WO2013089084A1 - へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法 - Google Patents

へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法 Download PDF

Info

Publication number
WO2013089084A1
WO2013089084A1 PCT/JP2012/082026 JP2012082026W WO2013089084A1 WO 2013089084 A1 WO2013089084 A1 WO 2013089084A1 JP 2012082026 W JP2012082026 W JP 2012082026W WO 2013089084 A1 WO2013089084 A1 WO 2013089084A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysulfone
formula
membrane
repeating unit
unit represented
Prior art date
Application number
PCT/JP2012/082026
Other languages
English (en)
French (fr)
Inventor
誠 松浦
山中 一広
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013089084A1 publication Critical patent/WO2013089084A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones

Definitions

  • the present invention may be referred to as a hexafluoroisopropanol group (1,1,1,3,3,3-hexafluoro-2-hydroxy-2-propyl group, —C (CF 3 ) 2 OH, hereinafter referred to as HFIP group.
  • HFIP group a hexafluoroisopropanol group (1,1,1,3,3,3-hexafluoro-2-hydroxy-2-propyl group, —C (CF 3 ) 2 OH
  • HFIP group hexafluoroisopropanol group
  • a novel polysulfone hereinafter sometimes referred to as HFIP group-containing polysulfone
  • a synthesis method thereof hereinafter sometimes referred to as HFIP group-containing polysulfone
  • polysulfone Since polysulfone is excellent in heat resistance, chemical resistance, strength, and the like, it is widely used as an engineering plastic.
  • polysulfone containing a repeating unit represented by the following formula is known.
  • Patent Document 1 discloses a polysulfone containing a carboxylic acid group useful for a reverse osmosis membrane for desalination of seawater or the like, or an ultrafiltration membrane or a microfiltration membrane
  • Patent Document 2 discloses a polysulfone composite semipermeable membrane. A membrane is disclosed.
  • Patent Document 1 includes a polysulfone containing a carboxyl group (—COOH)
  • Patent Document 2 includes a polysulfone containing a sulfonic acid group (—SO 3 H)
  • Non-Patent Document 1 includes a quaternary ammonium group.
  • Polysulfone is disclosed, and a method for introducing the quaternary ammonium group is disclosed.
  • Patent Documents 3 and 4 disclose that HFIP group-containing aromatic polyamides are useful for reverse osmosis membranes. Moreover, it describes that the fouling resistance and hypochlorous acid resistance which were the subject of the conventional reverse osmosis membrane are improved by the effect of containing HFIP group.
  • the HFIP group-containing polyamides described in Patent Document 3 and Patent Document 4 are obtained by interfacial polymerization of a raw material HFIP group-containing amine compound (nucleophilic monomer) and an acid chloride compound (electrophilic monomer). .
  • an ester bond is formed as a side reaction by a reaction between an HFIP group and an acid chloride, and it is difficult to obtain a desired HFIP group-containing polyamide.
  • an ester bond is formed by a reaction between the HFIP group and acid chloride, the fouling resistance and hypochlorous acid resistance, which are the effects of introducing the HFIP group, are hardly exhibited when the separation membrane is used.
  • Patent Document 5 discloses that, as a general effect of introducing an HFIP group into a resin skeleton, the characteristics such as low water absorption, water repellency, high transparency, and low refractive index of fluorine are manifested, and it is useful as a resist. Further, it is described that the adhesion with a substrate is improved by a hydroxyl group, and the solubility in an alkali developer is increased. As an effect of introducing HFIP groups into a separation membrane, particularly a gas separation membrane, water resistance due to low water absorption and water repellency, and improvement in adhesion to other materials such as silicone and epoxy resin are expected.
  • JP 63-101425 A JP-A 61-4505 WO / 2010/0956563 Special table 2012-516788 gazette JP-A-2008-150534
  • An object of the present invention is to impart low water absorption and water repellency to a conventional polysulfone not containing HFIP that is widely used as a material for a separation membrane.
  • the inventors of the present invention directly reacted a polysulfone resin not containing an HFIP group with hexafluoroacetone ((CF 3 ) 2 C ⁇ O, hereinafter sometimes referred to as HFA) to produce HFIP.
  • HFA hexafluoroacetone
  • the present invention comprises the following inventions 1 to 5.
  • A is a single bond, Or Either a and b are each independently an integer of 0 to 2, and 1 ⁇ a + b ⁇ 4.
  • a polysulfone comprising a repeating unit represented by:
  • a membrane comprising the polysulfone of Invention 1 or Invention 2.
  • a novel polysulfone containing an HFIP group and a synthesis method thereof were obtained.
  • the novel polysulfone and the method for synthesizing the polysulfone of the present invention introduce a HFIP group into a polysulfone by reacting a conventional polysulfone (a general-purpose polysulfone not containing an HFIP group) already widely used as a super engineering plastic with HFA.
  • a conventional polysulfone a general-purpose polysulfone not containing an HFIP group
  • the polysulfone containing the HFIP group of the present invention obtained by reacting HFA with a general-purpose polysulfone containing no HFIP group to introduce the HFIP group is obtained by such a synthesis method. It has low water absorption and water repellency due to its introduction into the water, and further has resistance to hypochlorous acid.
  • the polysulfone of the present invention and the synthesis method thereof will be described in detail.
  • the polysulfone containing no HFIP group which is a raw material compound
  • the polysulfone containing HFIP groups in its repeating unit, which is the target product is referred to as “HFIP group-containing polysulfone”.
  • HFIP group-containing polysulfone 1-1 HFIP group-containing polystyrene containing a repeating unit represented by the formula (1)
  • the HFIP group-containing polysulfone of the present invention has the formula (1): Wherein A is a single bond, Or Either a and b are each independently an integer of 0 to 2, and 1 ⁇ a + b ⁇ 4. )
  • the repeating unit represented by is included.
  • the HFIP group-containing polysulfone containing a repeating unit represented by the formula (1) of the present invention includes an HFIP group containing at least one repeating unit represented by the following formulas (4) to (6).
  • Examples include polysulfone.
  • a and b are each independently an integer of 0 to 2, and 1 ⁇ a + b ⁇ 4.
  • HFIP group-containing polystyrene containing a repeating unit represented by formula (2) As a particularly preferred example of an HFIP group-containing polystyrene containing a repeating unit represented by formula (1) of the present invention, formula (2): Wherein A is a single bond, Or One of them. ) HFIP group containing polysulfone containing the repeating unit represented by these is mentioned.
  • the HFIP group-containing polysulfone containing a repeating unit represented by the formula (2) of the present invention contains an HFIP group containing at least one repeating unit represented by the following formulas (7) to (9). Polysulfone.
  • the polysulfone represented by the formulas (4) to (9) is a raw material polysulfone containing the repeating unit represented by the formula (3), that is, the repeating unit represented by the following formulas (10) to (12). It is obtained by replacing the hydrogen atom of the aromatic ring of the raw material polysulfone containing at least one by lithium with a Li agent and then reacting with HFA to replace the lithium with an HFIP group.
  • the raw material polysulfone containing the repeating units represented by the formulas (10) to (12) is a product name of Udel Polysulfone, product numbers P-1700 and P-3500 from Solvay Advanced Polymers Co., Ltd., Sumitomo Chemical Co., Ltd. From the trade name, Victrex, Solvay Advanced Polymers Co., Ltd., the trade name Radel is commercially available and used in the method of the present invention.
  • the reaction formula in the synthesis method of the present invention is shown below.
  • normal butyllithium (n-BuLi) as a Li-forming reagent is added to a solution in which polysulfone, which is a raw material compound containing a repeating unit represented by the formula (3), is dissolved in an organic solvent. It is possible to synthesize raw material polysulfone to synthesize polysulfone containing a repeating unit represented by formula (13).
  • the organic solvent to be used may be a solvent that can dissolve the raw material polysulfone.
  • polar solvents such as tetrahydrofuran (THF) or n-methylpyrrolidone (NMP) can be mentioned.
  • THF tetrahydrofuran
  • NMP n-methylpyrrolidone
  • the reaction temperature is a low temperature at which the Li-forming reagent is not deactivated, and is preferably in the range of ⁇ 70 ° C. or higher and 20 ° C. or lower.
  • the amount of the lithiating agent used to obtain a polysulfone containing the repeating unit represented by the formula (13) with high selectivity is such that the amount of Li in the Li agent is relative to 1 mol of the sulfonyl group in the raw material polysulfone. Is preferably 0.1 or more and 3 or less, particularly preferably 0.5 or more and 2.5 or less.
  • n-BuLi phenyl lithium and tertiary butyl lithium (t-BuLi) can be used as the Li agent, but n-BuLi is preferably used because it is easily available and easy to handle.
  • the amount of the Li agent By adjusting the amount of the Li agent, the number of Li groups bonded to the aromatic ring in the polysulfone containing the repeating unit represented by the formula (13) can be adjusted, and the number of HFIP groups introduced in the next reaction can be adjusted. It is possible to adjust the number. That is, the values of a and b in the repeating unit represented by the formula (1) can be adjusted by adjusting the amount of the Li agent used at the time of introduction.
  • HFIP group-containing polysulfone containing the repeating unit represented by the formula (1) is obtained by adding HFA to the polysulfone containing the repeating unit represented by the formula (13) by dissolving HFA as a gas in the reaction solution. Perform the process of obtaining.
  • the amount of HFA used is excessive with respect to the amount of Li bound to the aromatic ring in the polysulfone containing the repeating unit represented by formula (13). It is preferable to use it.
  • the reaction temperature for promptly proceeding with the addition reaction of HFA to polysulfone containing the repeating unit represented by formula (13) is preferably ⁇ 70 ° C. or higher, 20 ° C. or lower, Preferably, it is ⁇ 60 ° C. or higher and ⁇ 30 ° C. or lower.
  • a precipitate made of polysulfone containing a repeating unit represented by the formula (1) precipitated by adding water, alcohol such as methanol, ethanol or isopropanol, and a mixture thereof as a poor solvent to the reaction solution.
  • alcohol such as methanol, ethanol or isopropanol
  • a mixture thereof as a poor solvent
  • the molecular weight of the polysulfone containing the repeating unit represented by the formula (1) is preferably 10,000 or more and 400,000 or less, particularly preferably 30000 or more and 200,000 or less, expressed as a weight average molecular weight.
  • the weight average molecular weight is lower than 10,000, the strength of the resulting separation membrane is poor, and when the weight average molecular weight is higher than 400,000, a chain for forming a polysulfone containing a repeating unit represented by the formula (1) is used as a separation membrane.
  • the viscosity of the polysulfone solution containing the repeating unit represented by the formula (1) is too high, so that the handling property is deteriorated.
  • the HFIP group-containing polysulfone resin of the present invention can be used for a separation membrane such as a gas separation membrane, a filtration membrane or a blood purification membrane, and the separation membrane using the polysulfone resin is also of the present invention.
  • the method of using the polysulfone resin as a separation membrane also belongs to the category of the present invention.
  • the separation membrane is preferably an asymmetric membrane comprising a surface having dense pores for separation and a substrate having pores larger than that supporting the surfaces. Examples of such an asymmetric membrane include a Loeb-Sourirajan membrane, and the embodiments are roughly classified into a sheet shape and a hollow fiber shape.
  • HFIP group-containing polysulfone containing a repeating unit represented by the formula (1) of the present invention is dissolved in an organic solvent to form a resin solution, and the resin solution is discharged from a discharge port into a coagulation bath filled with a coagulation liquid.
  • the discharge port has a double structure, and the outside is discharged together with the resin solution and the inside is a poor solvent such as air or water.
  • the organic solvent only needs to dissolve the HFIP group-containing polysulfone of the present invention, and N, N-dimethylacetamide, N, N-dimethylformamide or N-methyl-2-pyrrolidone, which is an amide solvent, ⁇ - which is lactone Examples include butyrolactone and ⁇ -valerolactone.
  • the coagulation liquid is preferably a poor solvent such as water or a hydrophilic solvent. Water or a poor solvent obtained by mixing water and an organic solvent is preferably used.
  • a solvent in which 50% by mass or more of water and the remaining alcohol for example, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, or diethyl ketone are mixed.
  • the sheet-like or hollow fiber-like membrane coagulated in the coagulation liquid is heated and dried as necessary.
  • the heating temperature at that time is preferably not higher than the glass transition temperature of the HFIP group-substituted polysulfone so as not to melt or soften the membrane.
  • Various functional groups may be introduced into the HFIP group-containing polysulfone of the present invention for the purpose of obtaining solubility in organic solvents, control of the asymmetric membrane structure, and obtaining performance as a separation membrane in the asymmetric membrane.
  • a carboxyl group (—COOH) is produced by the method described in Patent Document 1
  • a sulfonic acid group (—SO 3 H) is produced by the method described in Patent Document 2
  • a quaternary ammonium group is produced by the method described in Non-Patent Document 1.
  • hydrophilic polymer such as polyvinyl alcohol, polyethylene glycol or polyvinyl pyrrolidone to form a membrane material.
  • the HFIP group-containing polysulfone of the present invention is blended with an epoxy compound for the purpose of adjusting the mechanical strength or physical properties of the asymmetric membrane and for improving the plastic resistance when used as a gas separation membrane, and used as a membrane material. You can also.
  • the epoxy compound examples include an epoxy compound that has been epoxy-modified by bringing it into contact with a resin other than the epoxy compound and epichlorohydrin.
  • Other resins include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol Examples thereof include trimethylolmethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, and aminotriazine-modified phenol resin compound.
  • Such an epoxy compound is available from Dainippon Ink Industries Co., Ltd. from bisphenol A type trade name Epicron 840, Asahi Denka Kogyo Co., Ltd., from bisphenol F type trade name Adeka Resin EP-4901, from Dainippon Ink Industries, Ltd. Cresol novolak-type product name, epiclone N-600 series, dicyclopentadiene-type epiclone product name HP-7200 series, triazine-type product name TEPIC series (product name, manufactured by Nissan Chemical Industries, Ltd.), Shikoku Kasei Kogyo Co., Ltd. Cyanuric acid type trade name DA-MGIC is manufactured and marketed by the company and blended with the HFIP group-containing polysulfone of the present invention and used as a membrane material.
  • the membrane made of polysulfone containing HFIP groups of the present invention has a lower water absorption and a higher contact angle than conventional polysulfones containing no HFIP groups, so that the hydrophilicity is adjusted as a separation membrane material. Can be applied to an asymmetric membrane.
  • the membrane made of polysulfone containing HFIP group of the present invention can be applied to separation membranes such as gas separation membranes, filtration membranes, blood purification membranes, etc., and has the water repellency, water absorption or hypochlorous acid resistance of the separation membranes. Can be adjusted. That is, the polysulfone containing the HFIP group of the present invention obtained by the method of synthesizing the polysulfone containing the HFIP group of the present invention, which introduces the HFIP group by reacting HFA with a general-purpose polysulfone containing no HFIP group, is introduced into the HFIP group. As a result, it has water repellency and low water absorption, and further has resistance to hypochlorous acid.
  • polysulfone containing hexafluoroisopropanol groups (—C (CF 3 ) 2 OH) and HFIP groups) of the present invention was synthesized and identified by NMR, molecular weight, and measurement of 5% mass reduction temperature. The thermal expansion coefficient, contact angle and water absorption were measured. Table 1 shows the equipment used and the measurement method.
  • the HFIP group-containing polysulfone represented by the formula (8) was synthesized from the raw material polysulfone represented by the formula (11). Specifically, 17.64 g of a raw material polysulfone represented by the formula (11) (trade name, PSU, manufactured by Solvay Advanced Polymers Co., Ltd.) was collected in a 1 L three-necked flask under a nitrogen atmosphere, and 600 ml of tetrahydrofuran was collected. In addition, the mixture was stirred at room temperature for dissolution, and then cooled to ⁇ 50 ° C.
  • a raw material polysulfone represented by the formula (11) (trade name, PSU, manufactured by Solvay Advanced Polymers Co., Ltd.) was collected in a 1 L three-necked flask under a nitrogen atmosphere, and 600 ml of tetrahydrofuran was collected.
  • the mixture was stirred at room temperature for dissolution, and then cooled to ⁇ 50 ° C.
  • reaction solution was added to a mixed solution of methanol and water having a mass ratio of 1: 1 as a poor solvent, and the precipitated precipitate product was filtered, dried at 80 ° C. under reduced pressure, and 27.39 g of white. A powder was obtained. The yield was 92%, and the weight average molecular weight determined from GPC measurement was 63,000.
  • Example 1 10 g of HFIP group-containing polysulfone containing the synthesized repeating unit represented by the formula (8) was dissolved in 23 g of n-methylpyrrolidone. The obtained solution was coated on a glass substrate with a spin coater and then heated at 160 ° C. for 3 minutes. After cooling to room temperature (20 ° C.), the film was peeled off from the glass substrate to obtain a colorless and transparent film having a thickness of 24 ⁇ m. The glass transition temperature measured by the thermomechanical measuring apparatus shown in Table 1 was 120 ° C., and the thermal expansion coefficient was 98 ppm / ° C. The water absorption was 0.2% by mass and the contact angle was 85 degrees.
  • Example 2 10 g of the HFIP group-containing polysulfone containing the repeating unit represented by the formula (8) was dissolved in 23 g of dimethylformamide (hereinafter sometimes referred to as DMF). The obtained solution was formed on a filter paper affixed to a glass substrate so as to have a thickness of 30 ⁇ m using a bar coater. After leaving still for 15 minutes, it was immersed in water and the film
  • DMF dimethylformamide
  • Example 3 1 g of the synthesized HFIP group-containing polysulfone containing the repeating unit represented by the formula (8) was mixed with 50 g of an aqueous sodium hypochlorite solution (active chlorine 5% or more) and stirred at room temperature for 17 hours. After stirring, it was filtered, washed with water, and dried under reduced pressure at 80 ° C. to obtain 0.95 g of white powder. NMR measurement of the obtained white powder and intensity distribution spectrum measurement at each wavelength of infrared light using Fourier transform were performed by Fourier transform infrared spectrophotometer (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • the HFIP group-containing polysulfone containing the repeating unit represented by the formula (8) is sufficiently hypochlorous acid because it almost coincided with the NMR measurement and FT-IR measurement results of the HFIP group-containing polysulfone containing the represented repeating unit. It was found to be resistant.
  • Table 2 shows the results of measuring the contact angle and water absorption of the HFIP group-containing polysulfone of Example 1 and the polysulfone of Comparative Example 1 that is not within the scope of the present invention.
  • the HFIP group-containing polysulfone membrane of Example 1 had a lower water absorption rate and a higher receding contact angle than the membrane of Comparative Example 1. This is due to the fact that the polysulfone skeleton contains HFIP groups, thereby increasing the water repellency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 本発明のポリスルホンは、式(1): (式中、Aは、単結合、【35】または【36】であり、aおよびbは、それぞれ独立に、0~2の整数であり、1≦a+b≦4である。)で表される繰り返し単位を含む。このようなHFIP基に有するポリスルホンは、低吸水性および撥水性を示し、分離膜に好適に用いられる。

Description

へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法
 本発明は、ヘキサフルオロイソプロパノール基(1,1,1,3,3,3-ヘキサフルオロ-2-ヒドロキシ-2-プロピル基、-C(CF32OH、以下、HFIP基と呼ぶことがある)を含む、新規なポリスルホン(以下、HFIP基含有ポリスルホンと呼ぶことがある)およびその合成方法に関する。
 ポリスルホンは、耐熱性、耐薬品性、強度等に優れていることから、エンジニアリングプラスチックとして広く使用され、例えば、以下の式で表される繰り返し単位を含むポリスルホンが知られている。
Figure JPOXMLDOC01-appb-C000010
 また、ポリスルホンは、気体分離膜、濾過膜または血液浄化膜等の分離膜の素材として使われることが多い。例えば、特許文献1には、海水等の淡水化のための逆浸透膜、または限外濾過膜、精密濾過膜に有用なカルボン酸基含有ポリスルホンが開示され、特許文献2にはポリスルホン複合半透膜が開示されている。
 気体分離膜においては、処理量を増やすために大きな気体透過量を得ること、および分離したガスに高選択性を得ることの両立が求められ、濾過膜または血液浄化膜においては、ファウリング(目詰まり)の防止、即ち、耐ファウリング性、および表面親水化等が求められており、このような高機能化を目的として、素材であるポリスルホンの芳香環に種々の官能基を導入することが行われている。
 例えば、特許文献1には、カルボキシル基(-COOH)を含むポリスルホン、特許文献2には、スルホン酸基(-SO3H)を含むポリスルホン、非特許文献1には、四級アンモニウム基を含むポリスルホンが開示され、また、当該四級アンモニウム基の導入方法が開示されている。
 特許文献3および特許文献4には、HFIP基含有芳香族ポリアミドが、逆浸透膜に有用であることが開示されている。また、HFIP基を含有させた効果により、従来の逆浸透膜の課題であった耐ファウリング性および次亜塩素酸耐性が改善されると記載されている。
 特許文献3および特許文献4に記載のHFIP基含有ポリアミドは、原料であるHFIP基含有アミン化合物(求核性モノマー)と酸クロリド化合物(求電子性モノマー)との界面重合によって得られるものである。しかしながら、界面重合の際に、所望する縮合反応によるアミド結合を形成する以外に、副反応としてHFIP基と酸クロリドとの反応によるエステル結合の形成が起こり、所望のHFIP基含有ポリアミドが得られ難いという問題があった。HFIP基と酸クロリドとの反応によるエステル結合の形成が起こるため、分離膜とした際、HFIP基の導入効果である、耐ファウリング性および次亜塩素酸耐性が発現し難くなる。
 特許文献5に、HFIP基を樹脂骨格に導入する一般的な効果として、フッ素が有する低吸水性、撥水性、高透明性または低屈折率性等の特性が発現すること、レジストとするに有用な、水酸基による基板との密着性向上、アルカリ現像液への溶解性が増すことが記載されている。分離膜、特に気体分離膜にHFIP基を導入する効果として、低吸水性および撥水性による耐水性、シリコーンやエポキシ樹脂等の他材料との接着性向上が期待される。
特開昭63-101425号公報 特開昭61-4505号公報 WO/2010/096563 特表2012-516788号公報 特開昭2008-150534号公報
S. Nakao et al.,Desalination,vol. 70,p191,1988
 本発明は、分離膜用材料として広く使用されているHFIPを含まない従来のポリスルホンに、低吸水性および撥水性を賦与することを目的とする。
 本発明者らは、鋭意検討を行った結果、HFIP基を含まないポリスルホン樹脂とヘキサフルオロアセトン((CF32C=O、以下、HFAと呼ぶことがある)を直接反応させて、HFIP基を導入することで、HFIP基を含む新規ポリスルホンを得ることができ、前記課題を解決し、本発明に至った。
 即ち、本発明は、以下の発明1~5よりなる。
 [発明1]
 式(1):
Figure JPOXMLDOC01-appb-C000011
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000012
または
Figure JPOXMLDOC01-appb-C000013
のいずれかであり、
aおよびbは、それぞれ独立に、0~2の整数であり、1≦a+b≦4である。)
で表される繰り返し単位を含む、ポリスルホン。
 [発明2]
 式(2):
Figure JPOXMLDOC01-appb-C000014
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000015
または
Figure JPOXMLDOC01-appb-C000016
のいずれかである。)
で表される繰り返し単位を含む、発明1のポリスルホン。
 [発明3]
式(3):
Figure JPOXMLDOC01-appb-C000017
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000018
または
Figure JPOXMLDOC01-appb-C000019
のいずれかである。)
で表される繰り返し単位を含むポリスルホンと、ヘキサフルオロアセトンを反応させる工程を含む、発明1のポリスルホンの合成方法。
 [発明4]
 発明1または発明2のポリスルホンを含む膜。
 [発明5]
 膜が非対称膜であることを特徴とする、発明4の膜。
 本発明により、HFIP基を含有する新規ポリスルホンおよびその合成方法が得られた。本発明の新規ポリスルホンおよびそのポリスルホン合成方法は、既にスーパーエンジニアリングプラスチックとして広く使用されている従来のポリスルホン(HFIP基を含まない汎用のポリスルホン)と、HFAとを反応させて、ポリスルホンにHFIP基を導入するものである。HFIP基を含まない汎用のポリスルホンにHFAを反応させてHFIP基を導入する、本発明のHFIP基を含むポリスルホンこのような合成方法により得られた、本発明のHFIP基を含むポリスルホンは、HFIP基に導入したことによる、低吸水性および撥水性を有し、さらに次亜塩素酸耐性を有する。
 以下、本発明のポリスルホンおよびその合成方法について詳細に説明する。尚、以下の記述において、原料化合物であるHFIP基を含まないポリスルホンを「原料ポリスルホン」と呼び、目的生成物である、その繰り返し単位にHFIP基を含有するポリスルホンを「HFIP基含有ポリスルホン」と呼ぶことがある。
 1. HFIP基含有ポリスルホン
 1-1.式(1)で表される繰り返し単位を含むHFIP基含有ポリスチレン
 本発明のHFIP基含有ポリスルホンは、式(1):
Figure JPOXMLDOC01-appb-C000020
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000021
または
Figure JPOXMLDOC01-appb-C000022
のいずれかであり、
aおよびbは、それぞれ独立に、0~2の整数であり、1≦a+b≦4である。)
で表される繰り返し単位を含む。
 具体的には、本発明の式(1)で表される繰り返し単位を含むHFIP基含有ポリスルホンとしては、以下の式(4)~(6)で表される繰り返し単位を少なくとも一つ含むHFIP基含有ポリスルホンが例示される。
Figure JPOXMLDOC01-appb-C000023
(式(4)~(6)中、aおよびbは、それぞれ独立に、0~2の整数であり、1≦a+b≦4である。)
 1-2.式(2)で表される繰り返し単位を含むHFIP基含有ポリスチレン
 本発明の式(1)で表される繰り返し単位を含むHFIP基含有ポリスチレンの特に好適な例として、式(2):
Figure JPOXMLDOC01-appb-C000024
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000025
または
Figure JPOXMLDOC01-appb-C000026
のいずれかである。)
で表される繰り返し単位を含むHFIP基含有ポリスルホンが挙げられる。
 具体的には、本発明の式(2)で表される繰り返し単位を含むHFIP基含有ポリスルホンは、以下の式(7)~(9)で表される繰り返し単位を少なくとも一つ含むHFIP基含有ポリスルホンである。
Figure JPOXMLDOC01-appb-C000027
 2.HFIP基含有ポリスルホンの合成方法
 本発明の式(1)で表される繰り返し単位を含むHFIP基含有ポリスルホンの合成方法は、式(3):
Figure JPOXMLDOC01-appb-C000028
(式中、Aは、単結合、
Figure JPOXMLDOC01-appb-C000029
または
Figure JPOXMLDOC01-appb-C000030
のいずれかである。)
で表される繰り返し単位を含む、原料ポリスルホンと、ヘキサフルオロアセトンを反応させることを特徴とする。
 例えば、式(4)~(9)で表されるポリスルホンは、式(3)で表される繰り返し単位を含む原料ポリスルホン、即ち、以下の式(10)~(12)で表される繰り返し単位を少なくとも一つ含む原料ポリスルホンの芳香環の水素原子を、Li化剤を用いてリチウムに置換した後に、HFAと反応させ、前記リチウムをHFIP基と置換させることで得られる。
Figure JPOXMLDOC01-appb-C000031
 尚、式(10)~(12)で表される繰り返し単位を含む原料ポリスルホンは、各々ソルベイアドバンストポリマーズ株式会社より、商品名ユーデルポリスルホン、品番P-1700およびP-3500が、住友化学株式会社より、商品名、ビクトレックス、ソルベイアドバンストポリマーズ株式会社より、商品名レーデルが市販され、本発明の方法に使用される。
 以下、式(1)で表される繰り返し単位を含むHFIP基含有ポリスルホンの合成方法を例にとって説明する。
 本発明の合成方法における反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000032
 本反応において、式(3)で表される繰り返し単位を含む原料化合物であるポリスルホンを有機溶媒に溶解させた溶液に、Li化試薬であるノルマルブチルリチウム(n-BuLi)を加えることで、当該原料ポリスルホンをリチウム化して、式(13)で表される繰り返し単位を含むポリスルホンを合成するこることが可能である。
 使用する有機溶媒は原料であるポリスルホンを溶解できる溶媒を用いればよい。例えば、テトラヒドロフラン(THF)またはn-メチルピロリドン(NMP)等の極性溶媒を挙げることができる。反応の際、原料ポリスルホンと極性溶媒は、質量比で表して、原料ポリスルホン:極性溶媒=10~40:60~90の範囲内で用いることが好ましく、反応におけるハンドリングがよい。反応温度はLi化試薬が失活しない低温で行い、好ましくは、-70℃以上、20℃以下の範囲内である。
 式(13)で表される繰り返し単位を含むポリスルホンを選択率よく得るための、リチウム化剤の使用量は、原料であるポリスルホン中のスルホニル基1モルに対して、前記Li化剤中のLiのモル数が0.1以上、3以下であることが好ましく、特に好ましくは0.5以上、2.5以下である。尚、Li化剤としては、n-BuLi以外に、フェニルリチウム、ターシャリブチルリチウム(t-BuLi)を用いることができるが、入手しやすく扱いやすいことから、n-BuLiを用いることが好ましい。
 前記反応式に示すように、HFAと、式(13)で表される繰り返し単位を含むポリスルホンの芳香環に結合するLiが置換反応して、HFIP基がポリスルホン中に導入される。Li化剤の量を調整することで、式(13)で表わされる繰り返し単位を含むポリスルホン中の芳香環に結合するLi基の数を調整することができ、次反応において導入されるHFIP基の数を調整することが可能である。即ち、導入の際のLi化剤の使用量を調整することで、式(1)で表される繰り返し単位中のaおよびbの値を調整することができる。
 次いで、式(13)で表わされる繰り返し単位を含むポリスルホンに、気体であるHFAを反応液に接触溶解させてHFAを付加させて、式(1)で表される繰り返し単位を含むHFIP基含有ポリスルホンを得る過程の反応を行う。本反応においては、副生物が生成する懸念がないことから、使用するHFAの量は、式(13)で表される繰り返し単位を含むポリスルホン中の芳香環に結合するLiの量に対し過剰に使用することが好ましい。
 HFAを接触溶解させた後、式(13)で表される繰り返し単位を含むポリスルホンへのHFAの付加反応を速やかに進行させるための反応温度は、好ましくは―70℃以上、20℃以下、さらに好ましくは―60℃以上、-30℃以下である。
 最後に、反応液に、水、メタノール、エタノールまたはイソプロパノール等のアルコール、およびこれらの混合液を貧溶媒として加えることで析出した、式(1)で表される繰り返し単位を含むポリスルホンからなる沈殿を得、減圧乾燥することで、式(1)で表される繰り返し単位を含むポリスルホンを得ることが可能である。
 式(1)で表される繰り返し単位を含むポリスルホンの分子量は、重量平均分子量で表わして、10000以上、400000以下であることが好ましく、特に30000以上、200000以下の範囲が好ましい。重量平均分子量が10000より低いと得られる分離膜の強度が乏しく、重量平均分子量が400000より高いと、分離膜として使用するため式(1)で表される繰り返し単位を含むポリスルホンを成膜する鎖に、式(1)で表される繰り返し単位を含むポリスルホンの溶液の粘度が高すぎてハンドリング性が悪くなり好ましくない。
 3.HFIP基含有ポリスルホンを用いた膜
 本発明のHFIP基含有ポリスルホン樹脂は、気体分離膜、濾過膜または血液浄化膜等の分離膜に使用可能であり、当該ポリスルホン樹脂を用いた分離膜も本発明の範疇に属し、当該ポリスルホン樹脂の分離膜としての使用方法も本発明の範疇に属する。当該分離膜は、分離を行う緻密な細孔を有する表面とそれを支えるそれより大きな孔を有する基体からなる非対称膜であることが好ましい。このような非対称膜としては、例えば、Loeb-Sourirajan膜が挙げられ、実施形態はシート状と中空糸状に大別される。
 例えば、本発明の式(1)で表される繰り返し単位を含む、HFIP基含有ポリスルホンを、有機溶媒に溶解させ樹脂溶液とし、樹脂溶液を吐出口から、凝固液を満たした凝固浴中に吐出させ、シート状または中空糸状とする。尚、中空糸状とする場合は、吐出口を二重構造として、外側を前記樹脂溶液、内側を空気、または水等の貧溶媒とし共に吐出する。
 前記樹脂溶液の吐出口から凝固浴までの距離の調整、環境温度の調整、有機溶媒または凝固液の種類の選択、凝固浴の温度の調整により、孔径、孔径分布、厚みを制御して非対称構造を形成し、非対称膜とする。
 前記有機溶媒は、本発明のHFIP基含有ポリスルホンを溶解すればよく、アミド系溶媒であるN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドまたはN-メチル-2-ピロリドン、ラクトンであるγ-ブチロラクトン、γ-バレロラクトンを例示することができる。凝固液は貧溶媒である水または親水性の溶媒を用いることが好ましく、水、または水と有機溶剤を混合させた貧溶媒が好適に使用され、具体的には、40質量%以上、好ましくは50質量%以上の水と、残部アルコール、例えば、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトンまたはジエチルケトンとを混合させた溶媒を例示することができる。
 凝固液中で凝固したシート状または中空糸状の膜は、必要に応じて加熱乾燥させる。その際の加熱温度は、膜を溶融もしくは軟化させないために、HFIP基置換ポリスルホンのガラス転移温度以下であることが好ましい。
 有機溶媒に対する溶解性、非対称膜構造の制御、非対称膜に分離膜としての性能を得る目的で、本発明のHFIP基含有ポリスルホンに種々の官能基を導入してもよい。例えば、特許文献1に記載の方法でカルボキシル基(-COOH)を、特許文献2に記載の方法でスルホン酸基(-SO3H)を、非特許文献1に記載の方法で四級アンモニウム基を導入することができる。
 また、非対称膜の親水性を改良する目的で、ポリビニルアルコール、ポリエチレングリコールまたはポリビニルピロリドン等の親水性高分子とブレンドし、膜の材料とすることができる。
 また、本発明のHFIP基含有ポリスルホンは、非対称膜の機械的強度または物性を調整する目的、ガス分離膜として用いた際の耐可塑性を高める目的で、エポキシ化合物とブレンドし、膜の材料とすることもできる。
 エポキシ化合物としては、エポキシ化合物以外の樹脂とエピクロロヒドリンと接触させることによりエポキシ変性させたエポキシ化合物が挙げられる。他の樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂またはアミノトリアジン変性フェノール樹脂化合物を例示することができる。
 このようなエポキシ化合物は、大日本インキ工業株式会社より、ビスフェノールA型の商品名エピクロン840、旭電化工業株式会社より、ビスフェノールF型の商品名アデカレジンEP-4901、大日本インキ工業株式会社より、クレゾールノボラック型の商品名、エピクロンN-600シリーズ、ジシクロペンタジエン型のエピクロン商品名HP-7200シリーズ、日産化学工業株式会社よりトリアジン型の商品名TEPICシリーズ(商品名、製)、四国化成工業株式会社製より、シアヌル酸型の商品名DA-MGICが製造市販されており、本発明のHFIP基含有ポリスルホンとブレンドし膜材料として使用される。
 また、本発明のHFIP基を含有するポリスルホンからなる膜は、従来のHFIP基を含まないポリスルホンに比較して、吸水率が低く、かつ接触角が高いことから、分離膜素材として親水性を調節することが可能であり、非対称膜への応用も可能である。
 本発明のHFIP基を含有するポリスルホンからなる膜は、気体分離膜、濾過膜、血液浄化膜等の分離膜に応用可能であり、分離膜の撥水性、吸水性または次亜塩素酸耐性等を調節することができる。即ち、HFIP基を含まない汎用のポリスルホンにHFAを反応させてHFIP基を導入する、本発明のHFIP基を含むポリスルホン合成方法により得られた、本発明のHFIP基を含むポリスルホンはHFIP基に導入したことによる、撥水性および低吸水性を有し、さらに次亜塩素酸耐性を有する。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1~3にて、本発明のヘキサフルオロイソプロパノール基(-C(CF32OH)、HFIP基)を含むポリスルホンを合成し、NMRでの同定、分子量、5%質量減少温度の測定、熱膨張係数、接触角および吸水率の測定を行った。使用機器および測定方法を表1に示す。
Figure JPOXMLDOC01-appb-T000033
 [HFIP基含有ポリスルホンの合成]
 まず、下記に示すとおり、式(11)で表される原料ポリスルホンから、式(8)で表されるHFIP基含有ポリスルホンの合成を行った。
Figure JPOXMLDOC01-appb-C000034
 具体的には、窒素雰囲気下の容積1Lの三口フラスコ中に、式(11)で表される原料ポリスルホン(ソルベイアドバンストポリマーズ株式会社製、商品名、PSU)を17.64g採取し、テトラヒドロフランを600ml加えて、室温で攪拌し溶解した後、-50℃に冷却した。冷却後、リチウム化剤、n-BuLi 56mlを添加し、-50℃にて1時間攪拌した後、ヘキサフルオロアセトン(HFA)14.7gをさらに加え、-50℃にてさらに2時間攪拌した。得られた反応液を、貧溶媒としての、質量比1:1のメタノールと水との混合液に加え、析出した沈殿生成物を濾過後80℃にて減圧乾燥後し、27.39gの白色粉体を得た。収率は92%で、GPC測定から求めた重量平均分子量は63000であった。下記のNMR測定結果から、式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホンであることが分かった。また、TG-DTA測定から求めた5%質量減少温度は360℃であった。
1H-NMR(CDCl3, TMS) δ1.67 (6H, s), 6.48 (1H, s), 6.95 (2H, d, J = 8.8Hz), 6.98(2H, d, J = 10.0Hz), 7.25 (2H, s), 7.45 (2H, s), 7.84 (2H, d, J = 9.0Hz)
19F-NMR(CDCl3, CCl3F) δ -74.7 (12F, s)
 [実施例1]
 合成した式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホン10gを、n-メチルピロリドン23gに溶解させた。得られた溶液をガラス基板上にスピンコーターにて塗布被覆した後、160℃にて3分間、加熱した。室温(20℃)まで冷却した後、ガラス基板上から剥がし、厚み24μmの無色透明な膜を得た。表1に示した熱機械測定装置で測定したガラス転移温度は120℃および熱膨張係数は98ppm/℃であった。また、吸水率は0.2質量%および接触角は85度であった。
 [実施例2]
 合成した式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホン10gを、ジメチルホルムアミド(以下、DMFと呼ぶことがある)23gに溶解させた。得られた溶液をガラス基板に貼り付けた濾紙上に、バーコーターを用いて厚み30μmになるように成膜した。15分静置後、水に浸漬し、濾紙ごと膜を、ガラス基板より剥がした。得られた膜の濾紙膜に貼り付いていた逆の面は白色で光沢のある非対称膜が得られた。
 [実施例3]
 合成した式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホン1gを、次亜塩素酸ナトリウム水溶液50g(活性塩素5%以上)に混合し、室温で17時間撹拌した。撹拌後、ろ過、水洗し、80℃にて減圧乾燥後し、0.95gの白色粉体を得た。得られた白色粉体のNMR測定、フーリエ変換赤外分光光度計(FT-IR)により、フーリエ変換を用いた赤外光の各波長における強度分布スペクトル測定を実施したところ、式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホンのNMR測定、FT-IR測定結果とほぼ一致したことから、式(8)で表される繰り返し単位を含むHFIP基含有ポリスルホンは充分な次亜塩素酸耐性を示すことがわかった。
 [比較例1]
 HFIP基を含まない、式(11)で表される原料ポリスルホン(ソルベイアドバンストポリマーズ株式会社製、商品名、PSU)10gを、NMP23gに溶解させた。次いで、実施例1と同様の手順で無色透明な厚み30μmの膜を得た。熱機械測定装置で測定したガラス転移温度は135℃、および熱膨張係数は73ppm/℃であった。吸水率は0.6質量%、接触角は77度であった。
 [接触角および吸水性の評価]
 実施例1のHFIP基含有ポリスルホン、および比較例1の本発明の範疇にないポリスルホンの接触角および吸水率の測定を行った結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000035
 表2に示すように、実施例1のHFIP基含有ポリスルホン膜は、比較例1の膜に比べて、低い吸水率、高い後退接触角を示す結果となった。このことは、ポリスルホン骨格がHFIP基を含有することで、撥水性が高くなったことによる。

Claims (5)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、単結合、
    Figure JPOXMLDOC01-appb-C000002
    または
    Figure JPOXMLDOC01-appb-C000003
    のいずれかであり、
    aおよびbは、それぞれ独立に、0~2の整数であり、1≦a+b≦4である。)
    で表される繰り返し単位を含む、ポリスルホン。
  2. 式(2):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Aは、単結合、
    Figure JPOXMLDOC01-appb-C000005
    または
    Figure JPOXMLDOC01-appb-C000006
    のいずれかである。)
    で表される繰り返し単位を含む、請求項1に記載のポリスルホン。
  3. 式(3):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Aは、単結合、
    Figure JPOXMLDOC01-appb-C000008
    または
    Figure JPOXMLDOC01-appb-C000009
    のいずれかである。)
    で表される繰り返し単位を含むポリスルホンと、ヘキサフルオロアセトンを反応させる工程を含む、請求項1に記載のポリスルホンの合成方法。
  4. 請求項1または請求項2に記載のポリスルホンを含む膜。
  5. 膜が非対称膜であることを特徴とする、請求項4に記載の膜。
PCT/JP2012/082026 2011-12-13 2012-12-11 へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法 WO2013089084A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011272341 2011-12-13
JP2011-272341 2011-12-13
JP2012263958A JP2013144780A (ja) 2011-12-13 2012-12-03 へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法
JP2012-263958 2012-12-03

Publications (1)

Publication Number Publication Date
WO2013089084A1 true WO2013089084A1 (ja) 2013-06-20

Family

ID=48612531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082026 WO2013089084A1 (ja) 2011-12-13 2012-12-11 へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法

Country Status (2)

Country Link
JP (1) JP2013144780A (ja)
WO (1) WO2013089084A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481823A (en) * 1987-09-24 1989-03-28 Sagami Chem Res Polysulfone based graft copolymer and separation membrane
JPH06340742A (ja) * 1993-05-28 1994-12-13 Asahi Glass Co Ltd 含フッ素ポリスルホン及びその製造方法
JPH09505849A (ja) * 1993-12-02 1997-06-10 ノース・ウェスト・ウォーター・グループ パブリック・リミテッド・カンパニー 芳香族ポリスルホン
JP2003038965A (ja) * 2001-07-30 2003-02-12 Asahi Glass Engineering Co Ltd 陰イオン交換体および陰イオン交換膜
JP2008150534A (ja) * 2006-12-19 2008-07-03 Central Glass Co Ltd 含フッ素ジアミンおよびそれを用いた高分子化合物
WO2010096563A1 (en) * 2009-02-20 2010-08-26 International Business Machines Corporation Polyamide membranes with fluoroalcohol functionality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481823A (en) * 1987-09-24 1989-03-28 Sagami Chem Res Polysulfone based graft copolymer and separation membrane
JPH06340742A (ja) * 1993-05-28 1994-12-13 Asahi Glass Co Ltd 含フッ素ポリスルホン及びその製造方法
JPH09505849A (ja) * 1993-12-02 1997-06-10 ノース・ウェスト・ウォーター・グループ パブリック・リミテッド・カンパニー 芳香族ポリスルホン
JP2003038965A (ja) * 2001-07-30 2003-02-12 Asahi Glass Engineering Co Ltd 陰イオン交換体および陰イオン交換膜
JP2008150534A (ja) * 2006-12-19 2008-07-03 Central Glass Co Ltd 含フッ素ジアミンおよびそれを用いた高分子化合物
WO2010096563A1 (en) * 2009-02-20 2010-08-26 International Business Machines Corporation Polyamide membranes with fluoroalcohol functionality

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAI, YING ET AL.: "Effect of Hexafluoro-2-propanol Substituents in Polymers on Gas Permeability and Fractional Free Volume", MACROMOLECULES, vol. 38, no. 23, 15 November 2005 (2005-11-15), pages 9670 - 9678 *
DAI, YING ET AL.: "Preparation and Characterization of Polysulfones Containing Both Hexafluoroisopropylidene and Trimethylsilyl Groups as Gas Separation Membrane Materials", MACROMOLECULES, vol. 37, no. 4, 24 February 2004 (2004-02-24), pages 1403 - 1410 *

Also Published As

Publication number Publication date
JP2013144780A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5915376B2 (ja) 気体分離膜
US11499013B2 (en) Zwitterionic poly(sulfobetaine arylene ether sulfone) polymer synthesis route and applications for desalination membranes
KR101704475B1 (ko) 내열성 및 내화학성이 우수한 폴리술폰 공중합체 및 그 제조방법
JP6018790B2 (ja) 分離膜、この製造方法および分離膜を含む水処理装置
JP6194773B2 (ja) 気体分離膜
JP2002504603A (ja) ポリマーの製造方法
AU683516B2 (en) Aromatic polysulphones
JP2022500524A (ja) ポリアリーレンエーテルスルホン
JP6194774B2 (ja) 気体分離膜
WO2016032179A1 (ko) 내열성 및 내화학성이 우수한 폴리술폰 공중합체 및 그 제조방법
KR20210056403A (ko) 폴리아릴렌 에테르
JP7254726B2 (ja) 新規な膜ポリマーおよび膜
WO2012165435A1 (ja) 含フッ素重合性単量体およびそれを用いた高分子化合物
JP7497338B2 (ja) イソヘキシドを含有する芳香族ポリエーテルスルホンの製造方法
CN110922596A (zh) 聚醚醚苯亚胺-醚醚砜共聚物、其制备方法和应用、聚醚醚酮-醚醚砜共聚物及其制备方法
WO2013089084A1 (ja) へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法
EP3053641B1 (en) Water-treatment separation membrane comprising ionic exchange polymer layer and method for forming same
KR102167294B1 (ko) 내열성 및 가공성이 향상된 폴리술폰 공중합체 및 그 제조방법
WO2021110954A1 (en) Process for preparing a poly(aryl ether sulfone) (paes) polymer
US20220251300A1 (en) Bio-based polysulfones and uses thereof
US20230399468A1 (en) Bio-based sulfone copolymers free of bpa and bps
JP2021535246A (ja) 生物由来のフランジオールを含有する芳香族ポリエーテル
KR20210151123A (ko) 반반향족 폴리에테르의 합성 방법
WO2024068441A1 (en) Graft polyarylether copolymers
CN116547341A (zh) 不含bpa和bps的生物基砜共聚物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857811

Country of ref document: EP

Kind code of ref document: A1