8 is again set in the floating potential state. Is done.
- step S6 column selection pulses ⁇ H1, ⁇ H2,..., ⁇ Hn are applied from the horizontal shift register 5 to the column selection transistor 10 in the same manner as in the third step S3 described above.
- the signals S1, S2,..., Sn stored in each vertical signal line 8 are read out sequentially from the first column to the horizontal signal line 9, and output from the final output amplifier circuit 6 to the outside.
- the signals S1, S2,..., Sn output from the final output amount amplification circuit 6 in this way are received light amounts of the optical signals of the PD 21 in addition to the signals N1, N2,.
- the signal corresponding to is superimposed.
- control circuit 7 performs the noise signal readout operation and the optical signal readout operation for the pixels 2 in the first row, and then selects the pixels 2 in the second row by the vertical shift register 4, Similarly, a noise signal readout operation and an optical signal readout operation are executed.
- the control circuit 7 reads the signals of all the pixels 2 by executing the noise signal reading operation and the optical signal reading operation for all the rows while sequentially shifting the rows selected by the vertical shift register 4.
- the solid-state imaging device 1 processes the two signals output from the final output amplifier circuit 6 in the signal processing circuit as described above. That is, the signal Ni in the noise readout operation is subtracted from the signal Si in the optical signal readout operation, and the difference is used as the net signal of the pixel 2. Thereby, a net signal based on the signal voltage of the PD 21 from which the reset noise of the FD 23 has been removed can be obtained.
- the voltage signal of the FD 23 read out to the vertical signal line 8 is temporarily stored in the vertical signal line 8, thereby eliminating the need for an analog memory such as a capacitor for storing the signal read out from the pixel 2 and reducing the size. Can be achieved.
- the analog memory since the occupied area of the analog memory is relatively large in the conventional solid-state imaging device, omitting the analog memory is effective for downsizing the entire solid-state imaging device 1. Further, the signal can be stably read by reading the signal of the FD 23 to the vertical signal line 8 while supplying a constant current to the vertical signal line 8.
- the noise signal readout operation and the optical signal readout operation are alternately executed, and the noise signal readout operation and the optical signal readout operation are continuously executed for each row. Then, after performing the noise signal reading operation for all the rows, the optical signal reading operation may be performed for all the rows.
- all the vertical signal lines 8 are connected to a single horizontal signal line 9, and the signals of all the pixels 2 are output via the common horizontal signal line 9 and the final output amplifier circuit 6.
- the pixel array 3 is divided into a plurality of regions 3a in the row direction, and each region 3a has a horizontal signal line 9, a horizontal signal line reset transistor 12 and a final signal.
- An output amplifier circuit 6 may be provided. By doing so, it is possible to read out the signals from the pixels 2 in each region 3a in parallel, and to shorten the time required to read out the signals of all the pixels 2.
- the pixels 2-1 to 2-3 include a plurality of PDs 21 and transfer transistors 22, and the plurality of PDs 21 and transfer transistors 22 are provided in a common FD 23. It may be connected in parallel.
- FIG. 6, and FIG. 7 show pixels 2-1 to 2-3 each including two, four, or eight PDs 21 and transfer transistors 22, respectively.
- the area of the pixel array 3 can be reduced by sharing the amplification transistor 24, the pixel selection transistor 25, and the FD reset transistor 26 by the plurality of PDs 21.
- FIGS. 5 to 7 show operations of the solid-state imaging device including the pixels 2-1 to 2-3 having the configurations shown in FIGS. 5 to 7, respectively.
- the vertical shift register 4 performs a noise read operation and a signal read operation for one PD 21, and subsequently performs a noise read operation and a signal read operation for the other PD 21. I do.
- the noise reading operation and the signal reading operation are sequentially performed on the PD 21 included in one pixel 2-2, 2, and 3.
- FIGS. 13 and 14 show a modification of the 4-pixel sharing type pixel 2-2 shown in FIG. 6 or the 8-pixel sharing type pixel 2-3 shown in FIG.
- the pixel selection transistor 25 is omitted, and the FD reset transistor 26 also functions as the pixel selection transistor 25. That is, as shown in FIGS. 13 and 14, the voltage VR at the drain of the FD reset transistor 26 is switched between the first reset voltage Vrst1 and a sufficiently small voltage, so that the FD 23 shifts to the vertical signal line 8. The on / off operation of reading the signal is performed.
- the FD reset pulse ⁇ R is applied to the gate of the FD reset transistor 26, whereby the vertical signal line is transmitted from the FD 23 to the vertical signal line. A signal is output to 8.
- the voltage VR of the drain of the FD reset transistor 26 is set to a sufficiently small voltage and the FD reset pulse ⁇ R is applied to the gate of the FD reset transistor 26, the FD 23 becomes a low voltage. No signal is output. According to such a modification, the pixel array 3 can be further reduced by further reducing the number of transistors.
- FIGS. 15 and 16 show another modification example of the 4-pixel shared pixel 2-4 shown in FIG. 6 or the 8-pixel shared pixel 2-5 shown in FIG.
- the arrangement of the amplification transistor 24 and the pixel selection transistor 25 is reversed, the amplification transistor 24 is arranged on the vertical signal line 8 side, and the pixel selection transistor 25 is arranged on the power supply voltage side.
- the voltage feedback due to the gate-source capacitance of the amplification transistor 24 is further increased, the signal voltage is further increased, and the sensitivity is effectively increased. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本発明の一態様は、入射光を光電変換して信号電荷を蓄積する光電荷変換素子と、該光電荷変換素子に蓄積された信号電荷を電圧変換する電荷電圧変換端子と、該電荷電圧変換端子で電圧変換された信号を増幅する電圧信号出力手段と、前記光電荷変換素子に蓄積された信号電荷を前記電荷電圧変換端子へ転送する転送手段と、前記電荷電圧変換端子の第1のリセット電圧を有する電源への導通と切断とをオンオフにより切り替える第1のリセット手段とを備え行列方向に配列された複数の画素と、各列に属する複数の前記画素が共通に接続され浮遊電位状態に維持可能な複数の第1の信号配線と、該第1の信号配線の各々において、前記電圧信号出力手段から前記第1の信号配線に信号を出力する前記画素を選択する第1の走査手段と、前記第1の信号配線への定電流の供給をオンオフする定電流回路素子とを備え、前記第1の走査手段により選択された一の行に属する複数の前記画素の前記電荷電圧変換端子を前記第1のリセット手段をオンして前記第1のリセット電圧にリセットした後に前記第1のリセット手段をオフすることにより浮遊電位状態にし、前記定電流回路素子をオンして前記第1の信号配線へ定電流を供給しながら前記電荷電圧変換端子の電圧を前記第1の信号配線に前記電圧信号出力手段を介して所定の時間読み出すことにより前記第1の信号配線に保存した後に前記定電流回路素子をオフし、各前記第1の信号配線に保存された電圧を読み出すことにより1行分の画素のノイズ信号を出力するノイズ信号読み出し動作と、前記第1の走査手段により選択された一の行に属する複数の前記画素の前記転送手段により前記光電荷変換手段に蓄積された信号電荷を前記電荷電圧変換端子に転送し、前記定電流回路素子をオンして前記第1の信号配線へ定電流を供給しながら前記電荷電圧変換端子にて電圧変換された信号を前記第1の信号配線に前記電圧信号出力手段を介して前記所定の時間読み出すことにより前記第1の信号配線に保存した後に前記定電流回路素子をオフし、各前記第1の信号配線に保存された電圧を読み出すことにより1行分の画素の光信号を出力する光信号読み出し動作とを行う固体撮像装置を提供する。
このように複数の光電荷変換端子によって一部の構成を共有することにより、画素が占める面積を縮小することができる。
本実施形態に係る固体撮像装置1は、図1に示されるように、複数の画素2を備える画素アレイ3と、垂直シフトレジスタ4と、水平シフトレジスタ5と、最終出力増幅回路6と、制御回路7とを基本構成として備えている。また、これらの周辺には、図示しないアナログ-デジタル(AD)変換回路や信号処理回路等が備えられている。
水平シフトレジスタ5は、水平信号線9に沿って並ぶ列選択トランジスタ10のゲートに1列目から順番に列選択パルスφH〔φH1,φH2,…,φHn〕を入力することにより、1列目の垂直信号線8から順番に水平信号線9へ信号を出力させる。
制御回路7は、予め設定されたパルスシーケンスに従い、上述した各パルスを出力させる制御信号を各シフトレジスタ4,5およびパルス回路に出力することにより、画素アレイ3からの信号の読み出し動作を制御する。
具体的には、転送トランジスタ22は、ゲートに転送パルスφTjが入力されることにより、ソース側のPD21からドレイン側のFD23へ、PD21が蓄積した信号電荷を転送する。この転送動作によりPD21が蓄積していた信号電荷量はゼロにリセットされる。FD23は、転送トランジスタ22を介してPD21から転送されてきた信号電荷を蓄積し、蓄積した信号電荷量に応じた信号電圧を生成する。
本実施形態に係る固体撮像装置1の駆動方法は、画素2が受光した光信号を読み出す光信号読み出し動作と、該光信号読み出し動作に先立って実行されるノイズ信号読み出し動作とからなる。
光信号読み出し動作は、PD21に蓄積された信号電荷をFD23に転送する第4の工程S4と、信号電荷転送後のFD23の電圧を垂直信号線8に読み出して該垂直信号線8に保存する第5の工程S5と、各垂直信号線8に保存された信号を順番に水平信号線9に読み出して最終出力増幅回路6から出力する第6の工程S6とを含む。
このようにすることで、各領域3aの画素2からの信号の読み出しを並行して実行し、全画素2の信号の読み出しに要する時間を短縮することができる。
このような変形例によれば、トランジスタの数をさらに減らして画素アレイ3をさらに縮小することができる。
このような変形例によれば、画素から信号を読み出す際に増幅トランジスタ24のゲート・ソース間容量による電圧帰還がより高まり、信号電圧がより上昇することになり、実効的に感度を高めることができる。
2,2-1~2-7 画素
3 画素アレイ
4 垂直シフトレジスタ(第1の走査手段)
5 水平シフトレジスタ(第2の走査手段)
6 最終出力増幅回路
7 制御回路
8 垂直信号線(第1の信号配線)
9 水平信号線(第2の信号配線)
10 列選択トランジスタ
11 負荷トランジスタ(定電流回路素子)
12 水平信号線リセットトランジスタ(第2のリセットトランジスタ)
21 フォトダイオード(光電荷変換素子)
22 転送トランジスタ(転送手段)
23 フローティングディフュージョン(電荷電圧変換端子)
24 増幅トランジスタ(電圧信号出力手段)
25 画素選択トランジスタ
26 フローティングディフュージョンリセットトランジスタ(第1のリセット手段)
Claims (4)
- 入射光を光電変換して信号電荷を蓄積する光電荷変換素子と、該光電荷変換素子に蓄積された信号電荷を電圧変換する電荷電圧変換端子と、該電荷電圧変換端子で電圧変換された信号を増幅する電圧信号出力手段と、前記光電荷変換素子に蓄積された信号電荷を前記電荷電圧変換端子へ転送する転送手段と、前記電荷電圧変換端子の第1のリセット電圧を有する電源への導通と切断とをオンオフにより切り替える第1のリセット手段とを備え行列方向に配列された複数の画素と、
各列に属する複数の前記画素が共通に接続され浮遊電位状態に維持可能な複数の第1の信号配線と、
該第1の信号配線の各々において、前記電圧信号出力手段から前記第1の信号配線に信号を出力する前記画素を選択する第1の走査手段と、
前記第1の信号配線への定電流の供給をオンオフする定電流回路素子とを備え、
前記第1の走査手段により選択された一の行に属する複数の前記画素の前記電荷電圧変換端子を前記第1のリセット手段をオンして前記第1のリセット電圧にリセットした後に前記第1のリセット手段をオフすることにより浮遊電位状態にし、前記定電流回路素子をオンして前記第1の信号配線へ定電流を供給しながら前記電荷電圧変換端子の電圧を前記第1の信号配線に前記電圧信号出力手段を介して所定の時間読み出すことにより前記第1の信号配線に保存した後に前記定電流回路素子をオフし、各前記第1の信号配線に保存された電圧を読み出すことにより1行分の画素のノイズ信号を出力するノイズ信号読み出し動作と、
前記第1の走査手段により選択された一の行に属する複数の前記画素の前記転送手段により前記光電荷変換手段に蓄積された信号電荷を前記電荷電圧変換端子に転送し、前記定電流回路素子をオンして前記第1の信号配線へ定電流を供給しながら前記電荷電圧変換端子にて電圧変換された信号を前記第1の信号配線に前記電圧信号出力手段を介して前記所定の時間読み出すことにより前記第1の信号配線に保存した後に前記定電流回路素子をオフし、各前記第1の信号配線に保存された電圧を読み出すことにより1行分の画素の光信号を出力する光信号読み出し動作とを行う固体撮像装置。 - 前記1行分の画素のノイズ信号を出力するノイズ信号読み出し動作と、前記1行分の画素の光信号を出力する光信号読み出し動作とを、前記第1の走査手段により選択する画素を列方向に切り替えながら交互に繰り返す請求項1に記載の固体撮像装置。
- 前記第1の信号配線が複数ずつ接続された複数の第2の信号配線と、
各該第2の信号配線の電圧をリセットする複数の第2のリセット手段と、
各前記第2の信号配線から信号を出力させる複数の信号増幅手段と、
各前記第2の信号配線に接続される複数の前記第1の信号配線のうち一を選択して前記第2の信号配線に信号を出力させる第2の走査手段とを備え、
各前記第2の信号配線に接続する複数の前記第1の信号配線に属する画素について、前記1行分の画素のノイズ信号を出力するノイズ信号読み出し動作と前記1行分の画素の光信号を出力する光信号読み出し動作とを、前記第2のリセット手段により前記第2の信号配線の電圧をリセットしながら交互に繰り返する請求項2に記載の固体撮像装置。 - 前記画素が、2つ以上の前記光電荷変換素子および該光電荷変換素子と同数の前記転送手段を単一の前記電荷電圧変換端子に並列に接続してなり、
前記光信号読み出し動作において、前記第1の走査手段により選択された一の行に属する前記画素の1つの前記光電荷変換素子の光信号を読み出す請求項1から請求項3のいずれかに記載の固体撮像装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280061037.4A CN103988494B (zh) | 2011-12-13 | 2012-12-12 | 固体摄像装置 |
KR1020147015201A KR101580754B1 (ko) | 2011-12-13 | 2012-12-12 | 고체 촬상 장치 |
EP12858264.0A EP2793460B1 (en) | 2011-12-13 | 2012-12-12 | Solid state imaging device |
US14/302,516 US9137469B2 (en) | 2011-12-13 | 2014-06-12 | Solid-state imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-272615 | 2011-12-13 | ||
JP2011272615A JP5448208B2 (ja) | 2011-12-13 | 2011-12-13 | 固体撮像装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/302,516 Continuation US9137469B2 (en) | 2011-12-13 | 2014-06-12 | Solid-state imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089117A1 true WO2013089117A1 (ja) | 2013-06-20 |
Family
ID=48612561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082141 WO2013089117A1 (ja) | 2011-12-13 | 2012-12-12 | 固体撮像装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9137469B2 (ja) |
EP (1) | EP2793460B1 (ja) |
JP (1) | JP5448208B2 (ja) |
KR (1) | KR101580754B1 (ja) |
CN (1) | CN103988494B (ja) |
WO (1) | WO2013089117A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102654993B1 (ko) * | 2015-09-30 | 2024-04-04 | 가부시키가이샤 니콘 | 촬상 소자 및 전자 카메라 |
JP6313912B2 (ja) * | 2015-10-02 | 2018-04-18 | オリンパス株式会社 | 撮像素子、内視鏡および内視鏡システム |
CN110210421B (zh) | 2019-06-05 | 2021-08-06 | 京东方科技集团股份有限公司 | 一种成像背板及其驱动方法、指纹识别面板 |
CN113630564A (zh) * | 2020-05-09 | 2021-11-09 | 宁波飞芯电子科技有限公司 | 一种探测装置及探测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07283386A (ja) | 1994-02-21 | 1995-10-27 | Sony Corp | 固体撮像装置及びその駆動方法 |
JPH0955887A (ja) * | 1995-08-15 | 1997-02-25 | Nikon Corp | 光電変換装置およびこれを用いた固体撮像装置 |
JP2005303746A (ja) * | 2004-04-13 | 2005-10-27 | Matsushita Electric Ind Co Ltd | 撮像装置 |
JP2009088539A (ja) * | 2002-02-27 | 2009-04-23 | Canon Inc | 撮像装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933189A (en) | 1995-03-09 | 1999-08-03 | Nikon Corporation | Solid state image pickup apparatus |
JP4074599B2 (ja) * | 2004-03-26 | 2008-04-09 | シャープ株式会社 | 増幅型固体撮像装置 |
JP2006033631A (ja) * | 2004-07-20 | 2006-02-02 | Matsushita Electric Ind Co Ltd | 固体撮像装置及びサンプリング回路 |
JP4420039B2 (ja) * | 2007-02-16 | 2010-02-24 | ソニー株式会社 | 固体撮像装置 |
JP5262028B2 (ja) * | 2007-09-10 | 2013-08-14 | ソニー株式会社 | イメージセンサおよび制御方法 |
JP5347283B2 (ja) * | 2008-03-05 | 2013-11-20 | ソニー株式会社 | 固体撮像装置およびその製造方法 |
JP5149687B2 (ja) * | 2008-04-28 | 2013-02-20 | キヤノン株式会社 | 撮像センサ、撮像システム、及び撮像センサの制御方法 |
EP2288142B1 (en) * | 2008-06-10 | 2014-01-29 | Tohoku University | Solid-state image sensor |
CN102057671B (zh) * | 2008-06-10 | 2013-03-13 | 国立大学法人东北大学 | 固体摄像元件及其驱动方法 |
TWI433307B (zh) * | 2008-10-22 | 2014-04-01 | Sony Corp | 固態影像感測器、其驅動方法、成像裝置及電子器件 |
JP5257176B2 (ja) * | 2009-03-18 | 2013-08-07 | ソニー株式会社 | 固体撮像装置、固体撮像装置の駆動方法および電子機器 |
JP5132640B2 (ja) * | 2009-08-25 | 2013-01-30 | 株式会社東芝 | 固体撮像装置及びその製造方法 |
JP2011205249A (ja) * | 2010-03-24 | 2011-10-13 | Toshiba Corp | 固体撮像装置 |
JP5552858B2 (ja) * | 2010-03-26 | 2014-07-16 | ソニー株式会社 | 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器 |
JP5558278B2 (ja) * | 2010-09-10 | 2014-07-23 | 株式会社東芝 | 固体撮像装置 |
JP5794686B2 (ja) * | 2011-08-10 | 2015-10-14 | キヤノン株式会社 | 撮像装置及びその駆動方法 |
-
2011
- 2011-12-13 JP JP2011272615A patent/JP5448208B2/ja active Active
-
2012
- 2012-12-12 WO PCT/JP2012/082141 patent/WO2013089117A1/ja active Application Filing
- 2012-12-12 EP EP12858264.0A patent/EP2793460B1/en not_active Not-in-force
- 2012-12-12 KR KR1020147015201A patent/KR101580754B1/ko active IP Right Grant
- 2012-12-12 CN CN201280061037.4A patent/CN103988494B/zh active Active
-
2014
- 2014-06-12 US US14/302,516 patent/US9137469B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07283386A (ja) | 1994-02-21 | 1995-10-27 | Sony Corp | 固体撮像装置及びその駆動方法 |
JPH0955887A (ja) * | 1995-08-15 | 1997-02-25 | Nikon Corp | 光電変換装置およびこれを用いた固体撮像装置 |
JP2009088539A (ja) * | 2002-02-27 | 2009-04-23 | Canon Inc | 撮像装置 |
JP2005303746A (ja) * | 2004-04-13 | 2005-10-27 | Matsushita Electric Ind Co Ltd | 撮像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2793460A4 |
Also Published As
Publication number | Publication date |
---|---|
US9137469B2 (en) | 2015-09-15 |
CN103988494A (zh) | 2014-08-13 |
EP2793460A1 (en) | 2014-10-22 |
EP2793460B1 (en) | 2017-02-01 |
KR101580754B1 (ko) | 2015-12-28 |
CN103988494B (zh) | 2017-05-17 |
JP2013126025A (ja) | 2013-06-24 |
KR20140090237A (ko) | 2014-07-16 |
JP5448208B2 (ja) | 2014-03-19 |
EP2793460A4 (en) | 2015-07-29 |
US20140293105A1 (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5764783B2 (ja) | 固体撮像装置 | |
JP4483293B2 (ja) | 固体撮像装置およびその駆動方法 | |
JP4329765B2 (ja) | 固体撮像装置 | |
WO2015194390A1 (ja) | 固体撮像装置および電子機器 | |
US7612320B2 (en) | Solid-state imaging apparatus with reset operation | |
JP5764784B2 (ja) | 固体撮像装置 | |
JP2001045375A (ja) | 撮像装置とその読み出し方法 | |
JP5448208B2 (ja) | 固体撮像装置 | |
JP5390051B1 (ja) | 固体撮像装置用信号処理装置および固体撮像装置 | |
JP5448207B2 (ja) | 固体撮像装置 | |
US20090295965A1 (en) | Method and circuit for driving active pixels in a cmos imager device | |
JP4483422B2 (ja) | 画素アレイ装置および画素アレイ装置の駆動方法 | |
US20140048690A1 (en) | Solid-state imaging device | |
JP4883192B2 (ja) | 画素アレイ装置及び画素アレイ装置の駆動方法 | |
JP4322562B2 (ja) | 固体撮像装置 | |
JP2007019681A (ja) | 固体撮像素子の駆動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12858264 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147015201 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012858264 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012858264 Country of ref document: EP |